1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
|
/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "obstack.h"
#include "target.h"
#include "value.h"
#include "bfd.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "symfile.h"
#include "regcache.h"
#include "arch-utils.h"
#define D0_REGNUM 0
#define D2_REGNUM 2
#define D3_REGNUM 3
#define A0_REGNUM 4
#define A2_REGNUM 6
#define A3_REGNUM 7
#define MDR_REGNUM 10
#define PSW_REGNUM 11
#define LIR_REGNUM 12
#define LAR_REGNUM 13
#define MDRQ_REGNUM 14
#define E0_REGNUM 15
#define MCRH_REGNUM 26
#define MCRL_REGNUM 27
#define MCVF_REGNUM 28
enum movm_register_bits {
movm_exother_bit = 0x01,
movm_exreg1_bit = 0x02,
movm_exreg0_bit = 0x04,
movm_other_bit = 0x08,
movm_a3_bit = 0x10,
movm_a2_bit = 0x20,
movm_d3_bit = 0x40,
movm_d2_bit = 0x80
};
extern void _initialize_mn10300_tdep (void);
static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
CORE_ADDR pc);
/* mn10300 private data */
struct gdbarch_tdep
{
int am33_mode;
#define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
};
/* Additional info used by the frame */
struct frame_extra_info
{
int status;
int stack_size;
};
static char *
register_name (int reg, char **regs, long sizeof_regs)
{
if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
return NULL;
else
return regs[reg];
}
static char *
mn10300_generic_register_name (int reg)
{
static char *regs[] =
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
"sp", "pc", "mdr", "psw", "lir", "lar", "", "",
"", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "fp"
};
return register_name (reg, regs, sizeof regs);
}
static char *
am33_register_name (int reg)
{
static char *regs[] =
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
"sp", "pc", "mdr", "psw", "lir", "lar", "",
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
};
return register_name (reg, regs, sizeof regs);
}
static CORE_ADDR
mn10300_saved_pc_after_call (struct frame_info *fi)
{
return read_memory_integer (read_register (SP_REGNUM), 4);
}
static void
mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
{
if (TYPE_CODE (type) == TYPE_CODE_PTR)
memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
else
memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
}
static CORE_ADDR
mn10300_extract_struct_value_address (char *regbuf)
{
return extract_address (regbuf + REGISTER_BYTE (4),
REGISTER_RAW_SIZE (4));
}
static void
mn10300_store_return_value (struct type *type, char *valbuf)
{
if (TYPE_CODE (type) == TYPE_CODE_PTR)
write_register_bytes (REGISTER_BYTE (4), valbuf, TYPE_LENGTH (type));
else
write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
}
static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
static struct frame_info *
analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
{
static struct frame_info *dummy = NULL;
if (dummy == NULL)
{
dummy = xmalloc (sizeof (struct frame_info));
dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
}
dummy->next = NULL;
dummy->prev = NULL;
dummy->pc = pc;
dummy->frame = frame;
dummy->extra_info->status = 0;
dummy->extra_info->stack_size = 0;
memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
mn10300_analyze_prologue (dummy, 0);
return dummy;
}
/* Values for frame_info.status */
#define MY_FRAME_IN_SP 0x1
#define MY_FRAME_IN_FP 0x2
#define NO_MORE_FRAMES 0x4
/* Should call_function allocate stack space for a struct return? */
static int
mn10300_use_struct_convention (int gcc_p, struct type *type)
{
return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
}
/* The breakpoint instruction must be the same size as the smallest
instruction in the instruction set.
The Matsushita mn10x00 processors have single byte instructions
so we need a single byte breakpoint. Matsushita hasn't defined
one, so we defined it ourselves. */
const static unsigned char *
mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
{
static char breakpoint[] =
{0xff};
*bp_size = 1;
return breakpoint;
}
/* Fix fi->frame if it's bogus at this point. This is a helper
function for mn10300_analyze_prologue. */
static void
fix_frame_pointer (struct frame_info *fi, int stack_size)
{
if (fi && fi->next == NULL)
{
if (fi->extra_info->status & MY_FRAME_IN_SP)
fi->frame = read_sp () - stack_size;
else if (fi->extra_info->status & MY_FRAME_IN_FP)
fi->frame = read_register (A3_REGNUM);
}
}
/* Set offsets of registers saved by movm instruction.
This is a helper function for mn10300_analyze_prologue. */
static void
set_movm_offsets (struct frame_info *fi, int movm_args)
{
int offset = 0;
if (fi == NULL || movm_args == 0)
return;
if (movm_args & movm_other_bit)
{
/* The `other' bit leaves a blank area of four bytes at the
beginning of its block of saved registers, making it 32 bytes
long in total. */
fi->saved_regs[LAR_REGNUM] = fi->frame + offset + 4;
fi->saved_regs[LIR_REGNUM] = fi->frame + offset + 8;
fi->saved_regs[MDR_REGNUM] = fi->frame + offset + 12;
fi->saved_regs[A0_REGNUM + 1] = fi->frame + offset + 16;
fi->saved_regs[A0_REGNUM] = fi->frame + offset + 20;
fi->saved_regs[D0_REGNUM + 1] = fi->frame + offset + 24;
fi->saved_regs[D0_REGNUM] = fi->frame + offset + 28;
offset += 32;
}
if (movm_args & movm_a3_bit)
{
fi->saved_regs[A3_REGNUM] = fi->frame + offset;
offset += 4;
}
if (movm_args & movm_a2_bit)
{
fi->saved_regs[A2_REGNUM] = fi->frame + offset;
offset += 4;
}
if (movm_args & movm_d3_bit)
{
fi->saved_regs[D3_REGNUM] = fi->frame + offset;
offset += 4;
}
if (movm_args & movm_d2_bit)
{
fi->saved_regs[D2_REGNUM] = fi->frame + offset;
offset += 4;
}
if (AM33_MODE)
{
if (movm_args & movm_exother_bit)
{
fi->saved_regs[MCVF_REGNUM] = fi->frame + offset;
fi->saved_regs[MCRL_REGNUM] = fi->frame + offset + 4;
fi->saved_regs[MCRH_REGNUM] = fi->frame + offset + 8;
fi->saved_regs[MDRQ_REGNUM] = fi->frame + offset + 12;
fi->saved_regs[E0_REGNUM + 1] = fi->frame + offset + 16;
fi->saved_regs[E0_REGNUM + 0] = fi->frame + offset + 20;
offset += 24;
}
if (movm_args & movm_exreg1_bit)
{
fi->saved_regs[E0_REGNUM + 7] = fi->frame + offset;
fi->saved_regs[E0_REGNUM + 6] = fi->frame + offset + 4;
fi->saved_regs[E0_REGNUM + 5] = fi->frame + offset + 8;
fi->saved_regs[E0_REGNUM + 4] = fi->frame + offset + 12;
offset += 16;
}
if (movm_args & movm_exreg0_bit)
{
fi->saved_regs[E0_REGNUM + 3] = fi->frame + offset;
fi->saved_regs[E0_REGNUM + 2] = fi->frame + offset + 4;
offset += 8;
}
}
}
/* The main purpose of this file is dealing with prologues to extract
information about stack frames and saved registers.
In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
function is pretty readable, and has a nice explanation of how the
prologue is generated. The prologues generated by that code will
have the following form (NOTE: the current code doesn't handle all
this!):
+ If this is an old-style varargs function, then its arguments
need to be flushed back to the stack:
mov d0,(4,sp)
mov d1,(4,sp)
+ If we use any of the callee-saved registers, save them now.
movm [some callee-saved registers],(sp)
+ If we have any floating-point registers to save:
- Decrement the stack pointer to reserve space for the registers.
If the function doesn't need a frame pointer, we may combine
this with the adjustment that reserves space for the frame.
add -SIZE, sp
- Save the floating-point registers. We have two possible
strategies:
. Save them at fixed offset from the SP:
fmov fsN,(OFFSETN,sp)
fmov fsM,(OFFSETM,sp)
...
Note that, if OFFSETN happens to be zero, you'll get the
different opcode: fmov fsN,(sp)
. Or, set a0 to the start of the save area, and then use
post-increment addressing to save the FP registers.
mov sp, a0
add SIZE, a0
fmov fsN,(a0+)
fmov fsM,(a0+)
...
+ If the function needs a frame pointer, we set it here.
mov sp, a3
+ Now we reserve space for the stack frame proper. This could be
merged into the `add -SIZE, sp' instruction for FP saves up
above, unless we needed to set the frame pointer in the previous
step, or the frame is so large that allocating the whole thing at
once would put the FP register save slots out of reach of the
addressing mode (128 bytes).
add -SIZE, sp
One day we might keep the stack pointer constant, that won't
change the code for prologues, but it will make the frame
pointerless case much more common. */
/* Analyze the prologue to determine where registers are saved,
the end of the prologue, etc etc. Return the end of the prologue
scanned.
We store into FI (if non-null) several tidbits of information:
* stack_size -- size of this stack frame. Note that if we stop in
certain parts of the prologue/epilogue we may claim the size of the
current frame is zero. This happens when the current frame has
not been allocated yet or has already been deallocated.
* fsr -- Addresses of registers saved in the stack by this frame.
* status -- A (relatively) generic status indicator. It's a bitmask
with the following bits:
MY_FRAME_IN_SP: The base of the current frame is actually in
the stack pointer. This can happen for frame pointerless
functions, or cases where we're stopped in the prologue/epilogue
itself. For these cases mn10300_analyze_prologue will need up
update fi->frame before returning or analyzing the register
save instructions.
MY_FRAME_IN_FP: The base of the current frame is in the
frame pointer register ($a3).
NO_MORE_FRAMES: Set this if the current frame is "start" or
if the first instruction looks like mov <imm>,sp. This tells
frame chain to not bother trying to unwind past this frame. */
static CORE_ADDR
mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
{
CORE_ADDR func_addr, func_end, addr, stop;
CORE_ADDR stack_size;
int imm_size;
unsigned char buf[4];
int status, movm_args = 0;
char *name;
/* Use the PC in the frame if it's provided to look up the
start of this function. */
pc = (fi ? fi->pc : pc);
/* Find the start of this function. */
status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
/* Do nothing if we couldn't find the start of this function or if we're
stopped at the first instruction in the prologue. */
if (status == 0)
{
return pc;
}
/* If we're in start, then give up. */
if (strcmp (name, "start") == 0)
{
if (fi != NULL)
fi->extra_info->status = NO_MORE_FRAMES;
return pc;
}
/* At the start of a function our frame is in the stack pointer. */
if (fi)
fi->extra_info->status = MY_FRAME_IN_SP;
/* Get the next two bytes into buf, we need two because rets is a two
byte insn and the first isn't enough to uniquely identify it. */
status = read_memory_nobpt (pc, buf, 2);
if (status != 0)
return pc;
/* If we're physically on an "rets" instruction, then our frame has
already been deallocated. Note this can also be true for retf
and ret if they specify a size of zero.
In this case fi->frame is bogus, we need to fix it. */
if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
{
if (fi->next == NULL)
fi->frame = read_sp ();
return fi->pc;
}
/* Similarly if we're stopped on the first insn of a prologue as our
frame hasn't been allocated yet. */
if (fi && fi->pc == func_addr)
{
if (fi->next == NULL)
fi->frame = read_sp ();
return fi->pc;
}
/* Figure out where to stop scanning. */
stop = fi ? fi->pc : func_end;
/* Don't walk off the end of the function. */
stop = stop > func_end ? func_end : stop;
/* Start scanning on the first instruction of this function. */
addr = func_addr;
/* Suck in two bytes. */
status = read_memory_nobpt (addr, buf, 2);
if (status != 0)
{
fix_frame_pointer (fi, 0);
return addr;
}
/* First see if this insn sets the stack pointer from a register; if
so, it's probably the initialization of the stack pointer in _start,
so mark this as the bottom-most frame. */
if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
{
if (fi)
fi->extra_info->status = NO_MORE_FRAMES;
return addr;
}
/* Now look for movm [regs],sp, which saves the callee saved registers.
At this time we don't know if fi->frame is valid, so we only note
that we encountered a movm instruction. Later, we'll set the entries
in fsr.regs as needed. */
if (buf[0] == 0xcf)
{
/* Extract the register list for the movm instruction. */
status = read_memory_nobpt (addr + 1, buf, 1);
movm_args = *buf;
addr += 2;
/* Quit now if we're beyond the stop point. */
if (addr >= stop)
{
/* Fix fi->frame since it's bogus at this point. */
if (fi && fi->next == NULL)
fi->frame = read_sp ();
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, movm_args);
return addr;
}
/* Get the next two bytes so the prologue scan can continue. */
status = read_memory_nobpt (addr, buf, 2);
if (status != 0)
{
/* Fix fi->frame since it's bogus at this point. */
if (fi && fi->next == NULL)
fi->frame = read_sp ();
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, movm_args);
return addr;
}
}
/* Now see if we set up a frame pointer via "mov sp,a3" */
if (buf[0] == 0x3f)
{
addr += 1;
/* The frame pointer is now valid. */
if (fi)
{
fi->extra_info->status |= MY_FRAME_IN_FP;
fi->extra_info->status &= ~MY_FRAME_IN_SP;
}
/* Quit now if we're beyond the stop point. */
if (addr >= stop)
{
/* Fix fi->frame if it's bogus at this point. */
fix_frame_pointer (fi, 0);
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, movm_args);
return addr;
}
/* Get two more bytes so scanning can continue. */
status = read_memory_nobpt (addr, buf, 2);
if (status != 0)
{
/* Fix fi->frame if it's bogus at this point. */
fix_frame_pointer (fi, 0);
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, movm_args);
return addr;
}
}
/* Next we should allocate the local frame. No more prologue insns
are found after allocating the local frame.
Search for add imm8,sp (0xf8feXX)
or add imm16,sp (0xfafeXXXX)
or add imm32,sp (0xfcfeXXXXXXXX).
If none of the above was found, then this prologue has no
additional stack. */
status = read_memory_nobpt (addr, buf, 2);
if (status != 0)
{
/* Fix fi->frame if it's bogus at this point. */
fix_frame_pointer (fi, 0);
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, movm_args);
return addr;
}
imm_size = 0;
if (buf[0] == 0xf8 && buf[1] == 0xfe)
imm_size = 1;
else if (buf[0] == 0xfa && buf[1] == 0xfe)
imm_size = 2;
else if (buf[0] == 0xfc && buf[1] == 0xfe)
imm_size = 4;
if (imm_size != 0)
{
/* Suck in imm_size more bytes, they'll hold the size of the
current frame. */
status = read_memory_nobpt (addr + 2, buf, imm_size);
if (status != 0)
{
/* Fix fi->frame if it's bogus at this point. */
fix_frame_pointer (fi, 0);
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, movm_args);
return addr;
}
/* Note the size of the stack in the frame info structure. */
stack_size = extract_signed_integer (buf, imm_size);
if (fi)
fi->extra_info->stack_size = stack_size;
/* We just consumed 2 + imm_size bytes. */
addr += 2 + imm_size;
/* No more prologue insns follow, so begin preparation to return. */
/* Fix fi->frame if it's bogus at this point. */
fix_frame_pointer (fi, stack_size);
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, movm_args);
return addr;
}
/* We never found an insn which allocates local stack space, regardless
this is the end of the prologue. */
/* Fix fi->frame if it's bogus at this point. */
fix_frame_pointer (fi, 0);
/* Note if/where callee saved registers were saved. */
set_movm_offsets (fi, movm_args);
return addr;
}
/* Function: saved_regs_size
Return the size in bytes of the register save area, based on the
saved_regs array in FI. */
static int
saved_regs_size (struct frame_info *fi)
{
int adjust = 0;
int i;
/* Reserve four bytes for every register saved. */
for (i = 0; i < NUM_REGS; i++)
if (fi->saved_regs[i])
adjust += 4;
/* If we saved LIR, then it's most likely we used a `movm'
instruction with the `other' bit set, in which case the SP is
decremented by an extra four bytes, "to simplify calculation
of the transfer area", according to the processor manual. */
if (fi->saved_regs[LIR_REGNUM])
adjust += 4;
return adjust;
}
/* Function: frame_chain
Figure out and return the caller's frame pointer given current
frame_info struct.
We don't handle dummy frames yet but we would probably just return the
stack pointer that was in use at the time the function call was made? */
static CORE_ADDR
mn10300_frame_chain (struct frame_info *fi)
{
struct frame_info *dummy;
/* Walk through the prologue to determine the stack size,
location of saved registers, end of the prologue, etc. */
if (fi->extra_info->status == 0)
mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
/* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
if (fi->extra_info->status & NO_MORE_FRAMES)
return 0;
/* Now that we've analyzed our prologue, determine the frame
pointer for our caller.
If our caller has a frame pointer, then we need to
find the entry value of $a3 to our function.
If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
location pointed to by fsr.regs[A3_REGNUM].
Else it's still in $a3.
If our caller does not have a frame pointer, then his
frame base is fi->frame + -caller's stack size. */
/* The easiest way to get that info is to analyze our caller's frame.
So we set up a dummy frame and call mn10300_analyze_prologue to
find stuff for us. */
dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
if (dummy->extra_info->status & MY_FRAME_IN_FP)
{
/* Our caller has a frame pointer. So find the frame in $a3 or
in the stack. */
if (fi->saved_regs[A3_REGNUM])
return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
else
return read_register (A3_REGNUM);
}
else
{
int adjust = saved_regs_size (fi);
/* Our caller does not have a frame pointer. So his frame starts
at the base of our frame (fi->frame) + register save space
+ <his size>. */
return fi->frame + adjust + -dummy->extra_info->stack_size;
}
}
/* Function: skip_prologue
Return the address of the first inst past the prologue of the function. */
static CORE_ADDR
mn10300_skip_prologue (CORE_ADDR pc)
{
/* We used to check the debug symbols, but that can lose if
we have a null prologue. */
return mn10300_analyze_prologue (NULL, pc);
}
/* generic_pop_current_frame calls this function if the current
frame isn't a dummy frame. */
static void
mn10300_pop_frame_regular (struct frame_info *frame)
{
int regnum;
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
/* Restore any saved registers. */
for (regnum = 0; regnum < NUM_REGS; regnum++)
if (frame->saved_regs[regnum] != 0)
{
ULONGEST value;
value = read_memory_unsigned_integer (frame->saved_regs[regnum],
REGISTER_RAW_SIZE (regnum));
write_register (regnum, value);
}
/* Actually cut back the stack. */
write_register (SP_REGNUM, FRAME_FP (frame));
/* Don't we need to set the PC?!? XXX FIXME. */
}
/* Function: pop_frame
This routine gets called when either the user uses the `return'
command, or the call dummy breakpoint gets hit. */
static void
mn10300_pop_frame (void)
{
/* This function checks for and handles generic dummy frames, and
calls back to our function for ordinary frames. */
generic_pop_current_frame (mn10300_pop_frame_regular);
/* Throw away any cached frame information. */
flush_cached_frames ();
}
/* Function: push_arguments
Setup arguments for a call to the target. Arguments go in
order on the stack. */
static CORE_ADDR
mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
int argnum = 0;
int len = 0;
int stack_offset = 0;
int regsused = struct_return ? 1 : 0;
/* This should be a nop, but align the stack just in case something
went wrong. Stacks are four byte aligned on the mn10300. */
sp &= ~3;
/* Now make space on the stack for the args.
XXX This doesn't appear to handle pass-by-invisible reference
arguments. */
for (argnum = 0; argnum < nargs; argnum++)
{
int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
while (regsused < 2 && arg_length > 0)
{
regsused++;
arg_length -= 4;
}
len += arg_length;
}
/* Allocate stack space. */
sp -= len;
regsused = struct_return ? 1 : 0;
/* Push all arguments onto the stack. */
for (argnum = 0; argnum < nargs; argnum++)
{
int len;
char *val;
/* XXX Check this. What about UNIONS? */
if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
&& TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
{
/* XXX Wrong, we want a pointer to this argument. */
len = TYPE_LENGTH (VALUE_TYPE (*args));
val = (char *) VALUE_CONTENTS (*args);
}
else
{
len = TYPE_LENGTH (VALUE_TYPE (*args));
val = (char *) VALUE_CONTENTS (*args);
}
while (regsused < 2 && len > 0)
{
write_register (regsused, extract_unsigned_integer (val, 4));
val += 4;
len -= 4;
regsused++;
}
while (len > 0)
{
write_memory (sp + stack_offset, val, 4);
len -= 4;
val += 4;
stack_offset += 4;
}
args++;
}
/* Make space for the flushback area. */
sp -= 8;
return sp;
}
/* Function: push_return_address (pc)
Set up the return address for the inferior function call.
Needed for targets where we don't actually execute a JSR/BSR instruction */
static CORE_ADDR
mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
unsigned char buf[4];
store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
write_memory (sp - 4, buf, 4);
return sp - 4;
}
/* Function: store_struct_return (addr,sp)
Store the structure value return address for an inferior function
call. */
static void
mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
/* The structure return address is passed as the first argument. */
write_register (0, addr);
}
/* Function: frame_saved_pc
Find the caller of this frame. We do this by seeing if RP_REGNUM
is saved in the stack anywhere, otherwise we get it from the
registers. If the inner frame is a dummy frame, return its PC
instead of RP, because that's where "caller" of the dummy-frame
will be found. */
static CORE_ADDR
mn10300_frame_saved_pc (struct frame_info *fi)
{
int adjust = saved_regs_size (fi);
return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
}
/* Function: mn10300_init_extra_frame_info
Setup the frame's frame pointer, pc, and frame addresses for saved
registers. Most of the work is done in mn10300_analyze_prologue().
Note that when we are called for the last frame (currently active frame),
that fi->pc and fi->frame will already be setup. However, fi->frame will
be valid only if this routine uses FP. For previous frames, fi-frame will
always be correct. mn10300_analyze_prologue will fix fi->frame if
it's not valid.
We can be called with the PC in the call dummy under two circumstances.
First, during normal backtracing, second, while figuring out the frame
pointer just prior to calling the target function (see run_stack_dummy). */
static void
mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
if (fi->next)
fi->pc = FRAME_SAVED_PC (fi->next);
frame_saved_regs_zalloc (fi);
fi->extra_info = (struct frame_extra_info *)
frame_obstack_alloc (sizeof (struct frame_extra_info));
fi->extra_info->status = 0;
fi->extra_info->stack_size = 0;
mn10300_analyze_prologue (fi, 0);
}
/* This function's job is handled by init_extra_frame_info. */
static void
mn10300_frame_init_saved_regs (struct frame_info *frame)
{
}
/* Function: mn10300_virtual_frame_pointer
Return the register that the function uses for a frame pointer,
plus any necessary offset to be applied to the register before
any frame pointer offsets. */
static void
mn10300_virtual_frame_pointer (CORE_ADDR pc,
int *reg,
LONGEST *offset)
{
struct frame_info *dummy = analyze_dummy_frame (pc, 0);
/* Set up a dummy frame_info, Analyze the prolog and fill in the
extra info. */
/* Results will tell us which type of frame it uses. */
if (dummy->extra_info->status & MY_FRAME_IN_SP)
{
*reg = SP_REGNUM;
*offset = -(dummy->extra_info->stack_size);
}
else
{
*reg = A3_REGNUM;
*offset = 0;
}
}
static int
mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
{
return (TYPE_LENGTH (type) > 8);
}
static struct type *
mn10300_register_virtual_type (int reg)
{
return builtin_type_int;
}
static int
mn10300_register_byte (int reg)
{
return (reg * 4);
}
static int
mn10300_register_virtual_size (int reg)
{
return 4;
}
static int
mn10300_register_raw_size (int reg)
{
return 4;
}
/* If DWARF2 is a register number appearing in Dwarf2 debug info, then
mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
register number. Why don't Dwarf2 and GDB use the same numbering?
Who knows? But since people have object files lying around with
the existing Dwarf2 numbering, and other people have written stubs
to work with the existing GDB, neither of them can change. So we
just have to cope. */
static int
mn10300_dwarf2_reg_to_regnum (int dwarf2)
{
/* This table is supposed to be shaped like the REGISTER_NAMES
initializer in gcc/config/mn10300/mn10300.h. Registers which
appear in GCC's numbering, but have no counterpart in GDB's
world, are marked with a -1. */
static int dwarf2_to_gdb[] = {
0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
15, 16, 17, 18, 19, 20, 21, 22
};
int gdb;
if (dwarf2 < 0
|| dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0]))
|| dwarf2_to_gdb[dwarf2] == -1)
internal_error (__FILE__, __LINE__,
"bogus register number in debug info: %d", dwarf2);
return dwarf2_to_gdb[dwarf2];
}
static void
mn10300_print_register (const char *name, int regnum, int reg_width)
{
char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
if (reg_width)
printf_filtered ("%*s: ", reg_width, name);
else
printf_filtered ("%s: ", name);
/* Get the data */
if (!frame_register_read (selected_frame, regnum, raw_buffer))
{
printf_filtered ("[invalid]");
return;
}
else
{
int byte;
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
{
for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
byte < REGISTER_RAW_SIZE (regnum);
byte++)
printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
}
else
{
for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
byte >= 0;
byte--)
printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
}
}
}
static void
mn10300_do_registers_info (int regnum, int fpregs)
{
if (regnum >= 0)
{
const char *name = REGISTER_NAME (regnum);
if (name == NULL || name[0] == '\0')
error ("Not a valid register for the current processor type");
mn10300_print_register (name, regnum, 0);
printf_filtered ("\n");
}
else
{
/* print registers in an array 4x8 */
int r;
int reg;
const int nr_in_row = 4;
const int reg_width = 4;
for (r = 0; r < NUM_REGS; r += nr_in_row)
{
int c;
int printing = 0;
int padding = 0;
for (c = r; c < r + nr_in_row; c++)
{
const char *name = REGISTER_NAME (c);
if (name != NULL && *name != '\0')
{
printing = 1;
while (padding > 0)
{
printf_filtered (" ");
padding--;
}
mn10300_print_register (name, c, reg_width);
printf_filtered (" ");
}
else
{
padding += (reg_width + 2 + 8 + 1);
}
}
if (printing)
printf_filtered ("\n");
}
}
}
/* Dump out the mn10300 speciic architecture information. */
static void
mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
tdep->am33_mode);
}
static struct gdbarch *
mn10300_gdbarch_init (struct gdbarch_info info,
struct gdbarch_list *arches)
{
static LONGEST mn10300_call_dummy_words[] = { 0 };
struct gdbarch *gdbarch;
struct gdbarch_tdep *tdep = NULL;
int am33_mode;
gdbarch_register_name_ftype *register_name;
int mach;
int num_regs;
arches = gdbarch_list_lookup_by_info (arches, &info);
if (arches != NULL)
return arches->gdbarch;
tdep = xmalloc (sizeof (struct gdbarch_tdep));
gdbarch = gdbarch_alloc (&info, tdep);
if (info.bfd_arch_info != NULL
&& info.bfd_arch_info->arch == bfd_arch_mn10300)
mach = info.bfd_arch_info->mach;
else
mach = 0;
switch (mach)
{
case 0:
case bfd_mach_mn10300:
am33_mode = 0;
register_name = mn10300_generic_register_name;
num_regs = 32;
break;
case bfd_mach_am33:
am33_mode = 1;
register_name = am33_register_name;
num_regs = 32;
break;
default:
internal_error (__FILE__, __LINE__,
"mn10300_gdbarch_init: Unknown mn10300 variant");
return NULL; /* keep GCC happy. */
}
/* Registers. */
set_gdbarch_num_regs (gdbarch, num_regs);
set_gdbarch_register_name (gdbarch, register_name);
set_gdbarch_register_size (gdbarch, 4);
set_gdbarch_register_bytes (gdbarch,
num_regs * gdbarch_register_size (gdbarch));
set_gdbarch_max_register_raw_size (gdbarch, 4);
set_gdbarch_register_raw_size (gdbarch, mn10300_register_raw_size);
set_gdbarch_register_byte (gdbarch, mn10300_register_byte);
set_gdbarch_max_register_virtual_size (gdbarch, 4);
set_gdbarch_register_virtual_size (gdbarch, mn10300_register_virtual_size);
set_gdbarch_register_virtual_type (gdbarch, mn10300_register_virtual_type);
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
set_gdbarch_do_registers_info (gdbarch, mn10300_do_registers_info);
set_gdbarch_sp_regnum (gdbarch, 8);
set_gdbarch_pc_regnum (gdbarch, 9);
set_gdbarch_fp_regnum (gdbarch, 31);
set_gdbarch_virtual_frame_pointer (gdbarch, mn10300_virtual_frame_pointer);
/* Breakpoints. */
set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
set_gdbarch_function_start_offset (gdbarch, 0);
set_gdbarch_decr_pc_after_break (gdbarch, 0);
/* Stack unwinding. */
set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
set_gdbarch_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
set_gdbarch_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
set_gdbarch_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
set_gdbarch_frame_chain (gdbarch, mn10300_frame_chain);
set_gdbarch_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
set_gdbarch_deprecated_extract_return_value (gdbarch, mn10300_extract_return_value);
set_gdbarch_deprecated_extract_struct_value_address
(gdbarch, mn10300_extract_struct_value_address);
set_gdbarch_store_return_value (gdbarch, mn10300_store_return_value);
set_gdbarch_store_struct_return (gdbarch, mn10300_store_struct_return);
set_gdbarch_pop_frame (gdbarch, mn10300_pop_frame);
set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
set_gdbarch_frame_args_skip (gdbarch, 0);
set_gdbarch_frame_args_address (gdbarch, default_frame_address);
set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
/* That's right, we're using the stack pointer as our frame pointer. */
set_gdbarch_read_fp (gdbarch, generic_target_read_sp);
/* Calling functions in the inferior from GDB. */
set_gdbarch_call_dummy_p (gdbarch, 1);
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
set_gdbarch_call_dummy_words (gdbarch, mn10300_call_dummy_words);
set_gdbarch_sizeof_call_dummy_words (gdbarch,
sizeof (mn10300_call_dummy_words));
set_gdbarch_call_dummy_length (gdbarch, 0);
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
set_gdbarch_push_arguments (gdbarch, mn10300_push_arguments);
set_gdbarch_reg_struct_has_addr (gdbarch, mn10300_reg_struct_has_addr);
set_gdbarch_push_return_address (gdbarch, mn10300_push_return_address);
set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
set_gdbarch_use_struct_convention (gdbarch, mn10300_use_struct_convention);
tdep->am33_mode = am33_mode;
return gdbarch;
}
void
_initialize_mn10300_tdep (void)
{
/* printf("_initialize_mn10300_tdep\n"); */
tm_print_insn = print_insn_mn10300;
register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
}
|