summaryrefslogtreecommitdiff
path: root/gdb/findvar.c
blob: 98a7133b79f99af12be137dc81ff65654f2aff60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
/* Find a variable's value in memory, for GDB, the GNU debugger.
   Copyright 1986, 87, 89, 91, 94, 95, 96, 1998
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "frame.h"
#include "value.h"
#include "gdbcore.h"
#include "inferior.h"
#include "target.h"
#include "gdb_string.h"
#include "floatformat.h"
#include "symfile.h"		/* for overlay functions */

/* This is used to indicate that we don't know the format of the floating point
   number.  Typically, this is useful for native ports, where the actual format
   is irrelevant, since no conversions will be taking place.  */

const struct floatformat floatformat_unknown;

/* Registers we shouldn't try to store.  */
#if !defined (CANNOT_STORE_REGISTER)
#define CANNOT_STORE_REGISTER(regno) 0
#endif

static void write_register_gen PARAMS ((int, char *));

static int read_relative_register_raw_bytes_for_frame PARAMS ((int regnum, char *myaddr, struct frame_info * frame));

/* Basic byte-swapping routines.  GDB has needed these for a long time...
   All extract a target-format integer at ADDR which is LEN bytes long.  */

#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
  /* 8 bit characters are a pretty safe assumption these days, so we
     assume it throughout all these swapping routines.  If we had to deal with
     9 bit characters, we would need to make len be in bits and would have
     to re-write these routines...  */
you lose
#endif

LONGEST
extract_signed_integer (void *addr, int len)
{
  LONGEST retval;
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;

  if (len > (int) sizeof (LONGEST))
    error ("\
That operation is not available on integers of more than %d bytes.",
	   sizeof (LONGEST));

  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
      p = startaddr;
      /* Do the sign extension once at the start.  */
      retval = ((LONGEST) * p ^ 0x80) - 0x80;
      for (++p; p < endaddr; ++p)
	retval = (retval << 8) | *p;
    }
  else
    {
      p = endaddr - 1;
      /* Do the sign extension once at the start.  */
      retval = ((LONGEST) * p ^ 0x80) - 0x80;
      for (--p; p >= startaddr; --p)
	retval = (retval << 8) | *p;
    }
  return retval;
}

ULONGEST
extract_unsigned_integer (void *addr, int len)
{
  ULONGEST retval;
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;

  if (len > (int) sizeof (ULONGEST))
    error ("\
That operation is not available on integers of more than %d bytes.",
	   sizeof (ULONGEST));

  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
  retval = 0;
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
      for (p = startaddr; p < endaddr; ++p)
	retval = (retval << 8) | *p;
    }
  else
    {
      for (p = endaddr - 1; p >= startaddr; --p)
	retval = (retval << 8) | *p;
    }
  return retval;
}

/* Sometimes a long long unsigned integer can be extracted as a
   LONGEST value.  This is done so that we can print these values
   better.  If this integer can be converted to a LONGEST, this
   function returns 1 and sets *PVAL.  Otherwise it returns 0.  */

int
extract_long_unsigned_integer (void *addr, int orig_len, LONGEST *pval)
{
  char *p, *first_addr;
  int len;

  len = orig_len;
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
      for (p = (char *) addr;
	   len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len;
	   p++)
	{
	  if (*p == 0)
	    len--;
	  else
	    break;
	}
      first_addr = p;
    }
  else
    {
      first_addr = (char *) addr;
      for (p = (char *) addr + orig_len - 1;
	   len > (int) sizeof (LONGEST) && p >= (char *) addr;
	   p--)
	{
	  if (*p == 0)
	    len--;
	  else
	    break;
	}
    }

  if (len <= (int) sizeof (LONGEST))
    {
      *pval = (LONGEST) extract_unsigned_integer (first_addr,
						  sizeof (LONGEST));
      return 1;
    }

  return 0;
}

CORE_ADDR
extract_address (void *addr, int len)
{
  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
     whether we want this to be true eventually.  */
  return (CORE_ADDR) extract_unsigned_integer (addr, len);
}

void
store_signed_integer (void *addr, int len, LONGEST val)
{
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;

  /* Start at the least significant end of the integer, and work towards
     the most significant.  */
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
      for (p = endaddr - 1; p >= startaddr; --p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
  else
    {
      for (p = startaddr; p < endaddr; ++p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
}

void
store_unsigned_integer (void *addr, int len, ULONGEST val)
{
  unsigned char *p;
  unsigned char *startaddr = (unsigned char *) addr;
  unsigned char *endaddr = startaddr + len;

  /* Start at the least significant end of the integer, and work towards
     the most significant.  */
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
      for (p = endaddr - 1; p >= startaddr; --p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
  else
    {
      for (p = startaddr; p < endaddr; ++p)
	{
	  *p = val & 0xff;
	  val >>= 8;
	}
    }
}

/* Store the literal address "val" into
   gdb-local memory pointed to by "addr"
   for "len" bytes. */
void
store_address (void *addr, int len, LONGEST val)
{
  store_unsigned_integer (addr, len, val);
}

/* Extract a floating-point number from a target-order byte-stream at ADDR.
   Returns the value as type DOUBLEST.

   If the host and target formats agree, we just copy the raw data into the
   appropriate type of variable and return, letting the host increase precision
   as necessary.  Otherwise, we call the conversion routine and let it do the
   dirty work.  */

DOUBLEST
extract_floating (void *addr, int len)
{
  DOUBLEST dretval;

  if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
    {
      if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
	{
	  float retval;

	  memcpy (&retval, addr, sizeof (retval));
	  return retval;
	}
      else
	floatformat_to_doublest (TARGET_FLOAT_FORMAT, addr, &dretval);
    }
  else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
    {
      if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
	{
	  double retval;

	  memcpy (&retval, addr, sizeof (retval));
	  return retval;
	}
      else
	floatformat_to_doublest (TARGET_DOUBLE_FORMAT, addr, &dretval);
    }
  else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
    {
      if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
	{
	  DOUBLEST retval;

	  memcpy (&retval, addr, sizeof (retval));
	  return retval;
	}
      else
	floatformat_to_doublest (TARGET_LONG_DOUBLE_FORMAT, addr, &dretval);
    }
  else
    {
      error ("Can't deal with a floating point number of %d bytes.", len);
    }

  return dretval;
}

void
store_floating (void *addr, int len, DOUBLEST val)
{
  if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
    {
      if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
	{
	  float floatval = val;

	  memcpy (addr, &floatval, sizeof (floatval));
	}
      else
	floatformat_from_doublest (TARGET_FLOAT_FORMAT, &val, addr);
    }
  else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
    {
      if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
	{
	  double doubleval = val;

	  memcpy (addr, &doubleval, sizeof (doubleval));
	}
      else
	floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &val, addr);
    }
  else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
    {
      if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
	memcpy (addr, &val, sizeof (val));
      else
	floatformat_from_doublest (TARGET_LONG_DOUBLE_FORMAT, &val, addr);
    }
  else
    {
      error ("Can't deal with a floating point number of %d bytes.", len);
    }
}


/* Return the address in which frame FRAME's value of register REGNUM
   has been saved in memory.  Or return zero if it has not been saved.
   If REGNUM specifies the SP, the value we return is actually
   the SP value, not an address where it was saved.  */

CORE_ADDR
find_saved_register (frame, regnum)
     struct frame_info *frame;
     int regnum;
{
  register struct frame_info *frame1 = NULL;
  register CORE_ADDR addr = 0;

  if (frame == NULL)		/* No regs saved if want current frame */
    return 0;

#ifdef HAVE_REGISTER_WINDOWS
  /* We assume that a register in a register window will only be saved
     in one place (since the name changes and/or disappears as you go
     towards inner frames), so we only call get_frame_saved_regs on
     the current frame.  This is directly in contradiction to the
     usage below, which assumes that registers used in a frame must be
     saved in a lower (more interior) frame.  This change is a result
     of working on a register window machine; get_frame_saved_regs
     always returns the registers saved within a frame, within the
     context (register namespace) of that frame. */

  /* However, note that we don't want this to return anything if
     nothing is saved (if there's a frame inside of this one).  Also,
     callers to this routine asking for the stack pointer want the
     stack pointer saved for *this* frame; this is returned from the
     next frame.  */

  if (REGISTER_IN_WINDOW_P (regnum))
    {
      frame1 = get_next_frame (frame);
      if (!frame1)
	return 0;		/* Registers of this frame are active.  */

      /* Get the SP from the next frame in; it will be this
         current frame.  */
      if (regnum != SP_REGNUM)
	frame1 = frame;

      FRAME_INIT_SAVED_REGS (frame1);
      return frame1->saved_regs[regnum];	/* ... which might be zero */
    }
#endif /* HAVE_REGISTER_WINDOWS */

  /* Note that this next routine assumes that registers used in
     frame x will be saved only in the frame that x calls and
     frames interior to it.  This is not true on the sparc, but the
     above macro takes care of it, so we should be all right. */
  while (1)
    {
      QUIT;
      frame1 = get_prev_frame (frame1);
      if (frame1 == 0 || frame1 == frame)
	break;
      FRAME_INIT_SAVED_REGS (frame1);
      if (frame1->saved_regs[regnum])
	addr = frame1->saved_regs[regnum];
    }

  return addr;
}

/* Find register number REGNUM relative to FRAME and put its (raw,
   target format) contents in *RAW_BUFFER.  Set *OPTIMIZED if the
   variable was optimized out (and thus can't be fetched).  Set *LVAL
   to lval_memory, lval_register, or not_lval, depending on whether
   the value was fetched from memory, from a register, or in a strange
   and non-modifiable way (e.g. a frame pointer which was calculated
   rather than fetched).  Set *ADDRP to the address, either in memory
   on as a REGISTER_BYTE offset into the registers array.

   Note that this implementation never sets *LVAL to not_lval.  But
   it can be replaced by defining GET_SAVED_REGISTER and supplying
   your own.

   The argument RAW_BUFFER must point to aligned memory.  */

void
default_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
     char *raw_buffer;
     int *optimized;
     CORE_ADDR *addrp;
     struct frame_info *frame;
     int regnum;
     enum lval_type *lval;
{
  CORE_ADDR addr;

  if (!target_has_registers)
    error ("No registers.");

  /* Normal systems don't optimize out things with register numbers.  */
  if (optimized != NULL)
    *optimized = 0;
  addr = find_saved_register (frame, regnum);
  if (addr != 0)
    {
      if (lval != NULL)
	*lval = lval_memory;
      if (regnum == SP_REGNUM)
	{
	  if (raw_buffer != NULL)
	    {
	      /* Put it back in target format.  */
	      store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), (LONGEST) addr);
	    }
	  if (addrp != NULL)
	    *addrp = 0;
	  return;
	}
      if (raw_buffer != NULL)
	read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
    }
  else
    {
      if (lval != NULL)
	*lval = lval_register;
      addr = REGISTER_BYTE (regnum);
      if (raw_buffer != NULL)
	read_register_gen (regnum, raw_buffer);
    }
  if (addrp != NULL)
    *addrp = addr;
}

#if !defined (GET_SAVED_REGISTER)
#define GET_SAVED_REGISTER(raw_buffer, optimized, addrp, frame, regnum, lval) \
  default_get_saved_register(raw_buffer, optimized, addrp, frame, regnum, lval)
#endif
void
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
     char *raw_buffer;
     int *optimized;
     CORE_ADDR *addrp;
     struct frame_info *frame;
     int regnum;
     enum lval_type *lval;
{
  GET_SAVED_REGISTER (raw_buffer, optimized, addrp, frame, regnum, lval);
}

/* Copy the bytes of register REGNUM, relative to the input stack frame,
   into our memory at MYADDR, in target byte order.
   The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).

   Returns 1 if could not be read, 0 if could.  */

static int
read_relative_register_raw_bytes_for_frame (regnum, myaddr, frame)
     int regnum;
     char *myaddr;
     struct frame_info *frame;
{
  int optim;
  if (regnum == FP_REGNUM && frame)
    {
      /* Put it back in target format. */
      store_address (myaddr, REGISTER_RAW_SIZE (FP_REGNUM),
		     (LONGEST) FRAME_FP (frame));

      return 0;
    }

  get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame,
		      regnum, (enum lval_type *) NULL);

  if (register_valid[regnum] < 0)
    return 1;			/* register value not available */

  return optim;
}

/* Copy the bytes of register REGNUM, relative to the current stack frame,
   into our memory at MYADDR, in target byte order.
   The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).

   Returns 1 if could not be read, 0 if could.  */

int
read_relative_register_raw_bytes (regnum, myaddr)
     int regnum;
     char *myaddr;
{
  return read_relative_register_raw_bytes_for_frame (regnum, myaddr,
						     selected_frame);
}

/* Return a `value' with the contents of register REGNUM
   in its virtual format, with the type specified by
   REGISTER_VIRTUAL_TYPE.  

   NOTE: returns NULL if register value is not available.
   Caller will check return value or die!  */

value_ptr
value_of_register (regnum)
     int regnum;
{
  CORE_ADDR addr;
  int optim;
  register value_ptr reg_val;
  char raw_buffer[MAX_REGISTER_RAW_SIZE];
  enum lval_type lval;

  get_saved_register (raw_buffer, &optim, &addr,
		      selected_frame, regnum, &lval);

  if (register_valid[regnum] < 0)
    return NULL;		/* register value not available */

  reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));

  /* Convert raw data to virtual format if necessary.  */

  if (REGISTER_CONVERTIBLE (regnum))
    {
      REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
				   raw_buffer, VALUE_CONTENTS_RAW (reg_val));
    }
  else if (REGISTER_RAW_SIZE (regnum) == REGISTER_VIRTUAL_SIZE (regnum))
    memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer,
	    REGISTER_RAW_SIZE (regnum));
  else
    internal_error ("Register \"%s\" (%d) has conflicting raw (%d) and virtual (%d) size",
		    REGISTER_NAME (regnum),
		    regnum,
		    REGISTER_RAW_SIZE (regnum),
		    REGISTER_VIRTUAL_SIZE (regnum));
  VALUE_LVAL (reg_val) = lval;
  VALUE_ADDRESS (reg_val) = addr;
  VALUE_REGNO (reg_val) = regnum;
  VALUE_OPTIMIZED_OUT (reg_val) = optim;
  return reg_val;
}

/* Low level examining and depositing of registers.

   The caller is responsible for making
   sure that the inferior is stopped before calling the fetching routines,
   or it will get garbage.  (a change from GDB version 3, in which
   the caller got the value from the last stop).  */

/* Contents and state of the registers (in target byte order). */

char *registers;

/* VALID_REGISTER is non-zero if it has been fetched, -1 if the
   register value was not available. */

signed char *register_valid;

/* The thread/process associated with the current set of registers.  For now,
   -1 is special, and means `no current process'.  */
int registers_pid = -1;

/* Indicate that registers may have changed, so invalidate the cache.  */

void
registers_changed ()
{
  int i;
  int numregs = ARCH_NUM_REGS;

  registers_pid = -1;

  /* Force cleanup of any alloca areas if using C alloca instead of
     a builtin alloca.  This particular call is used to clean up
     areas allocated by low level target code which may build up
     during lengthy interactions between gdb and the target before
     gdb gives control to the user (ie watchpoints).  */
  alloca (0);

  for (i = 0; i < numregs; i++)
    register_valid[i] = 0;

  if (registers_changed_hook)
    registers_changed_hook ();
}

/* Indicate that all registers have been fetched, so mark them all valid.  */
void
registers_fetched ()
{
  int i;
  int numregs = ARCH_NUM_REGS;
  for (i = 0; i < numregs; i++)
    register_valid[i] = 1;
}

/* read_register_bytes and write_register_bytes are generally a *BAD*
   idea.  They are inefficient because they need to check for partial
   updates, which can only be done by scanning through all of the
   registers and seeing if the bytes that are being read/written fall
   inside of an invalid register.  [The main reason this is necessary
   is that register sizes can vary, so a simple index won't suffice.]
   It is far better to call read_register_gen and write_register_gen
   if you want to get at the raw register contents, as it only takes a
   regno as an argument, and therefore can't do a partial register
   update.

   Prior to the recent fixes to check for partial updates, both read
   and write_register_bytes always checked to see if any registers
   were stale, and then called target_fetch_registers (-1) to update
   the whole set.  This caused really slowed things down for remote
   targets.  */

/* Copy INLEN bytes of consecutive data from registers
   starting with the INREGBYTE'th byte of register data
   into memory at MYADDR.  */

void
read_register_bytes (inregbyte, myaddr, inlen)
     int inregbyte;
     char *myaddr;
     int inlen;
{
  int inregend = inregbyte + inlen;
  int regno;

  if (registers_pid != inferior_pid)
    {
      registers_changed ();
      registers_pid = inferior_pid;
    }

  /* See if we are trying to read bytes from out-of-date registers.  If so,
     update just those registers.  */

  for (regno = 0; regno < NUM_REGS; regno++)
    {
      int regstart, regend;

      if (register_valid[regno])
	continue;

      if (REGISTER_NAME (regno) == NULL || *REGISTER_NAME (regno) == '\0')
	continue;

      regstart = REGISTER_BYTE (regno);
      regend = regstart + REGISTER_RAW_SIZE (regno);

      if (regend <= inregbyte || inregend <= regstart)
	/* The range the user wants to read doesn't overlap with regno.  */
	continue;

      /* We've found an invalid register where at least one byte will be read.
         Update it from the target.  */
      target_fetch_registers (regno);

      if (!register_valid[regno])
	error ("read_register_bytes:  Couldn't update register %d.", regno);
    }

  if (myaddr != NULL)
    memcpy (myaddr, &registers[inregbyte], inlen);
}

/* Read register REGNO into memory at MYADDR, which must be large enough
   for REGISTER_RAW_BYTES (REGNO).  Target byte-order.
   If the register is known to be the size of a CORE_ADDR or smaller,
   read_register can be used instead.  */
void
read_register_gen (regno, myaddr)
     int regno;
     char *myaddr;
{
  if (registers_pid != inferior_pid)
    {
      registers_changed ();
      registers_pid = inferior_pid;
    }

  if (!register_valid[regno])
    target_fetch_registers (regno);
  memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
	  REGISTER_RAW_SIZE (regno));
}

/* Write register REGNO at MYADDR to the target.  MYADDR points at
   REGISTER_RAW_BYTES(REGNO), which must be in target byte-order.  */

static void
write_register_gen (regno, myaddr)
     int regno;
     char *myaddr;
{
  int size;

  /* On the sparc, writing %g0 is a no-op, so we don't even want to change
     the registers array if something writes to this register.  */
  if (CANNOT_STORE_REGISTER (regno))
    return;

  if (registers_pid != inferior_pid)
    {
      registers_changed ();
      registers_pid = inferior_pid;
    }

  size = REGISTER_RAW_SIZE (regno);

  /* If we have a valid copy of the register, and new value == old value,
     then don't bother doing the actual store. */

  if (register_valid[regno]
      && memcmp (&registers[REGISTER_BYTE (regno)], myaddr, size) == 0)
    return;

  target_prepare_to_store ();

  memcpy (&registers[REGISTER_BYTE (regno)], myaddr, size);

  register_valid[regno] = 1;

  target_store_registers (regno);
}

/* Copy INLEN bytes of consecutive data from memory at MYADDR
   into registers starting with the MYREGSTART'th byte of register data.  */

void
write_register_bytes (myregstart, myaddr, inlen)
     int myregstart;
     char *myaddr;
     int inlen;
{
  int myregend = myregstart + inlen;
  int regno;

  target_prepare_to_store ();

  /* Scan through the registers updating any that are covered by the range
     myregstart<=>myregend using write_register_gen, which does nice things
     like handling threads, and avoiding updates when the new and old contents
     are the same.  */

  for (regno = 0; regno < NUM_REGS; regno++)
    {
      int regstart, regend;

      regstart = REGISTER_BYTE (regno);
      regend = regstart + REGISTER_RAW_SIZE (regno);

      /* Is this register completely outside the range the user is writing?  */
      if (myregend <= regstart || regend <= myregstart)
	/* do nothing */ ;		

      /* Is this register completely within the range the user is writing?  */
      else if (myregstart <= regstart && regend <= myregend)
	write_register_gen (regno, myaddr + (regstart - myregstart));

      /* The register partially overlaps the range being written.  */
      else
	{
	  char regbuf[MAX_REGISTER_RAW_SIZE];
	  /* What's the overlap between this register's bytes and
             those the caller wants to write?  */
	  int overlapstart = max (regstart, myregstart);
	  int overlapend   = min (regend,   myregend);

	  /* We may be doing a partial update of an invalid register.
	     Update it from the target before scribbling on it.  */
	  read_register_gen (regno, regbuf);

	  memcpy (registers + overlapstart,
		  myaddr + (overlapstart - myregstart),
		  overlapend - overlapstart);

	  target_store_registers (regno);
	}
    }
}


/* Return the raw contents of register REGNO, regarding it as an integer.  */
/* This probably should be returning LONGEST rather than CORE_ADDR.  */

CORE_ADDR
read_register (regno)
     int regno;
{
  if (registers_pid != inferior_pid)
    {
      registers_changed ();
      registers_pid = inferior_pid;
    }

  if (!register_valid[regno])
    target_fetch_registers (regno);

  return (CORE_ADDR) extract_address (&registers[REGISTER_BYTE (regno)],
				      REGISTER_RAW_SIZE (regno));
}

CORE_ADDR
read_register_pid (regno, pid)
     int regno, pid;
{
  int save_pid;
  CORE_ADDR retval;

  if (pid == inferior_pid)
    return read_register (regno);

  save_pid = inferior_pid;

  inferior_pid = pid;

  retval = read_register (regno);

  inferior_pid = save_pid;

  return retval;
}

/* Store VALUE, into the raw contents of register number REGNO.
   This should probably write a LONGEST rather than a CORE_ADDR */

void
write_register (regno, val)
     int regno;
     LONGEST val;
{
  PTR buf;
  int size;

  /* On the sparc, writing %g0 is a no-op, so we don't even want to change
     the registers array if something writes to this register.  */
  if (CANNOT_STORE_REGISTER (regno))
    return;

  if (registers_pid != inferior_pid)
    {
      registers_changed ();
      registers_pid = inferior_pid;
    }

  size = REGISTER_RAW_SIZE (regno);
  buf = alloca (size);
  store_signed_integer (buf, size, (LONGEST) val);

  /* If we have a valid copy of the register, and new value == old value,
     then don't bother doing the actual store. */

  if (register_valid[regno]
      && memcmp (&registers[REGISTER_BYTE (regno)], buf, size) == 0)
    return;

  target_prepare_to_store ();

  memcpy (&registers[REGISTER_BYTE (regno)], buf, size);

  register_valid[regno] = 1;

  target_store_registers (regno);
}

void
write_register_pid (regno, val, pid)
     int regno;
     CORE_ADDR val;
     int pid;
{
  int save_pid;

  if (pid == inferior_pid)
    {
      write_register (regno, val);
      return;
    }

  save_pid = inferior_pid;

  inferior_pid = pid;

  write_register (regno, val);

  inferior_pid = save_pid;
}

/* Record that register REGNO contains VAL.
   This is used when the value is obtained from the inferior or core dump,
   so there is no need to store the value there.

   If VAL is a NULL pointer, then it's probably an unsupported register.  We
   just set it's value to all zeros.  We might want to record this fact, and
   report it to the users of read_register and friends.
 */

void
supply_register (regno, val)
     int regno;
     char *val;
{
#if 1
  if (registers_pid != inferior_pid)
    {
      registers_changed ();
      registers_pid = inferior_pid;
    }
#endif

  register_valid[regno] = 1;
  if (val)
    memcpy (&registers[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
  else
    memset (&registers[REGISTER_BYTE (regno)], '\000', REGISTER_RAW_SIZE (regno));

  /* On some architectures, e.g. HPPA, there are a few stray bits in some
     registers, that the rest of the code would like to ignore.  */
#ifdef CLEAN_UP_REGISTER_VALUE
  CLEAN_UP_REGISTER_VALUE (regno, &registers[REGISTER_BYTE (regno)]);
#endif
}


/* This routine is getting awfully cluttered with #if's.  It's probably
   time to turn this into READ_PC and define it in the tm.h file.
   Ditto for write_pc.

   1999-06-08: The following were re-written so that it assumes the
   existance of a TARGET_READ_PC et.al. macro.  A default generic
   version of that macro is made available where needed.

   Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
   by the multi-arch framework, it will eventually be possible to
   eliminate the intermediate read_pc_pid().  The client would call
   TARGET_READ_PC directly. (cagney). */

#ifndef TARGET_READ_PC
#define TARGET_READ_PC generic_target_read_pc
#endif

CORE_ADDR
generic_target_read_pc (int pid)
{
#ifdef PC_REGNUM
  if (PC_REGNUM >= 0)
    {
      CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
      return pc_val;
    }
#endif
  internal_error ("generic_target_read_pc");
  return 0;
}

CORE_ADDR
read_pc_pid (pid)
     int pid;
{
  int saved_inferior_pid;
  CORE_ADDR pc_val;

  /* In case pid != inferior_pid. */
  saved_inferior_pid = inferior_pid;
  inferior_pid = pid;

  pc_val = TARGET_READ_PC (pid);

  inferior_pid = saved_inferior_pid;
  return pc_val;
}

CORE_ADDR
read_pc ()
{
  return read_pc_pid (inferior_pid);
}

#ifndef TARGET_WRITE_PC
#define TARGET_WRITE_PC generic_target_write_pc
#endif

void
generic_target_write_pc (pc, pid)
     CORE_ADDR pc;
     int pid;
{
#ifdef PC_REGNUM
  if (PC_REGNUM >= 0)
    write_register_pid (PC_REGNUM, pc, pid);
#ifdef NPC_REGNUM
  if (NPC_REGNUM >= 0)
    write_register_pid (NPC_REGNUM, pc + 4, pid);
#ifdef NNPC_REGNUM
  if (NNPC_REGNUM >= 0)
    write_register_pid (NNPC_REGNUM, pc + 8, pid);
#endif
#endif
#else
  internal_error ("generic_target_write_pc");
#endif
}

void
write_pc_pid (pc, pid)
     CORE_ADDR pc;
     int pid;
{
  int saved_inferior_pid;

  /* In case pid != inferior_pid. */
  saved_inferior_pid = inferior_pid;
  inferior_pid = pid;

  TARGET_WRITE_PC (pc, pid);

  inferior_pid = saved_inferior_pid;
}

void
write_pc (pc)
     CORE_ADDR pc;
{
  write_pc_pid (pc, inferior_pid);
}

/* Cope with strage ways of getting to the stack and frame pointers */

#ifndef TARGET_READ_SP
#define TARGET_READ_SP generic_target_read_sp
#endif

CORE_ADDR
generic_target_read_sp ()
{
#ifdef SP_REGNUM
  if (SP_REGNUM >= 0)
    return read_register (SP_REGNUM);
#endif
  internal_error ("generic_target_read_sp");
}

CORE_ADDR
read_sp ()
{
  return TARGET_READ_SP ();
}

#ifndef TARGET_WRITE_SP
#define TARGET_WRITE_SP generic_target_write_sp
#endif

void
generic_target_write_sp (val)
     CORE_ADDR val;
{
#ifdef SP_REGNUM
  if (SP_REGNUM >= 0)
    {
      write_register (SP_REGNUM, val);
      return;
    }
#endif
  internal_error ("generic_target_write_sp");
}

void
write_sp (val)
     CORE_ADDR val;
{
  TARGET_WRITE_SP (val);
}

#ifndef TARGET_READ_FP
#define TARGET_READ_FP generic_target_read_fp
#endif

CORE_ADDR
generic_target_read_fp ()
{
#ifdef FP_REGNUM
  if (FP_REGNUM >= 0)
    return read_register (FP_REGNUM);
#endif
  internal_error ("generic_target_read_fp");
}

CORE_ADDR
read_fp ()
{
  return TARGET_READ_FP ();
}

#ifndef TARGET_WRITE_FP
#define TARGET_WRITE_FP generic_target_write_fp
#endif

void
generic_target_write_fp (val)
     CORE_ADDR val;
{
#ifdef FP_REGNUM
  if (FP_REGNUM >= 0)
    {
      write_register (FP_REGNUM, val);
      return;
    }
#endif
  internal_error ("generic_target_write_fp");
}

void
write_fp (val)
     CORE_ADDR val;
{
  TARGET_WRITE_FP (val);
}

/* Will calling read_var_value or locate_var_value on SYM end
   up caring what frame it is being evaluated relative to?  SYM must
   be non-NULL.  */
int
symbol_read_needs_frame (sym)
     struct symbol *sym;
{
  switch (SYMBOL_CLASS (sym))
    {
      /* All cases listed explicitly so that gcc -Wall will detect it if
         we failed to consider one.  */
    case LOC_REGISTER:
    case LOC_ARG:
    case LOC_REF_ARG:
    case LOC_REGPARM:
    case LOC_REGPARM_ADDR:
    case LOC_LOCAL:
    case LOC_LOCAL_ARG:
    case LOC_BASEREG:
    case LOC_BASEREG_ARG:
    case LOC_THREAD_LOCAL_STATIC:
      return 1;

    case LOC_UNDEF:
    case LOC_CONST:
    case LOC_STATIC:
    case LOC_INDIRECT:
    case LOC_TYPEDEF:

    case LOC_LABEL:
      /* Getting the address of a label can be done independently of the block,
         even if some *uses* of that address wouldn't work so well without
         the right frame.  */

    case LOC_BLOCK:
    case LOC_CONST_BYTES:
    case LOC_UNRESOLVED:
    case LOC_OPTIMIZED_OUT:
      return 0;
    }
  return 1;
}

/* Given a struct symbol for a variable,
   and a stack frame id, read the value of the variable
   and return a (pointer to a) struct value containing the value. 
   If the variable cannot be found, return a zero pointer.
   If FRAME is NULL, use the selected_frame.  */

value_ptr
read_var_value (var, frame)
     register struct symbol *var;
     struct frame_info *frame;
{
  register value_ptr v;
  struct type *type = SYMBOL_TYPE (var);
  CORE_ADDR addr;
  register int len;

  v = allocate_value (type);
  VALUE_LVAL (v) = lval_memory;	/* The most likely possibility.  */
  VALUE_BFD_SECTION (v) = SYMBOL_BFD_SECTION (var);

  len = TYPE_LENGTH (type);

  if (frame == NULL)
    frame = selected_frame;

  switch (SYMBOL_CLASS (var))
    {
    case LOC_CONST:
      /* Put the constant back in target format.  */
      store_signed_integer (VALUE_CONTENTS_RAW (v), len,
			    (LONGEST) SYMBOL_VALUE (var));
      VALUE_LVAL (v) = not_lval;
      return v;

    case LOC_LABEL:
      /* Put the constant back in target format.  */
      if (overlay_debugging)
	store_address (VALUE_CONTENTS_RAW (v), len,
	     (LONGEST) symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
						 SYMBOL_BFD_SECTION (var)));
      else
	store_address (VALUE_CONTENTS_RAW (v), len,
		       (LONGEST) SYMBOL_VALUE_ADDRESS (var));
      VALUE_LVAL (v) = not_lval;
      return v;

    case LOC_CONST_BYTES:
      {
	char *bytes_addr;
	bytes_addr = SYMBOL_VALUE_BYTES (var);
	memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
	VALUE_LVAL (v) = not_lval;
	return v;
      }

    case LOC_STATIC:
      if (overlay_debugging)
	addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
					 SYMBOL_BFD_SECTION (var));
      else
	addr = SYMBOL_VALUE_ADDRESS (var);
      break;

    case LOC_INDIRECT:
      /* The import slot does not have a real address in it from the
         dynamic loader (dld.sl on HP-UX), if the target hasn't begun
         execution yet, so check for that. */
      if (!target_has_execution)
	error ("\
Attempt to access variable defined in different shared object or load module when\n\
addresses have not been bound by the dynamic loader. Try again when executable is running.");

      addr = SYMBOL_VALUE_ADDRESS (var);
      addr = read_memory_unsigned_integer
	(addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
      break;

    case LOC_ARG:
      if (frame == NULL)
	return 0;
      addr = FRAME_ARGS_ADDRESS (frame);
      if (!addr)
	return 0;
      addr += SYMBOL_VALUE (var);
      break;

    case LOC_REF_ARG:
      if (frame == NULL)
	return 0;
      addr = FRAME_ARGS_ADDRESS (frame);
      if (!addr)
	return 0;
      addr += SYMBOL_VALUE (var);
      addr = read_memory_unsigned_integer
	(addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
      break;

    case LOC_LOCAL:
    case LOC_LOCAL_ARG:
      if (frame == NULL)
	return 0;
      addr = FRAME_LOCALS_ADDRESS (frame);
      addr += SYMBOL_VALUE (var);
      break;

    case LOC_BASEREG:
    case LOC_BASEREG_ARG:
      {
	char buf[MAX_REGISTER_RAW_SIZE];
	get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
			    NULL);
	addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
	addr += SYMBOL_VALUE (var);
	break;
      }

    case LOC_THREAD_LOCAL_STATIC:
      {
	char buf[MAX_REGISTER_RAW_SIZE];

	get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
			    NULL);
	addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
	addr += SYMBOL_VALUE (var);
	break;
      }

    case LOC_TYPEDEF:
      error ("Cannot look up value of a typedef");
      break;

    case LOC_BLOCK:
      if (overlay_debugging)
	VALUE_ADDRESS (v) = symbol_overlayed_address
	  (BLOCK_START (SYMBOL_BLOCK_VALUE (var)), SYMBOL_BFD_SECTION (var));
      else
	VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
      return v;

    case LOC_REGISTER:
    case LOC_REGPARM:
    case LOC_REGPARM_ADDR:
      {
	struct block *b;
	int regno = SYMBOL_VALUE (var);
	value_ptr regval;

	if (frame == NULL)
	  return 0;
	b = get_frame_block (frame);

	if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
	  {
	    regval = value_from_register (lookup_pointer_type (type),
					  regno,
					  frame);

	    if (regval == NULL)
	      error ("Value of register variable not available.");

	    addr = value_as_pointer (regval);
	    VALUE_LVAL (v) = lval_memory;
	  }
	else
	  {
	    regval = value_from_register (type, regno, frame);

	    if (regval == NULL)
	      error ("Value of register variable not available.");
	    return regval;
	  }
      }
      break;

    case LOC_UNRESOLVED:
      {
	struct minimal_symbol *msym;

	msym = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
	if (msym == NULL)
	  return 0;
	if (overlay_debugging)
	  addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (msym),
					   SYMBOL_BFD_SECTION (msym));
	else
	  addr = SYMBOL_VALUE_ADDRESS (msym);
      }
      break;

    case LOC_OPTIMIZED_OUT:
      VALUE_LVAL (v) = not_lval;
      VALUE_OPTIMIZED_OUT (v) = 1;
      return v;

    default:
      error ("Cannot look up value of a botched symbol.");
      break;
    }

  VALUE_ADDRESS (v) = addr;
  VALUE_LAZY (v) = 1;
  return v;
}

/* Return a value of type TYPE, stored in register REGNUM, in frame
   FRAME. 

   NOTE: returns NULL if register value is not available.
   Caller will check return value or die!  */

value_ptr
value_from_register (type, regnum, frame)
     struct type *type;
     int regnum;
     struct frame_info *frame;
{
  char raw_buffer[MAX_REGISTER_RAW_SIZE];
  CORE_ADDR addr;
  int optim;
  value_ptr v = allocate_value (type);
  char *value_bytes = 0;
  int value_bytes_copied = 0;
  int num_storage_locs;
  enum lval_type lval;
  int len;

  CHECK_TYPEDEF (type);
  len = TYPE_LENGTH (type);

  /* Pointers on D10V are really only 16 bits, but we lie to gdb elsewhere... */
  if (GDB_TARGET_IS_D10V && TYPE_CODE (type) == TYPE_CODE_PTR)
    len = 2;

  VALUE_REGNO (v) = regnum;

  num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
		      ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
		      1);

  if (num_storage_locs > 1
#ifdef GDB_TARGET_IS_H8500
      || TYPE_CODE (type) == TYPE_CODE_PTR
#endif
    )
    {
      /* Value spread across multiple storage locations.  */

      int local_regnum;
      int mem_stor = 0, reg_stor = 0;
      int mem_tracking = 1;
      CORE_ADDR last_addr = 0;
      CORE_ADDR first_addr = 0;

      value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);

      /* Copy all of the data out, whereever it may be.  */

#ifdef GDB_TARGET_IS_H8500
/* This piece of hideosity is required because the H8500 treats registers
   differently depending upon whether they are used as pointers or not.  As a
   pointer, a register needs to have a page register tacked onto the front.
   An alternate way to do this would be to have gcc output different register
   numbers for the pointer & non-pointer form of the register.  But, it
   doesn't, so we're stuck with this.  */

      if (TYPE_CODE (type) == TYPE_CODE_PTR
	  && len > 2)
	{
	  int page_regnum;

	  switch (regnum)
	    {
	    case R0_REGNUM:
	    case R1_REGNUM:
	    case R2_REGNUM:
	    case R3_REGNUM:
	      page_regnum = SEG_D_REGNUM;
	      break;
	    case R4_REGNUM:
	    case R5_REGNUM:
	      page_regnum = SEG_E_REGNUM;
	      break;
	    case R6_REGNUM:
	    case R7_REGNUM:
	      page_regnum = SEG_T_REGNUM;
	      break;
	    }

	  value_bytes[0] = 0;
	  get_saved_register (value_bytes + 1,
			      &optim,
			      &addr,
			      frame,
			      page_regnum,
			      &lval);

	  if (register_valid[page_regnum] == -1)
	    return NULL;	/* register value not available */

	  if (lval == lval_register)
	    reg_stor++;
	  else
	    mem_stor++;
	  first_addr = addr;
	  last_addr = addr;

	  get_saved_register (value_bytes + 2,
			      &optim,
			      &addr,
			      frame,
			      regnum,
			      &lval);

	  if (register_valid[regnum] == -1)
	    return NULL;	/* register value not available */

	  if (lval == lval_register)
	    reg_stor++;
	  else
	    {
	      mem_stor++;
	      mem_tracking = mem_tracking && (addr == last_addr);
	    }
	  last_addr = addr;
	}
      else
#endif /* GDB_TARGET_IS_H8500 */
	for (local_regnum = regnum;
	     value_bytes_copied < len;
	     (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
	      ++local_regnum))
	  {
	    get_saved_register (value_bytes + value_bytes_copied,
				&optim,
				&addr,
				frame,
				local_regnum,
				&lval);

	    if (register_valid[local_regnum] == -1)
	      return NULL;	/* register value not available */

	    if (regnum == local_regnum)
	      first_addr = addr;
	    if (lval == lval_register)
	      reg_stor++;
	    else
	      {
		mem_stor++;

		mem_tracking =
		  (mem_tracking
		   && (regnum == local_regnum
		       || addr == last_addr));
	      }
	    last_addr = addr;
	  }

      if ((reg_stor && mem_stor)
	  || (mem_stor && !mem_tracking))
	/* Mixed storage; all of the hassle we just went through was
	   for some good purpose.  */
	{
	  VALUE_LVAL (v) = lval_reg_frame_relative;
	  VALUE_FRAME (v) = FRAME_FP (frame);
	  VALUE_FRAME_REGNUM (v) = regnum;
	}
      else if (mem_stor)
	{
	  VALUE_LVAL (v) = lval_memory;
	  VALUE_ADDRESS (v) = first_addr;
	}
      else if (reg_stor)
	{
	  VALUE_LVAL (v) = lval_register;
	  VALUE_ADDRESS (v) = first_addr;
	}
      else
	internal_error ("value_from_register: Value not stored anywhere!");

      VALUE_OPTIMIZED_OUT (v) = optim;

      /* Any structure stored in more than one register will always be
         an integral number of registers.  Otherwise, you'd need to do
         some fiddling with the last register copied here for little
         endian machines.  */

      /* Copy into the contents section of the value.  */
      memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);

      /* Finally do any conversion necessary when extracting this
         type from more than one register.  */
#ifdef REGISTER_CONVERT_TO_TYPE
      REGISTER_CONVERT_TO_TYPE (regnum, type, VALUE_CONTENTS_RAW (v));
#endif
      return v;
    }

  /* Data is completely contained within a single register.  Locate the
     register's contents in a real register or in core;
     read the data in raw format.  */

  get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);

  if (register_valid[regnum] == -1)
    return NULL;		/* register value not available */

  VALUE_OPTIMIZED_OUT (v) = optim;
  VALUE_LVAL (v) = lval;
  VALUE_ADDRESS (v) = addr;

  /* Convert raw data to virtual format if necessary.  */

  if (REGISTER_CONVERTIBLE (regnum))
    {
      REGISTER_CONVERT_TO_VIRTUAL (regnum, type,
				   raw_buffer, VALUE_CONTENTS_RAW (v));
    }
  else
    {
      /* Raw and virtual formats are the same for this register.  */

      if (TARGET_BYTE_ORDER == BIG_ENDIAN && len < REGISTER_RAW_SIZE (regnum))
	{
	  /* Big-endian, and we want less than full size.  */
	  VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
	}

      memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
    }

  if (GDB_TARGET_IS_D10V
      && TYPE_CODE (type) == TYPE_CODE_PTR
      && TYPE_TARGET_TYPE (type)
      && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
    {
      /* pointer to function */
      unsigned long num;
      unsigned short snum;
      snum = (unsigned short) extract_unsigned_integer (VALUE_CONTENTS_RAW (v), 2);
      num = D10V_MAKE_IADDR (snum);
      store_address (VALUE_CONTENTS_RAW (v), 4, num);
    }
  else if (GDB_TARGET_IS_D10V
	   && TYPE_CODE (type) == TYPE_CODE_PTR)
    {
      /* pointer to data */
      unsigned long num;
      unsigned short snum;
      snum = (unsigned short) extract_unsigned_integer (VALUE_CONTENTS_RAW (v), 2);
      num = D10V_MAKE_DADDR (snum);
      store_address (VALUE_CONTENTS_RAW (v), 4, num);
    }

  return v;
}

/* Given a struct symbol for a variable or function,
   and a stack frame id, 
   return a (pointer to a) struct value containing the properly typed
   address.  */

value_ptr
locate_var_value (var, frame)
     register struct symbol *var;
     struct frame_info *frame;
{
  CORE_ADDR addr = 0;
  struct type *type = SYMBOL_TYPE (var);
  value_ptr lazy_value;

  /* Evaluate it first; if the result is a memory address, we're fine.
     Lazy evaluation pays off here. */

  lazy_value = read_var_value (var, frame);
  if (lazy_value == 0)
    error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));

  if (VALUE_LAZY (lazy_value)
      || TYPE_CODE (type) == TYPE_CODE_FUNC)
    {
      value_ptr val;

      addr = VALUE_ADDRESS (lazy_value);
      val = value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
      VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (lazy_value);
      return val;
    }

  /* Not a memory address; check what the problem was.  */
  switch (VALUE_LVAL (lazy_value))
    {
    case lval_register:
    case lval_reg_frame_relative:
      error ("Address requested for identifier \"%s\" which is in a register.",
	     SYMBOL_SOURCE_NAME (var));
      break;

    default:
      error ("Can't take address of \"%s\" which isn't an lvalue.",
	     SYMBOL_SOURCE_NAME (var));
      break;
    }
  return 0;			/* For lint -- never reached */
}


static void build_findvar PARAMS ((void));
static void
build_findvar ()
{
  /* We allocate some extra slop since we do a lot of memcpy's around
     `registers', and failing-soft is better than failing hard.  */
  int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
  int sizeof_register_valid = NUM_REGS * sizeof (*register_valid);
  registers = xmalloc (sizeof_registers);
  memset (registers, 0, sizeof_registers);
  register_valid = xmalloc (sizeof_register_valid);
  memset (register_valid, 0, sizeof_register_valid);
}

void _initialize_findvar PARAMS ((void));
void
_initialize_findvar ()
{
  build_findvar ();

  register_gdbarch_swap (&registers, sizeof (registers), NULL);
  register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
  register_gdbarch_swap (NULL, 0, build_findvar);
}