summaryrefslogtreecommitdiff
path: root/gdb/hppa-hpux-tdep.c
blob: fd8d7ccf3d9c8b54d4773deec2d6534a89d3d533 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
/* Target-dependent code for HP-UX on PA-RISC.

   Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "arch-utils.h"
#include "gdbcore.h"
#include "osabi.h"
#include "frame.h"
#include "frame-unwind.h"
#include "trad-frame.h"
#include "symtab.h"
#include "objfiles.h"
#include "inferior.h"
#include "infcall.h"
#include "observer.h"
#include "hppa-tdep.h"
#include "solib-som.h"
#include "solib-pa64.h"
#include "regset.h"
#include "regcache.h"
#include "exceptions.h"

#include "gdb_string.h"

#define IS_32BIT_TARGET(_gdbarch) \
	((gdbarch_tdep (_gdbarch))->bytes_per_address == 4)

/* Bit in the `ss_flag' member of `struct save_state' that indicates
   that the 64-bit register values are live.  From
   <machine/save_state.h>.  */
#define HPPA_HPUX_SS_WIDEREGS		0x40

/* Offsets of various parts of `struct save_state'.  From
   <machine/save_state.h>.  */
#define HPPA_HPUX_SS_FLAGS_OFFSET	0
#define HPPA_HPUX_SS_NARROW_OFFSET	4
#define HPPA_HPUX_SS_FPBLOCK_OFFSET 	256
#define HPPA_HPUX_SS_WIDE_OFFSET        640

/* The size of `struct save_state.  */
#define HPPA_HPUX_SAVE_STATE_SIZE	1152

/* The size of `struct pa89_save_state', which corresponds to PA-RISC
   1.1, the lowest common denominator that we support.  */
#define HPPA_HPUX_PA89_SAVE_STATE_SIZE	512


/* Forward declarations.  */
extern void _initialize_hppa_hpux_tdep (void);
extern initialize_file_ftype _initialize_hppa_hpux_tdep;

static int
in_opd_section (CORE_ADDR pc)
{
  struct obj_section *s;
  int retval = 0;

  s = find_pc_section (pc);

  retval = (s != NULL
	    && s->the_bfd_section->name != NULL
	    && strcmp (s->the_bfd_section->name, ".opd") == 0);
  return (retval);
}

/* Return one if PC is in the call path of a trampoline, else return zero.

   Note we return one for *any* call trampoline (long-call, arg-reloc), not
   just shared library trampolines (import, export).  */

static int
hppa32_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch,
				      CORE_ADDR pc, char *name)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct minimal_symbol *minsym;
  struct unwind_table_entry *u;

  /* First see if PC is in one of the two C-library trampolines.  */
  if (pc == hppa_symbol_address("$$dyncall") 
      || pc == hppa_symbol_address("_sr4export"))
    return 1;

  minsym = lookup_minimal_symbol_by_pc (pc);
  if (minsym && strcmp (SYMBOL_LINKAGE_NAME (minsym), ".stub") == 0)
    return 1;

  /* Get the unwind descriptor corresponding to PC, return zero
     if no unwind was found.  */
  u = find_unwind_entry (pc);
  if (!u)
    return 0;

  /* If this isn't a linker stub, then return now.  */
  if (u->stub_unwind.stub_type == 0)
    return 0;

  /* By definition a long-branch stub is a call stub.  */
  if (u->stub_unwind.stub_type == LONG_BRANCH)
    return 1;

  /* The call and return path execute the same instructions within
     an IMPORT stub!  So an IMPORT stub is both a call and return
     trampoline.  */
  if (u->stub_unwind.stub_type == IMPORT)
    return 1;

  /* Parameter relocation stubs always have a call path and may have a
     return path.  */
  if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
      || u->stub_unwind.stub_type == EXPORT)
    {
      CORE_ADDR addr;

      /* Search forward from the current PC until we hit a branch
         or the end of the stub.  */
      for (addr = pc; addr <= u->region_end; addr += 4)
	{
	  unsigned long insn;

	  insn = read_memory_integer (addr, 4, byte_order);

	  /* Does it look like a bl?  If so then it's the call path, if
	     we find a bv or be first, then we're on the return path.  */
	  if ((insn & 0xfc00e000) == 0xe8000000)
	    return 1;
	  else if ((insn & 0xfc00e001) == 0xe800c000
		   || (insn & 0xfc000000) == 0xe0000000)
	    return 0;
	}

      /* Should never happen.  */
      warning (_("Unable to find branch in parameter relocation stub."));
      return 0;
    }

  /* Unknown stub type.  For now, just return zero.  */
  return 0;
}

static int
hppa64_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch,
				      CORE_ADDR pc, char *name)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* PA64 has a completely different stub/trampoline scheme.  Is it
     better?  Maybe.  It's certainly harder to determine with any
     certainty that we are in a stub because we can not refer to the
     unwinders to help. 

     The heuristic is simple.  Try to lookup the current PC value in th
     minimal symbol table.  If that fails, then assume we are not in a
     stub and return.

     Then see if the PC value falls within the section bounds for the
     section containing the minimal symbol we found in the first
     step.  If it does, then assume we are not in a stub and return.

     Finally peek at the instructions to see if they look like a stub.  */
  struct minimal_symbol *minsym;
  asection *sec;
  CORE_ADDR addr;
  int insn, i;

  minsym = lookup_minimal_symbol_by_pc (pc);
  if (! minsym)
    return 0;

  sec = SYMBOL_OBJ_SECTION (minsym)->the_bfd_section;

  if (bfd_get_section_vma (sec->owner, sec) <= pc
      && pc < (bfd_get_section_vma (sec->owner, sec)
		 + bfd_section_size (sec->owner, sec)))
      return 0;

  /* We might be in a stub.  Peek at the instructions.  Stubs are 3
     instructions long. */
  insn = read_memory_integer (pc, 4, byte_order);

  /* Find out where we think we are within the stub.  */
  if ((insn & 0xffffc00e) == 0x53610000)
    addr = pc;
  else if ((insn & 0xffffffff) == 0xe820d000)
    addr = pc - 4;
  else if ((insn & 0xffffc00e) == 0x537b0000)
    addr = pc - 8;
  else
    return 0;

  /* Now verify each insn in the range looks like a stub instruction.  */
  insn = read_memory_integer (addr, 4, byte_order);
  if ((insn & 0xffffc00e) != 0x53610000)
    return 0;
	
  /* Now verify each insn in the range looks like a stub instruction.  */
  insn = read_memory_integer (addr + 4, 4, byte_order);
  if ((insn & 0xffffffff) != 0xe820d000)
    return 0;
    
  /* Now verify each insn in the range looks like a stub instruction.  */
  insn = read_memory_integer (addr + 8, 4, byte_order);
  if ((insn & 0xffffc00e) != 0x537b0000)
    return 0;

  /* Looks like a stub.  */
  return 1;
}

/* Return one if PC is in the return path of a trampoline, else return zero.

   Note we return one for *any* call trampoline (long-call, arg-reloc), not
   just shared library trampolines (import, export).  */

static int
hppa_hpux_in_solib_return_trampoline (struct gdbarch *gdbarch,
				      CORE_ADDR pc, char *name)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct unwind_table_entry *u;

  /* Get the unwind descriptor corresponding to PC, return zero
     if no unwind was found.  */
  u = find_unwind_entry (pc);
  if (!u)
    return 0;

  /* If this isn't a linker stub or it's just a long branch stub, then
     return zero.  */
  if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
    return 0;

  /* The call and return path execute the same instructions within
     an IMPORT stub!  So an IMPORT stub is both a call and return
     trampoline.  */
  if (u->stub_unwind.stub_type == IMPORT)
    return 1;

  /* Parameter relocation stubs always have a call path and may have a
     return path.  */
  if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
      || u->stub_unwind.stub_type == EXPORT)
    {
      CORE_ADDR addr;

      /* Search forward from the current PC until we hit a branch
         or the end of the stub.  */
      for (addr = pc; addr <= u->region_end; addr += 4)
	{
	  unsigned long insn;

	  insn = read_memory_integer (addr, 4, byte_order);

	  /* Does it look like a bl?  If so then it's the call path, if
	     we find a bv or be first, then we're on the return path.  */
	  if ((insn & 0xfc00e000) == 0xe8000000)
	    return 0;
	  else if ((insn & 0xfc00e001) == 0xe800c000
		   || (insn & 0xfc000000) == 0xe0000000)
	    return 1;
	}

      /* Should never happen.  */
      warning (_("Unable to find branch in parameter relocation stub."));
      return 0;
    }

  /* Unknown stub type.  For now, just return zero.  */
  return 0;

}

/* Figure out if PC is in a trampoline, and if so find out where
   the trampoline will jump to.  If not in a trampoline, return zero.

   Simple code examination probably is not a good idea since the code
   sequences in trampolines can also appear in user code.

   We use unwinds and information from the minimal symbol table to
   determine when we're in a trampoline.  This won't work for ELF
   (yet) since it doesn't create stub unwind entries.  Whether or
   not ELF will create stub unwinds or normal unwinds for linker
   stubs is still being debated.

   This should handle simple calls through dyncall or sr4export,
   long calls, argument relocation stubs, and dyncall/sr4export
   calling an argument relocation stub.  It even handles some stubs
   used in dynamic executables.  */

static CORE_ADDR
hppa_hpux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  long orig_pc = pc;
  long prev_inst, curr_inst, loc;
  struct minimal_symbol *msym;
  struct unwind_table_entry *u;

  /* Addresses passed to dyncall may *NOT* be the actual address
     of the function.  So we may have to do something special.  */
  if (pc == hppa_symbol_address("$$dyncall"))
    {
      pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);

      /* If bit 30 (counting from the left) is on, then pc is the address of
         the PLT entry for this function, not the address of the function
         itself.  Bit 31 has meaning too, but only for MPE.  */
      if (pc & 0x2)
	pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, byte_order);
    }
  if (pc == hppa_symbol_address("$$dyncall_external"))
    {
      pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
      pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, byte_order);
    }
  else if (pc == hppa_symbol_address("_sr4export"))
    pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);

  /* Get the unwind descriptor corresponding to PC, return zero
     if no unwind was found.  */
  u = find_unwind_entry (pc);
  if (!u)
    return 0;

  /* If this isn't a linker stub, then return now.  */
  /* elz: attention here! (FIXME) because of a compiler/linker 
     error, some stubs which should have a non zero stub_unwind.stub_type 
     have unfortunately a value of zero. So this function would return here
     as if we were not in a trampoline. To fix this, we go look at the partial
     symbol information, which reports this guy as a stub.
     (FIXME): Unfortunately, we are not that lucky: it turns out that the 
     partial symbol information is also wrong sometimes. This is because 
     when it is entered (somread.c::som_symtab_read()) it can happen that
     if the type of the symbol (from the som) is Entry, and the symbol is
     in a shared library, then it can also be a trampoline.  This would
     be OK, except that I believe the way they decide if we are ina shared library
     does not work. SOOOO..., even if we have a regular function w/o trampolines
     its minimal symbol can be assigned type mst_solib_trampoline.
     Also, if we find that the symbol is a real stub, then we fix the unwind
     descriptor, and define the stub type to be EXPORT.
     Hopefully this is correct most of the times. */
  if (u->stub_unwind.stub_type == 0)
    {

/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
   we can delete all the code which appears between the lines */
/*--------------------------------------------------------------------------*/
      msym = lookup_minimal_symbol_by_pc (pc);

      if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
	return orig_pc == pc ? 0 : pc & ~0x3;

      else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
	{
	  struct objfile *objfile;
	  struct minimal_symbol *msymbol;
	  int function_found = 0;

	  /* go look if there is another minimal symbol with the same name as 
	     this one, but with type mst_text. This would happen if the msym
	     is an actual trampoline, in which case there would be another
	     symbol with the same name corresponding to the real function */

	  ALL_MSYMBOLS (objfile, msymbol)
	  {
	    if (MSYMBOL_TYPE (msymbol) == mst_text
		&& strcmp (SYMBOL_LINKAGE_NAME (msymbol),
			    SYMBOL_LINKAGE_NAME (msym)) == 0)
	      {
		function_found = 1;
		break;
	      }
	  }

	  if (function_found)
	    /* the type of msym is correct (mst_solib_trampoline), but
	       the unwind info is wrong, so set it to the correct value */
	    u->stub_unwind.stub_type = EXPORT;
	  else
	    /* the stub type info in the unwind is correct (this is not a
	       trampoline), but the msym type information is wrong, it
	       should be mst_text. So we need to fix the msym, and also
	       get out of this function */
	    {
	      MSYMBOL_TYPE (msym) = mst_text;
	      return orig_pc == pc ? 0 : pc & ~0x3;
	    }
	}

/*--------------------------------------------------------------------------*/
    }

  /* It's a stub.  Search for a branch and figure out where it goes.
     Note we have to handle multi insn branch sequences like ldil;ble.
     Most (all?) other branches can be determined by examining the contents
     of certain registers and the stack.  */

  loc = pc;
  curr_inst = 0;
  prev_inst = 0;
  while (1)
    {
      /* Make sure we haven't walked outside the range of this stub.  */
      if (u != find_unwind_entry (loc))
	{
	  warning (_("Unable to find branch in linker stub"));
	  return orig_pc == pc ? 0 : pc & ~0x3;
	}

      prev_inst = curr_inst;
      curr_inst = read_memory_integer (loc, 4, byte_order);

      /* Does it look like a branch external using %r1?  Then it's the
         branch from the stub to the actual function.  */
      if ((curr_inst & 0xffe0e000) == 0xe0202000)
	{
	  /* Yup.  See if the previous instruction loaded
	     a value into %r1.  If so compute and return the jump address.  */
	  if ((prev_inst & 0xffe00000) == 0x20200000)
	    return (hppa_extract_21 (prev_inst) + hppa_extract_17 (curr_inst)) & ~0x3;
	  else
	    {
	      warning (_("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."));
	      return orig_pc == pc ? 0 : pc & ~0x3;
	    }
	}

      /* Does it look like a be 0(sr0,%r21)? OR 
         Does it look like a be, n 0(sr0,%r21)? OR 
         Does it look like a bve (r21)? (this is on PA2.0)
         Does it look like a bve, n(r21)? (this is also on PA2.0)
         That's the branch from an
         import stub to an export stub.

         It is impossible to determine the target of the branch via
         simple examination of instructions and/or data (consider
         that the address in the plabel may be the address of the
         bind-on-reference routine in the dynamic loader).

         So we have try an alternative approach.

         Get the name of the symbol at our current location; it should
         be a stub symbol with the same name as the symbol in the
         shared library.

         Then lookup a minimal symbol with the same name; we should
         get the minimal symbol for the target routine in the shared
         library as those take precedence of import/export stubs.  */
      if ((curr_inst == 0xe2a00000) ||
	  (curr_inst == 0xe2a00002) ||
	  (curr_inst == 0xeaa0d000) ||
	  (curr_inst == 0xeaa0d002))
	{
	  struct minimal_symbol *stubsym, *libsym;

	  stubsym = lookup_minimal_symbol_by_pc (loc);
	  if (stubsym == NULL)
	    {
	      warning (_("Unable to find symbol for 0x%lx"), loc);
	      return orig_pc == pc ? 0 : pc & ~0x3;
	    }

	  libsym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (stubsym), NULL, NULL);
	  if (libsym == NULL)
	    {
	      warning (_("Unable to find library symbol for %s."),
		       SYMBOL_PRINT_NAME (stubsym));
	      return orig_pc == pc ? 0 : pc & ~0x3;
	    }

	  return SYMBOL_VALUE (libsym);
	}

      /* Does it look like bl X,%rp or bl X,%r0?  Another way to do a
         branch from the stub to the actual function.  */
      /*elz */
      else if ((curr_inst & 0xffe0e000) == 0xe8400000
	       || (curr_inst & 0xffe0e000) == 0xe8000000
	       || (curr_inst & 0xffe0e000) == 0xe800A000)
	return (loc + hppa_extract_17 (curr_inst) + 8) & ~0x3;

      /* Does it look like bv (rp)?   Note this depends on the
         current stack pointer being the same as the stack
         pointer in the stub itself!  This is a branch on from the
         stub back to the original caller.  */
      /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
      else if ((curr_inst & 0xffe0f000) == 0xe840c000)
	{
	  /* Yup.  See if the previous instruction loaded
	     rp from sp - 8.  */
	  if (prev_inst == 0x4bc23ff1)
	    {
	      CORE_ADDR sp;
	      sp = get_frame_register_unsigned (frame, HPPA_SP_REGNUM);
	      return read_memory_integer (sp - 8, 4, byte_order) & ~0x3;
	    }
	  else
	    {
	      warning (_("Unable to find restore of %%rp before bv (%%rp)."));
	      return orig_pc == pc ? 0 : pc & ~0x3;
	    }
	}

      /* elz: added this case to capture the new instruction
         at the end of the return part of an export stub used by
         the PA2.0: BVE, n (rp) */
      else if ((curr_inst & 0xffe0f000) == 0xe840d000)
	{
	  return (read_memory_integer
		  (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24,
		   word_size, byte_order)) & ~0x3;
	}

      /* What about be,n 0(sr0,%rp)?  It's just another way we return to
         the original caller from the stub.  Used in dynamic executables.  */
      else if (curr_inst == 0xe0400002)
	{
	  /* The value we jump to is sitting in sp - 24.  But that's
	     loaded several instructions before the be instruction.
	     I guess we could check for the previous instruction being
	     mtsp %r1,%sr0 if we want to do sanity checking.  */
	  return (read_memory_integer
		  (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24,
		   word_size, byte_order)) & ~0x3;
	}

      /* Haven't found the branch yet, but we're still in the stub.
         Keep looking.  */
      loc += 4;
    }
}

static void
hppa_skip_permanent_breakpoint (struct regcache *regcache)
{
  /* To step over a breakpoint instruction on the PA takes some
     fiddling with the instruction address queue.

     When we stop at a breakpoint, the IA queue front (the instruction
     we're executing now) points at the breakpoint instruction, and
     the IA queue back (the next instruction to execute) points to
     whatever instruction we would execute after the breakpoint, if it
     were an ordinary instruction.  This is the case even if the
     breakpoint is in the delay slot of a branch instruction.

     Clearly, to step past the breakpoint, we need to set the queue
     front to the back.  But what do we put in the back?  What
     instruction comes after that one?  Because of the branch delay
     slot, the next insn is always at the back + 4.  */

  ULONGEST pcoq_tail, pcsq_tail;
  regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, &pcoq_tail);
  regcache_cooked_read_unsigned (regcache, HPPA_PCSQ_TAIL_REGNUM, &pcsq_tail);

  regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pcoq_tail);
  regcache_cooked_write_unsigned (regcache, HPPA_PCSQ_HEAD_REGNUM, pcsq_tail);

  regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pcoq_tail + 4);
  /* We can leave the tail's space the same, since there's no jump.  */
}


/* Signal frames.  */
struct hppa_hpux_sigtramp_unwind_cache
{
  CORE_ADDR base;
  struct trad_frame_saved_reg *saved_regs;
};

static int hppa_hpux_tramp_reg[] = {
  HPPA_SAR_REGNUM,
  HPPA_PCOQ_HEAD_REGNUM,
  HPPA_PCSQ_HEAD_REGNUM,
  HPPA_PCOQ_TAIL_REGNUM,
  HPPA_PCSQ_TAIL_REGNUM,
  HPPA_EIEM_REGNUM,
  HPPA_IIR_REGNUM,
  HPPA_ISR_REGNUM,
  HPPA_IOR_REGNUM,
  HPPA_IPSW_REGNUM,
  -1,
  HPPA_SR4_REGNUM,
  HPPA_SR4_REGNUM + 1,
  HPPA_SR4_REGNUM + 2,
  HPPA_SR4_REGNUM + 3,
  HPPA_SR4_REGNUM + 4,
  HPPA_SR4_REGNUM + 5,
  HPPA_SR4_REGNUM + 6,
  HPPA_SR4_REGNUM + 7,
  HPPA_RCR_REGNUM,
  HPPA_PID0_REGNUM,
  HPPA_PID1_REGNUM,
  HPPA_CCR_REGNUM,
  HPPA_PID2_REGNUM,
  HPPA_PID3_REGNUM,
  HPPA_TR0_REGNUM,
  HPPA_TR0_REGNUM + 1,
  HPPA_TR0_REGNUM + 2,
  HPPA_CR27_REGNUM
};

static struct hppa_hpux_sigtramp_unwind_cache *
hppa_hpux_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
				       void **this_cache)

{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct hppa_hpux_sigtramp_unwind_cache *info;
  unsigned int flag;
  CORE_ADDR sp, scptr, off;
  int i, incr, szoff;

  if (*this_cache)
    return *this_cache;

  info = FRAME_OBSTACK_ZALLOC (struct hppa_hpux_sigtramp_unwind_cache);
  *this_cache = info;
  info->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  sp = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);

  if (IS_32BIT_TARGET (gdbarch))
    scptr = sp - 1352;
  else
    scptr = sp - 1520;

  off = scptr;

  /* See /usr/include/machine/save_state.h for the structure of the save_state_t
     structure. */
  
  flag = read_memory_unsigned_integer (scptr + HPPA_HPUX_SS_FLAGS_OFFSET,
				       4, byte_order);

  if (!(flag & HPPA_HPUX_SS_WIDEREGS))
    {
      /* Narrow registers. */
      off = scptr + HPPA_HPUX_SS_NARROW_OFFSET;
      incr = 4;
      szoff = 0;
    }
  else
    {
      /* Wide registers. */
      off = scptr + HPPA_HPUX_SS_WIDE_OFFSET + 8;
      incr = 8;
      szoff = (tdep->bytes_per_address == 4 ? 4 : 0);
    }

  for (i = 1; i < 32; i++)
    {
      info->saved_regs[HPPA_R0_REGNUM + i].addr = off + szoff;
      off += incr;
    }

  for (i = 0; i < ARRAY_SIZE (hppa_hpux_tramp_reg); i++)
    {
      if (hppa_hpux_tramp_reg[i] > 0)
        info->saved_regs[hppa_hpux_tramp_reg[i]].addr = off + szoff;

      off += incr;
    }

  /* TODO: fp regs */

  info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);

  return info;
}

static void
hppa_hpux_sigtramp_frame_this_id (struct frame_info *this_frame,
				   void **this_prologue_cache,
				   struct frame_id *this_id)
{
  struct hppa_hpux_sigtramp_unwind_cache *info
    = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);

  *this_id = frame_id_build (info->base, get_frame_pc (this_frame));
}

static struct value *
hppa_hpux_sigtramp_frame_prev_register (struct frame_info *this_frame,
					void **this_prologue_cache,
					int regnum)
{
  struct hppa_hpux_sigtramp_unwind_cache *info
    = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);

  return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
}

static int
hppa_hpux_sigtramp_unwind_sniffer (const struct frame_unwind *self,
                                   struct frame_info *this_frame,
                                   void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct unwind_table_entry *u;
  CORE_ADDR pc = get_frame_pc (this_frame);

  u = find_unwind_entry (pc);

  /* If this is an export stub, try to get the unwind descriptor for
     the actual function itself.  */
  if (u && u->stub_unwind.stub_type == EXPORT)
    {
      gdb_byte buf[HPPA_INSN_SIZE];
      unsigned long insn;

      if (!safe_frame_unwind_memory (this_frame, u->region_start,
				     buf, sizeof buf))
	return 0;

      insn = extract_unsigned_integer (buf, sizeof buf, byte_order);
      if ((insn & 0xffe0e000) == 0xe8400000)
	u = find_unwind_entry(u->region_start + hppa_extract_17 (insn) + 8);
    }

  if (u && u->HP_UX_interrupt_marker)
    return 1;

  return 0;
}

static const struct frame_unwind hppa_hpux_sigtramp_frame_unwind = {
  SIGTRAMP_FRAME,
  hppa_hpux_sigtramp_frame_this_id,
  hppa_hpux_sigtramp_frame_prev_register,
  NULL,
  hppa_hpux_sigtramp_unwind_sniffer
};

static CORE_ADDR
hppa32_hpux_find_global_pointer (struct gdbarch *gdbarch,
				 struct value *function)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR faddr;
  
  faddr = value_as_address (function);

  /* Is this a plabel? If so, dereference it to get the gp value.  */
  if (faddr & 2)
    {
      int status;
      char buf[4];

      faddr &= ~3;

      status = target_read_memory (faddr + 4, buf, sizeof (buf));
      if (status == 0)
	return extract_unsigned_integer (buf, sizeof (buf), byte_order);
    }

  return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr);
}

static CORE_ADDR
hppa64_hpux_find_global_pointer (struct gdbarch *gdbarch,
				 struct value *function)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR faddr;
  char buf[32];

  faddr = value_as_address (function);

  if (in_opd_section (faddr))
    {
      target_read_memory (faddr, buf, sizeof (buf));
      return extract_unsigned_integer (&buf[24], 8, byte_order);
    }
  else
    {
      return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr);
    }
}

static unsigned int ldsid_pattern[] = {
  0x000010a0, /* ldsid (rX),rY */
  0x00001820, /* mtsp rY,sr0 */
  0xe0000000  /* be,n (sr0,rX) */
};

static CORE_ADDR
hppa_hpux_search_pattern (struct gdbarch *gdbarch,
			  CORE_ADDR start, CORE_ADDR end,
			  unsigned int *patterns, int count)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int num_insns = (end - start + HPPA_INSN_SIZE) / HPPA_INSN_SIZE;
  unsigned int *insns;
  gdb_byte *buf;
  int offset, i;

  buf = alloca (num_insns * HPPA_INSN_SIZE);
  insns = alloca (num_insns * sizeof (unsigned int));

  read_memory (start, buf, num_insns * HPPA_INSN_SIZE);
  for (i = 0; i < num_insns; i++, buf += HPPA_INSN_SIZE)
    insns[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);

  for (offset = 0; offset <= num_insns - count; offset++)
    {
      for (i = 0; i < count; i++)
        {
	  if ((insns[offset + i] & patterns[i]) != patterns[i])
	    break;
	}
      if (i == count)
        break;
    }

  if (offset <= num_insns - count)
    return start + offset * HPPA_INSN_SIZE;
  else
    return 0;
}

static CORE_ADDR
hppa32_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
					int *argreg)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct objfile *obj;
  struct obj_section *sec;
  struct hppa_objfile_private *priv;
  struct frame_info *frame;
  struct unwind_table_entry *u;
  CORE_ADDR addr, rp;
  char buf[4];
  unsigned int insn;

  sec = find_pc_section (pc);
  obj = sec->objfile;
  priv = objfile_data (obj, hppa_objfile_priv_data);

  if (!priv)
    priv = hppa_init_objfile_priv_data (obj);
  if (!priv)
    error (_("Internal error creating objfile private data."));

  /* Use the cached value if we have one.  */
  if (priv->dummy_call_sequence_addr != 0)
    {
      *argreg = priv->dummy_call_sequence_reg;
      return priv->dummy_call_sequence_addr;
    }

  /* First try a heuristic; if we are in a shared library call, our return
     pointer is likely to point at an export stub.  */
  frame = get_current_frame ();
  rp = frame_unwind_register_unsigned (frame, 2);
  u = find_unwind_entry (rp);
  if (u && u->stub_unwind.stub_type == EXPORT)
    {
      addr = hppa_hpux_search_pattern (gdbarch,
				       u->region_start, u->region_end,
				       ldsid_pattern, 
				       ARRAY_SIZE (ldsid_pattern));
      if (addr)
	goto found_pattern;
    }

  /* Next thing to try is to look for an export stub.  */
  if (priv->unwind_info)
    {
      int i;

      for (i = 0; i < priv->unwind_info->last; i++)
        {
	  struct unwind_table_entry *u;
	  u = &priv->unwind_info->table[i];
	  if (u->stub_unwind.stub_type == EXPORT)
	    {
	      addr = hppa_hpux_search_pattern (gdbarch,
					       u->region_start, u->region_end,
					       ldsid_pattern, 
					       ARRAY_SIZE (ldsid_pattern));
	      if (addr)
	        {
		  goto found_pattern;
		}
	    }
	}
    }

  /* Finally, if this is the main executable, try to locate a sequence 
     from noshlibs */
  addr = hppa_symbol_address ("noshlibs");
  sec = find_pc_section (addr);

  if (sec && sec->objfile == obj)
    {
      CORE_ADDR start, end;

      find_pc_partial_function (addr, NULL, &start, &end);
      if (start != 0 && end != 0)
        {
	  addr = hppa_hpux_search_pattern (gdbarch, start, end, ldsid_pattern,
					   ARRAY_SIZE (ldsid_pattern));
	  if (addr)
	    goto found_pattern;
        }
    }

  /* Can't find a suitable sequence.  */
  return 0;

found_pattern:
  target_read_memory (addr, buf, sizeof (buf));
  insn = extract_unsigned_integer (buf, sizeof (buf), byte_order);
  priv->dummy_call_sequence_addr = addr;
  priv->dummy_call_sequence_reg = (insn >> 21) & 0x1f;

  *argreg = priv->dummy_call_sequence_reg;
  return priv->dummy_call_sequence_addr;
}

static CORE_ADDR
hppa64_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
					int *argreg)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct objfile *obj;
  struct obj_section *sec;
  struct hppa_objfile_private *priv;
  CORE_ADDR addr;
  struct minimal_symbol *msym;
  int i;

  sec = find_pc_section (pc);
  obj = sec->objfile;
  priv = objfile_data (obj, hppa_objfile_priv_data);

  if (!priv)
    priv = hppa_init_objfile_priv_data (obj);
  if (!priv)
    error (_("Internal error creating objfile private data."));

  /* Use the cached value if we have one.  */
  if (priv->dummy_call_sequence_addr != 0)
    {
      *argreg = priv->dummy_call_sequence_reg;
      return priv->dummy_call_sequence_addr;
    }

  /* FIXME: Without stub unwind information, locating a suitable sequence is
     fairly difficult.  For now, we implement a very naive and inefficient
     scheme; try to read in blocks of code, and look for a "bve,n (rp)" 
     instruction.  These are likely to occur at the end of functions, so
     we only look at the last two instructions of each function.  */
  for (i = 0, msym = obj->msymbols; i < obj->minimal_symbol_count; i++, msym++)
    {
      CORE_ADDR begin, end;
      char *name;
      gdb_byte buf[2 * HPPA_INSN_SIZE];
      int offset;

      find_pc_partial_function (SYMBOL_VALUE_ADDRESS (msym), &name,
      				&begin, &end);

      if (name == NULL || begin == 0 || end == 0)
        continue;

      if (target_read_memory (end - sizeof (buf), buf, sizeof (buf)) == 0)
        {
	  for (offset = 0; offset < sizeof (buf); offset++)
	    {
	      unsigned int insn;

	      insn = extract_unsigned_integer (buf + offset,
					       HPPA_INSN_SIZE, byte_order);
	      if (insn == 0xe840d002) /* bve,n (rp) */
	        {
		  addr = (end - sizeof (buf)) + offset;
		  goto found_pattern;
		}
	    }
	}
    }

  /* Can't find a suitable sequence.  */
  return 0;

found_pattern:
  priv->dummy_call_sequence_addr = addr;
  /* Right now we only look for a "bve,l (rp)" sequence, so the register is 
     always HPPA_RP_REGNUM.  */
  priv->dummy_call_sequence_reg = HPPA_RP_REGNUM;

  *argreg = priv->dummy_call_sequence_reg;
  return priv->dummy_call_sequence_addr;
}

static CORE_ADDR
hppa_hpux_find_import_stub_for_addr (CORE_ADDR funcaddr)
{
  struct objfile *objfile;
  struct minimal_symbol *funsym, *stubsym;
  CORE_ADDR stubaddr;

  funsym = lookup_minimal_symbol_by_pc (funcaddr);
  stubaddr = 0;

  ALL_OBJFILES (objfile)
    {
      stubsym = lookup_minimal_symbol_solib_trampoline
	(SYMBOL_LINKAGE_NAME (funsym), objfile);

      if (stubsym)
	{
	  struct unwind_table_entry *u;

	  u = find_unwind_entry (SYMBOL_VALUE (stubsym));
	  if (u == NULL 
	      || (u->stub_unwind.stub_type != IMPORT
		  && u->stub_unwind.stub_type != IMPORT_SHLIB))
	    continue;

          stubaddr = SYMBOL_VALUE (stubsym);

	  /* If we found an IMPORT stub, then we can stop searching;
	     if we found an IMPORT_SHLIB, we want to continue the search
	     in the hopes that we will find an IMPORT stub.  */
	  if (u->stub_unwind.stub_type == IMPORT)
	    break;
	}
    }

  return stubaddr;
}

static int
hppa_hpux_sr_for_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  int sr;
  /* The space register to use is encoded in the top 2 bits of the address.  */
  sr = addr >> (gdbarch_tdep (gdbarch)->bytes_per_address * 8 - 2);
  return sr + 4;
}

static CORE_ADDR
hppa_hpux_find_dummy_bpaddr (CORE_ADDR addr)
{
  /* In order for us to restore the space register to its starting state, 
     we need the dummy trampoline to return to the an instruction address in 
     the same space as where we started the call.  We used to place the 
     breakpoint near the current pc, however, this breaks nested dummy calls 
     as the nested call will hit the breakpoint address and terminate 
     prematurely.  Instead, we try to look for an address in the same space to 
     put the breakpoint.  
     
     This is similar in spirit to putting the breakpoint at the "entry point"
     of an executable.  */

  struct obj_section *sec;
  struct unwind_table_entry *u;
  struct minimal_symbol *msym;
  CORE_ADDR func;
  int i;

  sec = find_pc_section (addr);
  if (sec)
    {
      /* First try the lowest address in the section; we can use it as long
         as it is "regular" code (i.e. not a stub) */
      u = find_unwind_entry (obj_section_addr (sec));
      if (!u || u->stub_unwind.stub_type == 0)
        return obj_section_addr (sec);

      /* Otherwise, we need to find a symbol for a regular function.  We
         do this by walking the list of msymbols in the objfile.  The symbol
	 we find should not be the same as the function that was passed in.  */

      /* FIXME: this is broken, because we can find a function that will be
         called by the dummy call target function, which will still not 
	 work.  */

      find_pc_partial_function (addr, NULL, &func, NULL);
      for (i = 0, msym = sec->objfile->msymbols;
      	   i < sec->objfile->minimal_symbol_count;
	   i++, msym++)
	{
	  u = find_unwind_entry (SYMBOL_VALUE_ADDRESS (msym));
	  if (func != SYMBOL_VALUE_ADDRESS (msym) 
	      && (!u || u->stub_unwind.stub_type == 0))
	    return SYMBOL_VALUE_ADDRESS (msym);
	}
    }

  warning (_("Cannot find suitable address to place dummy breakpoint; nested "
	     "calls may fail."));
  return addr - 4;
}

static CORE_ADDR
hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
			   CORE_ADDR funcaddr,
			   struct value **args, int nargs,
			   struct type *value_type,
			   CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
			   struct regcache *regcache)
{
  CORE_ADDR pc, stubaddr;
  int argreg = 0;

  pc = regcache_read_pc (regcache);

  /* Note: we don't want to pass a function descriptor here; push_dummy_call
     fills in the PIC register for us.  */
  funcaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funcaddr, NULL);

  /* The simple case is where we call a function in the same space that we are
     currently in; in that case we don't really need to do anything.  */
  if (hppa_hpux_sr_for_addr (gdbarch, pc)
      == hppa_hpux_sr_for_addr (gdbarch, funcaddr))
    {
      /* Intraspace call.  */
      *bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
      *real_pc = funcaddr;
      regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, *bp_addr);

      return sp;
    }

  /* In order to make an interspace call, we need to go through a stub.
     gcc supplies an appropriate stub called "__gcc_plt_call", however, if
     an application is compiled with HP compilers then this stub is not
     available.  We used to fallback to "__d_plt_call", however that stub
     is not entirely useful for us because it doesn't do an interspace
     return back to the caller.  Also, on hppa64-hpux, there is no 
     __gcc_plt_call available.  In order to keep the code uniform, we
     instead don't use either of these stubs, but instead write our own
     onto the stack.

     A problem arises since the stack is located in a different space than
     code, so in order to branch to a stack stub, we will need to do an
     interspace branch.  Previous versions of gdb did this by modifying code
     at the current pc and doing single-stepping to set the pcsq.  Since this
     is highly undesirable, we use a different scheme:

     All we really need to do the branch to the stub is a short instruction
     sequence like this:
      
     PA1.1:
      		ldsid (rX),r1
		mtsp r1,sr0
		be,n (sr0,rX)

     PA2.0:
      		bve,n (sr0,rX)

     Instead of writing these sequences ourselves, we can find it in
     the instruction stream that belongs to the current space.  While this
     seems difficult at first, we are actually guaranteed to find the sequences
     in several places:

     For 32-bit code:
     - in export stubs for shared libraries
     - in the "noshlibs" routine in the main module

     For 64-bit code:
     - at the end of each "regular" function

     We cache the address of these sequences in the objfile's private data
     since these operations can potentially be quite expensive.

     So, what we do is:
     - write a stack trampoline
     - look for a suitable instruction sequence in the current space
     - point the sequence at the trampoline
     - set the return address of the trampoline to the current space 
       (see hppa_hpux_find_dummy_call_bpaddr)
     - set the continuing address of the "dummy code" as the sequence.

*/

  if (IS_32BIT_TARGET (gdbarch))
    {
      static unsigned int hppa32_tramp[] = {
        0x0fdf1291, /* stw r31,-8(,sp) */
        0x02c010a1, /* ldsid (,r22),r1 */
        0x00011820, /* mtsp r1,sr0 */
        0xe6c00000, /* be,l 0(sr0,r22),%sr0,%r31 */
        0x081f0242, /* copy r31,rp */
        0x0fd11082, /* ldw -8(,sp),rp */
        0x004010a1, /* ldsid (,rp),r1 */
        0x00011820, /* mtsp r1,sr0 */
        0xe0400000, /* be 0(sr0,rp) */
        0x08000240  /* nop */
      };

      /* for hppa32, we must call the function through a stub so that on
         return it can return to the space of our trampoline.  */
      stubaddr = hppa_hpux_find_import_stub_for_addr (funcaddr);
      if (stubaddr == 0)
        error (_("Cannot call external function not referenced by application "
	       "(no import stub).\n"));
      regcache_cooked_write_unsigned (regcache, 22, stubaddr);

      write_memory (sp, (char *)&hppa32_tramp, sizeof (hppa32_tramp));

      *bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
      regcache_cooked_write_unsigned (regcache, 31, *bp_addr);

      *real_pc = hppa32_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
      if (*real_pc == 0)
        error (_("Cannot make interspace call from here."));

      regcache_cooked_write_unsigned (regcache, argreg, sp);

      sp += sizeof (hppa32_tramp);
    }
  else
    {
      static unsigned int hppa64_tramp[] = {
        0xeac0f000, /* bve,l (r22),%r2 */
        0x0fdf12d1, /* std r31,-8(,sp) */
        0x0fd110c2, /* ldd -8(,sp),rp */
        0xe840d002, /* bve,n (rp) */
        0x08000240  /* nop */
      };

      /* for hppa64, we don't need to call through a stub; all functions
         return via a bve.  */
      regcache_cooked_write_unsigned (regcache, 22, funcaddr);
      write_memory (sp, (char *)&hppa64_tramp, sizeof (hppa64_tramp));

      *bp_addr = pc - 4;
      regcache_cooked_write_unsigned (regcache, 31, *bp_addr);

      *real_pc = hppa64_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
      if (*real_pc == 0)
        error (_("Cannot make interspace call from here."));

      regcache_cooked_write_unsigned (regcache, argreg, sp);

      sp += sizeof (hppa64_tramp);
    }

  sp = gdbarch_frame_align (gdbarch, sp);

  return sp;
}



static void
hppa_hpux_supply_ss_narrow (struct regcache *regcache,
			    int regnum, const char *save_state)
{
  const char *ss_narrow = save_state + HPPA_HPUX_SS_NARROW_OFFSET;
  int i, offset = 0;

  for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
    {
      if (regnum == i || regnum == -1)
	regcache_raw_supply (regcache, i, ss_narrow + offset);

      offset += 4;
    }
}

static void
hppa_hpux_supply_ss_fpblock (struct regcache *regcache,
			     int regnum, const char *save_state)
{
  const char *ss_fpblock = save_state + HPPA_HPUX_SS_FPBLOCK_OFFSET;
  int i, offset = 0;

  /* FIXME: We view the floating-point state as 64 single-precision
     registers for 32-bit code, and 32 double-precision register for
     64-bit code.  This distinction is artificial and should be
     eliminated.  If that ever happens, we should remove the if-clause
     below.  */

  if (register_size (get_regcache_arch (regcache), HPPA_FP0_REGNUM) == 4)
    {
      for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 64; i++)
	{
	  if (regnum == i || regnum == -1)
	    regcache_raw_supply (regcache, i, ss_fpblock + offset);

	  offset += 4;
	}
    }
  else
    {
      for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 32; i++)
	{
	  if (regnum == i || regnum == -1)
	    regcache_raw_supply (regcache, i, ss_fpblock + offset);

	  offset += 8;
	}
    }
}

static void
hppa_hpux_supply_ss_wide (struct regcache *regcache,
			  int regnum, const char *save_state)
{
  const char *ss_wide = save_state + HPPA_HPUX_SS_WIDE_OFFSET;
  int i, offset = 8;

  if (register_size (get_regcache_arch (regcache), HPPA_R1_REGNUM) == 4)
    offset += 4;

  for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
    {
      if (regnum == i || regnum == -1)
	regcache_raw_supply (regcache, i, ss_wide + offset);

      offset += 8;
    }
}

static void
hppa_hpux_supply_save_state (const struct regset *regset,
			     struct regcache *regcache,
			     int regnum, const void *regs, size_t len)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  const char *proc_info = regs;
  const char *save_state = proc_info + 8;
  ULONGEST flags;

  flags = extract_unsigned_integer (save_state + HPPA_HPUX_SS_FLAGS_OFFSET,
				    4, byte_order);
  if (regnum == -1 || regnum == HPPA_FLAGS_REGNUM)
    {
      size_t size = register_size (gdbarch, HPPA_FLAGS_REGNUM);
      char buf[8];

      store_unsigned_integer (buf, size, byte_order, flags);
      regcache_raw_supply (regcache, HPPA_FLAGS_REGNUM, buf);
    }

  /* If the SS_WIDEREGS flag is set, we really do need the full
     `struct save_state'.  */
  if (flags & HPPA_HPUX_SS_WIDEREGS && len < HPPA_HPUX_SAVE_STATE_SIZE)
    error (_("Register set contents too small"));

  if (flags & HPPA_HPUX_SS_WIDEREGS)
    hppa_hpux_supply_ss_wide (regcache, regnum, save_state);
  else
    hppa_hpux_supply_ss_narrow (regcache, regnum, save_state);

  hppa_hpux_supply_ss_fpblock (regcache, regnum, save_state);
}

/* HP-UX register set.  */

static struct regset hppa_hpux_regset =
{
  NULL,
  hppa_hpux_supply_save_state
};

static const struct regset *
hppa_hpux_regset_from_core_section (struct gdbarch *gdbarch,
				    const char *sect_name, size_t sect_size)
{
  if (strcmp (sect_name, ".reg") == 0
      && sect_size >= HPPA_HPUX_PA89_SAVE_STATE_SIZE + 8)
    return &hppa_hpux_regset;

  return NULL;
}


/* Bit in the `ss_flag' member of `struct save_state' that indicates
   the state was saved from a system call.  From
   <machine/save_state.h>.  */
#define HPPA_HPUX_SS_INSYSCALL	0x02

static CORE_ADDR
hppa_hpux_read_pc (struct regcache *regcache)
{
  ULONGEST flags;

  /* If we're currently in a system call return the contents of %r31.  */
  regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags);
  if (flags & HPPA_HPUX_SS_INSYSCALL)
    {
      ULONGEST pc;
      regcache_cooked_read_unsigned (regcache, HPPA_R31_REGNUM, &pc);
      return pc & ~0x3;
    }

  return hppa_read_pc (regcache);
}

static void
hppa_hpux_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
  ULONGEST flags;

  /* If we're currently in a system call also write PC into %r31.  */
  regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags);
  if (flags & HPPA_HPUX_SS_INSYSCALL)
    regcache_cooked_write_unsigned (regcache, HPPA_R31_REGNUM, pc | 0x3);

  hppa_write_pc (regcache, pc);
}

static CORE_ADDR
hppa_hpux_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  ULONGEST flags;

  /* If we're currently in a system call return the contents of %r31.  */
  flags = frame_unwind_register_unsigned (next_frame, HPPA_FLAGS_REGNUM);
  if (flags & HPPA_HPUX_SS_INSYSCALL)
    return frame_unwind_register_unsigned (next_frame, HPPA_R31_REGNUM) & ~0x3;

  return hppa_unwind_pc (gdbarch, next_frame);
}


/* Given the current value of the pc, check to see if it is inside a stub, and
   if so, change the value of the pc to point to the caller of the stub.
   THIS_FRAME is the current frame in the current list of frames.
   BASE contains to stack frame base of the current frame. 
   SAVE_REGS is the register file stored in the frame cache. */
static void
hppa_hpux_unwind_adjust_stub (struct frame_info *this_frame, CORE_ADDR base,
			      struct trad_frame_saved_reg *saved_regs)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  struct value *pcoq_head_val;
  ULONGEST pcoq_head;
  CORE_ADDR stubpc;
  struct unwind_table_entry *u;

  pcoq_head_val = trad_frame_get_prev_register (this_frame, saved_regs, 
				                HPPA_PCOQ_HEAD_REGNUM);
  pcoq_head =
    extract_unsigned_integer (value_contents_all (pcoq_head_val),
			      register_size (gdbarch, HPPA_PCOQ_HEAD_REGNUM),
			      byte_order);

  u = find_unwind_entry (pcoq_head);
  if (u && u->stub_unwind.stub_type == EXPORT)
    {
      stubpc = read_memory_integer (base - 24, word_size, byte_order);
      trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
    }
  else if (hppa_symbol_address ("__gcc_plt_call") 
           == get_pc_function_start (pcoq_head))
    {
      stubpc = read_memory_integer (base - 8, word_size, byte_order);
      trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
    }
}

static void
hppa_hpux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (IS_32BIT_TARGET (gdbarch))
    tdep->in_solib_call_trampoline = hppa32_hpux_in_solib_call_trampoline;
  else
    tdep->in_solib_call_trampoline = hppa64_hpux_in_solib_call_trampoline;

  tdep->unwind_adjust_stub = hppa_hpux_unwind_adjust_stub;

  set_gdbarch_in_solib_return_trampoline
    (gdbarch, hppa_hpux_in_solib_return_trampoline);
  set_gdbarch_skip_trampoline_code (gdbarch, hppa_hpux_skip_trampoline_code);

  set_gdbarch_push_dummy_code (gdbarch, hppa_hpux_push_dummy_code);
  set_gdbarch_call_dummy_location (gdbarch, ON_STACK);

  set_gdbarch_read_pc (gdbarch, hppa_hpux_read_pc);
  set_gdbarch_write_pc (gdbarch, hppa_hpux_write_pc);
  set_gdbarch_unwind_pc (gdbarch, hppa_hpux_unwind_pc);
  set_gdbarch_skip_permanent_breakpoint
    (gdbarch, hppa_skip_permanent_breakpoint);

  set_gdbarch_regset_from_core_section
    (gdbarch, hppa_hpux_regset_from_core_section);

  frame_unwind_append_unwinder (gdbarch, &hppa_hpux_sigtramp_frame_unwind);
}

static void
hppa_hpux_som_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  tdep->is_elf = 0;

  tdep->find_global_pointer = hppa32_hpux_find_global_pointer;

  hppa_hpux_init_abi (info, gdbarch);
  som_solib_select (gdbarch);
}

static void
hppa_hpux_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  tdep->is_elf = 1;
  tdep->find_global_pointer = hppa64_hpux_find_global_pointer;

  hppa_hpux_init_abi (info, gdbarch);
  pa64_solib_select (gdbarch);
}

static enum gdb_osabi
hppa_hpux_core_osabi_sniffer (bfd *abfd)
{
  if (strcmp (bfd_get_target (abfd), "hpux-core") == 0)
    return GDB_OSABI_HPUX_SOM;
  else if (strcmp (bfd_get_target (abfd), "elf64-hppa") == 0)
    {
      asection *section;
      
      section = bfd_get_section_by_name (abfd, ".kernel");
      if (section)
        {
	  bfd_size_type size;
	  char *contents;

	  size = bfd_section_size (abfd, section);
	  contents = alloca (size);
 	  if (bfd_get_section_contents (abfd, section, contents, 
	  				(file_ptr) 0, size)
	      && strcmp (contents, "HP-UX") == 0)
	    return GDB_OSABI_HPUX_ELF;
	}
    }

  return GDB_OSABI_UNKNOWN;
}

void
_initialize_hppa_hpux_tdep (void)
{
  /* BFD doesn't set a flavour for HP-UX style core files.  It doesn't
     set the architecture either.  */
  gdbarch_register_osabi_sniffer (bfd_arch_unknown,
				  bfd_target_unknown_flavour,
				  hppa_hpux_core_osabi_sniffer);
  gdbarch_register_osabi_sniffer (bfd_arch_hppa,
                                  bfd_target_elf_flavour,
				  hppa_hpux_core_osabi_sniffer);

  gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_HPUX_SOM,
                          hppa_hpux_som_init_abi);
  gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_HPUX_ELF,
                          hppa_hpux_elf_init_abi);
}