summaryrefslogtreecommitdiff
path: root/gdb/m68k-tdep.c
blob: bd5f9f1a4ab89d5d099adc7a7ba0956019d17c0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
/* Target-dependent code for the Motorola 68000 series.

   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000,
   2001, 2002, 2003, 2004 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "dwarf2-frame.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "symtab.h"
#include "gdbcore.h"
#include "value.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "inferior.h"
#include "regcache.h"
#include "arch-utils.h"
#include "osabi.h"
#include "dis-asm.h"

#include "m68k-tdep.h"


#define P_LINKL_FP	0x480e
#define P_LINKW_FP	0x4e56
#define P_PEA_FP	0x4856
#define P_MOVEAL_SP_FP	0x2c4f
#define P_ADDAW_SP	0xdefc
#define P_ADDAL_SP	0xdffc
#define P_SUBQW_SP	0x514f
#define P_SUBQL_SP	0x518f
#define P_LEA_SP_SP	0x4fef
#define P_LEA_PC_A5	0x4bfb0170
#define P_FMOVEMX_SP	0xf227
#define P_MOVEL_SP	0x2f00
#define P_MOVEML_SP	0x48e7


#define REGISTER_BYTES_FP (16*4 + 8 + 8*12 + 3*4)
#define REGISTER_BYTES_NOFP (16*4 + 8)

/* Offset from SP to first arg on stack at first instruction of a function */
#define SP_ARG0 (1 * 4)

#if !defined (BPT_VECTOR)
#define BPT_VECTOR 0xf
#endif

static const unsigned char *
m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  static unsigned char break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
  *lenptr = sizeof (break_insn);
  return break_insn;
}


static int
m68k_register_bytes_ok (long numbytes)
{
  return ((numbytes == REGISTER_BYTES_FP)
	  || (numbytes == REGISTER_BYTES_NOFP));
}

/* Return the GDB type object for the "standard" data type of data in
   register N.  This should be int for D0-D7, SR, FPCONTROL and
   FPSTATUS, long double for FP0-FP7, and void pointer for all others
   (A0-A7, PC, FPIADDR).  Note, for registers which contain
   addresses return pointer to void, not pointer to char, because we
   don't want to attempt to print the string after printing the
   address.  */

static struct type *
m68k_register_type (struct gdbarch *gdbarch, int regnum)
{
  if (regnum >= FP0_REGNUM && regnum <= FP0_REGNUM + 7)
    return builtin_type_m68881_ext;

  if (regnum == M68K_FPI_REGNUM || regnum == PC_REGNUM)
    return builtin_type_void_func_ptr;

  if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM
      || regnum == PS_REGNUM)
    return builtin_type_int32;

  if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
    return builtin_type_void_data_ptr;

  return builtin_type_int32;
}

/* Function: m68k_register_name
   Returns the name of the standard m68k register regnum. */

static const char *
m68k_register_name (int regnum)
{
  static char *register_names[] = {
    "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
    "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
    "ps", "pc",
    "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
    "fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags"
  };

  if (regnum < 0 ||
      regnum >= sizeof (register_names) / sizeof (register_names[0]))
    internal_error (__FILE__, __LINE__,
		    "m68k_register_name: illegal register number %d", regnum);
  else
    return register_names[regnum];
}

/* Extract from an array REGBUF containing the (raw) register state, a
   function return value of TYPE, and copy that, in virtual format,
   into VALBUF.  */

static void
m68k_extract_return_value (struct type *type, struct regcache *regcache,
			   void *valbuf)
{
  int len = TYPE_LENGTH (type);
  char buf[M68K_MAX_REGISTER_SIZE];

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      && TYPE_NFIELDS (type) == 1)
    {
      m68k_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
      return;
    }

  if (len <= 4)
    {
      regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
      memcpy (valbuf, buf + (4 - len), len);
    }
  else if (len <= 8)
    {
      regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
      memcpy (valbuf, buf + (8 - len), len - 4);
      regcache_raw_read (regcache, M68K_D1_REGNUM,
			 (char *) valbuf + (len - 4));
    }
  else
    internal_error (__FILE__, __LINE__,
		    "Cannot extract return value of %d bytes long.", len);
}

/* Write into the appropriate registers a function return value stored
   in VALBUF of type TYPE, given in virtual format.  */

static void
m68k_store_return_value (struct type *type, struct regcache *regcache,
			 const void *valbuf)
{
  int len = TYPE_LENGTH (type);

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      && TYPE_NFIELDS (type) == 1)
    {
      m68k_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
      return;
    }

  if (len <= 4)
    regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
  else if (len <= 8)
    {
      regcache_raw_write_part (regcache, M68K_D1_REGNUM, 8 - len,
			       len - 4, valbuf);
      regcache_raw_write (regcache, M68K_D0_REGNUM,
			  (char *) valbuf + (len - 4));
    }
  else
    internal_error (__FILE__, __LINE__,
		    "Cannot store return value of %d bytes long.", len);
}

/* Extract from REGCACHE, which contains the (raw) register state, the
   address in which a function should return its structure value, as a
   CORE_ADDR.  */

static CORE_ADDR
m68k_extract_struct_value_address (struct regcache *regcache)
{
  char buf[4];

  regcache_cooked_read (regcache, M68K_D0_REGNUM, buf);
  return extract_unsigned_integer (buf, 4);
}

static int
m68k_use_struct_convention (int gcc_p, struct type *type)
{
  enum struct_return struct_return;

  struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
  return generic_use_struct_convention (struct_return == reg_struct_return,
					type);
}

/* A function that tells us whether the function invocation represented
   by fi does not have a frame on the stack associated with it.  If it
   does not, FRAMELESS is set to 1, else 0.  */

static int
m68k_frameless_function_invocation (struct frame_info *fi)
{
  if (get_frame_type (fi) == SIGTRAMP_FRAME)
    return 0;
  else
    return legacy_frameless_look_for_prologue (fi);
}

int
delta68_in_sigtramp (CORE_ADDR pc, char *name)
{
  if (name != NULL)
    return strcmp (name, "_sigcode") == 0;
  else
    return 0;
}

CORE_ADDR
delta68_frame_args_address (struct frame_info *frame_info)
{
  /* we assume here that the only frameless functions are the system calls
     or other functions who do not put anything on the stack. */
  if (get_frame_type (frame_info) == SIGTRAMP_FRAME)
    return get_frame_base (frame_info) + 12;
  else if (legacy_frameless_look_for_prologue (frame_info))
    {
      /* Check for an interrupted system call */
      if (get_next_frame (frame_info) && (get_frame_type (get_next_frame (frame_info)) == SIGTRAMP_FRAME))
	return get_frame_base (get_next_frame (frame_info)) + 16;
      else
	return get_frame_base (frame_info) + 4;
    }
  else
    return get_frame_base (frame_info);
}

CORE_ADDR
delta68_frame_saved_pc (struct frame_info *frame_info)
{
  return read_memory_unsigned_integer (delta68_frame_args_address (frame_info)
				       + 4, 4);
}

int
delta68_frame_num_args (struct frame_info *fi)
{
  int val;
  CORE_ADDR pc = DEPRECATED_FRAME_SAVED_PC (fi);
  int insn = read_memory_unsigned_integer (pc, 2);
  val = 0;
  if (insn == 0047757 || insn == 0157374)	/* lea W(sp),sp or addaw #W,sp */
    val = read_memory_integer (pc + 2, 2);
  else if ((insn & 0170777) == 0050217	/* addql #N, sp */
	   || (insn & 0170777) == 0050117)	/* addqw */
    {
      val = (insn >> 9) & 7;
      if (val == 0)
	val = 8;
    }
  else if (insn == 0157774)	/* addal #WW, sp */
    val = read_memory_integer (pc + 2, 4);
  val >>= 2;
  return val;
}

static CORE_ADDR
m68k_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
		      struct value **args, CORE_ADDR sp, int struct_return,
		      CORE_ADDR struct_addr)
{
  char buf[4];
  int i;

  /* Push arguments in reverse order.  */
  for (i = nargs - 1; i >= 0; i--)
    {
      struct type *value_type = VALUE_ENCLOSING_TYPE (args[i]);
      int len = TYPE_LENGTH (value_type);
      int container_len = (len + 3) & ~3;
      int offset;

      /* Non-scalars bigger than 4 bytes are left aligned, others are
	 right aligned.  */
      if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
	   || TYPE_CODE (value_type) == TYPE_CODE_UNION
	   || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
	  && len > 4)
	offset = 0;
      else
	offset = container_len - len;
      sp -= container_len;
      write_memory (sp + offset, VALUE_CONTENTS_ALL (args[i]), len);
    }

  /* Store struct value address.  */
  if (struct_return)
    {
      store_unsigned_integer (buf, 4, struct_addr);
      regcache_cooked_write (regcache, M68K_A1_REGNUM, buf);
    }

  /* Store return address.  */
  sp -= 4;
  store_unsigned_integer (buf, 4, bp_addr);
  write_memory (sp, buf, 4);

  /* Finally, update the stack pointer...  */
  store_unsigned_integer (buf, 4, sp);
  regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);

  /* ...and fake a frame pointer.  */
  regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);

  /* DWARF2/GCC uses the stack address *before* the function call as a
     frame's CFA.  */
  return sp + 8;
}

struct m68k_frame_cache
{
  /* Base address.  */
  CORE_ADDR base;
  CORE_ADDR sp_offset;
  CORE_ADDR pc;

  /* Saved registers.  */
  CORE_ADDR saved_regs[M68K_NUM_REGS];
  CORE_ADDR saved_sp;

  /* Stack space reserved for local variables.  */
  long locals;
};

/* Allocate and initialize a frame cache.  */

static struct m68k_frame_cache *
m68k_alloc_frame_cache (void)
{
  struct m68k_frame_cache *cache;
  int i;

  cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);

  /* Base address.  */
  cache->base = 0;
  cache->sp_offset = -4;
  cache->pc = 0;

  /* Saved registers.  We initialize these to -1 since zero is a valid
     offset (that's where %fp is supposed to be stored).  */
  for (i = 0; i < M68K_NUM_REGS; i++)
    cache->saved_regs[i] = -1;

  /* Frameless until proven otherwise.  */
  cache->locals = -1;

  return cache;
}

/* Check whether PC points at a code that sets up a new stack frame.
   If so, it updates CACHE and returns the address of the first
   instruction after the sequence that sets removes the "hidden"
   argument from the stack or CURRENT_PC, whichever is smaller.
   Otherwise, return PC.  */

static CORE_ADDR
m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
			  struct m68k_frame_cache *cache)
{
  int op;

  if (pc >= current_pc)
    return current_pc;

  op = read_memory_unsigned_integer (pc, 2);

  if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
    {
      cache->saved_regs[M68K_FP_REGNUM] = 0;
      cache->sp_offset += 4;
      if (op == P_LINKW_FP)
	{
	  /* link.w %fp, #-N */
	  /* link.w %fp, #0; adda.l #-N, %sp */
	  cache->locals = -read_memory_integer (pc + 2, 2);

	  if (pc + 4 < current_pc && cache->locals == 0)
	    {
	      op = read_memory_unsigned_integer (pc + 4, 2);
	      if (op == P_ADDAL_SP)
		{
		  cache->locals = read_memory_integer (pc + 6, 4);
		  return pc + 10;
		}
	    }

	  return pc + 4;
	}
      else if (op == P_LINKL_FP)
	{
	  /* link.l %fp, #-N */
	  cache->locals = -read_memory_integer (pc + 2, 4);
	  return pc + 6;
	}
      else
	{
	  /* pea (%fp); movea.l %sp, %fp */
	  cache->locals = 0;

	  if (pc + 2 < current_pc)
	    {
	      op = read_memory_unsigned_integer (pc + 2, 2);

	      if (op == P_MOVEAL_SP_FP)
		{
		  /* move.l %sp, %fp */
		  return pc + 4;
		}
	    }

	  return pc + 2;
	}
    }
  else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
    {
      /* subq.[wl] #N,%sp */
      /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
      cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
      if (pc + 2 < current_pc)
	{
	  op = read_memory_unsigned_integer (pc + 2, 2);
	  if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
	    {
	      cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
	      return pc + 4;
	    }
	}
      return pc + 2;
    }
  else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
    {
      /* adda.w #-N,%sp */
      /* lea (-N,%sp),%sp */
      cache->locals = -read_memory_integer (pc + 2, 2);
      return pc + 4;
    }
  else if (op == P_ADDAL_SP)
    {
      /* adda.l #-N,%sp */
      cache->locals = -read_memory_integer (pc + 2, 4);
      return pc + 6;
    }

  return pc;
}

/* Check whether PC points at code that saves registers on the stack.
   If so, it updates CACHE and returns the address of the first
   instruction after the register saves or CURRENT_PC, whichever is
   smaller.  Otherwise, return PC.  */

static CORE_ADDR
m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
			     struct m68k_frame_cache *cache)
{
  if (cache->locals >= 0)
    {
      CORE_ADDR offset;
      int op;
      int i, mask, regno;

      offset = -4 - cache->locals;
      while (pc < current_pc)
	{
	  op = read_memory_unsigned_integer (pc, 2);
	  if (op == P_FMOVEMX_SP)
	    {
	      /* fmovem.x REGS,-(%sp) */
	      op = read_memory_unsigned_integer (pc + 2, 2);
	      if ((op & 0xff00) == 0xe000)
		{
		  mask = op & 0xff;
		  for (i = 0; i < 16; i++, mask >>= 1)
		    {
		      if (mask & 1)
			{
			  cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
			  offset -= 12;
			}
		    }
		  pc += 4;
		}
	      else
		break;
	    }
	  else if ((op & 0170677) == P_MOVEL_SP)
	    {
	      /* move.l %R,-(%sp) */
	      regno = ((op & 07000) >> 9) | ((op & 0100) >> 3);
	      cache->saved_regs[regno] = offset;
	      offset -= 4;
	      pc += 2;
	    }
	  else if (op == P_MOVEML_SP)
	    {
	      /* movem.l REGS,-(%sp) */
	      mask = read_memory_unsigned_integer (pc + 2, 2);
	      for (i = 0; i < 16; i++, mask >>= 1)
		{
		  if (mask & 1)
		    {
		      cache->saved_regs[15 - i] = offset;
		      offset -= 4;
		    }
		}
	      pc += 4;
	    }
	  else
	    break;
	}
    }

  return pc;
}


/* Do a full analysis of the prologue at PC and update CACHE
   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
   address where the analysis stopped.

   We handle all cases that can be generated by gcc.

   For allocating a stack frame:

   link.w %a6,#-N
   link.l %a6,#-N
   pea (%fp); move.l %sp,%fp
   link.w %a6,#0; add.l #-N,%sp
   subq.l #N,%sp
   subq.w #N,%sp
   subq.w #8,%sp; subq.w #N-8,%sp
   add.w #-N,%sp
   lea (-N,%sp),%sp
   add.l #-N,%sp

   For saving registers:

   fmovem.x REGS,-(%sp)
   move.l R1,-(%sp)
   move.l R1,-(%sp); move.l R2,-(%sp)
   movem.l REGS,-(%sp)

   For setting up the PIC register:

   lea (%pc,N),%a5

   */

static CORE_ADDR
m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
		       struct m68k_frame_cache *cache)
{
  unsigned int op;

  pc = m68k_analyze_frame_setup (pc, current_pc, cache);
  pc = m68k_analyze_register_saves (pc, current_pc, cache);
  if (pc >= current_pc)
    return current_pc;

  /* Check for GOT setup.  */
  op = read_memory_unsigned_integer (pc, 4);
  if (op == P_LEA_PC_A5)
    {
      /* lea (%pc,N),%a5 */
      return pc + 6;
    }

  return pc;
}

/* Return PC of first real instruction.  */

static CORE_ADDR
m68k_skip_prologue (CORE_ADDR start_pc)
{
  struct m68k_frame_cache cache;
  CORE_ADDR pc;
  int op;

  cache.locals = -1;
  pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
  if (cache.locals < 0)
    return start_pc;
  return pc;
}

static CORE_ADDR
m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  char buf[8];

  frame_unwind_register (next_frame, PC_REGNUM, buf);
  return extract_typed_address (buf, builtin_type_void_func_ptr);
}

/* Normal frames.  */

static struct m68k_frame_cache *
m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
{
  struct m68k_frame_cache *cache;
  char buf[4];
  int i;

  if (*this_cache)
    return *this_cache;

  cache = m68k_alloc_frame_cache ();
  *this_cache = cache;

  /* In principle, for normal frames, %fp holds the frame pointer,
     which holds the base address for the current stack frame.
     However, for functions that don't need it, the frame pointer is
     optional.  For these "frameless" functions the frame pointer is
     actually the frame pointer of the calling frame.  Signal
     trampolines are just a special case of a "frameless" function.
     They (usually) share their frame pointer with the frame that was
     in progress when the signal occurred.  */

  frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
  cache->base = extract_unsigned_integer (buf, 4);
  if (cache->base == 0)
    return cache;

  /* For normal frames, %pc is stored at 4(%fp).  */
  cache->saved_regs[M68K_PC_REGNUM] = 4;

  cache->pc = frame_func_unwind (next_frame);
  if (cache->pc != 0)
    m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);

  if (cache->locals < 0)
    {
      /* We didn't find a valid frame, which means that CACHE->base
	 currently holds the frame pointer for our calling frame.  If
	 we're at the start of a function, or somewhere half-way its
	 prologue, the function's frame probably hasn't been fully
	 setup yet.  Try to reconstruct the base address for the stack
	 frame by looking at the stack pointer.  For truly "frameless"
	 functions this might work too.  */

      frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
      cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
    }

  /* Now that we have the base address for the stack frame we can
     calculate the value of %sp in the calling frame.  */
  cache->saved_sp = cache->base + 8;

  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
  for (i = 0; i < M68K_NUM_REGS; i++)
    if (cache->saved_regs[i] != -1)
      cache->saved_regs[i] += cache->base;

  return cache;
}

static void
m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
		    struct frame_id *this_id)
{
  struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->base == 0)
    return;

  /* See the end of m68k_push_dummy_call.  */
  *this_id = frame_id_build (cache->base + 8, cache->pc);
}

static void
m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
			  int regnum, int *optimizedp,
			  enum lval_type *lvalp, CORE_ADDR *addrp,
			  int *realnump, void *valuep)
{
  struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);

  gdb_assert (regnum >= 0);

  if (regnum == M68K_SP_REGNUM && cache->saved_sp)
    {
      *optimizedp = 0;
      *lvalp = not_lval;
      *addrp = 0;
      *realnump = -1;
      if (valuep)
	{
	  /* Store the value.  */
	  store_unsigned_integer (valuep, 4, cache->saved_sp);
	}
      return;
    }

  if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
    {
      *optimizedp = 0;
      *lvalp = lval_memory;
      *addrp = cache->saved_regs[regnum];
      *realnump = -1;
      if (valuep)
	{
	  /* Read the value in from memory.  */
	  read_memory (*addrp, valuep,
		       register_size (current_gdbarch, regnum));
	}
      return;
    }

  frame_register_unwind (next_frame, regnum,
			 optimizedp, lvalp, addrp, realnump, valuep);
}

static const struct frame_unwind m68k_frame_unwind =
{
  NORMAL_FRAME,
  m68k_frame_this_id,
  m68k_frame_prev_register
};

static const struct frame_unwind *
m68k_frame_sniffer (struct frame_info *next_frame)
{
  return &m68k_frame_unwind;
}

/* Signal trampolines.  */

static struct m68k_frame_cache *
m68k_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
{
  struct m68k_frame_cache *cache;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  struct m68k_sigtramp_info info;
  char buf[4];
  int i;

  if (*this_cache)
    return *this_cache;

  cache = m68k_alloc_frame_cache ();

  frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
  cache->base = extract_unsigned_integer (buf, 4) - 4;

  info = tdep->get_sigtramp_info (next_frame);

  for (i = 0; i < M68K_NUM_REGS; i++)
    if (info.sc_reg_offset[i] != -1)
      cache->saved_regs[i] = info.sigcontext_addr + info.sc_reg_offset[i];

  *this_cache = cache;
  return cache;
}

static void
m68k_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
			     struct frame_id *this_id)
{
  struct m68k_frame_cache *cache =
    m68k_sigtramp_frame_cache (next_frame, this_cache);

  /* See the end of m68k_push_dummy_call.  */
  *this_id = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
}

static void
m68k_sigtramp_frame_prev_register (struct frame_info *next_frame,
				   void **this_cache,
				   int regnum, int *optimizedp,
				   enum lval_type *lvalp, CORE_ADDR *addrp,
				   int *realnump, void *valuep)
{
  /* Make sure we've initialized the cache.  */
  m68k_sigtramp_frame_cache (next_frame, this_cache);

  m68k_frame_prev_register (next_frame, this_cache, regnum,
			    optimizedp, lvalp, addrp, realnump, valuep);
}

static const struct frame_unwind m68k_sigtramp_frame_unwind =
{
  SIGTRAMP_FRAME,
  m68k_sigtramp_frame_this_id,
  m68k_sigtramp_frame_prev_register
};

static const struct frame_unwind *
m68k_sigtramp_frame_sniffer (struct frame_info *next_frame)
{
  CORE_ADDR pc = frame_pc_unwind (next_frame);
  char *name;

  /* We shouldn't even bother to try if the OSABI didn't register
     a get_sigtramp_info handler.  */
  if (!gdbarch_tdep (current_gdbarch)->get_sigtramp_info)
    return NULL;

  find_pc_partial_function (pc, &name, NULL, NULL);
  if (DEPRECATED_PC_IN_SIGTRAMP (pc, name))
    return &m68k_sigtramp_frame_unwind;

  return NULL;
}

static CORE_ADDR
m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
  struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);

  return cache->base;
}

static const struct frame_base m68k_frame_base =
{
  &m68k_frame_unwind,
  m68k_frame_base_address,
  m68k_frame_base_address,
  m68k_frame_base_address
};

static struct frame_id
m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  char buf[4];
  CORE_ADDR fp;

  frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
  fp = extract_unsigned_integer (buf, 4);

  /* See the end of m68k_push_dummy_call.  */
  return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
}

#ifdef USE_PROC_FS		/* Target dependent support for /proc */

#include <sys/procfs.h>

/* Prototypes for supply_gregset etc. */
#include "gregset.h"

/*  The /proc interface divides the target machine's register set up into
   two different sets, the general register set (gregset) and the floating
   point register set (fpregset).  For each set, there is an ioctl to get
   the current register set and another ioctl to set the current values.

   The actual structure passed through the ioctl interface is, of course,
   naturally machine dependent, and is different for each set of registers.
   For the m68k for example, the general register set is typically defined
   by:

   typedef int gregset_t[18];

   #define      R_D0    0
   ...
   #define      R_PS    17

   and the floating point set by:

   typedef      struct fpregset {
   int  f_pcr;
   int  f_psr;
   int  f_fpiaddr;
   int  f_fpregs[8][3];         (8 regs, 96 bits each)
   } fpregset_t;

   These routines provide the packing and unpacking of gregset_t and
   fpregset_t formatted data.

 */

/* Atari SVR4 has R_SR but not R_PS */

#if !defined (R_PS) && defined (R_SR)
#define R_PS R_SR
#endif

/*  Given a pointer to a general register set in /proc format (gregset_t *),
   unpack the register contents and supply them as gdb's idea of the current
   register values. */

void
supply_gregset (gregset_t *gregsetp)
{
  int regi;
  greg_t *regp = (greg_t *) gregsetp;

  for (regi = 0; regi < R_PC; regi++)
    {
      supply_register (regi, (char *) (regp + regi));
    }
  supply_register (PS_REGNUM, (char *) (regp + R_PS));
  supply_register (PC_REGNUM, (char *) (regp + R_PC));
}

void
fill_gregset (gregset_t *gregsetp, int regno)
{
  int regi;
  greg_t *regp = (greg_t *) gregsetp;

  for (regi = 0; regi < R_PC; regi++)
    {
      if (regno == -1 || regno == regi)
	regcache_collect (regi, regp + regi);
    }
  if (regno == -1 || regno == PS_REGNUM)
    regcache_collect (PS_REGNUM, regp + R_PS);
  if (regno == -1 || regno == PC_REGNUM)
    regcache_collect (PC_REGNUM, regp + R_PC);
}

#if defined (FP0_REGNUM)

/*  Given a pointer to a floating point register set in /proc format
   (fpregset_t *), unpack the register contents and supply them as gdb's
   idea of the current floating point register values. */

void
supply_fpregset (fpregset_t *fpregsetp)
{
  int regi;
  char *from;

  for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
    {
      from = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
      supply_register (regi, from);
    }
  supply_register (M68K_FPC_REGNUM, (char *) &(fpregsetp->f_pcr));
  supply_register (M68K_FPS_REGNUM, (char *) &(fpregsetp->f_psr));
  supply_register (M68K_FPI_REGNUM, (char *) &(fpregsetp->f_fpiaddr));
}

/*  Given a pointer to a floating point register set in /proc format
   (fpregset_t *), update the register specified by REGNO from gdb's idea
   of the current floating point register set.  If REGNO is -1, update
   them all. */

void
fill_fpregset (fpregset_t *fpregsetp, int regno)
{
  int regi;

  for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
    {
      if (regno == -1 || regno == regi)
	regcache_collect (regi, &fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
    }
  if (regno == -1 || regno == M68K_FPC_REGNUM)
    regcache_collect (M68K_FPC_REGNUM, &fpregsetp->f_pcr);
  if (regno == -1 || regno == M68K_FPS_REGNUM)
    regcache_collect (M68K_FPS_REGNUM, &fpregsetp->f_psr);
  if (regno == -1 || regno == M68K_FPI_REGNUM)
    regcache_collect (M68K_FPI_REGNUM, &fpregsetp->f_fpiaddr);
}

#endif /* defined (FP0_REGNUM) */

#endif /* USE_PROC_FS */

/* Figure out where the longjmp will land.  Slurp the args out of the stack.
   We expect the first arg to be a pointer to the jmp_buf structure from which
   we extract the pc (JB_PC) that we will land at.  The pc is copied into PC.
   This routine returns true on success. */

int
m68k_get_longjmp_target (CORE_ADDR *pc)
{
  char *buf;
  CORE_ADDR sp, jb_addr;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);

  if (tdep->jb_pc < 0)
    {
      internal_error (__FILE__, __LINE__,
		      "m68k_get_longjmp_target: not implemented");
      return 0;
    }

  buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
  sp = read_register (SP_REGNUM);

  if (target_read_memory (sp + SP_ARG0,	/* Offset of first arg on stack */
			  buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
    return 0;

  jb_addr = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);

  if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
			  TARGET_PTR_BIT / TARGET_CHAR_BIT))
    return 0;

  *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
  return 1;
}

/* Function: m68k_gdbarch_init
   Initializer function for the m68k gdbarch vector.
   Called by gdbarch.  Sets up the gdbarch vector(s) for this target. */

static struct gdbarch *
m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch_tdep *tdep = NULL;
  struct gdbarch *gdbarch;

  /* find a candidate among the list of pre-declared architectures. */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return (arches->gdbarch);

  tdep = xmalloc (sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);

  set_gdbarch_long_double_format (gdbarch, &floatformat_m68881_ext);
  set_gdbarch_long_double_bit (gdbarch, 96);

  set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
  set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);

  /* Stack grows down. */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_parm_boundary (gdbarch, 32);

  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
  set_gdbarch_decr_pc_after_break (gdbarch, 2);

  set_gdbarch_extract_return_value (gdbarch, m68k_extract_return_value);
  set_gdbarch_store_return_value (gdbarch, m68k_store_return_value);
  set_gdbarch_deprecated_extract_struct_value_address (gdbarch, m68k_extract_struct_value_address);
  set_gdbarch_use_struct_convention (gdbarch, m68k_use_struct_convention);

  set_gdbarch_deprecated_frameless_function_invocation (gdbarch, m68k_frameless_function_invocation);
  set_gdbarch_frame_args_skip (gdbarch, 8);

  set_gdbarch_register_type (gdbarch, m68k_register_type);
  set_gdbarch_register_name (gdbarch, m68k_register_name);
  set_gdbarch_num_regs (gdbarch, 29);
  set_gdbarch_register_bytes_ok (gdbarch, m68k_register_bytes_ok);
  set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
  set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
  set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);

  set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);

  /* Disassembler.  */
  set_gdbarch_print_insn (gdbarch, print_insn_m68k);

#if defined JB_PC && defined JB_ELEMENT_SIZE
  tdep->jb_pc = JB_PC;
  tdep->jb_elt_size = JB_ELEMENT_SIZE;
#else
  tdep->jb_pc = -1;
#endif
  tdep->get_sigtramp_info = NULL;
  tdep->struct_return = pcc_struct_return;

  /* Frame unwinder.  */
  set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
  set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);

  /* Hook in the DWARF CFI frame unwinder.  */
  frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);

  frame_base_set_default (gdbarch, &m68k_frame_base);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  /* Now we have tuned the configuration, set a few final things,
     based on what the OS ABI has told us.  */

  if (tdep->jb_pc >= 0)
    set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);

  frame_unwind_append_sniffer (gdbarch, m68k_sigtramp_frame_sniffer);
  frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);

  return gdbarch;
}


static void
m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);

  if (tdep == NULL)
    return;
}

extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */

void
_initialize_m68k_tdep (void)
{
  gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
}