summaryrefslogtreecommitdiff
path: root/gdb/findvar.c
blob: 93c4d8a6e8305a36436b0af037d632cb9c005cf7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
/* Find a variable's value in memory, for GDB, the GNU debugger.

   Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
   1995, 1996, 1997, 1998, 1999, 2000, 2001, 2003 Free Software
   Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "frame.h"
#include "value.h"
#include "gdbcore.h"
#include "inferior.h"
#include "target.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "floatformat.h"
#include "symfile.h"		/* for overlay functions */
#include "regcache.h"
#include "builtin-regs.h"
#include "block.h"

/* Basic byte-swapping routines.  GDB has needed these for a long time...
   All extract a target-format integer at ADDR which is LEN bytes long.  */

#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
  /* 8 bit characters are a pretty safe assumption these days, so we
     assume it throughout all these swapping routines.  If we had to deal with
     9 bit characters, we would need to make len be in bits and would have
     to re-write these routines...  */
you lose
#endif

LONGEST
extract_signed_integer (const void *addr, int len)
{
  LONGEST retval;
  const unsigned char *p;
  const unsigned char *startaddr = addr;
  const unsigned char *endaddr = startaddr + len;

  if (len > (int) sizeof (LONGEST))
    error ("\
That operation is not available on integers of more than %d bytes.",
	   (int) sizeof (LONGEST));

  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    {
      p = startaddr;
      /* Do the sign extension once at the start.  */
      retval = ((LONGEST) * p ^ 0x80) - 0x80;
      for (++p; p < endaddr; ++p)
	retval = (retval << 8) | *p;
    }
  else
    {
      p = endaddr - 1;
      /* Do the sign extension once at the start.  */
      retval = ((LONGEST) * p ^ 0x80) - 0x80;
      for (--p; p >= startaddr; --p)
	retval = (retval << 8) | *p;
    }
  return retval;
}

ULONGEST
extract_unsigned_integer (const void *addr, int len)
{
  ULONGEST retval;
  const unsigned char *p;
  const unsigned char *startaddr = addr;
  const unsigned char *endaddr = startaddr + len;

  if (len > (int) sizeof (ULONGEST))
    error ("\
That operation is not available on integers of more than %d bytes.",
	   (int) sizeof (ULONGEST));

  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
  retval = 0;
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    {
      for (p = startaddr; p < endaddr; ++p)
	retval = (retval << 8) | *p;
    }
  else
    {
      for (p = endaddr - 1; p >= startaddr; --p)
	retval = (retval << 8) | *p;
    }
  return retval;
}

/* Sometimes a long long unsigned integer can be extracted as a
   LONGEST value.  This is done so that we can print these values
   better.  If this integer can be converted to a LONGEST, this
   function returns 1 and sets *PVAL.  Otherwise it returns 0.  */

int
extract_long_unsigned_integer (const void *addr, int orig_len, LONGEST *pval)
{
  char *p, *first_addr;
  int len;

  len = orig_len;
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    {
      for (p = (char *) addr;
	   len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len;
	   p++)
	{
	  if (*p == 0)
	    len--;
	  else
	    break;
	}
      first_addr = p;
    }
  else
    {
      first_addr = (char *) addr;
      for (p = (char *) addr + orig_len - 1;
	   len > (int) sizeof (LONGEST) && p >= (char *) addr;
	   p--)
	{
	  if (*p == 0)
	    len--;
	  else
	    break;
	}
    }

  if (len <= (int) sizeof (LONGEST))
    {
      *pval = (LONGEST) extract_unsigned_integer (first_addr,
						  sizeof (LONGEST));
      return 1;
    }

  return 0;
}


/* Treat the LEN bytes at ADDR as a target-format address, and return
   that address.  ADDR is a buffer in the GDB process, not in the
   inferior.

   This function should only be used by target-specific code.  It
   assumes that a pointer has the same representation as that thing's
   address represented as an integer.  Some machines use word
   addresses, or similarly munged things, for certain types of
   pointers, so that assumption doesn't hold everywhere.

   Common code should use extract_typed_address instead, or something
   else based on POINTER_TO_ADDRESS.  */

CORE_ADDR
extract_address (const void *addr, int len)
{
  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
     whether we want this to be true eventually.  */
  return (CORE_ADDR) extract_unsigned_integer (addr, len);
}


/* Treat the bytes at BUF as a pointer of type TYPE, and return the
   address it represents.  */
CORE_ADDR
extract_typed_address (const void *buf, struct type *type)
{
  if (TYPE_CODE (type) != TYPE_CODE_PTR
      && TYPE_CODE (type) != TYPE_CODE_REF)
    internal_error (__FILE__, __LINE__,
		    "extract_typed_address: "
		    "type is not a pointer or reference");

  return POINTER_TO_ADDRESS (type, buf);
}


void
store_signed_integer (void *addr, int len, LONGEST val)
{
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;

  /* Start at the least significant end of the integer, and work towards
     the most significant.  */
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    {
      for (p = endaddr - 1; p >= startaddr; --p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
  else
    {
      for (p = startaddr; p < endaddr; ++p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
}

void
store_unsigned_integer (void *addr, int len, ULONGEST val)
{
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;

  /* Start at the least significant end of the integer, and work towards
     the most significant.  */
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    {
      for (p = endaddr - 1; p >= startaddr; --p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
  else
    {
      for (p = startaddr; p < endaddr; ++p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
}

/* Store the address VAL as a LEN-byte value in target byte order at
   ADDR.  ADDR is a buffer in the GDB process, not in the inferior.

   This function should only be used by target-specific code.  It
   assumes that a pointer has the same representation as that thing's
   address represented as an integer.  Some machines use word
   addresses, or similarly munged things, for certain types of
   pointers, so that assumption doesn't hold everywhere.

   Common code should use store_typed_address instead, or something else
   based on ADDRESS_TO_POINTER.  */
void
store_address (void *addr, int len, LONGEST val)
{
  store_unsigned_integer (addr, len, val);
}


/* Store the address ADDR as a pointer of type TYPE at BUF, in target
   form.  */
void
store_typed_address (void *buf, struct type *type, CORE_ADDR addr)
{
  if (TYPE_CODE (type) != TYPE_CODE_PTR
      && TYPE_CODE (type) != TYPE_CODE_REF)
    internal_error (__FILE__, __LINE__,
		    "store_typed_address: "
		    "type is not a pointer or reference");

  ADDRESS_TO_POINTER (type, buf, addr);
}



/* Return a `value' with the contents of (virtual or cooked) register
   REGNUM as found in the specified FRAME.  The register's type is
   determined by register_type().

   NOTE: returns NULL if register value is not available.  Caller will
   check return value or die!  */

struct value *
value_of_register (int regnum, struct frame_info *frame)
{
  CORE_ADDR addr;
  int optim;
  struct value *reg_val;
  int realnum;
  char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
  enum lval_type lval;

  /* Builtin registers lie completly outside of the range of normal
     registers.  Catch them early so that the target never sees them.  */
  if (regnum >= NUM_REGS + NUM_PSEUDO_REGS)
    return value_of_builtin_reg (regnum, frame);

  frame_register (frame, regnum, &optim, &lval, &addr, &realnum, raw_buffer);

  /* FIXME: cagney/2002-05-15: This test is just bogus.

     It indicates that the target failed to supply a value for a
     register because it was "not available" at this time.  Problem
     is, the target still has the register and so get saved_register()
     may be returning a value saved on the stack.  */

  if (register_cached (regnum) < 0)
    return NULL;		/* register value not available */

  reg_val = allocate_value (register_type (current_gdbarch, regnum));

  /* Convert raw data to virtual format if necessary.  */

  if (REGISTER_CONVERTIBLE (regnum))
    {
      REGISTER_CONVERT_TO_VIRTUAL (regnum, register_type (current_gdbarch, regnum),
				   raw_buffer, VALUE_CONTENTS_RAW (reg_val));
    }
  else if (REGISTER_RAW_SIZE (regnum) == REGISTER_VIRTUAL_SIZE (regnum))
    memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer,
	    REGISTER_RAW_SIZE (regnum));
  else
    internal_error (__FILE__, __LINE__,
		    "Register \"%s\" (%d) has conflicting raw (%d) and virtual (%d) size",
		    REGISTER_NAME (regnum),
		    regnum,
		    REGISTER_RAW_SIZE (regnum),
		    REGISTER_VIRTUAL_SIZE (regnum));
  VALUE_LVAL (reg_val) = lval;
  VALUE_ADDRESS (reg_val) = addr;
  VALUE_REGNO (reg_val) = regnum;
  VALUE_OPTIMIZED_OUT (reg_val) = optim;
  return reg_val;
}

/* Given a pointer of type TYPE in target form in BUF, return the
   address it represents.  */
CORE_ADDR
unsigned_pointer_to_address (struct type *type, const void *buf)
{
  return extract_address (buf, TYPE_LENGTH (type));
}

CORE_ADDR
signed_pointer_to_address (struct type *type, const void *buf)
{
  return extract_signed_integer (buf, TYPE_LENGTH (type));
}

/* Given an address, store it as a pointer of type TYPE in target
   format in BUF.  */
void
unsigned_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
{
  store_address (buf, TYPE_LENGTH (type), addr);
}

void
address_to_signed_pointer (struct type *type, void *buf, CORE_ADDR addr)
{
  store_signed_integer (buf, TYPE_LENGTH (type), addr);
}

/* Will calling read_var_value or locate_var_value on SYM end
   up caring what frame it is being evaluated relative to?  SYM must
   be non-NULL.  */
int
symbol_read_needs_frame (struct symbol *sym)
{
  switch (SYMBOL_CLASS (sym))
    {
      /* All cases listed explicitly so that gcc -Wall will detect it if
         we failed to consider one.  */
    case LOC_COMPUTED:
    case LOC_COMPUTED_ARG:
      {
	struct location_funcs *symfuncs = SYMBOL_LOCATION_FUNCS (sym);
	return (symfuncs->read_needs_frame) (sym);
      }
      break;

    case LOC_REGISTER:
    case LOC_ARG:
    case LOC_REF_ARG:
    case LOC_REGPARM:
    case LOC_REGPARM_ADDR:
    case LOC_LOCAL:
    case LOC_LOCAL_ARG:
    case LOC_BASEREG:
    case LOC_BASEREG_ARG:
    case LOC_HP_THREAD_LOCAL_STATIC:
      return 1;

    case LOC_UNDEF:
    case LOC_CONST:
    case LOC_STATIC:
    case LOC_INDIRECT:
    case LOC_TYPEDEF:

    case LOC_LABEL:
      /* Getting the address of a label can be done independently of the block,
         even if some *uses* of that address wouldn't work so well without
         the right frame.  */

    case LOC_BLOCK:
    case LOC_CONST_BYTES:
    case LOC_UNRESOLVED:
    case LOC_OPTIMIZED_OUT:
      return 0;
    }
  return 1;
}

/* Given a struct symbol for a variable,
   and a stack frame id, read the value of the variable
   and return a (pointer to a) struct value containing the value. 
   If the variable cannot be found, return a zero pointer.
   If FRAME is NULL, use the deprecated_selected_frame.  */

struct value *
read_var_value (register struct symbol *var, struct frame_info *frame)
{
  register struct value *v;
  struct type *type = SYMBOL_TYPE (var);
  CORE_ADDR addr;
  register int len;

  v = allocate_value (type);
  VALUE_LVAL (v) = lval_memory;	/* The most likely possibility.  */
  VALUE_BFD_SECTION (v) = SYMBOL_BFD_SECTION (var);

  len = TYPE_LENGTH (type);

  if (frame == NULL)
    frame = deprecated_selected_frame;

  switch (SYMBOL_CLASS (var))
    {
    case LOC_CONST:
      /* Put the constant back in target format.  */
      store_signed_integer (VALUE_CONTENTS_RAW (v), len,
			    (LONGEST) SYMBOL_VALUE (var));
      VALUE_LVAL (v) = not_lval;
      return v;

    case LOC_LABEL:
      /* Put the constant back in target format.  */
      if (overlay_debugging)
	{
	  CORE_ADDR addr
	    = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
					SYMBOL_BFD_SECTION (var));
	  store_typed_address (VALUE_CONTENTS_RAW (v), type, addr);
	}
      else
	store_typed_address (VALUE_CONTENTS_RAW (v), type,
			      SYMBOL_VALUE_ADDRESS (var));
      VALUE_LVAL (v) = not_lval;
      return v;

    case LOC_CONST_BYTES:
      {
	char *bytes_addr;
	bytes_addr = SYMBOL_VALUE_BYTES (var);
	memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
	VALUE_LVAL (v) = not_lval;
	return v;
      }

    case LOC_STATIC:
      if (overlay_debugging)
	addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
					 SYMBOL_BFD_SECTION (var));
      else
	addr = SYMBOL_VALUE_ADDRESS (var);
      break;

    case LOC_INDIRECT:
      {
	/* The import slot does not have a real address in it from the
	   dynamic loader (dld.sl on HP-UX), if the target hasn't
	   begun execution yet, so check for that. */
	CORE_ADDR locaddr;
	struct value *loc;
	if (!target_has_execution)
	  error ("\
Attempt to access variable defined in different shared object or load module when\n\
addresses have not been bound by the dynamic loader. Try again when executable is running.");

	locaddr = SYMBOL_VALUE_ADDRESS (var);
	loc = value_at (lookup_pointer_type (type), locaddr, NULL);
	addr = value_as_address (loc);
      }

    case LOC_ARG:
      if (frame == NULL)
	return 0;
      addr = FRAME_ARGS_ADDRESS (frame);
      if (!addr)
	return 0;
      addr += SYMBOL_VALUE (var);
      break;

    case LOC_REF_ARG:
      {
	struct value *ref;
	CORE_ADDR argref;
	if (frame == NULL)
	  return 0;
	argref = FRAME_ARGS_ADDRESS (frame);
	if (!argref)
	  return 0;
	argref += SYMBOL_VALUE (var);
	ref = value_at (lookup_pointer_type (type), argref, NULL);
	addr = value_as_address (ref);
	break;
      }

    case LOC_LOCAL:
    case LOC_LOCAL_ARG:
      if (frame == NULL)
	return 0;
      addr = FRAME_LOCALS_ADDRESS (frame);
      addr += SYMBOL_VALUE (var);
      break;

    case LOC_BASEREG:
    case LOC_BASEREG_ARG:
    case LOC_HP_THREAD_LOCAL_STATIC:
      {
	struct value *regval;

	regval = value_from_register (lookup_pointer_type (type),
				      SYMBOL_BASEREG (var), frame);
	if (regval == NULL)
	  error ("Value of base register not available.");
	addr = value_as_address (regval);
	addr += SYMBOL_VALUE (var);
	break;
      }

    case LOC_THREAD_LOCAL_STATIC:
      {
        if (target_get_thread_local_address_p ())
          addr = target_get_thread_local_address (inferior_ptid,
                                                  SYMBOL_OBJFILE (var),
                                                  SYMBOL_VALUE_ADDRESS (var));
        /* It wouldn't be wrong here to try a gdbarch method, too;
           finding TLS is an ABI-specific thing.  But we don't do that
           yet.  */
        else
          error ("Cannot find thread-local variables on this target");
        break;
      }

    case LOC_TYPEDEF:
      error ("Cannot look up value of a typedef");
      break;

    case LOC_BLOCK:
      if (overlay_debugging)
	VALUE_ADDRESS (v) = symbol_overlayed_address
	  (BLOCK_START (SYMBOL_BLOCK_VALUE (var)), SYMBOL_BFD_SECTION (var));
      else
	VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
      return v;

    case LOC_REGISTER:
    case LOC_REGPARM:
    case LOC_REGPARM_ADDR:
      {
	struct block *b;
	int regno = SYMBOL_VALUE (var);
	struct value *regval;

	if (frame == NULL)
	  return 0;
	b = get_frame_block (frame, 0);

	if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
	  {
	    regval = value_from_register (lookup_pointer_type (type),
					  regno,
					  frame);

	    if (regval == NULL)
	      error ("Value of register variable not available.");

	    addr = value_as_address (regval);
	    VALUE_LVAL (v) = lval_memory;
	  }
	else
	  {
	    regval = value_from_register (type, regno, frame);

	    if (regval == NULL)
	      error ("Value of register variable not available.");
	    return regval;
	  }
      }
      break;

    case LOC_COMPUTED:
    case LOC_COMPUTED_ARG:
      {
	struct location_funcs *funcs = SYMBOL_LOCATION_FUNCS (var);

	if (frame == 0 && (funcs->read_needs_frame) (var))
	  return 0;
	return (funcs->read_variable) (var, frame);

      }
      break;

    case LOC_UNRESOLVED:
      {
	struct minimal_symbol *msym;

	msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (var), NULL, NULL);
	if (msym == NULL)
	  return 0;
	if (overlay_debugging)
	  addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (msym),
					   SYMBOL_BFD_SECTION (msym));
	else
	  addr = SYMBOL_VALUE_ADDRESS (msym);
      }
      break;

    case LOC_OPTIMIZED_OUT:
      VALUE_LVAL (v) = not_lval;
      VALUE_OPTIMIZED_OUT (v) = 1;
      return v;

    default:
      error ("Cannot look up value of a botched symbol.");
      break;
    }

  VALUE_ADDRESS (v) = addr;
  VALUE_LAZY (v) = 1;
  return v;
}

/* Return a value of type TYPE, stored in register REGNUM, in frame
   FRAME.

   NOTE: returns NULL if register value is not available.
   Caller will check return value or die!  */

struct value *
value_from_register (struct type *type, int regnum, struct frame_info *frame)
{
  char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
  CORE_ADDR addr;
  int optim;
  struct value *v = allocate_value (type);
  char *value_bytes = 0;
  int value_bytes_copied = 0;
  int num_storage_locs;
  enum lval_type lval;
  int len;

  CHECK_TYPEDEF (type);
  len = TYPE_LENGTH (type);

  VALUE_REGNO (v) = regnum;

  num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
		      ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
		      1);

  if (num_storage_locs > 1
#if 0
      // OBSOLETE #ifdef GDB_TARGET_IS_H8500
      // OBSOLETE       || TYPE_CODE (type) == TYPE_CODE_PTR
      // OBSOLETE #endif
#endif
    )
    {
      /* Value spread across multiple storage locations.  */

      int local_regnum;
      int mem_stor = 0, reg_stor = 0;
      int mem_tracking = 1;
      CORE_ADDR last_addr = 0;
      CORE_ADDR first_addr = 0;

      value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);

      /* Copy all of the data out, whereever it may be.  */

#if 0
      // OBSOLETE #ifdef GDB_TARGET_IS_H8500
      // OBSOLETE /* This piece of hideosity is required because the H8500 treats registers
      // OBSOLETE    differently depending upon whether they are used as pointers or not.  As a
      // OBSOLETE    pointer, a register needs to have a page register tacked onto the front.
      // OBSOLETE    An alternate way to do this would be to have gcc output different register
      // OBSOLETE    numbers for the pointer & non-pointer form of the register.  But, it
      // OBSOLETE    doesn't, so we're stuck with this.  */
      // OBSOLETE 
      // OBSOLETE       if (TYPE_CODE (type) == TYPE_CODE_PTR
      // OBSOLETE 	  && len > 2)
      // OBSOLETE 	{
      // OBSOLETE 	  int page_regnum;
      // OBSOLETE 
      // OBSOLETE 	  switch (regnum)
      // OBSOLETE 	    {
      // OBSOLETE 	    case R0_REGNUM:
      // OBSOLETE 	    case R1_REGNUM:
      // OBSOLETE 	    case R2_REGNUM:
      // OBSOLETE 	    case R3_REGNUM:
      // OBSOLETE 	      page_regnum = SEG_D_REGNUM;
      // OBSOLETE 	      break;
      // OBSOLETE 	    case R4_REGNUM:
      // OBSOLETE 	    case R5_REGNUM:
      // OBSOLETE 	      page_regnum = SEG_E_REGNUM;
      // OBSOLETE 	      break;
      // OBSOLETE 	    case R6_REGNUM:
      // OBSOLETE 	    case R7_REGNUM:
      // OBSOLETE 	      page_regnum = SEG_T_REGNUM;
      // OBSOLETE 	      break;
      // OBSOLETE 	    }
      // OBSOLETE 
      // OBSOLETE 	  value_bytes[0] = 0;
      // OBSOLETE 	  get_saved_register (value_bytes + 1,
      // OBSOLETE 			      &optim,
      // OBSOLETE 			      &addr,
      // OBSOLETE 			      frame,
      // OBSOLETE 			      page_regnum,
      // OBSOLETE 			      &lval);
      // OBSOLETE 
      // OBSOLETE 	  if (register_cached (page_regnum) == -1)
      // OBSOLETE 	    return NULL;	/* register value not available */
      // OBSOLETE 
      // OBSOLETE 	  if (lval == lval_register)
      // OBSOLETE 	    reg_stor++;
      // OBSOLETE 	  else
      // OBSOLETE 	    mem_stor++;
      // OBSOLETE 	  first_addr = addr;
      // OBSOLETE 	  last_addr = addr;
      // OBSOLETE 
      // OBSOLETE 	  get_saved_register (value_bytes + 2,
      // OBSOLETE 			      &optim,
      // OBSOLETE 			      &addr,
      // OBSOLETE 			      frame,
      // OBSOLETE 			      regnum,
      // OBSOLETE 			      &lval);
      // OBSOLETE 
      // OBSOLETE 	  if (register_cached (regnum) == -1)
      // OBSOLETE 	    return NULL;	/* register value not available */
      // OBSOLETE 
      // OBSOLETE 	  if (lval == lval_register)
      // OBSOLETE 	    reg_stor++;
      // OBSOLETE 	  else
      // OBSOLETE 	    {
      // OBSOLETE 	      mem_stor++;
      // OBSOLETE 	      mem_tracking = mem_tracking && (addr == last_addr);
      // OBSOLETE 	    }
      // OBSOLETE 	  last_addr = addr;
      // OBSOLETE 	}
      // OBSOLETE       else
      // OBSOLETE #endif /* GDB_TARGET_IS_H8500 */
#endif
	for (local_regnum = regnum;
	     value_bytes_copied < len;
	     (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
	      ++local_regnum))
	  {
	    int realnum;
	    frame_register (frame, local_regnum, &optim, &lval, &addr,
			    &realnum, value_bytes + value_bytes_copied);

	    if (register_cached (local_regnum) == -1)
	      return NULL;	/* register value not available */

	    if (regnum == local_regnum)
	      first_addr = addr;
	    if (lval == lval_register)
	      reg_stor++;
	    else
	      {
		mem_stor++;

		mem_tracking =
		  (mem_tracking
		   && (regnum == local_regnum
		       || addr == last_addr));
	      }
	    last_addr = addr;
	  }

      if ((reg_stor && mem_stor)
	  || (mem_stor && !mem_tracking))
	/* Mixed storage; all of the hassle we just went through was
	   for some good purpose.  */
	{
	  VALUE_LVAL (v) = lval_reg_frame_relative;
	  VALUE_FRAME (v) = get_frame_base (frame);
	  VALUE_FRAME_REGNUM (v) = regnum;
	}
      else if (mem_stor)
	{
	  VALUE_LVAL (v) = lval_memory;
	  VALUE_ADDRESS (v) = first_addr;
	}
      else if (reg_stor)
	{
	  VALUE_LVAL (v) = lval_register;
	  VALUE_ADDRESS (v) = first_addr;
	}
      else
	internal_error (__FILE__, __LINE__,
			"value_from_register: Value not stored anywhere!");

      VALUE_OPTIMIZED_OUT (v) = optim;

      /* Any structure stored in more than one register will always be
         an integral number of registers.  Otherwise, you'd need to do
         some fiddling with the last register copied here for little
         endian machines.  */

      /* Copy into the contents section of the value.  */
      memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);

      /* Finally do any conversion necessary when extracting this
         type from more than one register.  */
#ifdef REGISTER_CONVERT_TO_TYPE
      REGISTER_CONVERT_TO_TYPE (regnum, type, VALUE_CONTENTS_RAW (v));
#endif
      return v;
    }

  /* Data is completely contained within a single register.  Locate the
     register's contents in a real register or in core;
     read the data in raw format.  */

  {
    int realnum;
    frame_register (frame, regnum, &optim, &lval, &addr, &realnum, raw_buffer);
  }

  if (register_cached (regnum) == -1)
    return NULL;		/* register value not available */

  VALUE_OPTIMIZED_OUT (v) = optim;
  VALUE_LVAL (v) = lval;
  VALUE_ADDRESS (v) = addr;

  /* Convert the raw register to the corresponding data value's memory
     format, if necessary.  */

  if (CONVERT_REGISTER_P (regnum))
    {
      REGISTER_TO_VALUE (regnum, type, raw_buffer, VALUE_CONTENTS_RAW (v));
    }
  else
    {
      /* Raw and virtual formats are the same for this register.  */

      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG && len < REGISTER_RAW_SIZE (regnum))
	{
	  /* Big-endian, and we want less than full size.  */
	  VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
	}

      memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
    }

  return v;
}

/* Given a struct symbol for a variable or function,
   and a stack frame id, 
   return a (pointer to a) struct value containing the properly typed
   address.  */

struct value *
locate_var_value (register struct symbol *var, struct frame_info *frame)
{
  CORE_ADDR addr = 0;
  struct type *type = SYMBOL_TYPE (var);
  struct value *lazy_value;

  /* Evaluate it first; if the result is a memory address, we're fine.
     Lazy evaluation pays off here. */

  lazy_value = read_var_value (var, frame);
  if (lazy_value == 0)
    error ("Address of \"%s\" is unknown.", SYMBOL_PRINT_NAME (var));

  if (VALUE_LAZY (lazy_value)
      || TYPE_CODE (type) == TYPE_CODE_FUNC)
    {
      struct value *val;

      addr = VALUE_ADDRESS (lazy_value);
      val = value_from_pointer (lookup_pointer_type (type), addr);
      VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (lazy_value);
      return val;
    }

  /* Not a memory address; check what the problem was.  */
  switch (VALUE_LVAL (lazy_value))
    {
    case lval_register:
	gdb_assert (REGISTER_NAME (VALUE_REGNO (lazy_value)) != NULL
	            && *REGISTER_NAME (VALUE_REGNO (lazy_value)) != '\0');
      error("Address requested for identifier "
	    "\"%s\" which is in register $%s",
            SYMBOL_PRINT_NAME (var), 
	    REGISTER_NAME (VALUE_REGNO (lazy_value)));
      break;

    case lval_reg_frame_relative:
	gdb_assert (REGISTER_NAME (VALUE_FRAME_REGNUM (lazy_value)) != NULL
	            && *REGISTER_NAME (VALUE_FRAME_REGNUM (lazy_value)) != '\0');
      error("Address requested for identifier "
	    "\"%s\" which is in frame register $%s",
            SYMBOL_PRINT_NAME (var), 
	    REGISTER_NAME (VALUE_FRAME_REGNUM (lazy_value)));
      break;

    default:
      error ("Can't take address of \"%s\" which isn't an lvalue.",
	     SYMBOL_PRINT_NAME (var));
      break;
    }
  return 0;			/* For lint -- never reached */
}