1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
/* Cache and manage the values of registers for GDB, the GNU debugger.
Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000,
2001, 2002 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#ifndef REGCACHE_H
#define REGCACHE_H
struct regcache;
struct gdbarch;
extern struct regcache *current_regcache;
void regcache_xfree (struct regcache *regcache);
struct cleanup *make_cleanup_regcache_xfree (struct regcache *regcache);
struct regcache *regcache_xmalloc (struct gdbarch *gdbarch);
/* Transfer a raw register [0..NUM_REGS) between core-gdb and the
regcache. */
void regcache_raw_read (struct regcache *regcache, int rawnum, void *buf);
void regcache_raw_write (struct regcache *regcache, int rawnum,
const void *buf);
extern void regcache_raw_read_signed (struct regcache *regcache,
int regnum, LONGEST *val);
extern void regcache_raw_read_unsigned (struct regcache *regcache,
int regnum, ULONGEST *val);
extern void regcache_raw_write_signed (struct regcache *regcache,
int regnum, LONGEST val);
extern void regcache_raw_write_unsigned (struct regcache *regcache,
int regnum, ULONGEST val);
/* Partial transfer of a raw registers. These perform read, modify,
write style operations. */
void regcache_raw_read_part (struct regcache *regcache, int regnum,
int offset, int len, void *buf);
void regcache_raw_write_part (struct regcache *regcache, int regnum,
int offset, int len, const void *buf);
int regcache_valid_p (struct regcache *regcache, int regnum);
/* Transfer a cooked register [0..NUM_REGS+NUM_PSEUDO_REGS). */
void regcache_cooked_read (struct regcache *regcache, int rawnum, void *buf);
void regcache_cooked_write (struct regcache *regcache, int rawnum,
const void *buf);
/* NOTE: cagney/2002-08-13: At present GDB has no reliable mechanism
for indicating when a ``cooked'' register was constructed from
invalid or unavailable ``raw'' registers. One fairly easy way of
adding such a mechanism would be for the cooked functions to return
a register valid indication. Given the possibility of such a
change, the extract functions below use a reference parameter,
rather than a function result. */
/* Read a register as a signed/unsigned quantity. */
extern void regcache_cooked_read_signed (struct regcache *regcache,
int regnum, LONGEST *val);
extern void regcache_cooked_read_unsigned (struct regcache *regcache,
int regnum, ULONGEST *val);
/* Partial transfer of a cooked register. These perform read, modify,
write style operations. */
void regcache_cooked_read_part (struct regcache *regcache, int regnum,
int offset, int len, void *buf);
void regcache_cooked_write_part (struct regcache *regcache, int regnum,
int offset, int len, const void *buf);
/* Transfer a raw register [0..NUM_REGS) between the regcache and the
target. These functions are called by the target in response to a
target_fetch_registers() or target_store_registers(). */
extern void supply_register (int regnum, const void *val);
extern void regcache_collect (int regnum, void *buf);
/* The register's ``offset''.
FIXME: cagney/2002-11-07: The get_saved_register() function, when
specifying the real location of a register, does so using that
registers offset in the register cache. That offset is then used
by valops.c to determine the location of the register. The code
should instead use the register's number and a location expression
to describe a value spread across multiple registers or memory. */
extern int register_offset_hack (struct gdbarch *gdbarch, int regnum);
/* The type of a register. This function is slightly more efficient
then its gdbarch vector counterpart since it returns a precomputed
value stored in a table.
NOTE: cagney/2002-08-17: The original macro was called
REGISTER_VIRTUAL_TYPE. This was because the register could have
different raw and cooked (nee virtual) representations. The
CONVERTABLE methods being used to convert between the two
representations. Current code does not do this. Instead, the
first [0..NUM_REGS) registers are 1:1 raw:cooked, and the type
exactly describes the register's representation. Consequently, the
``virtual'' has been dropped.
FIXME: cagney/2002-08-17: A number of architectures, including the
MIPS, are currently broken in this regard. */
extern struct type *register_type (struct gdbarch *gdbarch, int regnum);
/* Return the size of the largest register. Used when allocating
space for an aribtrary register value. */
extern int max_register_size (struct gdbarch *gdbarch);
/* Save/restore a register cache. The registers saved/restored is
determined by the save_reggroup and restore_reggroup (although you
can't restore a register that wasn't saved as well :-). You can
only save to a read-only cache (default from regcache_xmalloc())
from a live cache and you can only restore from a read-only cache
to a live cache. */
extern void regcache_save (struct regcache *dst, struct regcache *src);
extern void regcache_restore (struct regcache *dst, struct regcache *src);
/* Copy/duplicate the contents of a register cache. By default, the
operation is pass-through. Writes to DST and reads from SRC will
go through to the target.
The ``cpy'' functions can not have overlapping SRC and DST buffers.
``no passthrough'' versions do not go through to the target. They
only transfer values already in the cache. */
extern struct regcache *regcache_dup (struct regcache *regcache);
extern struct regcache *regcache_dup_no_passthrough (struct regcache *regcache);
extern void regcache_cpy (struct regcache *dest, struct regcache *src);
extern void regcache_cpy_no_passthrough (struct regcache *dest, struct regcache *src);
/* NOTE: cagney/2002-11-02: The below have been superseded by the
regcache_cooked_*() functions found above, and the frame_*()
functions found in "frame.h". Take care though, often more than a
simple substitution is required when updating the code. The
change, as far as practical, should avoid adding references to
global variables (e.g., current_regcache, current_frame,
current_gdbarch or deprecated_selected_frame) and instead refer to
the FRAME or REGCACHE that has been passed into the containing
function as parameters. Consequently, the change typically
involves modifying the containing function so that it takes a FRAME
or REGCACHE parameter. In the case of an architecture vector
method, there should already be a non-deprecated variant that is
parameterized with FRAME or REGCACHE. */
extern char *deprecated_grub_regcache_for_registers (struct regcache *);
extern char *deprecated_grub_regcache_for_register_valid (struct regcache *);
extern void deprecated_read_register_gen (int regnum, char *myaddr);
extern void deprecated_write_register_gen (int regnum, char *myaddr);
extern void deprecated_read_register_bytes (int regbyte, char *myaddr,
int len);
extern void deprecated_write_register_bytes (int regbyte, char *myaddr,
int len);
/* Character array containing the current state of each register
(unavailable<0, invalid=0, valid>0) for the most recently
referenced thread. This global is often found in close proximity
to code that is directly manipulating the deprecated_registers[]
array. In such cases, it should be possible to replace the lot
with a call to supply_register(). If you find yourself in dire
straits, still needing access to the cache status bit, the
regcache_valid_p() and set_register_cached() functions are
available. */
extern signed char *deprecated_register_valid;
/* Character array containing an image of the inferior programs'
registers for the most recently referenced thread.
NOTE: cagney/2002-11-14: Target side code should be using
supply_register() and/or regcache_collect() while architecture side
code should use the more generic regcache methods. */
extern char *deprecated_registers;
/* NOTE: cagney/2002-11-05: This function, and its co-conspirator
deprecated_registers[], have been superseeded by supply_register(). */
extern void deprecated_registers_fetched (void);
extern int register_cached (int regnum);
extern void set_register_cached (int regnum, int state);
extern void registers_changed (void);
/* Rename to read_unsigned_register()? */
extern ULONGEST read_register (int regnum);
/* Rename to read_unsigned_register_pid()? */
extern ULONGEST read_register_pid (int regnum, ptid_t ptid);
extern LONGEST read_signed_register (int regnum);
extern LONGEST read_signed_register_pid (int regnum, ptid_t ptid);
extern void write_register (int regnum, LONGEST val);
extern void write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid);
#endif /* REGCACHE_H */
|