summaryrefslogtreecommitdiff
path: root/gdb/i386-linux-tdep.c
blob: a8bc52f66f2531bc080469794b569519b6f3f82e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
/* Target-dependent code for Linux running on i386's, for GDB.
   Copyright 2000, 2001 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "gdbcore.h"
#include "frame.h"
#include "value.h"
#include "regcache.h"
#include "inferior.h"

/* For i386_linux_skip_solib_resolver.  */
#include "symtab.h"
#include "symfile.h"
#include "objfiles.h"

#include "solib-svr4.h"		/* For struct link_map_offsets.  */

/* Return the name of register REG.  */

char *
i386_linux_register_name (int reg)
{
  /* Deal with the extra "orig_eax" pseudo register.  */
  if (reg == I386_LINUX_ORIG_EAX_REGNUM)
    return "orig_eax";

  return i386_register_name (reg);
}

int
i386_linux_register_byte (int reg)
{
  /* Deal with the extra "orig_eax" pseudo register.  */
  if (reg == I386_LINUX_ORIG_EAX_REGNUM)
    return (i386_register_byte (I386_LINUX_ORIG_EAX_REGNUM - 1)
	    + i386_register_raw_size (I386_LINUX_ORIG_EAX_REGNUM - 1));

  return i386_register_byte (reg);
}

int
i386_linux_register_raw_size (int reg)
{
  /* Deal with the extra "orig_eax" pseudo register.  */
  if (reg == I386_LINUX_ORIG_EAX_REGNUM)
    return 4;

  return i386_register_raw_size (reg);
}

/* Recognizing signal handler frames.  */

/* Linux has two flavors of signals.  Normal signal handlers, and
   "realtime" (RT) signals.  The RT signals can provide additional
   information to the signal handler if the SA_SIGINFO flag is set
   when establishing a signal handler using `sigaction'.  It is not
   unlikely that future versions of Linux will support SA_SIGINFO for
   normal signals too.  */

/* When the i386 Linux kernel calls a signal handler and the
   SA_RESTORER flag isn't set, the return address points to a bit of
   code on the stack.  This function returns whether the PC appears to
   be within this bit of code.

   The instruction sequence for normal signals is
       pop    %eax
       mov    $0x77,%eax
       int    $0x80
   or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.

   Checking for the code sequence should be somewhat reliable, because
   the effect is to call the system call sigreturn.  This is unlikely
   to occur anywhere other than a signal trampoline.

   It kind of sucks that we have to read memory from the process in
   order to identify a signal trampoline, but there doesn't seem to be
   any other way.  The IN_SIGTRAMP macro in tm-linux.h arranges to
   only call us if no function name could be identified, which should
   be the case since the code is on the stack.

   Detection of signal trampolines for handlers that set the
   SA_RESTORER flag is in general not possible.  Unfortunately this is
   what the GNU C Library has been doing for quite some time now.
   However, as of version 2.1.2, the GNU C Library uses signal
   trampolines (named __restore and __restore_rt) that are identical
   to the ones used by the kernel.  Therefore, these trampolines are
   supported too.  */

#define LINUX_SIGTRAMP_INSN0 (0x58)	/* pop %eax */
#define LINUX_SIGTRAMP_OFFSET0 (0)
#define LINUX_SIGTRAMP_INSN1 (0xb8)	/* mov $NNNN,%eax */
#define LINUX_SIGTRAMP_OFFSET1 (1)
#define LINUX_SIGTRAMP_INSN2 (0xcd)	/* int */
#define LINUX_SIGTRAMP_OFFSET2 (6)

static const unsigned char linux_sigtramp_code[] =
{
  LINUX_SIGTRAMP_INSN0,					/* pop %eax */
  LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00,		/* mov $0x77,%eax */
  LINUX_SIGTRAMP_INSN2, 0x80				/* int $0x80 */
};

#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)

/* If PC is in a sigtramp routine, return the address of the start of
   the routine.  Otherwise, return 0.  */

static CORE_ADDR
i386_linux_sigtramp_start (CORE_ADDR pc)
{
  unsigned char buf[LINUX_SIGTRAMP_LEN];

  /* We only recognize a signal trampoline if PC is at the start of
     one of the three instructions.  We optimize for finding the PC at
     the start, as will be the case when the trampoline is not the
     first frame on the stack.  We assume that in the case where the
     PC is not at the start of the instruction sequence, there will be
     a few trailing readable bytes on the stack.  */

  if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
    return 0;

  if (buf[0] != LINUX_SIGTRAMP_INSN0)
    {
      int adjust;

      switch (buf[0])
	{
	case LINUX_SIGTRAMP_INSN1:
	  adjust = LINUX_SIGTRAMP_OFFSET1;
	  break;
	case LINUX_SIGTRAMP_INSN2:
	  adjust = LINUX_SIGTRAMP_OFFSET2;
	  break;
	default:
	  return 0;
	}

      pc -= adjust;

      if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
	return 0;
    }

  if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
    return 0;

  return pc;
}

/* This function does the same for RT signals.  Here the instruction
   sequence is
       mov    $0xad,%eax
       int    $0x80
   or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.

   The effect is to call the system call rt_sigreturn.  */

#define LINUX_RT_SIGTRAMP_INSN0 (0xb8)	/* mov $NNNN,%eax */
#define LINUX_RT_SIGTRAMP_OFFSET0 (0)
#define LINUX_RT_SIGTRAMP_INSN1 (0xcd)	/* int */
#define LINUX_RT_SIGTRAMP_OFFSET1 (5)

static const unsigned char linux_rt_sigtramp_code[] =
{
  LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00,	/* mov $0xad,%eax */
  LINUX_RT_SIGTRAMP_INSN1, 0x80				/* int $0x80 */
};

#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)

/* If PC is in a RT sigtramp routine, return the address of the start
   of the routine.  Otherwise, return 0.  */

static CORE_ADDR
i386_linux_rt_sigtramp_start (CORE_ADDR pc)
{
  unsigned char buf[LINUX_RT_SIGTRAMP_LEN];

  /* We only recognize a signal trampoline if PC is at the start of
     one of the two instructions.  We optimize for finding the PC at
     the start, as will be the case when the trampoline is not the
     first frame on the stack.  We assume that in the case where the
     PC is not at the start of the instruction sequence, there will be
     a few trailing readable bytes on the stack.  */

  if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
    return 0;

  if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
    {
      if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
	return 0;

      pc -= LINUX_RT_SIGTRAMP_OFFSET1;

      if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
	return 0;
    }

  if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
    return 0;

  return pc;
}

/* Return whether PC is in a Linux sigtramp routine.  */

int
i386_linux_in_sigtramp (CORE_ADDR pc, char *name)
{
  if (name)
    return STREQ ("__restore", name) || STREQ ("__restore_rt", name);
  
  return (i386_linux_sigtramp_start (pc) != 0
	  || i386_linux_rt_sigtramp_start (pc) != 0);
}

/* Assuming FRAME is for a Linux sigtramp routine, return the address
   of the associated sigcontext structure.  */

CORE_ADDR
i386_linux_sigcontext_addr (struct frame_info *frame)
{
  CORE_ADDR pc;

  pc = i386_linux_sigtramp_start (frame->pc);
  if (pc)
    {
      CORE_ADDR sp;

      if (frame->next)
	/* If this isn't the top frame, the next frame must be for the
	   signal handler itself.  The sigcontext structure lives on
	   the stack, right after the signum argument.  */
	return frame->next->frame + 12;

      /* This is the top frame.  We'll have to find the address of the
	 sigcontext structure by looking at the stack pointer.  Keep
	 in mind that the first instruction of the sigtramp code is
	 "pop %eax".  If the PC is at this instruction, adjust the
	 returned value accordingly.  */
      sp = read_register (SP_REGNUM);
      if (pc == frame->pc)
	return sp + 4;
      return sp;
    }

  pc = i386_linux_rt_sigtramp_start (frame->pc);
  if (pc)
    {
      if (frame->next)
	/* If this isn't the top frame, the next frame must be for the
	   signal handler itself.  The sigcontext structure is part of
	   the user context.  A pointer to the user context is passed
	   as the third argument to the signal handler.  */
	return read_memory_integer (frame->next->frame + 16, 4) + 20;

      /* This is the top frame.  Again, use the stack pointer to find
	 the address of the sigcontext structure.  */
      return read_memory_integer (read_register (SP_REGNUM) + 8, 4) + 20;
    }

  error ("Couldn't recognize signal trampoline.");
  return 0;
}

/* Offset to saved PC in sigcontext, from <asm/sigcontext.h>.  */
#define LINUX_SIGCONTEXT_PC_OFFSET (56)

/* Assuming FRAME is for a Linux sigtramp routine, return the saved
   program counter.  */

static CORE_ADDR
i386_linux_sigtramp_saved_pc (struct frame_info *frame)
{
  CORE_ADDR addr;
  addr = i386_linux_sigcontext_addr (frame);
  return read_memory_integer (addr + LINUX_SIGCONTEXT_PC_OFFSET, 4);
}

/* Offset to saved SP in sigcontext, from <asm/sigcontext.h>.  */
#define LINUX_SIGCONTEXT_SP_OFFSET (28)

/* Assuming FRAME is for a Linux sigtramp routine, return the saved
   stack pointer.  */

static CORE_ADDR
i386_linux_sigtramp_saved_sp (struct frame_info *frame)
{
  CORE_ADDR addr;
  addr = i386_linux_sigcontext_addr (frame);
  return read_memory_integer (addr + LINUX_SIGCONTEXT_SP_OFFSET, 4);
}

/* Signal trampolines don't have a meaningful frame.  As in
   "i386/tm-i386.h", the frame pointer value we use is actually the
   frame pointer of the calling frame -- that is, the frame which was
   in progress when the signal trampoline was entered.  GDB mostly
   treats this frame pointer value as a magic cookie.  We detect the
   case of a signal trampoline by looking at the SIGNAL_HANDLER_CALLER
   field, which is set based on IN_SIGTRAMP.

   When a signal trampoline is invoked from a frameless function, we
   essentially have two frameless functions in a row.  In this case,
   we use the same magic cookie for three frames in a row.  We detect
   this case by seeing whether the next frame has
   SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
   current frame is actually frameless.  In this case, we need to get
   the PC by looking at the SP register value stored in the signal
   context.

   This should work in most cases except in horrible situations where
   a signal occurs just as we enter a function but before the frame
   has been set up.  */

#define FRAMELESS_SIGNAL(frame)					\
  ((frame)->next != NULL					\
   && (frame)->next->signal_handler_caller			\
   && frameless_look_for_prologue (frame))

CORE_ADDR
i386_linux_frame_chain (struct frame_info *frame)
{
  if (frame->signal_handler_caller || FRAMELESS_SIGNAL (frame))
    return frame->frame;

  if (! inside_entry_file (frame->pc))
    return read_memory_unsigned_integer (frame->frame, 4);

  return 0;
}

/* Return the saved program counter for FRAME.  */

CORE_ADDR
i386_linux_frame_saved_pc (struct frame_info *frame)
{
  if (frame->signal_handler_caller)
    return i386_linux_sigtramp_saved_pc (frame);

  if (FRAMELESS_SIGNAL (frame))
    {
      CORE_ADDR sp = i386_linux_sigtramp_saved_sp (frame->next);
      return read_memory_unsigned_integer (sp, 4);
    }

  return read_memory_unsigned_integer (frame->frame + 4, 4);
}

/* Immediately after a function call, return the saved pc.  */

CORE_ADDR
i386_linux_saved_pc_after_call (struct frame_info *frame)
{
  if (frame->signal_handler_caller)
    return i386_linux_sigtramp_saved_pc (frame);

  return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
}

/* Set the program counter for process PTID to PC.  */

void
i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
{
  write_register_pid (PC_REGNUM, pc, ptid);

  /* We must be careful with modifying the program counter.  If we
     just interrupted a system call, the kernel might try to restart
     it when we resume the inferior.  On restarting the system call,
     the kernel will try backing up the program counter even though it
     no longer points at the system call.  This typically results in a
     SIGSEGV or SIGILL.  We can prevent this by writing `-1' in the
     "orig_eax" pseudo-register.

     Note that "orig_eax" is saved when setting up a dummy call frame.
     This means that it is properly restored when that frame is
     popped, and that the interrupted system call will be restarted
     when we resume the inferior on return from a function call from
     within GDB.  In all other cases the system call will not be
     restarted.  */
  write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid);
}

/* Calling functions in shared libraries.  */

/* Find the minimal symbol named NAME, and return both the minsym
   struct and its objfile.  This probably ought to be in minsym.c, but
   everything there is trying to deal with things like C++ and
   SOFUN_ADDRESS_MAYBE_TURQUOISE, ...  Since this is so simple, it may
   be considered too special-purpose for general consumption.  */

static struct minimal_symbol *
find_minsym_and_objfile (char *name, struct objfile **objfile_p)
{
  struct objfile *objfile;

  ALL_OBJFILES (objfile)
    {
      struct minimal_symbol *msym;

      ALL_OBJFILE_MSYMBOLS (objfile, msym)
	{
	  if (SYMBOL_NAME (msym)
	      && STREQ (SYMBOL_NAME (msym), name))
	    {
	      *objfile_p = objfile;
	      return msym;
	    }
	}
    }

  return 0;
}

static CORE_ADDR
skip_hurd_resolver (CORE_ADDR pc)
{
  /* The HURD dynamic linker is part of the GNU C library, so many
     GNU/Linux distributions use it.  (All ELF versions, as far as I
     know.)  An unresolved PLT entry points to "_dl_runtime_resolve",
     which calls "fixup" to patch the PLT, and then passes control to
     the function.

     We look for the symbol `_dl_runtime_resolve', and find `fixup' in
     the same objfile.  If we are at the entry point of `fixup', then
     we set a breakpoint at the return address (at the top of the
     stack), and continue.
  
     It's kind of gross to do all these checks every time we're
     called, since they don't change once the executable has gotten
     started.  But this is only a temporary hack --- upcoming versions
     of Linux will provide a portable, efficient interface for
     debugging programs that use shared libraries.  */

  struct objfile *objfile;
  struct minimal_symbol *resolver 
    = find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);

  if (resolver)
    {
      struct minimal_symbol *fixup
	= lookup_minimal_symbol ("fixup", NULL, objfile);

      if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
	return (SAVED_PC_AFTER_CALL (get_current_frame ()));
    }

  return 0;
}      

/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
   This function:
   1) decides whether a PLT has sent us into the linker to resolve
      a function reference, and 
   2) if so, tells us where to set a temporary breakpoint that will
      trigger when the dynamic linker is done.  */

CORE_ADDR
i386_linux_skip_solib_resolver (CORE_ADDR pc)
{
  CORE_ADDR result;

  /* Plug in functions for other kinds of resolvers here.  */
  result = skip_hurd_resolver (pc);
  if (result)
    return result;

  return 0;
}

/* Fetch (and possibly build) an appropriate link_map_offsets
   structure for native Linux/x86 targets using the struct offsets
   defined in link.h (but without actual reference to that file).

   This makes it possible to access Linux/x86 shared libraries from a
   GDB that was not built on an Linux/x86 host (for cross debugging).  */

struct link_map_offsets *
i386_linux_svr4_fetch_link_map_offsets (void)
{
  static struct link_map_offsets lmo;
  static struct link_map_offsets *lmp = NULL;

  if (lmp == NULL)
    {
      lmp = &lmo;

      lmo.r_debug_size = 8;	/* The actual size is 20 bytes, but
				   this is all we need.  */
      lmo.r_map_offset = 4;
      lmo.r_map_size   = 4;

      lmo.link_map_size = 20;	/* The actual size is 552 bytes, but
				   this is all we need.  */
      lmo.l_addr_offset = 0;
      lmo.l_addr_size   = 4;

      lmo.l_name_offset = 4;
      lmo.l_name_size   = 4;

      lmo.l_next_offset = 12;
      lmo.l_next_size   = 4;

      lmo.l_prev_offset = 16;
      lmo.l_prev_size   = 4;
    }

  return lmp;
}