summaryrefslogtreecommitdiff
path: root/gdb/sparc-tdep.c
blob: 113b32cd7ccfaed6f95bcc65d24dcfe55d734754 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
/* Target-dependent code for the SPARC for GDB, the GNU debugger.
   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
   Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

/* ??? Support for calling functions from gdb in sparc64 is unfinished.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "obstack.h"
#include "target.h"
#include "value.h"
#include "bfd.h"
#include "gdb_string.h"

#ifdef	USE_PROC_FS
#include <sys/procfs.h>
#endif

#include "gdbcore.h"

#if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
#define SPARC_HAS_FPU 0
#else
#define SPARC_HAS_FPU 1
#endif

#ifdef GDB_TARGET_IS_SPARC64
#define FP_REGISTER_BYTES (64 * 4)
#else
#define FP_REGISTER_BYTES (32 * 4)
#endif

/* If not defined, assume 32 bit sparc.  */
#ifndef FP_MAX_REGNUM
#define FP_MAX_REGNUM (FP0_REGNUM + 32)
#endif

#define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))

/* From infrun.c */
extern int stop_after_trap;

/* We don't store all registers immediately when requested, since they
   get sent over in large chunks anyway.  Instead, we accumulate most
   of the changes and send them over once.  "deferred_stores" keeps
   track of which sets of registers we have locally-changed copies of,
   so we only need send the groups that have changed.  */

int deferred_stores = 0;	/* Cumulates stores we want to do eventually. */


/* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode
   where instructions are big-endian and data are little-endian.
   This flag is set when we detect that the target is of this type. */

int bi_endian = 0;


/* Fetch a single instruction.  Even on bi-endian machines
   such as sparc86x, instructions are always big-endian.  */

static unsigned long
fetch_instruction (pc)
     CORE_ADDR pc;
{
  unsigned long retval;
  int i;
  unsigned char buf[4];

  read_memory (pc, buf, sizeof (buf));

  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
  retval = 0;
  for (i = 0; i < sizeof (buf); ++i)
    retval = (retval << 8) | buf[i];
  return retval;
}


/* Branches with prediction are treated like their non-predicting cousins.  */
/* FIXME: What about floating point branches?  */

/* Macros to extract fields from sparc instructions.  */
#define X_OP(i) (((i) >> 30) & 0x3)
#define X_RD(i) (((i) >> 25) & 0x1f)
#define X_A(i) (((i) >> 29) & 1)
#define X_COND(i) (((i) >> 25) & 0xf)
#define X_OP2(i) (((i) >> 22) & 0x7)
#define X_IMM22(i) ((i) & 0x3fffff)
#define X_OP3(i) (((i) >> 19) & 0x3f)
#define X_RS1(i) (((i) >> 14) & 0x1f)
#define X_I(i) (((i) >> 13) & 1)
#define X_IMM13(i) ((i) & 0x1fff)
/* Sign extension macros.  */
#define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
#define X_CC(i) (((i) >> 20) & 3)
#define X_P(i) (((i) >> 19) & 1)
#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
#define X_RCOND(i) (((i) >> 25) & 7)
#define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
#define X_FCN(i) (((i) >> 25) & 31)

typedef enum
{
  Error, not_branch, bicc, bicca, ba, baa, ticc, ta,
#ifdef GDB_TARGET_IS_SPARC64
  done_retry
#endif
} branch_type;

/* Simulate single-step ptrace call for sun4.  Code written by Gary
   Beihl (beihl@mcc.com).  */

/* npc4 and next_pc describe the situation at the time that the
   step-breakpoint was set, not necessary the current value of NPC_REGNUM.  */
static CORE_ADDR next_pc, npc4, target;
static int brknpc4, brktrg;
typedef char binsn_quantum[BREAKPOINT_MAX];
static binsn_quantum break_mem[3];

static branch_type isbranch PARAMS ((long, CORE_ADDR, CORE_ADDR *));

/* single_step() is called just before we want to resume the inferior,
   if we want to single-step it but there is no hardware or kernel single-step
   support (as on all SPARCs).  We find all the possible targets of the
   coming instruction and breakpoint them.

   single_step is also called just after the inferior stops.  If we had
   set up a simulated single-step, we undo our damage.  */

void
sparc_software_single_step (ignore, insert_breakpoints_p)
     enum target_signal ignore; /* pid, but we don't need it */
     int insert_breakpoints_p;
{
  branch_type br;
  CORE_ADDR pc;
  long pc_instruction;

  if (insert_breakpoints_p)
    {
      /* Always set breakpoint for NPC.  */
      next_pc = read_register (NPC_REGNUM);
      npc4 = next_pc + 4; /* branch not taken */

      target_insert_breakpoint (next_pc, break_mem[0]);
      /* printf_unfiltered ("set break at %x\n",next_pc); */

      pc = read_register (PC_REGNUM);
      pc_instruction = fetch_instruction (pc);
      br = isbranch (pc_instruction, pc, &target);
      brknpc4 = brktrg = 0;

      if (br == bicca)
	{
	  /* Conditional annulled branch will either end up at
	     npc (if taken) or at npc+4 (if not taken).
	     Trap npc+4.  */
	  brknpc4 = 1;
	  target_insert_breakpoint (npc4, break_mem[1]);
	}
      else if (br == baa && target != next_pc)
	{
	  /* Unconditional annulled branch will always end up at
	     the target.  */
	  brktrg = 1;
	  target_insert_breakpoint (target, break_mem[2]);
	}
#ifdef GDB_TARGET_IS_SPARC64
      else if (br == done_retry)
	{
	  brktrg = 1;
	  target_insert_breakpoint (target, break_mem[2]);
	}
#endif
    }
  else
    {
      /* Remove breakpoints */
      target_remove_breakpoint (next_pc, break_mem[0]);

      if (brknpc4)
	target_remove_breakpoint (npc4, break_mem[1]);

      if (brktrg)
	target_remove_breakpoint (target, break_mem[2]);
    }
}

/* Call this for each newly created frame.  For SPARC, we need to calculate
   the bottom of the frame, and do some extra work if the prologue
   has been generated via the -mflat option to GCC.  In particular,
   we need to know where the previous fp and the pc have been stashed,
   since their exact position within the frame may vary.  */

void
sparc_init_extra_frame_info (fromleaf, fi)
     int fromleaf;
     struct frame_info *fi;
{
  char *name;
  CORE_ADDR prologue_start, prologue_end;
  int insn;

  fi->bottom =
    (fi->next ?
     (fi->frame == fi->next->frame ? fi->next->bottom : fi->next->frame) :
     read_sp ());

  /* If fi->next is NULL, then we already set ->frame by passing read_fp()
     to create_new_frame.  */
  if (fi->next)
    {
      char buf[MAX_REGISTER_RAW_SIZE];

      /* Compute ->frame as if not flat.  If it is flat, we'll change
	 it later.  */
      if (fi->next->next != NULL
	  && (fi->next->next->signal_handler_caller
	      || frame_in_dummy (fi->next->next))
	  && frameless_look_for_prologue (fi->next))
	{
	  /* A frameless function interrupted by a signal did not change
	     the frame pointer, fix up frame pointer accordingly.  */
	  fi->frame = FRAME_FP (fi->next);
	  fi->bottom = fi->next->bottom;
	}
      else
	{
	  /* Should we adjust for stack bias here? */
	  get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0);
	  fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM));
#ifdef GDB_TARGET_IS_SPARC64
	  if (fi->frame & 1)
	    fi->frame += 2047;
#endif
	  
	}
    }

  /* Decide whether this is a function with a ``flat register window''
     frame.  For such functions, the frame pointer is actually in %i7.  */
  fi->flat = 0;
  fi->in_prologue = 0;
  if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end))
    {
      /* See if the function starts with an add (which will be of a
	 negative number if a flat frame) to the sp.  FIXME: Does not
	 handle large frames which will need more than one instruction
	 to adjust the sp.  */
      insn = fetch_instruction (prologue_start, 4);
      if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
	  && X_I (insn) && X_SIMM13 (insn) < 0)
	{
	  int offset = X_SIMM13 (insn);

	  /* Then look for a save of %i7 into the frame.  */
	  insn = fetch_instruction (prologue_start + 4);
	  if (X_OP (insn) == 3
	      && X_RD (insn) == 31
	      && X_OP3 (insn) == 4
	      && X_RS1 (insn) == 14)
	    {
	      char buf[MAX_REGISTER_RAW_SIZE];

	      /* We definitely have a flat frame now.  */
	      fi->flat = 1;

	      fi->sp_offset = offset;

	      /* Overwrite the frame's address with the value in %i7.  */
	      get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0);
	      fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM));
#ifdef GDB_TARGET_IS_SPARC64
	      if (fi->frame & 1)
		fi->frame += 2047;
#endif
	      /* Record where the fp got saved.  */
	      fi->fp_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn);

	      /* Also try to collect where the pc got saved to.  */
	      fi->pc_addr = 0;
	      insn = fetch_instruction (prologue_start + 12);
	      if (X_OP (insn) == 3
		  && X_RD (insn) == 15
		  && X_OP3 (insn) == 4
		  && X_RS1 (insn) == 14)
		fi->pc_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn);
	    }
	}
	else
	  {
	    /* Check if the PC is in the function prologue before a SAVE
	       instruction has been executed yet.  If so, set the frame
	       to the current value of the stack pointer and set
	       the in_prologue flag.  */
	    CORE_ADDR addr;
	    struct symtab_and_line sal;

	    sal = find_pc_line (prologue_start, 0);
	    if (sal.line == 0)			/* no line info, use PC */
	      prologue_end = fi->pc;
	    else if (sal.end < prologue_end)
	      prologue_end = sal.end;
	    if (fi->pc < prologue_end)
	      {
		for (addr = prologue_start; addr < fi->pc; addr += 4)
		  {
		    insn = read_memory_integer (addr, 4);
		    if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
		      break;			/* SAVE seen, stop searching */
		  }
		if (addr >= fi->pc)
		  {
		    fi->in_prologue = 1;
		    fi->frame = read_register (SP_REGNUM);
		  }
	      }
	  }
    }
  if (fi->next && fi->frame == 0)
    {
      /* Kludge to cause init_prev_frame_info to destroy the new frame.  */
      fi->frame = fi->next->frame;
      fi->pc = fi->next->pc;
    }
}

CORE_ADDR
sparc_frame_chain (frame)
     struct frame_info *frame;
{
  /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain
     value.  If it realy is zero, we detect it later in
     sparc_init_prev_frame.  */
  return (CORE_ADDR)1;
}

CORE_ADDR
sparc_extract_struct_value_address (regbuf)
     char regbuf[REGISTER_BYTES];
{
  return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
			  REGISTER_RAW_SIZE (O0_REGNUM));
}

/* Find the pc saved in frame FRAME.  */

CORE_ADDR
sparc_frame_saved_pc (frame)
     struct frame_info *frame;
{
  char buf[MAX_REGISTER_RAW_SIZE];
  CORE_ADDR addr;

  if (frame->signal_handler_caller)
    {
      /* This is the signal trampoline frame.
	 Get the saved PC from the sigcontext structure.  */

#ifndef SIGCONTEXT_PC_OFFSET
#define SIGCONTEXT_PC_OFFSET 12
#endif

      CORE_ADDR sigcontext_addr;
      char scbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
      int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
      char *name = NULL;

      /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
	 as the third parameter.  The offset to the saved pc is 12.  */
      find_pc_partial_function (frame->pc, &name,
				(CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
      if (name && STREQ (name, "ucbsigvechandler"))
	saved_pc_offset = 12;

      /* The sigcontext address is contained in register O2.  */
      get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL,
			  frame, O0_REGNUM + 2, (enum lval_type *)NULL);
      sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2));

      /* Don't cause a memory_error when accessing sigcontext in case the
	 stack layout has changed or the stack is corrupt.  */
      target_read_memory (sigcontext_addr + saved_pc_offset,
			  scbuf, sizeof (scbuf));
      return extract_address (scbuf, sizeof (scbuf));
    }
  else if (frame->in_prologue ||
	   (frame->next != NULL
	    && (frame->next->signal_handler_caller
	        || frame_in_dummy (frame->next))
	    && frameless_look_for_prologue (frame)))
    {
      /* A frameless function interrupted by a signal did not save
	 the PC, it is still in %o7.  */
      get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL,
			  frame, O7_REGNUM, (enum lval_type *)NULL);
      return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
    }
  if (frame->flat)
    addr = frame->pc_addr;
  else
    addr = frame->bottom + FRAME_SAVED_I0 +
      SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);

  if (addr == 0)
    /* A flat frame leaf function might not save the PC anywhere,
       just leave it in %o7.  */
    return PC_ADJUST (read_register (O7_REGNUM));

  read_memory (addr, buf, SPARC_INTREG_SIZE);
  return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
}

/* Since an individual frame in the frame cache is defined by two
   arguments (a frame pointer and a stack pointer), we need two
   arguments to get info for an arbitrary stack frame.  This routine
   takes two arguments and makes the cached frames look as if these
   two arguments defined a frame on the cache.  This allows the rest
   of info frame to extract the important arguments without
   difficulty.  */

struct frame_info *
setup_arbitrary_frame (argc, argv)
     int argc;
     CORE_ADDR *argv;
{
  struct frame_info *frame;

  if (argc != 2)
    error ("Sparc frame specifications require two arguments: fp and sp");

  frame = create_new_frame (argv[0], 0);

  if (!frame)
    fatal ("internal: create_new_frame returned invalid frame");
  
  frame->bottom = argv[1];
  frame->pc = FRAME_SAVED_PC (frame);
  return frame;
}

/* Given a pc value, skip it forward past the function prologue by
   disassembling instructions that appear to be a prologue.

   If FRAMELESS_P is set, we are only testing to see if the function
   is frameless.  This allows a quicker answer.

   This routine should be more specific in its actions; making sure
   that it uses the same register in the initial prologue section.  */

static CORE_ADDR examine_prologue PARAMS ((CORE_ADDR, int, struct frame_info *,
					   struct frame_saved_regs *));

static CORE_ADDR 
examine_prologue (start_pc, frameless_p, fi, saved_regs)
     CORE_ADDR start_pc;
     int frameless_p;
     struct frame_info *fi;
     struct frame_saved_regs *saved_regs;
{
  int insn;
  int dest = -1;
  CORE_ADDR pc = start_pc;
  int is_flat = 0;

  insn = fetch_instruction (pc);

  /* Recognize the `sethi' insn and record its destination.  */
  if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
    {
      dest = X_RD (insn);
      pc += 4;
      insn = fetch_instruction (pc);
    }

  /* Recognize an add immediate value to register to either %g1 or
     the destination register recorded above.  Actually, this might
     well recognize several different arithmetic operations.
     It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
     followed by "save %sp, %g1, %sp" is a valid prologue (Not that
     I imagine any compiler really does that, however).  */
  if (X_OP (insn) == 2
      && X_I (insn)
      && (X_RD (insn) == 1 || X_RD (insn) == dest))
    {
      pc += 4;
      insn = fetch_instruction (pc);
    }

  /* Recognize any SAVE insn.  */
  if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
    {
      pc += 4;
      if (frameless_p)			/* If the save is all we care about, */
	return pc;			/* return before doing more work */
      insn = fetch_instruction (pc);
    }
  /* Recognize add to %sp.  */
  else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
    {
      pc += 4;
      if (frameless_p)			/* If the add is all we care about, */
	return pc;			/* return before doing more work */
      is_flat = 1;
      insn = fetch_instruction (pc);
      /* Recognize store of frame pointer (i7).  */
      if (X_OP (insn) == 3
	  && X_RD (insn) == 31
	  && X_OP3 (insn) == 4
	  && X_RS1 (insn) == 14)
	{
	  pc += 4;
	  insn = fetch_instruction (pc);

	  /* Recognize sub %sp, <anything>, %i7.  */
	  if (X_OP (insn) ==  2
	      && X_OP3 (insn) == 4
	      && X_RS1 (insn) == 14
	      && X_RD (insn) == 31)
	    {
	      pc += 4;
	      insn = fetch_instruction (pc);
	    }
	  else
	    return pc;
	}
      else
	return pc;
    }
  else
    /* Without a save or add instruction, it's not a prologue.  */
    return start_pc;

  while (1)
    {
      /* Recognize stores into the frame from the input registers.
	 This recognizes all non alternate stores of input register,
	 into a location offset from the frame pointer.  */
      if ((X_OP (insn) == 3
	   && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate.  */
	   && (X_RD (insn) & 0x18) == 0x18 /* Input register.  */
	   && X_I (insn)		/* Immediate mode.  */
	   && X_RS1 (insn) == 30	/* Off of frame pointer.  */
	   /* Into reserved stack space.  */
	   && X_SIMM13 (insn) >= 0x44
	   && X_SIMM13 (insn) < 0x5b))
	;
      else if (is_flat
	       && X_OP (insn) == 3
	       && X_OP3 (insn) == 4
	       && X_RS1 (insn) == 14
	       )
	{
	  if (saved_regs && X_I (insn))
	    saved_regs->regs[X_RD (insn)] =
	      fi->frame + fi->sp_offset + X_SIMM13 (insn);
	}
      else
	break;
      pc += 4;
      insn = fetch_instruction (pc);
    }

  return pc;
}

CORE_ADDR 
skip_prologue (start_pc, frameless_p)
     CORE_ADDR start_pc;
     int frameless_p;
{
  return examine_prologue (start_pc, frameless_p, NULL, NULL);
}

/* Check instruction at ADDR to see if it is a branch.
   All non-annulled instructions will go to NPC or will trap.
   Set *TARGET if we find a candidate branch; set to zero if not.

   This isn't static as it's used by remote-sa.sparc.c.  */

static branch_type
isbranch (instruction, addr, target)
     long instruction;
     CORE_ADDR addr, *target;
{
  branch_type val = not_branch;
  long int offset = 0;		/* Must be signed for sign-extend.  */

  *target = 0;

  if (X_OP (instruction) == 0
      && (X_OP2 (instruction) == 2
	  || X_OP2 (instruction) == 6
	  || X_OP2 (instruction) == 1
	  || X_OP2 (instruction) == 3
	  || X_OP2 (instruction) == 5
#ifndef GDB_TARGET_IS_SPARC64
	  || X_OP2 (instruction) == 7
#endif
	  ))
    {
      if (X_COND (instruction) == 8)
	val = X_A (instruction) ? baa : ba;
      else
	val = X_A (instruction) ? bicca : bicc;
      switch (X_OP2 (instruction))
	{
	case 2:
	case 6:
#ifndef GDB_TARGET_IS_SPARC64
	case 7:
#endif
	  offset = 4 * X_DISP22 (instruction);
	  break;
	case 1:
	case 5:
	  offset = 4 * X_DISP19 (instruction);
	  break;
	case 3:
	  offset = 4 * X_DISP16 (instruction);
	  break;
	}
      *target = addr + offset;
    }
#ifdef GDB_TARGET_IS_SPARC64
  else if (X_OP (instruction) == 2
	   && X_OP3 (instruction) == 62)
    {
      if (X_FCN (instruction) == 0)
	{
	  /* done */
	  *target = read_register (TNPC_REGNUM);
	  val = done_retry;
	}
      else if (X_FCN (instruction) == 1)
	{
	  /* retry */
	  *target = read_register (TPC_REGNUM);
	  val = done_retry;
	}
    }
#endif

  return val;
}

/* Find register number REGNUM relative to FRAME and put its
   (raw) contents in *RAW_BUFFER.  Set *OPTIMIZED if the variable
   was optimized out (and thus can't be fetched).  If the variable
   was fetched from memory, set *ADDRP to where it was fetched from,
   otherwise it was fetched from a register.

   The argument RAW_BUFFER must point to aligned memory.  */

void
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
     char *raw_buffer;
     int *optimized;
     CORE_ADDR *addrp;
     struct frame_info *frame;
     int regnum;
     enum lval_type *lval;
{
  struct frame_info *frame1;
  CORE_ADDR addr;

  if (!target_has_registers)
    error ("No registers.");

  if (optimized)
    *optimized = 0;

  addr = 0;

  /* FIXME This code extracted from infcmd.c; should put elsewhere! */
  if (frame == NULL)
    {
      /* error ("No selected frame."); */
      if (!target_has_registers)
        error ("The program has no registers now.");
      if (selected_frame == NULL) 
        error ("No selected frame.");
      /* Try to use selected frame */
      frame = get_prev_frame (selected_frame);  
      if (frame == 0)
        error ("Cmd not meaningful in the outermost frame."); 
    }


  frame1 = frame->next;

  /* Get saved PC from the frame info if not in innermost frame.  */
  if (regnum == PC_REGNUM && frame1 != NULL)
    {
      if (lval != NULL)
	*lval = not_lval;
      if (raw_buffer != NULL)
	{
	  /* Put it back in target format.  */
	  store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
	}
      if (addrp != NULL)
	*addrp = 0;
      return;
    }

  while (frame1 != NULL)
    {
      if (frame1->pc >= (frame1->bottom ? frame1->bottom :
			 read_sp ())
	  && frame1->pc <= FRAME_FP (frame1))
	{
	  /* Dummy frame.  All but the window regs are in there somewhere.
	     The window registers are saved on the stack, just like in a
	     normal frame.  */
	  if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
	    addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
	      - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
	  else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
	    addr = (frame1->prev->bottom
		    + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
		    + FRAME_SAVED_I0);
	  else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
	    addr = (frame1->prev->bottom
		    + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
		    + FRAME_SAVED_L0);
	  else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
	    addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
	      - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
#ifdef FP0_REGNUM
	  else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
	    addr = frame1->frame + (regnum - FP0_REGNUM) * 4
	      - (FP_REGISTER_BYTES);
#ifdef GDB_TARGET_IS_SPARC64
	  else if (regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
	    addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
	      - (FP_REGISTER_BYTES);
#endif
#endif /* FP0_REGNUM */
	  else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
	    addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
	      - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
	}
      else if (frame1->flat)
	{

	  if (regnum == RP_REGNUM)
	    addr = frame1->pc_addr;
	  else if (regnum == I7_REGNUM)
	    addr = frame1->fp_addr;
	  else
	    {
	      CORE_ADDR func_start;
	      struct frame_saved_regs regs;
	      memset (&regs, 0, sizeof (regs));

	      find_pc_partial_function (frame1->pc, NULL, &func_start, NULL);
	      examine_prologue (func_start, 0, frame1, &regs);
	      addr = regs.regs[regnum];
	    }
	}
      else
	{
	  /* Normal frame.  Local and In registers are saved on stack.  */
	  if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
	    addr = (frame1->prev->bottom
		    + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
		    + FRAME_SAVED_I0);
	  else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
	    addr = (frame1->prev->bottom
		    + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
		    + FRAME_SAVED_L0);
	  else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
	    {
	      /* Outs become ins.  */
	      get_saved_register (raw_buffer, optimized, addrp, frame1,
				  (regnum - O0_REGNUM + I0_REGNUM), lval);
	      return;
	    }
	}
      if (addr != 0)
	break;
      frame1 = frame1->next;
    }
  if (addr != 0)
    {
      if (lval != NULL)
	*lval = lval_memory;
      if (regnum == SP_REGNUM)
	{
	  if (raw_buffer != NULL)
	    {
	      /* Put it back in target format.  */
	      store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
	    }
	  if (addrp != NULL)
	    *addrp = 0;
	  return;
	}
      if (raw_buffer != NULL)
	read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
    }
  else
    {
      if (lval != NULL)
	*lval = lval_register;
      addr = REGISTER_BYTE (regnum);
      if (raw_buffer != NULL)
	read_register_gen (regnum, raw_buffer);
    }
  if (addrp != NULL)
    *addrp = addr;
}

/* Push an empty stack frame, and record in it the current PC, regs, etc.

   We save the non-windowed registers and the ins.  The locals and outs
   are new; they don't need to be saved. The i's and l's of
   the last frame were already saved on the stack.  */

/* Definitely see tm-sparc.h for more doc of the frame format here.  */

#ifdef GDB_TARGET_IS_SPARC64
#define DUMMY_REG_SAVE_OFFSET (128 + 16)
#else
#define DUMMY_REG_SAVE_OFFSET 0x60
#endif

/* See tm-sparc.h for how this is calculated.  */
#ifdef FP0_REGNUM
#define DUMMY_STACK_REG_BUF_SIZE \
(((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
#else
#define DUMMY_STACK_REG_BUF_SIZE \
(((8+8+8) * SPARC_INTREG_SIZE) )
#endif /* FP0_REGNUM */
#define DUMMY_STACK_SIZE (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)

void
sparc_push_dummy_frame ()
{
  CORE_ADDR sp, old_sp;
  char register_temp[DUMMY_STACK_SIZE];

  old_sp = sp = read_sp ();

#ifdef GDB_TARGET_IS_SPARC64
  /* PC, NPC, CCR, FSR, FPRS, Y, ASI */
  read_register_bytes (REGISTER_BYTE (PC_REGNUM), &register_temp[0],
		       REGISTER_RAW_SIZE (PC_REGNUM) * 7);
  read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM), &register_temp[8],
		       REGISTER_RAW_SIZE (PSTATE_REGNUM));
  /* FIXME: not sure what needs to be saved here.  */
#else
  /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
  read_register_bytes (REGISTER_BYTE (Y_REGNUM), &register_temp[0],
		       REGISTER_RAW_SIZE (Y_REGNUM) * 8);
#endif

  read_register_bytes (REGISTER_BYTE (O0_REGNUM),
		       &register_temp[8 * SPARC_INTREG_SIZE],
		       SPARC_INTREG_SIZE * 8);

  read_register_bytes (REGISTER_BYTE (G0_REGNUM),
		       &register_temp[16 * SPARC_INTREG_SIZE],
		       SPARC_INTREG_SIZE * 8);

#ifdef FP0_REGNUM
  read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
		       &register_temp[24 * SPARC_INTREG_SIZE],
		       FP_REGISTER_BYTES);
#endif /* FP0_REGNUM */

  sp -= DUMMY_STACK_SIZE;

  write_sp (sp);

  write_memory (sp + DUMMY_REG_SAVE_OFFSET, &register_temp[0],
		DUMMY_STACK_REG_BUF_SIZE);

  if (strcmp (target_shortname, "sim") != 0)
    {
      write_fp (old_sp);

      /* Set return address register for the call dummy to the current PC.  */
      write_register (I7_REGNUM, read_pc() - 8);
    }
  else
    {
      /* The call dummy will write this value to FP before executing
         the 'save'.  This ensures that register window flushes work
	 correctly in the simulator.  */
      write_register (G0_REGNUM+1, read_register (FP_REGNUM));
    
      /* The call dummy will write this value to FP after executing
         the 'save'. */
      write_register (G0_REGNUM+2, old_sp);
    
      /* The call dummy will write this value to the return address (%i7) after
	 executing the 'save'. */
      write_register (G0_REGNUM+3, read_pc() - 8);
    
      /* Set the FP that the call dummy will be using after the 'save'.
	 This makes backtraces from an inferior function call work properly.  */
      write_register (FP_REGNUM, old_sp);
    }
}

/* sparc_frame_find_saved_regs ().  This function is here only because
   pop_frame uses it.  Note there is an interesting corner case which
   I think few ports of GDB get right--if you are popping a frame
   which does not save some register that *is* saved by a more inner
   frame (such a frame will never be a dummy frame because dummy
   frames save all registers).  Rewriting pop_frame to use
   get_saved_register would solve this problem and also get rid of the
   ugly duplication between sparc_frame_find_saved_regs and
   get_saved_register.

   Stores, into a struct frame_saved_regs,
   the addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.

   Note that on register window machines, we are currently making the
   assumption that window registers are being saved somewhere in the
   frame in which they are being used.  If they are stored in an
   inferior frame, find_saved_register will break.

   On the Sun 4, the only time all registers are saved is when
   a dummy frame is involved.  Otherwise, the only saved registers
   are the LOCAL and IN registers which are saved as a result
   of the "save/restore" opcodes.  This condition is determined
   by address rather than by value.

   The "pc" is not stored in a frame on the SPARC.  (What is stored
   is a return address minus 8.)  sparc_pop_frame knows how to
   deal with that.  Other routines might or might not.

   See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
   about how this works.  */

static void sparc_frame_find_saved_regs PARAMS ((struct frame_info *,
						 struct frame_saved_regs *));

static void
sparc_frame_find_saved_regs (fi, saved_regs_addr)
     struct frame_info *fi;
     struct frame_saved_regs *saved_regs_addr;
{
  register int regnum;
  CORE_ADDR frame_addr = FRAME_FP (fi);

  if (!fi)
    fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS");

  memset (saved_regs_addr, 0, sizeof (*saved_regs_addr));

  if (fi->pc >= (fi->bottom ? fi->bottom :
		   read_sp ())
      && fi->pc <= FRAME_FP(fi))
    {
      /* Dummy frame.  All but the window regs are in there somewhere. */
      for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++)
	saved_regs_addr->regs[regnum] =
	  frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
	    - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;
      for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++)
	saved_regs_addr->regs[regnum] =
	  frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
	    - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;
#ifdef FP0_REGNUM
      for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++)
	saved_regs_addr->regs[regnum] =
	  frame_addr + (regnum - FP0_REGNUM) * 4
	    - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
#ifdef GDB_TARGET_IS_SPARC64
      for (regnum = FP0_REGNUM + 32; regnum < FP_MAX_REGNUM; regnum++)
	saved_regs_addr->regs[regnum] =
	  frame_addr + 32 * 4 + (regnum - FP0_REGNUM - 32) * 4
	    - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
#endif
#endif /* FP0_REGNUM */
#ifdef GDB_TARGET_IS_SPARC64
      for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
	{
	  saved_regs_addr->regs[regnum] =
	    frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE 
	      - DUMMY_STACK_REG_BUF_SIZE;
	}
      saved_regs_addr->regs[PSTATE_REGNUM] = 
	frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
#else
      for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
	saved_regs_addr->regs[regnum] =
	  frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE 
	    - DUMMY_STACK_REG_BUF_SIZE;
#endif
      frame_addr = fi->bottom ?
	fi->bottom : read_sp ();
    }
  else if (fi->flat)
    {
      CORE_ADDR func_start;
      find_pc_partial_function (fi->pc, NULL, &func_start, NULL);
      examine_prologue (func_start, 0, fi, saved_regs_addr);

      /* Flat register window frame.  */
      saved_regs_addr->regs[RP_REGNUM] = fi->pc_addr;
      saved_regs_addr->regs[I7_REGNUM] = fi->fp_addr;
    }
  else
    {
      /* Normal frame.  Just Local and In registers */
      frame_addr = fi->bottom ?
	fi->bottom : read_sp ();
      for (regnum = L0_REGNUM; regnum < L0_REGNUM+8; regnum++)
	saved_regs_addr->regs[regnum] =
	  (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
	   + FRAME_SAVED_L0);
      for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++)
	saved_regs_addr->regs[regnum] =
	  (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
	   + FRAME_SAVED_I0);
    }
  if (fi->next)
    {
      if (fi->flat)
	{
	  saved_regs_addr->regs[O7_REGNUM] = fi->pc_addr;
	}
      else
	{
	  /* Pull off either the next frame pointer or the stack pointer */
	  CORE_ADDR next_next_frame_addr =
	    (fi->next->bottom ?
	     fi->next->bottom :
	     read_sp ());
	  for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++)
	    saved_regs_addr->regs[regnum] =
	      (next_next_frame_addr
	       + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
	       + FRAME_SAVED_I0);
	}
    }
  /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
  /* FIXME -- should this adjust for the sparc64 offset? */
  saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi);
}

/* Discard from the stack the innermost frame, restoring all saved registers.

   Note that the values stored in fsr by get_frame_saved_regs are *in
   the context of the called frame*.  What this means is that the i
   regs of fsr must be restored into the o regs of the (calling) frame that
   we pop into.  We don't care about the output regs of the calling frame,
   since unless it's a dummy frame, it won't have any output regs in it.

   We never have to bother with %l (local) regs, since the called routine's
   locals get tossed, and the calling routine's locals are already saved
   on its stack.  */

/* Definitely see tm-sparc.h for more doc of the frame format here.  */

void
sparc_pop_frame ()
{
  register struct frame_info *frame = get_current_frame ();
  register CORE_ADDR pc;
  struct frame_saved_regs fsr;
  char raw_buffer[REGISTER_BYTES];
  int regnum;

  sparc_frame_find_saved_regs (frame, &fsr);
#ifdef FP0_REGNUM
  if (fsr.regs[FP0_REGNUM])
    {
      read_memory (fsr.regs[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
      write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
			    raw_buffer, FP_REGISTER_BYTES);
    }
#ifndef GDB_TARGET_IS_SPARC64
  if (fsr.regs[FPS_REGNUM])
    {
      read_memory (fsr.regs[FPS_REGNUM], raw_buffer, 4);
      write_register_bytes (REGISTER_BYTE (FPS_REGNUM), raw_buffer, 4);
    }
  if (fsr.regs[CPS_REGNUM])
    {
      read_memory (fsr.regs[CPS_REGNUM], raw_buffer, 4);
      write_register_bytes (REGISTER_BYTE (CPS_REGNUM), raw_buffer, 4);
    }
#endif
#endif /* FP0_REGNUM */
  if (fsr.regs[G1_REGNUM])
    {
      read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
      write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
			    7 * SPARC_INTREG_SIZE);
    }

  if (frame->flat)
    {
      /* Each register might or might not have been saved, need to test
	 individually.  */
      for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
	if (fsr.regs[regnum])
	  write_register (regnum, read_memory_integer (fsr.regs[regnum],
						       SPARC_INTREG_SIZE));
      for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
	if (fsr.regs[regnum])
	  write_register (regnum, read_memory_integer (fsr.regs[regnum],
						       SPARC_INTREG_SIZE));

      /* Handle all outs except stack pointer (o0-o5; o7).  */
      for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
	if (fsr.regs[regnum])
	  write_register (regnum, read_memory_integer (fsr.regs[regnum],
						       SPARC_INTREG_SIZE));
      if (fsr.regs[O0_REGNUM + 7])
	write_register (O0_REGNUM + 7,
			read_memory_integer (fsr.regs[O0_REGNUM + 7],
					     SPARC_INTREG_SIZE));

      write_sp (frame->frame);
    }
  else if (fsr.regs[I0_REGNUM])
    {
      CORE_ADDR sp;

      char reg_temp[REGISTER_BYTES];

      read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);

      /* Get the ins and locals which we are about to restore.  Just
	 moving the stack pointer is all that is really needed, except
	 store_inferior_registers is then going to write the ins and
	 locals from the registers array, so we need to muck with the
	 registers array.  */
      sp = fsr.regs[SP_REGNUM];
#ifdef GDB_TARGET_IS_SPARC64
      if (sp & 1)
	sp += 2047;
#endif
      read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);

      /* Restore the out registers.
	 Among other things this writes the new stack pointer.  */
      write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
			    SPARC_INTREG_SIZE * 8);

      write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
			    SPARC_INTREG_SIZE * 16);
    }
#ifndef GDB_TARGET_IS_SPARC64
  if (fsr.regs[PS_REGNUM])
    write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
#endif
  if (fsr.regs[Y_REGNUM])
    write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], REGISTER_RAW_SIZE (Y_REGNUM)));
  if (fsr.regs[PC_REGNUM])
    {
      /* Explicitly specified PC (and maybe NPC) -- just restore them. */
      write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM],
						      REGISTER_RAW_SIZE (PC_REGNUM)));
      if (fsr.regs[NPC_REGNUM])
	write_register (NPC_REGNUM,
			read_memory_integer (fsr.regs[NPC_REGNUM],
					     REGISTER_RAW_SIZE (NPC_REGNUM)));
    }
  else if (frame->flat)
    {
      if (frame->pc_addr)
	pc = PC_ADJUST ((CORE_ADDR)
			read_memory_integer (frame->pc_addr,
					     REGISTER_RAW_SIZE (PC_REGNUM)));
      else
	{
	  /* I think this happens only in the innermost frame, if so then
	     it is a complicated way of saying
	     "pc = read_register (O7_REGNUM);".  */
	  char buf[MAX_REGISTER_RAW_SIZE];
	  get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0);
	  pc = PC_ADJUST (extract_address
			  (buf, REGISTER_RAW_SIZE (O7_REGNUM)));
	}

      write_register (PC_REGNUM,  pc);
      write_register (NPC_REGNUM, pc + 4);
    }
  else if (fsr.regs[I7_REGNUM])
    {
      /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
      pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr.regs[I7_REGNUM],
						       SPARC_INTREG_SIZE));
      write_register (PC_REGNUM,  pc);
      write_register (NPC_REGNUM, pc + 4);
    }
  flush_cached_frames ();
}

/* On the Sun 4 under SunOS, the compile will leave a fake insn which
   encodes the structure size being returned.  If we detect such
   a fake insn, step past it.  */

CORE_ADDR
sparc_pc_adjust(pc)
     CORE_ADDR pc;
{
  unsigned long insn;
  char buf[4];
  int err;

  err = target_read_memory (pc + 8, buf, 4);
  insn = extract_unsigned_integer (buf, 4);
  if ((err == 0) && (insn & 0xffc00000) == 0)
    return pc+12;
  else
    return pc+8;
}

/* If pc is in a shared library trampoline, return its target.
   The SunOs 4.x linker rewrites the jump table entries for PIC
   compiled modules in the main executable to bypass the dynamic linker
   with jumps of the form
	sethi %hi(addr),%g1
	jmp %g1+%lo(addr)
   and removes the corresponding jump table relocation entry in the
   dynamic relocations.
   find_solib_trampoline_target relies on the presence of the jump
   table relocation entry, so we have to detect these jump instructions
   by hand.  */

CORE_ADDR
sunos4_skip_trampoline_code (pc)
     CORE_ADDR pc;
{
  unsigned long insn1;
  char buf[4];
  int err;

  err = target_read_memory (pc, buf, 4);
  insn1 = extract_unsigned_integer (buf, 4);
  if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
    {
      unsigned long insn2;

      err = target_read_memory (pc + 4, buf, 4);
      insn2 = extract_unsigned_integer (buf, 4);
      if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
	{
	  CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
	  int delta = insn2 & 0x1fff;

	  /* Sign extend the displacement.  */
	  if (delta & 0x1000)
	    delta |= ~0x1fff;
	  return target_pc + delta;
	}
    }
  return find_solib_trampoline_target (pc);
}

#ifdef USE_PROC_FS	/* Target dependent support for /proc */

/*  The /proc interface divides the target machine's register set up into
    two different sets, the general register set (gregset) and the floating
    point register set (fpregset).  For each set, there is an ioctl to get
    the current register set and another ioctl to set the current values.

    The actual structure passed through the ioctl interface is, of course,
    naturally machine dependent, and is different for each set of registers.
    For the sparc for example, the general register set is typically defined
    by:

	typedef int gregset_t[38];

	#define	R_G0	0
	...
	#define	R_TBR	37

    and the floating point set by:

	typedef struct prfpregset {
		union { 
			u_long  pr_regs[32]; 
			double  pr_dregs[16];
		} pr_fr;
		void *  pr_filler;
		u_long  pr_fsr;
		u_char  pr_qcnt;
		u_char  pr_q_entrysize;
		u_char  pr_en;
		u_long  pr_q[64];
	} prfpregset_t;

    These routines provide the packing and unpacking of gregset_t and
    fpregset_t formatted data.

 */

/* Given a pointer to a general register set in /proc format (gregset_t *),
   unpack the register contents and supply them as gdb's idea of the current
   register values. */

void
supply_gregset (gregsetp)
prgregset_t *gregsetp;
{
  register int regi;
  register prgreg_t *regp = (prgreg_t *) gregsetp;
  static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};

  /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers.  */
  for (regi = G0_REGNUM ; regi <= I7_REGNUM ; regi++)
    {
      supply_register (regi, (char *) (regp + regi));
    }

  /* These require a bit more care.  */
  supply_register (PS_REGNUM, (char *) (regp + R_PS));
  supply_register (PC_REGNUM, (char *) (regp + R_PC));
  supply_register (NPC_REGNUM,(char *) (regp + R_nPC));
  supply_register (Y_REGNUM,  (char *) (regp + R_Y));

  /* Fill inaccessible registers with zero.  */
  supply_register (WIM_REGNUM, zerobuf);
  supply_register (TBR_REGNUM, zerobuf);
  supply_register (CPS_REGNUM, zerobuf);
}

void
fill_gregset (gregsetp, regno)
prgregset_t *gregsetp;
int regno;
{
  int regi;
  register prgreg_t *regp = (prgreg_t *) gregsetp;

  for (regi = 0 ; regi <= R_I7 ; regi++)
    {
      if ((regno == -1) || (regno == regi))
	{
	  *(regp + regi) = *(int *) &registers[REGISTER_BYTE (regi)];
	}
    }
  if ((regno == -1) || (regno == PS_REGNUM))
    {
      *(regp + R_PS) = *(int *) &registers[REGISTER_BYTE (PS_REGNUM)];
    }
  if ((regno == -1) || (regno == PC_REGNUM))
    {
      *(regp + R_PC) = *(int *) &registers[REGISTER_BYTE (PC_REGNUM)];
    }
  if ((regno == -1) || (regno == NPC_REGNUM))
    {
      *(regp + R_nPC) = *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)];
    }
  if ((regno == -1) || (regno == Y_REGNUM))
    {
      *(regp + R_Y) = *(int *) &registers[REGISTER_BYTE (Y_REGNUM)];
    }
}

#if defined (FP0_REGNUM)

/*  Given a pointer to a floating point register set in /proc format
    (fpregset_t *), unpack the register contents and supply them as gdb's
    idea of the current floating point register values. */

void 
supply_fpregset (fpregsetp)
prfpregset_t *fpregsetp;
{
  register int regi;
  char *from;
  
  for (regi = FP0_REGNUM ; regi < FP_MAX_REGNUM ; regi++)
    {
      from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
      supply_register (regi, from);
    }
  supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
}

/*  Given a pointer to a floating point register set in /proc format
    (fpregset_t *), update the register specified by REGNO from gdb's idea
    of the current floating point register set.  If REGNO is -1, update
    them all. */
/* ??? This will probably need some changes for sparc64.  */

void
fill_fpregset (fpregsetp, regno)
prfpregset_t *fpregsetp;
int regno;
{
  int regi;
  char *to;
  char *from;

  for (regi = FP0_REGNUM ; regi < FP_MAX_REGNUM ; regi++)
    {
      if ((regno == -1) || (regno == regi))
	{
	  from = (char *) &registers[REGISTER_BYTE (regi)];
	  to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
	  memcpy (to, from, REGISTER_RAW_SIZE (regi));
	}
    }
  if ((regno == -1) || (regno == FPS_REGNUM))
    {
      fpregsetp->pr_fsr = *(int *) &registers[REGISTER_BYTE (FPS_REGNUM)];
    }
}

#endif	/* defined (FP0_REGNUM) */

#endif  /* USE_PROC_FS */


#ifdef GET_LONGJMP_TARGET

/* Figure out where the longjmp will land.  We expect that we have just entered
   longjmp and haven't yet setup the stack frame, so the args are still in the
   output regs.  %o0 (O0_REGNUM) points at the jmp_buf structure from which we
   extract the pc (JB_PC) that we will land at.  The pc is copied into ADDR.
   This routine returns true on success */

int
get_longjmp_target (pc)
     CORE_ADDR *pc;
{
  CORE_ADDR jb_addr;
#define LONGJMP_TARGET_SIZE 4
  char buf[LONGJMP_TARGET_SIZE];

  jb_addr = read_register (O0_REGNUM);

  if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
			  LONGJMP_TARGET_SIZE))
    return 0;

  *pc = extract_address (buf, LONGJMP_TARGET_SIZE);

  return 1;
}
#endif /* GET_LONGJMP_TARGET */

#ifdef STATIC_TRANSFORM_NAME
/* SunPRO (3.0 at least), encodes the static variables.  This is not
   related to C++ mangling, it is done for C too.  */

char *
sunpro_static_transform_name (name)
     char *name;
{
  char *p;
  if (name[0] == '$')
    {
      /* For file-local statics there will be a dollar sign, a bunch
	 of junk (the contents of which match a string given in the
	 N_OPT), a period and the name.  For function-local statics
	 there will be a bunch of junk (which seems to change the
	 second character from 'A' to 'B'), a period, the name of the
	 function, and the name.  So just skip everything before the
	 last period.  */
      p = strrchr (name, '.');
      if (p != NULL)
	name = p + 1;
    }
  return name;
}
#endif /* STATIC_TRANSFORM_NAME */


/* Utilities for printing registers.
   Page numbers refer to the SPARC Architecture Manual.  */

static void dump_ccreg PARAMS ((char *, int));

static void
dump_ccreg (reg, val)
     char *reg;
     int val;
{
  /* page 41 */
  printf_unfiltered ("%s:%s,%s,%s,%s", reg,
	  val & 8 ? "N" : "NN",
	  val & 4 ? "Z" : "NZ",
	  val & 2 ? "O" : "NO",
	  val & 1 ? "C" : "NC"
  );
}

static char *
decode_asi (val)
     int val;
{
  /* page 72 */
  switch (val)
    {
    case 4 : return "ASI_NUCLEUS";
    case 0x0c : return "ASI_NUCLEUS_LITTLE";
    case 0x10 : return "ASI_AS_IF_USER_PRIMARY";
    case 0x11 : return "ASI_AS_IF_USER_SECONDARY";
    case 0x18 : return "ASI_AS_IF_USER_PRIMARY_LITTLE";
    case 0x19 : return "ASI_AS_IF_USER_SECONDARY_LITTLE";
    case 0x80 : return "ASI_PRIMARY";
    case 0x81 : return "ASI_SECONDARY";
    case 0x82 : return "ASI_PRIMARY_NOFAULT";
    case 0x83 : return "ASI_SECONDARY_NOFAULT";
    case 0x88 : return "ASI_PRIMARY_LITTLE";
    case 0x89 : return "ASI_SECONDARY_LITTLE";
    case 0x8a : return "ASI_PRIMARY_NOFAULT_LITTLE";
    case 0x8b : return "ASI_SECONDARY_NOFAULT_LITTLE";
    default : return NULL;
    }
}

/* PRINT_REGISTER_HOOK routine.
   Pretty print various registers.  */
/* FIXME: Would be nice if this did some fancy things for 32 bit sparc.  */

void
sparc_print_register_hook (regno)
     int regno;
{
  ULONGEST val;

  /* Handle double/quad versions of lower 32 fp regs.  */
  if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
      && (regno & 1) == 0)
    {
      char value[16];

      if (!read_relative_register_raw_bytes (regno, value)
	  && !read_relative_register_raw_bytes (regno + 1, value + 4))
	{
	  printf_unfiltered ("\t");
	  print_floating (value, builtin_type_double, gdb_stdout);
	}
#if 0 /* FIXME: gdb doesn't handle long doubles */
      if ((regno & 3) == 0)
	{
	  if (!read_relative_register_raw_bytes (regno + 2, value + 8)
	      && !read_relative_register_raw_bytes (regno + 3, value + 12))
	    {
	      printf_unfiltered ("\t");
	      print_floating (value, builtin_type_long_double, gdb_stdout);
	    }
	}
#endif
      return;
    }

#if 0 /* FIXME: gdb doesn't handle long doubles */
  /* Print upper fp regs as long double if appropriate.  */
  if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
      /* We test for even numbered regs and not a multiple of 4 because
	 the upper fp regs are recorded as doubles.  */
      && (regno & 1) == 0)
    {
      char value[16];

      if (!read_relative_register_raw_bytes (regno, value)
	  && !read_relative_register_raw_bytes (regno + 1, value + 8))
	{
	  printf_unfiltered ("\t");
	  print_floating (value, builtin_type_long_double, gdb_stdout);
	}
      return;
    }
#endif

  /* FIXME: Some of these are priviledged registers.
     Not sure how they should be handled.  */

#define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))

  val = read_register (regno);

  /* pages 40 - 60 */
  switch (regno)
    {
#ifdef GDB_TARGET_IS_SPARC64
    case CCR_REGNUM :
      printf_unfiltered("\t");
      dump_ccreg ("xcc", val >> 4);
      printf_unfiltered(", ");
      dump_ccreg ("icc", val & 15);
      break;
    case FPRS_REGNUM :
      printf ("\tfef:%d, du:%d, dl:%d",
	      BITS (2, 1), BITS (1, 1), BITS (0, 1));
      break;
    case FSR_REGNUM :
      {
	static char *fcc[4] = { "=", "<", ">", "?" };
	static char *rd[4] = { "N", "0", "+", "-" };
	/* Long, yes, but I'd rather leave it as is and use a wide screen.  */
	printf ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
		fcc[BITS (10, 3)], fcc[BITS (32, 3)],
		fcc[BITS (34, 3)], fcc[BITS (36, 3)],
		rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
		BITS (14, 7), BITS (13, 1), BITS (5, 31), BITS (0, 31));
	break;
      }
    case ASI_REGNUM :
      {
	char *asi = decode_asi (val);
	if (asi != NULL)
	  printf ("\t%s", asi);
	break;
      }
    case VER_REGNUM :
      printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
	      BITS (48, 0xffff), BITS (32, 0xffff),
	      BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
      break;
    case PSTATE_REGNUM :
      {
	static char *mm[4] = { "tso", "pso", "rso", "?" };
	printf ("\tcle:%d, tle:%d, mm:%s, red:%d, pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
		BITS (9, 1), BITS (8, 1), mm[BITS (6, 3)], BITS (5, 1),
		BITS (4, 1), BITS (3, 1), BITS (2, 1), BITS (1, 1),
		BITS (0, 1));
	break;
      }
    case TSTATE_REGNUM :
      /* FIXME: print all 4? */
      break;
    case TT_REGNUM :
      /* FIXME: print all 4? */
      break;
    case TPC_REGNUM :
      /* FIXME: print all 4? */
      break;
    case TNPC_REGNUM :
      /* FIXME: print all 4? */
      break;
    case WSTATE_REGNUM :
      printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
      break;
    case CWP_REGNUM :
      printf ("\t%d", BITS (0, 31));
      break;
    case CANSAVE_REGNUM :
      printf ("\t%-2d before spill", BITS (0, 31));
      break;
    case CANRESTORE_REGNUM :
      printf ("\t%-2d before fill", BITS (0, 31));
      break;
    case CLEANWIN_REGNUM :
      printf ("\t%-2d before clean", BITS (0, 31));
      break;
    case OTHERWIN_REGNUM :
      printf ("\t%d", BITS (0, 31));
      break;
#else
    case PS_REGNUM:
      printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
	      BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
	      BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
	      BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
	      BITS (0, 31));
      break;
    case FPS_REGNUM:
      {
	static char *fcc[4] = { "=", "<", ">", "?" };
	static char *rd[4] = { "N", "0", "+", "-" };
	/* Long, yes, but I'd rather leave it as is and use a wide screen.  */
	printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
		"fcc:%s, aexc:%d, cexc:%d",
		rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
		BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
		BITS (0, 31));
	break;
      }

#endif	/* GDB_TARGET_IS_SPARC64 */
    }

#undef BITS
}

int
gdb_print_insn_sparc (memaddr, info)
     bfd_vma memaddr;
     disassemble_info *info;
{
  /* It's necessary to override mach again because print_insn messes it up. */
  info->mach = TM_PRINT_INSN_MACH;
  return print_insn_sparc (memaddr, info);
}

/* The SPARC passes the arguments on the stack; arguments smaller
   than an int are promoted to an int.  */

CORE_ADDR
sparc_push_arguments (nargs, args, sp, struct_return, struct_addr)
     int nargs;
     value_ptr *args;
     CORE_ADDR sp;
     int struct_return;
     CORE_ADDR struct_addr;
{
  int i;
  int accumulate_size = 0;
  struct sparc_arg
    {
      char *contents;
      int len;
      int offset;
    };
  struct sparc_arg *sparc_args =
      (struct sparc_arg*)alloca (nargs * sizeof (struct sparc_arg));
  struct sparc_arg *m_arg;

  /* Promote arguments if necessary, and calculate their stack offsets
     and sizes. */
  for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
    {
      value_ptr arg = args[i];
      struct type *arg_type = check_typedef (VALUE_TYPE (arg));
      /* Cast argument to long if necessary as the compiler does it too.  */
      switch (TYPE_CODE (arg_type))
	{
	case TYPE_CODE_INT:
	case TYPE_CODE_BOOL:
	case TYPE_CODE_CHAR:
	case TYPE_CODE_RANGE:
	case TYPE_CODE_ENUM:
	  if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
	    {
	      arg_type = builtin_type_long;
	      arg = value_cast (arg_type, arg);
	    }
	  break;
	default:
	  break;
	}
      m_arg->len = TYPE_LENGTH (arg_type);
      m_arg->offset = accumulate_size;
      accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
      m_arg->contents = VALUE_CONTENTS(arg);
    }

  /* Make room for the arguments on the stack.  */
  accumulate_size += CALL_DUMMY_STACK_ADJUST;
  sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST;

  /* `Push' arguments on the stack.  */
  for (i = nargs; m_arg--, --i >= 0; )
    write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len);

  return sp;
}


/* Extract from an array REGBUF containing the (raw) register state
   a function return value of type TYPE, and copy that, in virtual format,
   into VALBUF.  */

void
sparc_extract_return_value (type, regbuf, valbuf)
     struct type *type;
     char *regbuf;
     char *valbuf;
{
  int typelen = TYPE_LENGTH (type);
  int regsize = REGISTER_RAW_SIZE (O0_REGNUM);

  if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
    memcpy (valbuf, &regbuf [REGISTER_BYTE (FP0_REGNUM)], typelen);
  else
    memcpy (valbuf,
	    &regbuf [O0_REGNUM * regsize +
		     (typelen >= regsize
		      || TARGET_BYTE_ORDER == LITTLE_ENDIAN ? 0
			 : regsize - typelen)],
	    typelen);
}


/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.  On SPARCs with FPUs,
   float values are returned in %f0 (and %f1).  In all other cases,
   values are returned in register %o0.  */

void
sparc_store_return_value (type, valbuf)
     struct type *type;
     char *valbuf;
{
  int regno;
  char buffer[MAX_REGISTER_RAW_SIZE];

  if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
    /* Floating-point values are returned in the register pair */
    /* formed by %f0 and %f1 (doubles are, anyway).  */
    regno = FP0_REGNUM;
  else
    /* Other values are returned in register %o0.  */
    regno = O0_REGNUM;

  /* Add leading zeros to the value. */
  if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE(regno))
    {
      bzero (buffer, REGISTER_RAW_SIZE(regno));
      memcpy (buffer + REGISTER_RAW_SIZE(regno) - TYPE_LENGTH (type), valbuf,
	      TYPE_LENGTH (type));
      write_register_bytes (REGISTER_BYTE (regno), buffer, 
			    REGISTER_RAW_SIZE(regno));
    }
  else
    write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type));
}


/* Insert the function address into a call dummy instruction sequence
   stored at DUMMY.

   For structs and unions, if the function was compiled with Sun cc,
   it expects 'unimp' after the call.  But gcc doesn't use that
   (twisted) convention.  So leave a nop there for gcc (FIX_CALL_DUMMY
   can assume it is operating on a pristine CALL_DUMMY, not one that
   has already been customized for a different function).  */

void
sparc_fix_call_dummy (dummy, pc, fun, value_type, using_gcc)
     char *dummy;
     CORE_ADDR pc;
     CORE_ADDR fun;
     struct type *value_type;
     int using_gcc;
{
  int i;

  /* Store the relative adddress of the target function into the
     'call' instruction. */
  store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
			  (0x40000000
			   | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
			       & 0x3fffffff)));

  /* Comply with strange Sun cc calling convention for struct-returning
     functions.  */
  if (!using_gcc
      && (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
	  || TYPE_CODE (value_type) == TYPE_CODE_UNION))
    store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
			    TYPE_LENGTH (value_type) & 0x1fff);

#ifndef GDB_TARGET_IS_SPARC64
  /* If this is not a simulator target, change the first four instructions
     of the call dummy to NOPs.  Those instructions include a 'save'
     instruction and are designed to work around problems with register
     window flushing in the simulator. */
  if (strcmp (target_shortname, "sim") != 0)
    {
      for (i = 0; i < 4; i++)
	store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
    }
#endif

  /* If this is a bi-endian target, GDB has written the call dummy
     in little-endian order.  We must byte-swap it back to big-endian. */
  if (bi_endian)
    {
      for (i = 0; i < CALL_DUMMY_LENGTH; i += 4)
	{
	  char tmp = dummy [i];
	  dummy [i] = dummy [i+3];
	  dummy [i+3] = tmp;
	  tmp = dummy [i+1];
	  dummy [i+1] = dummy [i+2];
	  dummy [i+2] = tmp;
	}
    }
}


/* Set target byte order based on machine type. */

static int
sparc_target_architecture_hook (ap)
     const bfd_arch_info_type *ap;
{
  int i, j;

  if (ap->mach == bfd_mach_sparc_sparclite_le)
    {
      if (TARGET_BYTE_ORDER_SELECTABLE_P)
	{
	  target_byte_order = LITTLE_ENDIAN;
	  bi_endian = 1;
	}
      else
	{
	  warning ("This GDB does not support little endian sparclite.");
	}
    }
  else
    bi_endian = 0;
  return 1;
}


void
_initialize_sparc_tdep ()
{
  tm_print_insn = gdb_print_insn_sparc;
  tm_print_insn_info.mach = TM_PRINT_INSN_MACH;  /* Selects sparc/sparclite */
  target_architecture_hook = sparc_target_architecture_hook;
}


#ifdef GDB_TARGET_IS_SPARC64

/* Compensate for stack bias. Note that we currently don't handle mixed
   32/64 bit code. */
CORE_ADDR
sparc64_read_sp ()
{
  CORE_ADDR sp = read_register (SP_REGNUM);

  if (sp & 1)
    sp += 2047;
  return sp;
}

CORE_ADDR
sparc64_read_fp ()
{
  CORE_ADDR fp = read_register (FP_REGNUM);

  if (fp & 1)
    fp += 2047;
  return fp;
}

void
sparc64_write_sp (val)
     CORE_ADDR val;
{
  CORE_ADDR oldsp = read_register (SP_REGNUM);
  if (oldsp & 1)
    write_register (SP_REGNUM, val - 2047);
  else
    write_register (SP_REGNUM, val);
}

void
sparc64_write_fp (val)
     CORE_ADDR val;
{
  CORE_ADDR oldfp = read_register (FP_REGNUM);
  if (oldfp & 1)
    write_register (FP_REGNUM, val - 2047);
  else
    write_register (FP_REGNUM, val);
}

/* The SPARC 64 ABI passes floating-point arguments in FP0-31. They are
   also copied onto the stack in the correct places. */

CORE_ADDR
sp64_push_arguments (nargs, args, sp, struct_return, struct_retaddr)
     int nargs;
     value_ptr *args;
     CORE_ADDR sp;
     unsigned char struct_return;
     CORE_ADDR struct_retaddr;
{
  int x;
  int regnum = 0;
  CORE_ADDR tempsp;
  
  sp = (sp & ~(((unsigned long)TYPE_LENGTH (builtin_type_long)) - 1UL));

  /* Figure out how much space we'll need. */
  for (x = nargs - 1; x >= 0; x--)
    {
      int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x])));
      value_ptr copyarg = args[x];
      int copylen = len;

      /* This code is, of course, no longer correct. */
      if (copylen < TYPE_LENGTH (builtin_type_long))
	{
	  copyarg = value_cast(builtin_type_long, copyarg);
          copylen = TYPE_LENGTH (builtin_type_long);
        }
      sp -= copylen;
    }

  /* Round down. */
  sp = sp & ~7;
  tempsp = sp;

  /* Now write the arguments onto the stack, while writing FP arguments
     into the FP registers. */
  for (x = 0; x < nargs; x++)
    {
      int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x])));
      value_ptr copyarg = args[x];
      int copylen = len;

      /* This code is, of course, no longer correct. */
      if (copylen < TYPE_LENGTH (builtin_type_long))
	{
	  copyarg = value_cast(builtin_type_long, copyarg);
          copylen = TYPE_LENGTH (builtin_type_long);
        }
      write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
      tempsp += copylen;
      if (TYPE_CODE (VALUE_TYPE (args[x])) == TYPE_CODE_FLT && regnum < 32)
	{
	  /* This gets copied into a FP register. */
	  int nextreg = regnum + 2;
	  char *data = VALUE_CONTENTS (args[x]);
	  /* Floats go into the lower half of a FP register pair; quads
	     use 2 pairs. */

	  if (len == 16)
	    nextreg += 2;
	  else if (len == 4)
	    regnum++;

	  write_register_bytes (REGISTER_BYTE (FP0_REGNUM + regnum),
				data,
				len);
	  regnum = nextreg;
	}
    }
  return sp;
}

/* Values <= 32 bytes are returned in o0-o3 (floating-point values are
   returned in f0-f3). */
void
sparc64_extract_return_value (type, regbuf, valbuf, bitoffset)
     struct type *type;
     char *regbuf;
     char *valbuf;
     int bitoffset;
{
  int typelen = TYPE_LENGTH (type);
  int regsize = REGISTER_RAW_SIZE (O0_REGNUM);

  if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
    {
      memcpy (valbuf, &regbuf [REGISTER_BYTE (FP0_REGNUM)], typelen);
      return;
    }

  if (TYPE_CODE (type) != TYPE_CODE_STRUCT
      || (TYPE_LENGTH (type) > 32))
    {
      memcpy (valbuf,
	      &regbuf [O0_REGNUM * regsize +
		      (typelen >= regsize ? 0 : regsize - typelen)],
	      typelen);
      return;
    }
  else
    {
      char *o0 = &regbuf[O0_REGNUM * regsize];
      char *f0 = &regbuf[FP0_REGNUM * regsize];
      int x;

      for (x = 0; x < TYPE_NFIELDS (type); x++)
	{
	  struct field *f = &TYPE_FIELDS(type)[x];
	  /* FIXME: We may need to handle static fields here. */
	  int whichreg = (f->loc.bitpos + bitoffset) / 32;
	  int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
	  int where = (f->loc.bitpos + bitoffset) / 8;
	  int size = TYPE_LENGTH (f->type);
	  int typecode = TYPE_CODE (f->type);

	  if (typecode == TYPE_CODE_STRUCT)
	    {
	      sparc64_extract_return_value (f->type,
					    regbuf,
					    valbuf,
					    bitoffset + f->loc.bitpos);
	    }
	  else if (typecode == TYPE_CODE_FLT)
	    {
	      memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
	    }
	  else
	    {
	      memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
	    }
	}
    }
}
#endif