summaryrefslogtreecommitdiff
path: root/gdb/valops.c
blob: b3515d274b2ea718c1cdbc3e48fb9db51413631e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
/* Perform non-arithmetic operations on values, for GDB.
   Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
   1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "frame.h"
#include "inferior.h"
#include "gdbcore.h"
#include "target.h"
#include "demangle.h"
#include "language.h"
#include "gdbcmd.h"
#include "cp-abi.h"
#include "regcache.h"
#include "cp-abi.h"

#include <errno.h>
#include "gdb_string.h"

/* Flag indicating HP compilers were used; needed to correctly handle some
   value operations with HP aCC code/runtime. */
extern int hp_som_som_object_present;

extern int overload_debug;
/* Local functions.  */

enum looking_for_baseclass_type
  {
    no_baseclass,
    only_baseclass,
    struct_or_baseclass
  };
static int typecmp (int staticp, struct type *t1[], value_ptr t2[]);

static CORE_ADDR find_function_addr (value_ptr, struct type **);
static value_ptr value_arg_coerce (value_ptr, struct type *, int);


static CORE_ADDR value_push (CORE_ADDR, value_ptr);
static value_ptr
search_struct_field (const char *, value_ptr, int, struct type *,
		     enum looking_for_baseclass_type, char *);
static value_ptr
search_struct_field_aux (const char *, value_ptr, int, struct type *,
			 enum looking_for_baseclass_type,
			 int *, char *, struct type **, char *);
static value_ptr search_struct_method (const char *, value_ptr *,
				       value_ptr *,
				       int, int *, struct type *);

static int check_field_in (struct type *, const char *);

static CORE_ADDR allocate_space_in_inferior (int);

static value_ptr cast_into_complex (struct type *, value_ptr);

static struct fn_field *find_method_list (value_ptr * argp, char *method,
					  int offset, int *static_memfuncp,
					  struct type *type, int *num_fns,
					  struct type **basetype,
					  int *boffset);

void _initialize_valops (void);

/* Flag for whether we want to abandon failed expression evals by default.  */

#if 0
static int auto_abandon = 0;
#endif

int overload_resolution = 0;

/* This boolean tells what gdb should do if a signal is received while in
   a function called from gdb (call dummy).  If set, gdb unwinds the stack
   and restore the context to what as it was before the call.
   The default is to stop in the frame where the signal was received. */

int unwind_on_signal_p = 0;



/* Find the address of function name NAME in the inferior.  */

value_ptr
find_function_in_inferior (char *name)
{
  register struct symbol *sym;
  sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
  if (sym != NULL)
    {
      if (SYMBOL_CLASS (sym) != LOC_BLOCK)
	{
	  error ("\"%s\" exists in this program but is not a function.",
		 name);
	}
      return value_of_variable (sym, NULL);
    }
  else
    {
      struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
      if (msymbol != NULL)
	{
	  struct type *type;
	  CORE_ADDR maddr;
	  type = lookup_pointer_type (builtin_type_char);
	  type = (struct type *)make_function_type (NULL, type, 0, NULL, 0);
	  type = lookup_pointer_type (type);
	  maddr = SYMBOL_VALUE_ADDRESS (msymbol);
	  return value_from_pointer (type, maddr);
	}
      else
	{
	  if (!target_has_execution)
	    error ("evaluation of this expression requires the target program to be active");
	  else
	    error ("evaluation of this expression requires the program to have a function \"%s\".", name);
	}
    }
}

/* Allocate NBYTES of space in the inferior using the inferior's malloc
   and return a value that is a pointer to the allocated space. */

value_ptr
value_allocate_space_in_inferior (int len)
{
  value_ptr blocklen;
  register value_ptr val = find_function_in_inferior ("malloc");

  blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
  val = call_function_by_hand (val, 1, &blocklen);
  if (value_logical_not (val))
    {
      if (!target_has_execution)
	error ("No memory available to program now: you need to start the target first");
      else
	error ("No memory available to program: call to malloc failed");
    }
  return val;
}

static CORE_ADDR
allocate_space_in_inferior (int len)
{
  return value_as_long (value_allocate_space_in_inferior (len));
}

/* Cast value ARG2 to type TYPE and return as a value.
   More general than a C cast: accepts any two types of the same length,
   and if ARG2 is an lvalue it can be cast into anything at all.  */
/* In C++, casts may change pointer or object representations.  */

value_ptr
value_cast (struct type *type, register value_ptr arg2)
{
  register enum type_code code1;
  register enum type_code code2;
  register int scalar;
  struct type *type2;

  int convert_to_boolean = 0;

  if (VALUE_TYPE (arg2) == type)
    return arg2;

  CHECK_TYPEDEF (type);
  code1 = TYPE_CODE (type);
  COERCE_REF (arg2);
  type2 = check_typedef (VALUE_TYPE (arg2));

  /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
     is treated like a cast to (TYPE [N])OBJECT,
     where N is sizeof(OBJECT)/sizeof(TYPE). */
  if (code1 == TYPE_CODE_ARRAY)
    {
      struct type *element_type = ARRAY_ELEMENT_TYPE (type);
      unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
#if TYPEFIX
      if (current_language->la_language == language_fortran && element_length > 0
	&& TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BT_cannot_be_determined)
	{
	  struct type *range_type = TYPE_INDEX_TYPE (type);
	  int val_length = TYPE_LENGTH (type2);
	  LONGEST low_bound, high_bound, new_length;
	  if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
	    low_bound = 0, high_bound = 0;
	  new_length = val_length / element_length;
	  if (val_length % element_length != 0)
	    warning ("array element type size does not divide object size in cast");
	  /* TYPEFIX-type-allocation: need a way to free this type when we are
	     done with it.  */
	  range_type = create_range_type ((struct type *) NULL,
					  TYPE_TARGET_TYPE (range_type),
					  low_bound,
					  new_length + low_bound - 1);
	  VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
						 element_type, range_type);
	  return arg2;
	}
#endif
    }

  if (current_language->c_style_arrays
      && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
    arg2 = value_coerce_array (arg2);

  if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
    arg2 = value_coerce_function (arg2);

  type2 = check_typedef (VALUE_TYPE (arg2));
  COERCE_VARYING_ARRAY (arg2, type2);
  code2 = TYPE_CODE (type2);

  if (code1 == TYPE_CODE_COMPLEX)
    return cast_into_complex (type, arg2);
  if (code1 == TYPE_CODE_BOOL)
    {
      code1 = TYPE_CODE_INT;
      convert_to_boolean = 1;
    }
  if (code1 == TYPE_CODE_CHAR)
    code1 = TYPE_CODE_INT;
  if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
    code2 = TYPE_CODE_INT;

  scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
	    || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);

  if (code1 == TYPE_CODE_STRUCT
      && code2 == TYPE_CODE_STRUCT
      && TYPE_NAME (type) != 0)
    {
      /* Look in the type of the source to see if it contains the
         type of the target as a superclass.  If so, we'll need to
         offset the object in addition to changing its type.  */
      value_ptr v = search_struct_field (type_name_no_tag (type),
					 arg2, 0, type2, only_baseclass, 0);
      if (v)
	{
	  VALUE_TYPE (v) = type;
	  return v;
	}
    }
  if (code1 == TYPE_CODE_FLT && scalar)
    return value_from_double (type, value_as_double (arg2));
  else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
	    || code1 == TYPE_CODE_RANGE)
	   && (scalar || code2 == TYPE_CODE_PTR))
    {
      LONGEST longest;

      if (hp_som_som_object_present &&	/* if target compiled by HP aCC */
	  (code2 == TYPE_CODE_PTR))
	{
	  unsigned int *ptr;
	  value_ptr retvalp;

	  switch (TYPE_CODE (POINTER_TARGET_TYPE (type2)))
	    {
	      /* With HP aCC, pointers to data members have a bias */
	    case TYPE_CODE_MEMBER:
	      retvalp = value_from_longest (type, value_as_long (arg2));
	      /* force evaluation */
	      ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
	      *ptr &= ~0x20000000;	/* zap 29th bit to remove bias */
	      return retvalp;

	      /* While pointers to methods don't really point to a function */
	    case TYPE_CODE_METHOD:
	      error ("Pointers to methods not supported with HP aCC");

	    default:
	      break;		/* fall out and go to normal handling */
	    }
	}
      longest = value_as_long (arg2);
      return value_from_longest (type, convert_to_boolean ?
				 (LONGEST) (longest ? 1 : 0) : longest);
    }
  else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT  ||
				      code2 == TYPE_CODE_ENUM ||
				      code2 == TYPE_CODE_RANGE))
    {
      /* TYPE_LENGTH (type) is the length of a pointer, but we really
	 want the length of an address! -- we are really dealing with
	 addresses (i.e., gdb representations) not pointers (i.e.,
	 target representations) here.

	 This allows things like "print *(int *)0x01000234" to work
	 without printing a misleading message -- which would
	 otherwise occur when dealing with a target having two byte
	 pointers and four byte addresses.  */

      int addr_bit = TARGET_ADDR_BIT;

      LONGEST longest = value_as_long (arg2);
      if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
	{
	  if (longest >= ((LONGEST) 1 << addr_bit)
	      || longest <= -((LONGEST) 1 << addr_bit))
	    warning ("value truncated");
	}
      return value_from_longest (type, longest);
    }
  else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
    {
      if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
	{
	  struct type *t1 = check_typedef (POINTER_TARGET_TYPE (type));
	  struct type *t2 = check_typedef (POINTER_TARGET_TYPE (type2));
	  if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
	      && TYPE_CODE (t2) == TYPE_CODE_STRUCT
	      && !value_logical_not (arg2))
	    {
	      value_ptr v;

	      /* Look in the type of the source to see if it contains the
	         type of the target as a superclass.  If so, we'll need to
	         offset the pointer rather than just change its type.  */
	      if (TYPE_NAME (t1) != NULL)
		{
		  v = search_struct_field (type_name_no_tag (t1),
					   value_ind (arg2), 0, t2, only_baseclass, 0);
		  if (v)
		    {
		      v = value_addr (v);
		      VALUE_TYPE (v) = type;
		      return v;
		    }
		}

	      /* Look in the type of the target to see if it contains the
	         type of the source as a superclass.  If so, we'll need to
	         offset the pointer rather than just change its type.
	         FIXME: This fails silently with virtual inheritance.  */
	      if (TYPE_NAME (t2) != NULL)
		{
		  v = search_struct_field (type_name_no_tag (t2),
				       value_zero (t1, not_lval), 0, t1, only_baseclass, 0);
		  if (v)
		    {
		      value_ptr v2 = value_ind (arg2);
		      VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
			+ VALUE_OFFSET (v);

                      /* JYG: adjust the new pointer value and
			 embedded offset. */
                      v2->aligner.contents[0] -=  VALUE_EMBEDDED_OFFSET (v);
                      VALUE_EMBEDDED_OFFSET (v2) = 0;

		      v2 = value_addr (v2);
		      VALUE_TYPE (v2) = type;
		      return v2;
		    }
		}
	    }
	  /* No superclass found, just fall through to change ptr type.  */
	}
      VALUE_TYPE (arg2) = type;
      arg2 = value_change_enclosing_type (arg2, type);
      VALUE_POINTED_TO_OFFSET (arg2) = 0;	/* pai: chk_val */
      return arg2;
    }
#if TYPEFIX
  else if (chill_varying_type (type))
    {
      struct type *range1, *range2, *eltype1, *eltype2;
      value_ptr val;
      int count1, count2;
      LONGEST low_bound, high_bound;
      char *valaddr, *valaddr_data;
      /* For lint warning about eltype2 possibly uninitialized: */
      eltype2 = NULL;
      if (code2 == TYPE_CODE_BITSTRING)
	error ("not implemented: converting bitstring to varying type");
      if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
	  || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
	      eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
	      (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
      /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
	error ("Invalid conversion to varying type");
      range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
      range2 = TYPE_FIELD_TYPE (type2, 0);
      if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
	count1 = -1;
      else
	count1 = high_bound - low_bound + 1;
      if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
	count1 = -1, count2 = 0;	/* To force error before */
      else
	count2 = high_bound - low_bound + 1;
      if (count2 > count1)
	error ("target varying type is too small");
      val = allocate_value (type);
      valaddr = VALUE_CONTENTS_RAW (val);
      valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
      /* Set val's __var_length field to count2. */
      store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
			    count2);
      /* Set the __var_data field to count2 elements copied from arg2. */
      memcpy (valaddr_data, VALUE_CONTENTS (arg2),
	      count2 * TYPE_LENGTH (eltype2));
      /* Zero the rest of the __var_data field of val. */
      memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
	      (count1 - count2) * TYPE_LENGTH (eltype2));
      return val;
    }
#endif
  else if (VALUE_LVAL (arg2) == lval_memory)
    {
      return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
			    VALUE_BFD_SECTION (arg2));
    }
  else if (code1 == TYPE_CODE_VOID)
    {
      return value_zero (builtin_type_void, not_lval);
    }
  else
    {
      error ("Invalid cast.");
      return 0;
    }
}

/* Create a value of type TYPE that is zero, and return it.  */

value_ptr
value_zero (struct type *type, enum lval_type lv)
{
  register value_ptr val = allocate_value (type);

  memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
  VALUE_LVAL (val) = lv;

  return val;
}

/* Return a value with type TYPE located at ADDR.

   Call value_at only if the data needs to be fetched immediately;
   if we can be 'lazy' and defer the fetch, perhaps indefinately, call
   value_at_lazy instead.  value_at_lazy simply records the address of
   the data and sets the lazy-evaluation-required flag.  The lazy flag
   is tested in the VALUE_CONTENTS macro, which is used if and when
   the contents are actually required.

   Note: value_at does *NOT* handle embedded offsets; perform such
   adjustments before or after calling it. */

value_ptr
value_at (struct type *type, CORE_ADDR addr, asection *sect)
{
  register value_ptr val;

  if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
    error ("Attempt to dereference a generic pointer.");

  val = allocate_value (type);

  if (GDB_TARGET_IS_D10V
      && TYPE_CODE (type) == TYPE_CODE_PTR
      && POINTER_TARGET_TYPE (type)
      && (TYPE_CODE (POINTER_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
    {
      /* pointer to function */
      unsigned long num;
      unsigned short snum;
      snum = read_memory_unsigned_integer (addr, 2);
      num = D10V_MAKE_IADDR (snum);
      store_address (VALUE_CONTENTS_RAW (val), 4, num);
    }
  else if (GDB_TARGET_IS_D10V
	   && TYPE_CODE (type) == TYPE_CODE_PTR)
    {
      /* pointer to data */
      unsigned long num;
      unsigned short snum;
      snum = read_memory_unsigned_integer (addr, 2);
      num = D10V_MAKE_DADDR (snum);
      store_address (VALUE_CONTENTS_RAW (val), 4, num);
    }
  else
    read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));

  VALUE_LVAL (val) = lval_memory;
  VALUE_ADDRESS (val) = addr;
  VALUE_BFD_SECTION (val) = sect;

  return val;
}

/* Return a lazy value with type TYPE located at ADDR (cf. value_at).  */

value_ptr
value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
{
  register value_ptr val;

  if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
    error ("Attempt to dereference a generic pointer.");

  val = allocate_value (type);

  VALUE_LVAL (val) = lval_memory;
  VALUE_ADDRESS (val) = addr;
  VALUE_LAZY (val) = 1;
  VALUE_BFD_SECTION (val) = sect;

  return val;
}

/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
   if the current data for a variable needs to be loaded into
   VALUE_CONTENTS(VAL).  Fetches the data from the user's process, and
   clears the lazy flag to indicate that the data in the buffer is valid.

   If the value is zero-length, we avoid calling read_memory, which would
   abort.  We mark the value as fetched anyway -- all 0 bytes of it.

   This function returns a value because it is used in the VALUE_CONTENTS
   macro as part of an expression, where a void would not work.  The
   value is ignored.  */

int
value_fetch_lazy (register value_ptr val)
{
  CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
  int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));

  struct type *type = VALUE_TYPE (val);
  if (GDB_TARGET_IS_D10V
      && TYPE_CODE (type) == TYPE_CODE_PTR
      && POINTER_TARGET_TYPE (type)
      && (TYPE_CODE (POINTER_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
    {
      /* pointer to function */
      unsigned long num;
      unsigned short snum;
      snum = read_memory_unsigned_integer (addr, 2);
      num = D10V_MAKE_IADDR (snum);
      store_address (VALUE_CONTENTS_RAW (val), 4, num);
    }
  else if (GDB_TARGET_IS_D10V
	   && TYPE_CODE (type) == TYPE_CODE_PTR)
    {
      /* pointer to data */
      unsigned long num;
      unsigned short snum;
      snum = read_memory_unsigned_integer (addr, 2);
      num = D10V_MAKE_DADDR (snum);
      store_address (VALUE_CONTENTS_RAW (val), 4, num);
    }
  else if (length)
    read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);

  VALUE_LAZY (val) = 0;
  return 0;
}


/* Store the contents of FROMVAL into the location of TOVAL.
   Return a new value with the location of TOVAL and contents of FROMVAL.  */

value_ptr
value_assign (register value_ptr toval, register value_ptr fromval)
{
  register struct type *type;
  register value_ptr val;
  char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
  int use_buffer = 0;

  if (!toval->modifiable)
    error ("Left operand of assignment is not a modifiable lvalue.");

  COERCE_REF (toval);

  type = VALUE_TYPE (toval);
  if (VALUE_LVAL (toval) != lval_internalvar)
    fromval = value_cast (type, fromval);
  else
    COERCE_ARRAY (fromval);
  CHECK_TYPEDEF (type);

  /* If TOVAL is a special machine register requiring conversion
     of program values to a special raw format,
     convert FROMVAL's contents now, with result in `raw_buffer',
     and set USE_BUFFER to the number of bytes to write.  */

  if (VALUE_REGNO (toval) >= 0)
    {
      int regno = VALUE_REGNO (toval);
      if (REGISTER_CONVERTIBLE (regno))
	{
	  struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
	  REGISTER_CONVERT_TO_RAW (fromtype, regno,
				   VALUE_CONTENTS (fromval), raw_buffer);
	  use_buffer = REGISTER_RAW_SIZE (regno);
	}
    }

  switch (VALUE_LVAL (toval))
    {
    case lval_internalvar:
      set_internalvar (VALUE_INTERNALVAR (toval), fromval);
      val = value_copy (VALUE_INTERNALVAR (toval)->value);
      val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
      VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
      VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
      return val;

    case lval_internalvar_component:
      set_internalvar_component (VALUE_INTERNALVAR (toval),
				 VALUE_OFFSET (toval),
				 VALUE_BITPOS (toval),
				 VALUE_BITSIZE (toval),
				 fromval);
      break;

    case lval_memory:
      {
	char *dest_buffer;
	CORE_ADDR changed_addr;
	int changed_len;

	if (VALUE_BITSIZE (toval))
	  {
	    char buffer[sizeof (LONGEST)];
	    /* We assume that the argument to read_memory is in units of
	       host chars.  FIXME:  Is that correct?  */
	    changed_len = (VALUE_BITPOS (toval)
			   + VALUE_BITSIZE (toval)
			   + HOST_CHAR_BIT - 1)
	      / HOST_CHAR_BIT;

	    if (changed_len > (int) sizeof (LONGEST))
	      error ("Can't handle bitfields which don't fit in a %d bit word.",
		     sizeof (LONGEST) * HOST_CHAR_BIT);

	    read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
			 buffer, changed_len);
	    modify_field (buffer, value_as_long (fromval),
			  VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
	    changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
	    dest_buffer = buffer;
	  }
	else if (use_buffer)
	  {
	    changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
	    changed_len = use_buffer;
	    dest_buffer = raw_buffer;
	  }
	else
	  {
	    changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
	    changed_len = TYPE_LENGTH (type);
	    dest_buffer = VALUE_CONTENTS (fromval);
	  }

	write_memory (changed_addr, dest_buffer, changed_len);
	if (memory_changed_hook)
	  memory_changed_hook (changed_addr, changed_len);
      }
      break;

    case lval_register:
      if (VALUE_BITSIZE (toval))
	{
	  char buffer[sizeof (LONGEST)];
	  int len =
		REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);

	  if (len > (int) sizeof (LONGEST))
	    error ("Can't handle bitfields in registers larger than %d bits.",
		   sizeof (LONGEST) * HOST_CHAR_BIT);

	  if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
	      > len * HOST_CHAR_BIT)
	    /* Getting this right would involve being very careful about
	       byte order.  */
	    error ("Can't assign to bitfields that cross register "
		   "boundaries.");

	  read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
			       buffer, len);
	  modify_field (buffer, value_as_long (fromval),
			VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
	  write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
				buffer, len);
	}
      else if (use_buffer)
	write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
			      raw_buffer, use_buffer);
      else
	{
	  /* Do any conversion necessary when storing this type to more
	     than one register.  */
#ifdef REGISTER_CONVERT_FROM_TYPE
	  memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
	  REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
	  write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
				raw_buffer, TYPE_LENGTH (type));
#else
	  write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
			      VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
#endif
	}
      /* Assigning to the stack pointer, frame pointer, and other
         (architecture and calling convention specific) registers may
         cause the frame cache to be out of date.  We just do this
         on all assignments to registers for simplicity; I doubt the slowdown
         matters.  */
      reinit_frame_cache ();
      break;

    case lval_reg_frame_relative:
      {
	/* value is stored in a series of registers in the frame
	   specified by the structure.  Copy that value out, modify
	   it, and copy it back in.  */
	int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
	int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
	int byte_offset = VALUE_OFFSET (toval) % reg_size;
	int reg_offset = VALUE_OFFSET (toval) / reg_size;
	int amount_copied;

	/* Make the buffer large enough in all cases.  */
	char *buffer = (char *) alloca (amount_to_copy
					+ sizeof (LONGEST)
					+ MAX_REGISTER_RAW_SIZE);

	int regno;
	struct frame_info *frame;

	/* Figure out which frame this is in currently.  */
	for (frame = get_current_frame ();
	     frame && FRAME_FP (frame) != VALUE_FRAME (toval);
	     frame = get_prev_frame (frame))
	  ;

	if (!frame)
	  error ("Value being assigned to is no longer active.");

	amount_to_copy += (reg_size - amount_to_copy % reg_size);

	/* Copy it out.  */
	for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
	      amount_copied = 0);
	     amount_copied < amount_to_copy;
	     amount_copied += reg_size, regno++)
	  {
	    get_saved_register (buffer + amount_copied,
				(int *) NULL, (CORE_ADDR *) NULL,
				frame, regno, (enum lval_type *) NULL);
	  }

	/* Modify what needs to be modified.  */
	if (VALUE_BITSIZE (toval))
	  modify_field (buffer + byte_offset,
			value_as_long (fromval),
			VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
	else if (use_buffer)
	  memcpy (buffer + byte_offset, raw_buffer, use_buffer);
	else
	  memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
		  TYPE_LENGTH (type));

	/* Copy it back.  */
	for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
	      amount_copied = 0);
	     amount_copied < amount_to_copy;
	     amount_copied += reg_size, regno++)
	  {
	    enum lval_type lval;
	    CORE_ADDR addr;
	    int optim;

	    /* Just find out where to put it.  */
	    get_saved_register ((char *) NULL,
				&optim, &addr, frame, regno, &lval);

	    if (optim)
	      error ("Attempt to assign to a value that was optimized out.");
	    if (lval == lval_memory)
	      write_memory (addr, buffer + amount_copied, reg_size);
	    else if (lval == lval_register)
	      write_register_bytes (addr, buffer + amount_copied, reg_size);
	    else
	      error ("Attempt to assign to an unmodifiable value.");
	  }

	if (register_changed_hook)
	  register_changed_hook (-1);
      }
      break;


    default:
      error ("Left operand of assignment is not an lvalue.");
    }

  /* If the field does not entirely fill a LONGEST, then zero the sign bits.
     If the field is signed, and is negative, then sign extend. */
  if ((VALUE_BITSIZE (toval) > 0)
      && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
    {
      LONGEST fieldval = value_as_long (fromval);
      LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;

      fieldval &= valmask;
      if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
	fieldval |= ~valmask;

      fromval = value_from_longest (type, fieldval);
    }

  val = value_copy (toval);
  memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
	  TYPE_LENGTH (type));
  VALUE_TYPE (val) = type;
  val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
  VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
  VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);

  return val;
}

/* Extend a value VAL to COUNT repetitions of its type.  */

value_ptr
value_repeat (value_ptr arg1, int count)
{
  register value_ptr val;

  if (VALUE_LVAL (arg1) != lval_memory)
    error ("Only values in memory can be extended with '@'.");
  if (count < 1)
    error ("Invalid number %d of repetitions.", count);

  val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);

  read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
	       VALUE_CONTENTS_ALL_RAW (val),
	       TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
  VALUE_LVAL (val) = lval_memory;
  VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);

  return val;
}

value_ptr
value_of_variable (struct symbol *var, struct block *b)
{
  value_ptr val;
  struct frame_info *frame = NULL;

  if (!b)
    frame = NULL;		/* Use selected frame.  */
  else if (symbol_read_needs_frame (var))
    {
      frame = block_innermost_frame (b);
      if (!frame)
	{
	  if (BLOCK_FUNCTION (b)
	      && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
	    error ("No frame is currently executing in block %s.",
		   SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
	  else
	    error ("No frame is currently executing in specified block");
	}
    }

  val = read_var_value (var, frame);
  if (!val)
    error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));

  return val;
}

/* Given a value which is an array, return a value which is a pointer to its
   first element, regardless of whether or not the array has a nonzero lower
   bound.

   FIXME:  A previous comment here indicated that this routine should be
   substracting the array's lower bound.  It's not clear to me that this
   is correct.  Given an array subscripting operation, it would certainly
   work to do the adjustment here, essentially computing:

   (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])

   However I believe a more appropriate and logical place to account for
   the lower bound is to do so in value_subscript, essentially computing:

   (&array[0] + ((index - lowerbound) * sizeof array[0]))

   As further evidence consider what would happen with operations other
   than array subscripting, where the caller would get back a value that
   had an address somewhere before the actual first element of the array,
   and the information about the lower bound would be lost because of
   the coercion to pointer type.
 */

value_ptr
value_coerce_array (value_ptr arg1)
{
  register struct type *type = check_typedef (VALUE_TYPE (arg1));

  if (VALUE_LVAL (arg1) != lval_memory)
    error ("Attempt to take address of value not located in memory.");

  return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
			     (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
}

/* Given a value which is a function, return a value which is a pointer
   to it.  */

value_ptr
value_coerce_function (value_ptr arg1)
{
  value_ptr retval;

  if (VALUE_LVAL (arg1) != lval_memory)
    error ("Attempt to take address of value not located in memory.");

  retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
			       (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
  VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
  return retval;
}

/* Return a pointer value for the object for which ARG1 is the contents.  */

value_ptr
value_addr (value_ptr arg1)
{
  value_ptr arg2;

  struct type *type = check_typedef (VALUE_TYPE (arg1));
  if (TYPE_CODE (type) == TYPE_CODE_REF)
    {
      /* Copy the value, but change the type from (T&) to (T*).
         We keep the same location information, which is efficient,
         and allows &(&X) to get the location containing the reference. */
      arg2 = value_copy (arg1);
      VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
      return arg2;
    }
  if (TYPE_CODE (type) == TYPE_CODE_FUNC)
    return value_coerce_function (arg1);

  if (VALUE_LVAL (arg1) != lval_memory)
    error ("Attempt to take address of value not located in memory.");

  /* Get target memory address */
  arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
			     (VALUE_ADDRESS (arg1)
			      + VALUE_OFFSET (arg1)
			      + VALUE_EMBEDDED_OFFSET (arg1)));

  /* This may be a pointer to a base subobject; so remember the
     full derived object's type ... */
  arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
  /* ... and also the relative position of the subobject in the full object */
  VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
  VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
  return arg2;
}

/* Given a value of a pointer type, apply the C unary * operator to it.  */

value_ptr
value_ind (value_ptr arg1)
{
  struct type *base_type;
  value_ptr arg2;

  COERCE_ARRAY (arg1);

  base_type = check_typedef (VALUE_TYPE (arg1));

  if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
    error ("not implemented: member types in value_ind");

  /* Allow * on an integer so we can cast it to whatever we want.
     This returns an int, which seems like the most C-like thing
     to do.  "long long" variables are rare enough that
     BUILTIN_TYPE_LONGEST would seem to be a mistake.  */
  if (TYPE_CODE (base_type) == TYPE_CODE_INT)
    return value_at (builtin_type_int,
		     (CORE_ADDR) value_as_long (arg1),
		     VALUE_BFD_SECTION (arg1));
  else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
    {
      struct type *enc_type;
      /* We may be pointing to something embedded in a larger object */
      /* Get the real type of the enclosing object */
      enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
      enc_type = POINTER_TARGET_TYPE (enc_type);
      /* Retrieve the enclosing object pointed to */
      arg2 = value_at_lazy (enc_type,
		   value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
			    VALUE_BFD_SECTION (arg1));
      /* Re-adjust type */
      VALUE_TYPE (arg2) = POINTER_TARGET_TYPE (base_type);
      /* Add embedding info */
      arg2 = value_change_enclosing_type (arg2, enc_type);
      VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);

      /* We may be pointing to an object of some derived type */
      arg2 = value_full_object (arg2, NULL, 0, 0, 0);
      return arg2;
    }

  error ("Attempt to take contents of a non-pointer value.");
  return 0;			/* For lint -- never reached */
}

/* Pushing small parts of stack frames.  */

/* Push one word (the size of object that a register holds).  */

CORE_ADDR
push_word (CORE_ADDR sp, ULONGEST word)
{
  register int len = REGISTER_SIZE;
  char *buffer = alloca (MAX_REGISTER_RAW_SIZE);

  store_unsigned_integer (buffer, len, word);
  if (INNER_THAN (1, 2))
    {
      /* stack grows downward */
      sp -= len;
      write_memory (sp, buffer, len);
    }
  else
    {
      /* stack grows upward */
      write_memory (sp, buffer, len);
      sp += len;
    }

  return sp;
}

/* Push LEN bytes with data at BUFFER.  */

CORE_ADDR
push_bytes (CORE_ADDR sp, char *buffer, int len)
{
  if (INNER_THAN (1, 2))
    {
      /* stack grows downward */
      sp -= len;
      write_memory (sp, buffer, len);
    }
  else
    {
      /* stack grows upward */
      write_memory (sp, buffer, len);
      sp += len;
    }

  return sp;
}

#ifndef PARM_BOUNDARY
#define PARM_BOUNDARY (0)
#endif

/* Push onto the stack the specified value VALUE.  Pad it correctly for
   it to be an argument to a function.  */

static CORE_ADDR
value_push (register CORE_ADDR sp, value_ptr arg)
{
  register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
  register int container_len = len;
  register int offset;

  /* How big is the container we're going to put this value in?  */
  if (PARM_BOUNDARY)
    container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
		     & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));

  /* Are we going to put it at the high or low end of the container?  */
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    offset = container_len - len;
  else
    offset = 0;

  if (INNER_THAN (1, 2))
    {
      /* stack grows downward */
      sp -= container_len;
      write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
    }
  else
    {
      /* stack grows upward */
      write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
      sp += container_len;
    }

  return sp;
}

#ifndef PUSH_ARGUMENTS
#define PUSH_ARGUMENTS default_push_arguments
#endif

CORE_ADDR
default_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
			int struct_return, CORE_ADDR struct_addr)
{
  /* ASSERT ( !struct_return); */
  int i;
  for (i = nargs - 1; i >= 0; i--)
    sp = value_push (sp, args[i]);
  return sp;
}


/* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
   when we don't have any type for the argument at hand.  This occurs
   when we have no debug info, or when passing varargs.

   This is an annoying default: the rule the compiler follows is to do
   the standard promotions whenever there is no prototype in scope,
   and almost all targets want this behavior.  But there are some old
   architectures which want this odd behavior.  If you want to go
   through them all and fix them, please do.  Modern gdbarch-style
   targets may find it convenient to use standard_coerce_float_to_double.  */
int
default_coerce_float_to_double (struct type *formal, struct type *actual)
{
  return formal == NULL;
}


/* Always coerce floats to doubles when there is no prototype in scope.
   If your architecture follows the standard type promotion rules for
   calling unprototyped functions, your gdbarch init function can pass
   this function to set_gdbarch_coerce_float_to_double to use its logic.  */
int
standard_coerce_float_to_double (struct type *formal, struct type *actual)
{
  return 1;
}


/* Perform the standard coercions that are specified
   for arguments to be passed to C functions.

   If PARAM_TYPE is non-NULL, it is the expected parameter type.
   IS_PROTOTYPED is non-zero if the function declaration is prototyped.  */

static value_ptr
value_arg_coerce (value_ptr arg, struct type *param_type, int is_prototyped)
{
  register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
  register struct type *type
  = param_type ? check_typedef (param_type) : arg_type;

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_REF:
      if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
	{
	  arg = value_addr (arg);
	  VALUE_TYPE (arg) = param_type;
	  return arg;
	}
      break;
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_ENUM:
      /* If we don't have a prototype, coerce to integer type if necessary.  */
      if (!is_prototyped)
	{
	  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
	    type = builtin_type_int;
	}
      /* Currently all target ABIs require at least the width of an integer
         type for an argument.  We may have to conditionalize the following
         type coercion for future targets.  */
      if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
	type = builtin_type_int;
      break;
    case TYPE_CODE_FLT:
      /* FIXME: We should always convert floats to doubles in the
         non-prototyped case.  As many debugging formats include
         no information about prototyping, we have to live with
         COERCE_FLOAT_TO_DOUBLE for now.  */
      if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
	{
	  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
	    type = builtin_type_double;
	  else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
	    type = builtin_type_long_double;
	}
      break;
    case TYPE_CODE_FUNC:
      type = lookup_pointer_type (type);
      break;
    case TYPE_CODE_ARRAY:
      if (current_language->c_style_arrays)
	type = lookup_pointer_type (ARRAY_ELEMENT_TYPE (type));
      break;
    case TYPE_CODE_UNDEF:
    case TYPE_CODE_PTR:
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_VOID:
    case TYPE_CODE_SET:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_STRING:
    case TYPE_CODE_BITSTRING:
    case TYPE_CODE_ERROR:
    case TYPE_CODE_MEMBER:
    case TYPE_CODE_METHOD:
    case TYPE_CODE_COMPLEX:
    default:
      break;
    }

  return value_cast (type, arg);
}

/* Determine a function's address and its return type from its value.
   Calls error() if the function is not valid for calling.  */

static CORE_ADDR
find_function_addr (value_ptr function, struct type **retval_type)
{
  register struct type *ftype = check_typedef (VALUE_TYPE (function));
  register enum type_code code = TYPE_CODE (ftype);
  struct type *value_type;
  CORE_ADDR funaddr;

  /* If it's a member function, just look at the function
     part of it.  */

  /* Determine address to call.  */
  if (code == TYPE_CODE_FUNC)
    {
      funaddr = VALUE_ADDRESS (function);
      value_type = FUNCTION_RETURN_VALUE (ftype);
    }
  else if (code == TYPE_CODE_METHOD)
    {
      funaddr = VALUE_ADDRESS (function);
      value_type = TYPE_TARGET_TYPE (ftype);
    }
  else if (code == TYPE_CODE_PTR)
    {
      funaddr = value_as_pointer (function);
      ftype = check_typedef (POINTER_TARGET_TYPE (ftype));
      if (TYPE_CODE (ftype) == TYPE_CODE_FUNC)
	{
	  funaddr =CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
	  value_type = FUNCTION_RETURN_VALUE (ftype);
	}
      else if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
	{
	  funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
	  value_type = TYPE_TARGET_TYPE (ftype);
	}
      else
	value_type = builtin_type_int;
    }
  else if (code == TYPE_CODE_INT)
    {
      /* Handle the case of functions lacking debugging info.
         Their values are characters since their addresses are char */
      if (TYPE_LENGTH (ftype) == 1)
	funaddr = value_as_pointer (value_addr (function));
      else
	/* Handle integer used as address of a function.  */
	funaddr = (CORE_ADDR) value_as_long (function);

      value_type = builtin_type_int;
    }
  else
    error ("Invalid data type for function to be called.");

  *retval_type = value_type;
  return funaddr;
}

/* All this stuff with a dummy frame may seem unnecessarily complicated
   (why not just save registers in GDB?).  The purpose of pushing a dummy
   frame which looks just like a real frame is so that if you call a
   function and then hit a breakpoint (get a signal, etc), "backtrace"
   will look right.  Whether the backtrace needs to actually show the
   stack at the time the inferior function was called is debatable, but
   it certainly needs to not display garbage.  So if you are contemplating
   making dummy frames be different from normal frames, consider that.  */

/* Perform a function call in the inferior.
   ARGS is a vector of values of arguments (NARGS of them).
   FUNCTION is a value, the function to be called.
   Returns a value representing what the function returned.
   May fail to return, if a breakpoint or signal is hit
   during the execution of the function.

   ARGS is modified to contain coerced values. */

static value_ptr hand_function_call (value_ptr function, int nargs,
				     value_ptr * args);
static value_ptr
hand_function_call (value_ptr function, int nargs, value_ptr *args)
{
  register CORE_ADDR sp;
  register int i;
  int rc;
  CORE_ADDR start_sp;
  /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
     is in host byte order.  Before calling FIX_CALL_DUMMY, we byteswap it
     and remove any extra bytes which might exist because ULONGEST is
     bigger than REGISTER_SIZE.

     NOTE: This is pretty wierd, as the call dummy is actually a
     sequence of instructions.  But CISC machines will have
     to pack the instructions into REGISTER_SIZE units (and
     so will RISC machines for which INSTRUCTION_SIZE is not
     REGISTER_SIZE).

     NOTE: This is pretty stupid.  CALL_DUMMY should be in strict
     target byte order. */

  static ULONGEST *dummy;
  int sizeof_dummy1;
  char *dummy1;
  CORE_ADDR old_sp;
  struct type *value_type;
  unsigned char struct_return;
  CORE_ADDR struct_addr = 0;
  struct inferior_status *inf_status;
  struct cleanup *old_chain;
  CORE_ADDR funaddr;
  int using_gcc;		/* Set to version of gcc in use, or zero if not gcc */
  CORE_ADDR real_pc;
  struct type *param_type = NULL;
  struct type *ftype = check_typedef (SYMBOL_TYPE (function));

  dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
  sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
  dummy1 = alloca (sizeof_dummy1);
  memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);

  if (!target_has_execution)
    noprocess ();

  inf_status = save_inferior_status (1);
  old_chain = make_cleanup_restore_inferior_status (inf_status);

  /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
     (and POP_FRAME for restoring them).  (At least on most machines)
     they are saved on the stack in the inferior.  */
  PUSH_DUMMY_FRAME;

  old_sp = sp = read_sp ();

  if (INNER_THAN (1, 2))
    {
      /* Stack grows down */
      sp -= sizeof_dummy1;
      start_sp = sp;
    }
  else
    {
      /* Stack grows up */
      start_sp = sp;
      sp += sizeof_dummy1;
    }

  funaddr = find_function_addr (function, &value_type);
  CHECK_TYPEDEF (value_type);

  {
    struct block *b = block_for_pc (funaddr);
    /* If compiled without -g, assume GCC 2.  */
    using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
  }

  /* Are we returning a value using a structure return or a normal
     value return? */

  struct_return = using_struct_return (function, funaddr, value_type,
				       using_gcc);

  /* Create a call sequence customized for this function
     and the number of arguments for it.  */
  for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
    store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
			    REGISTER_SIZE,
			    (ULONGEST) dummy[i]);

#ifdef GDB_TARGET_IS_HPPA
  real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
			    value_type, using_gcc);
#else
  FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
		  value_type, using_gcc);
  real_pc = start_sp;
#endif

  if (CALL_DUMMY_LOCATION == ON_STACK)
    {
      write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
    }

  if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
    {
      /* Convex Unix prohibits executing in the stack segment. */
      /* Hope there is empty room at the top of the text segment. */
      extern CORE_ADDR text_end;
      static int checked = 0;
      if (!checked)
	for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
	  if (read_memory_integer (start_sp, 1) != 0)
	    error ("text segment full -- no place to put call");
      checked = 1;
      sp = old_sp;
      real_pc = text_end - sizeof_dummy1;
      write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
    }

  if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
    {
      extern CORE_ADDR text_end;
      int errcode;
      sp = old_sp;
      real_pc = text_end;
      errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
      if (errcode != 0)
	error ("Cannot write text segment -- call_function failed");
    }

  if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
    {
      real_pc = funaddr;
    }

#ifdef lint
  sp = old_sp;			/* It really is used, for some ifdef's... */
#endif

  if (nargs < TYPE_NFIELDS (ftype))
    error ("too few arguments in function call");

  for (i = nargs - 1; i >= 0; i--)
    {
      /* If we're off the end of the known arguments, do the standard
         promotions.  FIXME: if we had a prototype, this should only
         be allowed if ... were present.  */
      if (i >= TYPE_NFIELDS (ftype))
	args[i] = value_arg_coerce (args[i], NULL, 0);

      else
	{
	  int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
	  param_type = TYPE_FIELD_TYPE (ftype, i);

	  args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
	}

      /*elz: this code is to handle the case in which the function to be called
         has a pointer to function as parameter and the corresponding actual argument
         is the address of a function and not a pointer to function variable.
         In aCC compiled code, the calls through pointers to functions (in the body
         of the function called by hand) are made via $$dyncall_external which
         requires some registers setting, this is taken care of if we call
         via a function pointer variable, but not via a function address.
         In cc this is not a problem. */

      if (using_gcc == 0)
	if (param_type)
	  /* if this parameter is a pointer to function */
	  if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
	    if (TYPE_CODE (POINTER_TARGET_TYPE(param_type)) == TYPE_CODE_FUNC)
	      /* elz: FIXME here should go the test about the compiler used
	         to compile the target. We want to issue the error
	         message only if the compiler used was HP's aCC.
	         If we used HP's cc, then there is no problem and no need
	         to return at this point */
	      if (using_gcc == 0)	/* && compiler == aCC */
		/* go see if the actual parameter is a variable of type
		   pointer to function or just a function */
		if (args[i]->lval == not_lval)
		  {
		    char *arg_name;
		    if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
		      error ("\
You cannot use function <%s> as argument. \n\
You must use a pointer to function type variable. Command ignored.", arg_name);
		  }
    }

  if (REG_STRUCT_HAS_ADDR_P ())
    {
      /* This is a machine like the sparc, where we may need to pass a
	 pointer to the structure, not the structure itself.  */
      for (i = nargs - 1; i >= 0; i--)
	{
	  struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
	  if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
	       || TYPE_CODE (arg_type) == TYPE_CODE_UNION
	       || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
	       || TYPE_CODE (arg_type) == TYPE_CODE_STRING
	       || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
	       || TYPE_CODE (arg_type) == TYPE_CODE_SET
	       || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
		   && TYPE_LENGTH (arg_type) > 8)
	       )
	      && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
	    {
	      CORE_ADDR addr;
	      int len;		/*  = TYPE_LENGTH (arg_type); */
	      int aligned_len;
	      arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
	      len = TYPE_LENGTH (arg_type);

	      if (STACK_ALIGN_P ())
		/* MVS 11/22/96: I think at least some of this
		   stack_align code is really broken.  Better to let
		   PUSH_ARGUMENTS adjust the stack in a target-defined
		   manner.  */
		aligned_len = STACK_ALIGN (len);
	      else
		aligned_len = len;
	      if (INNER_THAN (1, 2))
		{
		  /* stack grows downward */
		  sp -= aligned_len;
		  /* ... so the address of the thing we push is the
		     stack pointer after we push it.  */
		  addr = sp;
		}
	      else
		{
		  /* The stack grows up, so the address of the thing
		     we push is the stack pointer before we push it.  */
		  addr = sp;
		  sp += aligned_len;
		}
	      /* Push the structure.  */
	      write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
	      /* The value we're going to pass is the address of the
		 thing we just pushed.  */
	      /*args[i] = value_from_longest (lookup_pointer_type (value_type),
		(LONGEST) addr); */
	      args[i] = value_from_pointer (lookup_pointer_type (arg_type),
					    addr);
	    }
	}
    }


  /* Reserve space for the return structure to be written on the
     stack, if necessary */

  if (struct_return)
    {
      int len = TYPE_LENGTH (value_type);
      if (STACK_ALIGN_P ())
	/* MVS 11/22/96: I think at least some of this stack_align
	   code is really broken.  Better to let PUSH_ARGUMENTS adjust
	   the stack in a target-defined manner.  */
	len = STACK_ALIGN (len);
      if (INNER_THAN (1, 2))
	{
	  /* stack grows downward */
	  sp -= len;
	  struct_addr = sp;
	}
      else
	{
	  /* stack grows upward */
	  struct_addr = sp;
	  sp += len;
	}
    }

  /* elz: on HPPA no need for this extra alignment, maybe it is needed
     on other architectures. This is because all the alignment is
     taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
     in hppa_push_arguments */
  if (EXTRA_STACK_ALIGNMENT_NEEDED)
    {
      /* MVS 11/22/96: I think at least some of this stack_align code
	 is really broken.  Better to let PUSH_ARGUMENTS adjust the
	 stack in a target-defined manner.  */
      if (STACK_ALIGN_P () && INNER_THAN (1, 2))
	{
	  /* If stack grows down, we must leave a hole at the top. */
	  int len = 0;

	  for (i = nargs - 1; i >= 0; i--)
	    len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
	  if (CALL_DUMMY_STACK_ADJUST_P)
	    len += CALL_DUMMY_STACK_ADJUST;
	  sp -= STACK_ALIGN (len) - len;
	}
    }

  sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);

#ifdef PUSH_RETURN_ADDRESS	/* for targets that use no CALL_DUMMY */
  /* There are a number of targets now which actually don't write any
     CALL_DUMMY instructions into the target, but instead just save the
     machine state, push the arguments, and jump directly to the callee
     function.  Since this doesn't actually involve executing a JSR/BSR
     instruction, the return address must be set up by hand, either by
     pushing onto the stack or copying into a return-address register
     as appropriate.  Formerly this has been done in PUSH_ARGUMENTS,
     but that's overloading its functionality a bit, so I'm making it
     explicit to do it here.  */
  sp = PUSH_RETURN_ADDRESS (real_pc, sp);
#endif /* PUSH_RETURN_ADDRESS */

  if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
    {
      /* If stack grows up, we must leave a hole at the bottom, note
         that sp already has been advanced for the arguments!  */
      if (CALL_DUMMY_STACK_ADJUST_P)
	sp += CALL_DUMMY_STACK_ADJUST;
      sp = STACK_ALIGN (sp);
    }

/* XXX This seems wrong.  For stacks that grow down we shouldn't do
   anything here!  */
  /* MVS 11/22/96: I think at least some of this stack_align code is
     really broken.  Better to let PUSH_ARGUMENTS adjust the stack in
     a target-defined manner.  */
  if (CALL_DUMMY_STACK_ADJUST_P)
    if (INNER_THAN (1, 2))
      {
	/* stack grows downward */
	sp -= CALL_DUMMY_STACK_ADJUST;
      }

  /* Store the address at which the structure is supposed to be
     written.  Note that this (and the code which reserved the space
     above) assumes that gcc was used to compile this function.  Since
     it doesn't cost us anything but space and if the function is pcc
     it will ignore this value, we will make that assumption.

     Also note that on some machines (like the sparc) pcc uses a
     convention like gcc's.  */

  if (struct_return)
    STORE_STRUCT_RETURN (struct_addr, sp);

  /* Write the stack pointer.  This is here because the statements above
     might fool with it.  On SPARC, this write also stores the register
     window into the right place in the new stack frame, which otherwise
     wouldn't happen.  (See store_inferior_registers in sparc-nat.c.)  */
  write_sp (sp);

  if (SAVE_DUMMY_FRAME_TOS_P ())
    SAVE_DUMMY_FRAME_TOS (sp);

  {
    char *retbuf = (char*) alloca (REGISTER_BYTES);
    char *name;
    struct symbol *symbol;

    name = NULL;
    symbol = find_pc_function (funaddr);
    if (symbol)
      {
	name = SYMBOL_SOURCE_NAME (symbol);
      }
    else
      {
	/* Try the minimal symbols.  */
	struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);

	if (msymbol)
	  {
	    name = SYMBOL_SOURCE_NAME (msymbol);
	  }
      }
    if (name == NULL)
      {
	char format[80];
	sprintf (format, "at %s", local_hex_format ());
	name = alloca (80);
	/* FIXME-32x64: assumes funaddr fits in a long.  */
	sprintf (name, format, (unsigned long) funaddr);
      }

    /* Execute the stack dummy routine, calling FUNCTION.
       When it is done, discard the empty frame
       after storing the contents of all regs into retbuf.  */
    rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);

    if (rc == 1)
      {
	/* We stopped inside the FUNCTION because of a random signal.
	   Further execution of the FUNCTION is not allowed. */

        if (unwind_on_signal_p)
	  {
	    /* The user wants the context restored. */

            /* We must get back to the frame we were before the dummy call. */
            POP_FRAME;

	    /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
	       a C++ name with arguments and stuff.  */
	    error ("\
The program being debugged was signaled while in a function called from GDB.\n\
GDB has restored the context to what it was before the call.\n\
To change this behavior use \"set unwindonsignal off\"\n\
Evaluation of the expression containing the function (%s) will be abandoned.",
		   name);
	  }
	else
	  {
	    /* The user wants to stay in the frame where we stopped (default).*/

	    /* If we did the cleanups, we would print a spurious error
	       message (Unable to restore previously selected frame),
	       would write the registers from the inf_status (which is
	       wrong), and would do other wrong things.  */
	    discard_cleanups (old_chain);
	    discard_inferior_status (inf_status);

	    /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
	       a C++ name with arguments and stuff.  */
	    error ("\
The program being debugged was signaled while in a function called from GDB.\n\
GDB remains in the frame where the signal was received.\n\
To change this behavior use \"set unwindonsignal on\"\n\
Evaluation of the expression containing the function (%s) will be abandoned.",
		   name);
	  }
      }

    if (rc == 2)
      {
	/* We hit a breakpoint inside the FUNCTION. */

	/* If we did the cleanups, we would print a spurious error
	   message (Unable to restore previously selected frame),
	   would write the registers from the inf_status (which is
	   wrong), and would do other wrong things.  */
	discard_cleanups (old_chain);
	discard_inferior_status (inf_status);

	/* The following error message used to say "The expression
	   which contained the function call has been discarded."  It
	   is a hard concept to explain in a few words.  Ideally, GDB
	   would be able to resume evaluation of the expression when
	   the function finally is done executing.  Perhaps someday
	   this will be implemented (it would not be easy).  */

	/* FIXME: Insert a bunch of wrap_here; name can be very long if it's
	   a C++ name with arguments and stuff.  */
	error ("\
The program being debugged stopped while in a function called from GDB.\n\
When the function (%s) is done executing, GDB will silently\n\
stop (instead of continuing to evaluate the expression containing\n\
the function call).", name);
      }

    /* If we get here the called FUNCTION run to completion. */
    do_cleanups (old_chain);

    /* Figure out the value returned by the function.  */
/* elz: I defined this new macro for the hppa architecture only.
   this gives us a way to get the value returned by the function from the stack,
   at the same address we told the function to put it.
   We cannot assume on the pa that r28 still contains the address of the returned
   structure. Usually this will be overwritten by the callee.
   I don't know about other architectures, so I defined this macro
 */

#ifdef VALUE_RETURNED_FROM_STACK
    if (struct_return)
      return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
#endif

    return value_being_returned (value_type, retbuf, struct_return);
  }
}

value_ptr
call_function_by_hand (value_ptr function, int nargs, value_ptr *args)
{
  if (CALL_DUMMY_P)
    {
      return hand_function_call (function, nargs, args);
    }
  else
    {
      error ("Cannot invoke functions on this machine.");
    }
}



/* Create a value for an array by allocating space in the inferior, copying
   the data into that space, and then setting up an array value.

   The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
   populated from the values passed in ELEMVEC.

   The element type of the array is inherited from the type of the
   first element, and all elements must have the same size (though we
   don't currently enforce any restriction on their types). */

value_ptr
value_array (int lowbound, int highbound, value_ptr *elemvec)
{
  int nelem;
  int idx;
  unsigned int typelength;
  value_ptr val;
  struct range_type *rangetype;
  struct type *arraytype;
  CORE_ADDR addr;

  /* Validate that the bounds are reasonable and that each of the elements
     have the same size. */

  nelem = highbound - lowbound + 1;
  if (nelem <= 0)
    {
      error ("bad array bounds (%d, %d)", lowbound, highbound);
    }
  typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
  for (idx = 1; idx < nelem; idx++)
    {
      if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
	{
	  error ("array elements must all be the same size");
	}
    }

  rangetype = make_range_type (NULL, builtin_type_int,
				 lowbound, highbound);
  arraytype = (struct type *)make_array_type (NULL,  
			      VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);

  if (!current_language->c_style_arrays)
    {
      val = allocate_value (arraytype);
      for (idx = 0; idx < nelem; idx++)
	{
	  memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
		  VALUE_CONTENTS_ALL (elemvec[idx]),
		  typelength);
	}
      VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
      return val;
    }

  /* Allocate space to store the array in the inferior, and then initialize
     it by copying in each element.  FIXME:  Is it worth it to create a
     local buffer in which to collect each value and then write all the
     bytes in one operation? */

  addr = allocate_space_in_inferior (nelem * typelength);
  for (idx = 0; idx < nelem; idx++)
    {
      write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
		    typelength);
    }

  /* Create the array type and set up an array value to be evaluated lazily. */

  val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
  return (val);
}

/* Create a value for a string constant by allocating space in the inferior,
   copying the data into that space, and returning the address with type
   TYPE_CODE_STRING.  PTR points to the string constant data; LEN is number
   of characters.
   Note that string types are like array of char types with a lower bound of
   zero and an upper bound of LEN - 1.  Also note that the string may contain
   embedded null bytes. */

value_ptr
value_string (char *ptr, int len)
{
  value_ptr val;
  int lowbound = current_language->string_lower_bound;
  struct range_type *rangetype = make_range_type (NULL, builtin_type_int,
						  lowbound, len + lowbound - 1);
  struct type *stringtype = (struct type *)make_string_type (NULL, rangetype);
  CORE_ADDR addr;

  if (current_language->c_style_arrays == 0)
    {
      val = allocate_value (stringtype);
      memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
      return val;
    }


  /* Allocate space to store the string in the inferior, and then
     copy LEN bytes from PTR in gdb to that address in the inferior. */

  addr = allocate_space_in_inferior (len);
  write_memory (addr, ptr, len);

  val = value_at_lazy (stringtype, addr, NULL);
  return (val);
}

value_ptr
value_bitstring (char *ptr, int len)
{
  value_ptr val;
  struct range_type *domain_type = make_range_type (NULL, builtin_type_int, 0, len - 1);
  struct type *type = (struct type *)make_set_type (NULL, domain_type);
  TYPE_CODE (type) = TYPE_CODE_BITSTRING;
  val = allocate_value (type);
  memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
  return val;
}

/* See if we can pass arguments in T2 to a function which takes arguments
   of types T1.  Both t1 and t2 are NULL-terminated vectors.  If some
   arguments need coercion of some sort, then the coerced values are written
   into T2.  Return value is 0 if the arguments could be matched, or the
   position at which they differ if not.

   STATICP is nonzero if the T1 argument list came from a
   static member function.

   For non-static member functions, we ignore the first argument,
   which is the type of the instance variable.  This is because we want
   to handle calls with objects from derived classes.  This is not
   entirely correct: we should actually check to make sure that a
   requested operation is type secure, shouldn't we?  FIXME.  */

static int
typecmp (int staticp, struct type *t1[], value_ptr t2[])
{
  int i;

  if (t2 == 0)
    return 1;
  if (staticp && t1 == 0)
    return t2[1] != 0;
  if (t1 == 0)
    return 1;
  if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
    return 0;
  if (t1[!staticp] == 0)
    return 0;
  for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
    {
      struct type *tt1, *tt2;
      if (!t2[i])
	return i + 1;
      tt1 = check_typedef (t1[i]);
      tt2 = check_typedef (VALUE_TYPE (t2[i]));
      if (TYPE_CODE (tt1) == TYPE_CODE_REF
      /* We should be doing hairy argument matching, as below.  */
	  && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
	{
	  if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
	    t2[i] = value_coerce_array (t2[i]);
	  else
	    t2[i] = value_addr (t2[i]);
	  continue;
	}

      /* djb - 20000715 - Until the new type structure is in the
	 place, and we can attempt things like implicit conversions,
	 we need to do this so you can take something like a map<const
	 char *>, and properly access map["hello"], because the
	 argument to [] will be a reference to a pointer to a char,
	 and the argument will be a pointer to a char. */
      while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
	      TYPE_CODE (tt1) == TYPE_CODE_PTR)
	{
	  tt1 = check_typedef( POINTER_TARGET_TYPE(tt1) );
	}
      while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
	      TYPE_CODE(tt2) == TYPE_CODE_PTR ||
	      TYPE_CODE(tt2) == TYPE_CODE_REF)
	{
	  while (TYPE_CODE (tt2) == TYPE_CODE_REF || TYPE_CODE (tt2) == TYPE_CODE_PTR)
	    tt2 = check_typedef (POINTER_TARGET_TYPE (tt2));
	  while (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
	    tt2 = check_typedef (ARRAY_ELEMENT_TYPE (tt2));
	}
      if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
	continue;
      /* Array to pointer is a `trivial conversion' according to the ARM.  */

      /* We should be doing much hairier argument matching (see section 13.2
         of the ARM), but as a quick kludge, just check for the same type
         code.  */
      if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
	return i + 1;
    }
  if (!t1[i])
    return 0;
  return t2[i] ? i + 1 : 0;
}

/* Helper function used by value_struct_elt to recurse through baseclasses.
   Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
   and search in it assuming it has (class) type TYPE.
   If found, return value, else return NULL.

   looking_for_baseclass has three possible values :
   1) no_baseclass : look for structure field. 
   2) only_baseclass : look for baseclass named NAME.
   3) struct_or_baseclass : look for structure field first, and then
   the baseclass named NAME. Return the first
   structure field if it is found.
   The value is used when hp_som_som_object_present
   is true. */

static value_ptr
search_struct_field (name, arg1, offset, type, looking_for_baseclass,
                     domain_name)
     const char *name;
     register value_ptr arg1;
     int offset;
     register struct type *type;
     enum looking_for_baseclass_type looking_for_baseclass;
     char *domain_name;
{
  int found = 0;
  char found_class[1024];
  value_ptr v;
  struct type *vbase = NULL;

  found_class[0] = '\000';

  v = search_struct_field_aux (name, arg1, offset, type,
			       looking_for_baseclass, &found,
			       found_class, &vbase, domain_name);
  if (found > 1)
    warning ("%s ambiguous; using %s::%s. Use a cast to disambiguate.",
             name, found_class, name);

  return v;
}

static value_ptr
search_struct_field_aux (name, arg1, offset, type,
			 looking_for_baseclass, found,
			 found_class_name, vbase, domain_name)
     const char *name;
     value_ptr arg1;
     int offset;
     register struct type *type;
     enum looking_for_baseclass_type looking_for_baseclass;
     int *found;
     char *found_class_name;
     struct type **vbase;
     char *domain_name;
{
  int i;
  value_ptr retval = NULL;
  char tmp_class_name[1024];
  int tmp_found = 0;
  int assigned = 0;
  int nbases = TYPE_N_BASECLASSES (type);

  tmp_class_name[0] = '\000';

  CHECK_TYPEDEF (type);

  if (looking_for_baseclass == no_baseclass ||
       looking_for_baseclass == struct_or_baseclass)
    for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
      {
	char *t_field_name = TYPE_FIELD_NAME (type, i);

	if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
	  {
	    value_ptr v = NULL;
	    if (TYPE_FIELD_STATIC (type, i))
	      v = value_static_field (type, i);
            if (v != NULL)
              {
                if (!*found)
                  {
                    /* Record return value and class name, and continue
                       looking for possible ambiguous members */
                    char *class_name = TYPE_TAG_NAME (type);
                    retval = v;
                    if (class_name)
                      strcpy (found_class_name, class_name);
                    else
                      found_class_name = NULL;
                  }
                (*found)++;
              }
	    else
	      {
		char *fullname = (domain_name ?
				  (strncmp (domain_name, "data member of", 14) ?
				   NULL : &domain_name[15])
				  : NULL );
		if (!fullname || !strcmp(TYPE_TAG_NAME(type), fullname))
		  {
		    v = value_primitive_field (arg1, offset, i, type);
                    if (v != NULL)
                      {
                        if (!*found)
                          {
                            /* Record return value and class name, and continue
                               looking for possible ambiguous members */
                            char *class_name = TYPE_TAG_NAME (type);
                            retval = v;
                            if (class_name)
                              strcpy (found_class_name, class_name);
                            else
                              found_class_name = NULL;
                          }
                        (*found)++;
                      }
                  }
              }

            if (v == 0 && looking_for_baseclass != struct_or_baseclass)
              error ("Couldn't retrieve field named %s", name);
          }

	if (t_field_name
	    && (t_field_name[0] == '\0'
		|| (TYPE_CODE (type) == TYPE_CODE_UNION
		    && (strcmp_iw (t_field_name, "else") == 0))))
	  {
	    struct type *field_type = TYPE_FIELD_TYPE (type, i);
	    if (TYPE_CODE (field_type) == TYPE_CODE_UNION
		|| TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
	      {
		/* Look for a match through the fields of an anonymous union,
		   or anonymous struct.  C++ provides anonymous unions.

		   In the GNU Chill implementation of variant record types,
		   each <alternative field> has an (anonymous) union type,
		   each member of the union represents a <variant alternative>.
		   Each <variant alternative> is represented as a struct,
		   with a member for each <variant field>.  */

		value_ptr v;
		int new_offset = offset;

		/* This is pretty gross.  In G++, the offset in an anonymous
		   union is relative to the beginning of the enclosing struct.
		   In the GNU Chill implementation of variant records,
		   the bitpos is zero in an anonymous union field, so we
		   have to add the offset of the union here. */
		if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
		    || (TYPE_NFIELDS (field_type) > 0
			&& TYPE_FIELD_BITPOS (field_type, 0) == 0))
		  new_offset += TYPE_FIELD_BITPOS (type, i) / 8;

		v = search_struct_field_aux (name, arg1, new_offset,
					     field_type,
					     looking_for_baseclass,
					     &tmp_found, tmp_class_name,
					     vbase, domain_name);
                if (!*found && v)
                  {
                    /* Record return value and class name, and continue
                       looking for possible ambiguous members */
                    retval = v;
                    /* TYPE_TAG_NAME can be null in case of an anonymous union */
                    if (TYPE_TAG_NAME (type))
                      strcpy (found_class_name, TYPE_TAG_NAME (type));
                    else
                      strcpy (found_class_name, " ");
                    strcat (found_class_name, "::");
                    strcat (found_class_name, tmp_class_name);
                  }
                *found += tmp_found;
                tmp_found = 0;
              }
          }
      }

  /* Return the structure field if it is found. */
  if (*found > 0 && looking_for_baseclass == struct_or_baseclass)
    return retval;

  /* RM: If we are looking for a structure field, and we have found
     one, don't look through the baseclasses -- names there are
     hidden. ANSI C++ standard, section 10.2 */
  if (*found > 0 && looking_for_baseclass == no_baseclass)
    return retval;

  for (i = 0; i < nbases; i++)
    {
      value_ptr v;
      struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
      /* If we are looking for baseclasses, this is what we get when we
         hit them.  But it could happen that the base part's member name
         is not yet filled in.  */
      int found_baseclass = (looking_for_baseclass
			     && TYPE_BASECLASS_NAME (type, i) != NULL
			     && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));

      if (BASETYPE_VIA_VIRTUAL (type, i))
	{
	  int boffset;
	  value_ptr v2 = allocate_value (VALUE_ENCLOSING_TYPE (arg1));

	  boffset = baseclass_offset (type, i,
				      &arg1, VALUE_CONTENTS (arg1) + offset,
				      VALUE_ADDRESS (arg1)
				      + VALUE_OFFSET (arg1) + offset, offset);
	  if (boffset == -1)
	    error ("virtual baseclass botch");

	  /* The virtual base class pointer might have been clobbered by the
	     user program. Make sure that it still points to a valid memory
	     location.  */

	  boffset += offset;
	  if (boffset < 0 || boffset >= TYPE_LENGTH (type))
	    {
	      CORE_ADDR base_addr;

	      base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)  + boffset;
	      if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
				      TYPE_LENGTH (basetype)) != 0)
		error ("virtual baseclass botch");
	      VALUE_LVAL (v2) = lval_memory;
	      VALUE_ADDRESS (v2) = base_addr;
	      assigned = 1;
	    }
	  else
	    {
	      VALUE_LVAL (v2) = VALUE_LVAL (arg1);
	      VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
	      VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
	      if (VALUE_LAZY (arg1))
		VALUE_LAZY (v2) = 1;
	      else
		memcpy (VALUE_CONTENTS_RAW (v2),
			VALUE_CONTENTS_RAW (arg1) + boffset,
			TYPE_LENGTH (basetype));
	    }
#if 0
          if (!assigned)
            {
              VALUE_LVAL (v2) = VALUE_LVAL (arg1);
              VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
            }
          /* Earlier, this code used to allocate a value of type
             basetype and copy the contents of arg1 at the
             appropriate offset into the new value.  This doesn't
             work because there is important stuff (virtual bases,
             for example) that could be anywhere in the contents
             of arg1, and not just within the length of a basetype
             object.  In particular the boffset below could be
             negative, with the HP/Taligent C++ runtime system.
             So, the only way to ensure that required information
             is not lost is to always allocate a value of the same
             type as arg1 and to fill it with the _entire_
             contents of arg1.  It sounds wasteful, but there is
             really no way around it if later member lookup,
             casts, etc. have to work correctly with the returned
             value.  */


          VALUE_TYPE (v2) = basetype;
          VALUE_OFFSET (v2) = VALUE_OFFSET (arg1);
          VALUE_EMBEDDED_OFFSET (v2)
            = VALUE_EMBEDDED_OFFSET (arg1) + offset + boffset;
          if (VALUE_LAZY (arg1))
            VALUE_LAZY (v2) = 1;
          else
            memcpy ((char *) (v2)->aligner.contents,
                    (char *) (arg1)->aligner.contents,
                    TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
#endif
          if (found_baseclass)
            {
              /*return v2; */

              if (!*found)      /* not yet found anything */
                {
                  /* Record return value and class name, and continue
                     looking for possible ambiguous members */
                  retval = v2;
                  strcpy (found_class_name, TYPE_TAG_NAME (type));
                }
              /* Don't count virtual bases twice when deciding ambiguity */
              if (*vbase != basetype)   /* works for null *vbase */
                (*found)++;
              /* Is this the first virtual base where we "found" something? */
              if (!*vbase)
                *vbase = basetype;
            }
          else
            /* base not found, or looking for member */
            {
              v = search_struct_field_aux (name, /*arg1*/v2, 0/*offset + boffset*/,
                                           TYPE_BASECLASS (type, i),
                                           looking_for_baseclass, &tmp_found,
                                        tmp_class_name, vbase, domain_name);
              if (!*found && v)
                {
                  /* Record return value and class name, and continue
                     looking for possible ambiguous members */
                  retval = v;
                  /* TYPE_TAG_NAME can be null in case of an anonymous union */
                  if (TYPE_TAG_NAME (type))
                    strcpy (found_class_name, TYPE_TAG_NAME (type));
                  else
                    strcpy (found_class_name, " ");
                  strcat (found_class_name, "::");
                  strcat (found_class_name, tmp_class_name);
                }
              /* Don't count virtual bases twice when deciding ambiguity */
              if (*vbase != basetype)   /* works for null *vbase */
                *found += tmp_found;
              /* Is this the first virtual base where we "found" something? */
              if (!*vbase)
                *vbase = basetype;
              tmp_found = 0;
            }
        }
      else if (found_baseclass)
        {
          v = value_primitive_field (arg1, offset, i, type);
          if (!*found)
            {
              /* Record return value and class name, and continue
                 looking for possible ambiguous members */
              retval = v;
              strcpy (found_class_name, TYPE_TAG_NAME (type));
            }
          (*found)++;
        }
      else
        {
          v = search_struct_field_aux (name, arg1,
                               offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
                                basetype, looking_for_baseclass, &tmp_found,
                                       tmp_class_name, vbase, domain_name);
          if (!*found && v)
            {
              /* Record return value and class name, and continue
                 looking for possible ambiguous members */
              retval = v;
              /* TYPE_TAG_NAME can be null in case of an anonymous union */
              if (TYPE_TAG_NAME (type))
                strcpy (found_class_name, TYPE_TAG_NAME (type));
              else
                strcpy (found_class_name, " ");
              strcat (found_class_name, "::");
              strcat (found_class_name, tmp_class_name);
            }
          *found += tmp_found;
          tmp_found = 0;
        }
    }
  return retval;
}

/* Helper function used by value_struct_elt to recurse through baseclasses.
   Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
   and search in it assuming it has (class) type TYPE.
   If found, return value, else if name matched and args not return (value)-1,
   else return NULL. */

static value_ptr
search_struct_method (const char *name, register value_ptr *arg1p,
		      register value_ptr *args, int offset,
		      int *static_memfuncp, register struct type *type)
{
  int i;
  value_ptr v;
  int name_matched = 0;
  char dem_opname[64];

  CHECK_TYPEDEF (type);
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
    {
      char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
      /* FIXME!  May need to check for ARM demangling here */
      if (strncmp (t_field_name, "__", 2) == 0 ||
	  strncmp (t_field_name, "op", 2) == 0 ||
	  strncmp (t_field_name, "type", 4) == 0)
	{
	  if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
	    t_field_name = dem_opname;
	  else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
	    t_field_name = dem_opname;
	}
      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
	{
	  int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
	  struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
	  name_matched = 1;

	  if (j > 0 && args == 0)
	    error ("cannot resolve overloaded method `%s': no arguments supplied", name);
	  while (j >= 0)
	    {
	      if (TYPE_FN_FIELD_STUB (f, j))
		check_stub_method (type, i, j);
	      if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
			    TYPE_FN_FIELD_ARGS (f, j), args))
		{
		  if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
		    return value_virtual_fn_field (arg1p, f, j, type, offset);
		  if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
		    *static_memfuncp = 1;
		  v = value_fn_field (arg1p, f, j, type, offset);
		  if (v != NULL)
		    return v;       
		}
	      j--;
	    }
	}
    }

  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
      int base_offset;

      if (BASETYPE_VIA_VIRTUAL (type, i))
	{
	  struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
	  char *base_valaddr;
	  
	  /* The virtual base class pointer might have been clobbered by the
	     user program. Make sure that it still points to a valid memory
	     location.  */
	  
	  if (offset < 0 || offset >= TYPE_LENGTH (type))
	    {
	      base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
	      if (target_read_memory (VALUE_ADDRESS (*arg1p)
				      + VALUE_OFFSET (*arg1p) + offset,
				      base_valaddr,
				      TYPE_LENGTH (baseclass)) != 0)
		error ("virtual baseclass botch");
	    }
	  else
	    base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
	  
	  base_offset =
	    baseclass_offset (type, i, arg1p,  base_valaddr,
			      VALUE_ADDRESS (*arg1p)
			      + VALUE_OFFSET (*arg1p) + offset, offset);
	  if (base_offset == -1)
	    error ("virtual baseclass botch");
	}
      else
	{
	  base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
	}
      v = search_struct_method (name, arg1p, args, base_offset + offset,
				static_memfuncp, TYPE_BASECLASS (type, i));
      if (v == (value_ptr) - 1)
	{
	  name_matched = 1;
	}
      else if (v)
	{
/* FIXME-bothner:  Why is this commented out?  Why is it here?  */
/*        *arg1p = arg1_tmp; */
	  return v;
	}
    }
  if (name_matched)
    return (value_ptr) - 1;
  else
    return NULL;
}

/* Given *ARGP, a value of type (pointer to a)* structure/union,
   extract the component named NAME from the ultimate target structure/union
   and return it as a value with its appropriate type.
   ERR is used in the error message if *ARGP's type is wrong.

   C++: ARGS is a list of argument types to aid in the selection of
   an appropriate method. Also, handle derived types.

   STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
   where the truthvalue of whether the function that was resolved was
   a static member function or not is stored.

   ERR is an error message to be printed in case the field is not found.  */

value_ptr
value_struct_elt (register value_ptr *argp, register value_ptr *args,
		  char *name, int *static_memfuncp, char *err)
{
  register struct type *t;
  value_ptr v;

  COERCE_ARRAY (*argp);

  t = check_typedef (VALUE_TYPE (*argp));

  /* Follow pointers until we get to a non-pointer.  */

  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
    {
      *argp = value_ind (*argp);
      /* Don't coerce fn pointer to fn and then back again!  */
      if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
	COERCE_ARRAY (*argp);
      t = check_typedef (VALUE_TYPE (*argp));
    }

  if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
    error ("not implemented: member type in value_struct_elt");

  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error ("Attempt to extract a component of a value that is not a %s.", err);

  /* Assume it's not, unless we see that it is.  */
  if (static_memfuncp)
    *static_memfuncp = 0;

  if (!args)
    {
      /* if there are no arguments ...do this...  */
      
      /* Try as a field first, because if we succeed, there
         is less work to be done.  */
      if (strncmp (err, "data member", 11))
	{
	  v = search_struct_field (name, *argp, VALUE_EMBEDDED_OFFSET (*argp), t, no_baseclass, NULL);
	}
      else
	{
	  v = search_struct_field (name, *argp, VALUE_EMBEDDED_OFFSET (*argp), t, struct_or_baseclass, err);
	}
      if (v)
	return v;
      
      /* C++: If it was not found as a data field, then try to
         return it as a pointer to a method.  */

      if (destructor_name_p (name, t))
	error ("Cannot get value of destructor");

      v = search_struct_method (name, argp, args, 0, static_memfuncp, t);

      if (v == (value_ptr) - 1)
	error ("Cannot take address of a method");
      else if (v == 0)
	{
	  if (TYPE_NFN_FIELDS (t))
	    error ("There is no member or method named %s.", name);
	  else
	    error ("There is no member named %s.", name);
	}
      return v;
    }

  if (destructor_name_p (name, t))
    {
      if (!args[1])
	{
	  /* Destructors are a special case.  */
	  int m_index, f_index;

	  v = NULL;
	  if (get_destructor_fn_field (t, &m_index, &f_index))
	    {
	      v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
				  f_index, NULL, 0);
	    }
	  if (v == NULL)
	    error ("could not find destructor function named %s.", name);
	  else
	    return v;
	}
      else
	{
	  error ("destructor should not have any argument");
	}
    }
  else
    v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
  
  if (v == (value_ptr) - 1)
    {
      error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
    }
  else if (v == 0)
    {
      /* See if user tried to invoke data as function.  If so,
         hand it back.  If it's not callable (i.e., a pointer to function),
         gdb should give an error.  */
      v = search_struct_field (name, *argp, 0, t, no_baseclass, NULL);
    }

  if (!v)
    error ("Structure has no component named %s.", name);
  return v;
}

/* Search through the methods of an object (and its bases)
 * to find a specified method. Return the pointer to the
 * fn_field list of overloaded instances.
 * Helper function for value_find_oload_list.
 * ARGP is a pointer to a pointer to a value (the object)
 * METHOD is a string containing the method name
 * OFFSET is the offset within the value
 * STATIC_MEMFUNCP is set if the method is static
 * TYPE is the assumed type of the object
 * NUM_FNS is the number of overloaded instances
 * BASETYPE is set to the actual type of the subobject where the method is found
 * BOFFSET is the offset of the base subobject where the method is found */

static struct fn_field *
find_method_list (value_ptr *argp, char *method, int offset,
		  int *static_memfuncp, struct type *type, int *num_fns,
		  struct type **basetype, int *boffset)
{
  int i;
  struct fn_field *f;
  CHECK_TYPEDEF (type);

  *num_fns = 0;

  /* First check in object itself */
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
    {
      /* pai: FIXME What about operators and type conversions? */
      char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
      if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
	{
	  *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
	  *basetype = type;
	  *boffset = offset;
	  return TYPE_FN_FIELDLIST1 (type, i);
	}
    }

  /* Not found in object, check in base subobjects */
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
      int base_offset;
      if (BASETYPE_VIA_VIRTUAL (type, i))
	{
	  base_offset = VALUE_OFFSET (*argp) + offset;
	  base_offset =
	    baseclass_offset (type, i, argp, 
			      VALUE_CONTENTS (*argp) + base_offset,
			      VALUE_ADDRESS (*argp) + base_offset, offset);
	  if (base_offset == -1)
	    error ("virtual baseclass botch");
	}
      else
	/* non-virtual base, simply use bit position from debug info */
	{
	  base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
	}
      f = find_method_list (argp, method, base_offset + offset,
      static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
      if (f)
	return f;
    }
  return NULL;
}

/* Return the list of overloaded methods of a specified name.
 * ARGP is a pointer to a pointer to a value (the object)
 * METHOD is the method name
 * OFFSET is the offset within the value contents
 * STATIC_MEMFUNCP is set if the method is static
 * NUM_FNS is the number of overloaded instances
 * BASETYPE is set to the type of the base subobject that defines the method
 * BOFFSET is the offset of the base subobject which defines the method */

struct fn_field *
value_find_oload_method_list (value_ptr *argp, char *method, int offset,
			      int *static_memfuncp, int *num_fns,
			      struct type **basetype, int *boffset)
{
  struct type *t;

  t = check_typedef (VALUE_TYPE (*argp));

  /* code snarfed from value_struct_elt */
  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
    {
      *argp = value_ind (*argp);
      /* Don't coerce fn pointer to fn and then back again!  */
      if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
	COERCE_ARRAY (*argp);
      t = check_typedef (VALUE_TYPE (*argp));
    }

  if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
    error ("Not implemented: member type in value_find_oload_lis");

  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error ("Attempt to extract a component of a value that is not a struct or union");

  /* Assume it's not static, unless we see that it is.  */
  if (static_memfuncp)
    *static_memfuncp = 0;

  return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);

}

/* Given an array of argument types (ARGTYPES) (which includes an
   entry for "this" in the case of C++ methods), the number of
   arguments NARGS, the NAME of a function whether it's a method or
   not (METHOD), and the degree of laxness (LAX) in conforming to
   overload resolution rules in ANSI C++, find the best function that
   matches on the argument types according to the overload resolution
   rules.

   In the case of class methods, the parameter OBJ is an object value
   in which to search for overloaded methods.

   In the case of non-method functions, the parameter FSYM is a symbol
   corresponding to one of the overloaded functions.

   Return value is an integer: 0 -> good match, 10 -> debugger applied
   non-standard coercions, 100 -> incompatible.

   If a method is being searched for, VALP will hold the value.
   If a non-method is being searched for, SYMP will hold the symbol for it.

   If a method is being searched for, and it is a static method,
   then STATICP will point to a non-zero value.

   Note: This function does *not* check the value of
   overload_resolution.  Caller must check it to see whether overload
   resolution is permitted.
 */

int
find_overload_match (struct type **arg_types, int nargs, char *name, int method,
		     int lax, value_ptr obj, struct symbol *fsym,
		     value_ptr *valp, struct symbol **symp, int *staticp)
{
  int nparms;
  struct type **parm_types;
  int champ_nparms = 0;

  short oload_champ = -1;	/* Index of best overloaded function */
  short oload_ambiguous = 0;	/* Current ambiguity state for overload resolution */
  /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
  short oload_ambig_champ = -1;	/* 2nd contender for best match */
  short oload_non_standard = 0;	/* did we have to use non-standard conversions? */
  short oload_incompatible = 0;	/* are args supplied incompatible with any function? */

  struct badness_vector *bv;	/* A measure of how good an overloaded instance is */
  struct badness_vector *oload_champ_bv = NULL;		/* The measure for the current best match */

  value_ptr temp = obj;
  struct fn_field *fns_ptr = NULL;	/* For methods, the list of overloaded methods */
  struct symbol **oload_syms = NULL;	/* For non-methods, the list of overloaded function symbols */
  int num_fns = 0;		/* Number of overloaded instances being considered */
  struct type *basetype = NULL;
  int boffset;
  register int jj;
  register int ix;

  const char *obj_type_name = NULL;
  char *func_name = NULL;

  /* Get the list of overloaded methods or functions */
  if (method)
    {
      int i;
      int len;
      struct type *domain;
      obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
      /* Hack: evaluate_subexp_standard often passes in a pointer
         value rather than the object itself, so try again */
      if ((!obj_type_name || !*obj_type_name) &&
	  (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
	obj_type_name = TYPE_NAME (POINTER_TARGET_TYPE (VALUE_TYPE (obj)));

      fns_ptr = value_find_oload_method_list (&temp, name, 0,
					      staticp,
					      &num_fns,
					      &basetype, &boffset);
      if (!fns_ptr || !num_fns)
	error ("Couldn't find method %s%s%s",
	       obj_type_name,
	       (obj_type_name && *obj_type_name) ? "::" : "",
	       name);
      domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
      len = TYPE_NFN_FIELDS (domain);
      /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
         give us the info we need directly in the types. We have to
         use the method stub conversion to get it. Be aware that this
         is by no means perfect, and if you use STABS, please move to
         DWARF-2, or something like it, because trying to improve
         overloading using STABS is really a waste of time. */
      for (i = 0; i < len; i++)
	{
	  int j;
	  struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
	  int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);

	  for (j = 0; j < len2; j++)
	    {
	      if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
		check_stub_method (domain, i, j);
	    }
	}
    }
  else
    {
      int i = -1;
      func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);

      /* If the name is NULL this must be a C-style function.
         Just return the same symbol. */
      if (!func_name)
        {
	  *symp = fsym;
          return 0;
        }

      oload_syms = make_symbol_overload_list (fsym);
      while (oload_syms[++i])
	num_fns++;
      if (!num_fns)
	error ("Couldn't find function %s", func_name);
    }

  oload_champ_bv = NULL;

  /* Consider each candidate in turn */
  for (ix = 0; ix < num_fns; ix++)
    {
      if (method)
	{
	  /* For static member functions, we won't have a this pointer, but nothing
	     else seems to handle them right now, so we just pretend ourselves */
	  nparms=0;

	  if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
	    {
	      while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
		nparms++;
	    }
	}
      else
	{
	  /* If it's not a method, this is the proper place */
	  nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
	}

      /* Prepare array of parameter types */
      parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
      for (jj = 0; jj < nparms; jj++)
	parm_types[jj] = (method
			  ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
			  : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));

      /* Compare parameter types to supplied argument types */
      bv = rank_function (parm_types, nparms, arg_types, nargs);

      if (!oload_champ_bv)
	{
	  oload_champ_bv = bv;
	  oload_champ = 0;
	  champ_nparms = nparms;
	}
      else
	/* See whether current candidate is better or worse than previous best */
	switch (compare_badness (bv, oload_champ_bv))
	  {
	  case 0:
	    oload_ambiguous = 1;	/* top two contenders are equally good */
	    oload_ambig_champ = ix;
	    break;
	  case 1:
	    oload_ambiguous = 2;	/* incomparable top contenders */
	    oload_ambig_champ = ix;
	    break;
	  case 2:
	    oload_champ_bv = bv;	/* new champion, record details */
	    oload_ambiguous = 0;
	    oload_champ = ix;
	    oload_ambig_champ = -1;
	    champ_nparms = nparms;
	    break;
	  case 3:
	  default:
	    break;
	  }
      xfree (parm_types);
      if (overload_debug)
	{
	  if (method)
	    fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
	  else
	    fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
	  for (jj = 0; jj < nargs; jj++)
	    fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
	  fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
	}
    }				/* end loop over all candidates */
  /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
     if they have the exact same goodness. This is because there is no
     way to differentiate based on return type, which we need to in
     cases like overloads of .begin() <It's both const and non-const> */
#if 0
  if (oload_ambiguous)
    {
      if (method)
	error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
	       obj_type_name,
	       (obj_type_name && *obj_type_name) ? "::" : "",
	       name);
      else
	error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
	       func_name);
    }
#endif

  /* Check how bad the best match is */
  for (ix = 1; ix <= nargs; ix++)
    {
      if (oload_champ_bv->rank[ix] >= 100)
	oload_incompatible = 1;	/* truly mismatched types */

      else if (oload_champ_bv->rank[ix] >= 10)
	oload_non_standard = 1;	/* non-standard type conversions needed */
    }
  if (oload_incompatible)
    {
      if (method)
	error ("Cannot resolve method %s%s%s to any overloaded instance",
	       obj_type_name,
	       (obj_type_name && *obj_type_name) ? "::" : "",
	       name);
      else
	error ("Cannot resolve function %s to any overloaded instance",
	       func_name);
    }
  else if (oload_non_standard)
    {
      if (method)
	warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
		 obj_type_name,
		 (obj_type_name && *obj_type_name) ? "::" : "",
		 name);
      else
	warning ("Using non-standard conversion to match function %s to supplied arguments",
		 func_name);
    }

  if (method)
    {
      if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
	*valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
      else
	*valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
    }
  else
    {
      *symp = oload_syms[oload_champ];
      xfree (func_name);
    }

  return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
}

/* C++: return 1 is NAME is a legitimate name for the destructor
   of type TYPE.  If TYPE does not have a destructor, or
   if NAME is inappropriate for TYPE, an error is signaled.  */
int
destructor_name_p (const char *name, const struct type *type)
{
  /* destructors are a special case.  */

  if (name[0] == '~')
    {
      const char *dname = type_name_no_tag (type);
      char *cp = strchr (dname, '<');
      unsigned int len;

      /* Do not compare the template part for template classes.  */
      if (cp == NULL)
	len = strlen (dname);
      else
	len = cp - dname;
      if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
	error ("name of destructor must equal name of class");
      else
	return 1;
    }
  return 0;
}

/* Helper function for check_field: Given TYPE, a structure/union,
   return 1 if the component named NAME from the ultimate
   target structure/union is defined, otherwise, return 0. */

static int
check_field_in (register struct type *type, const char *name)
{
  register int i;

  for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
    {
      char *t_field_name = TYPE_FIELD_NAME (type, i);
      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
	return 1;
    }

  /* C++: If it was not found as a data field, then try to
     return it as a pointer to a method.  */

  /* Destructors are a special case.  */
  if (destructor_name_p (name, type))
    {
      int m_index, f_index;

      return get_destructor_fn_field (type, &m_index, &f_index);
    }

  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
    {
      if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
	return 1;
    }

  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    if (check_field_in (TYPE_BASECLASS (type, i), name))
      return 1;

  return 0;
}


/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
   return 1 if the component named NAME from the ultimate
   target structure/union is defined, otherwise, return 0.  */

int
check_field (register value_ptr arg1, const char *name)
{
  register struct type *t;

  COERCE_ARRAY (arg1);

  t = VALUE_TYPE (arg1);

  /* Follow pointers until we get to a non-pointer.  */

  for (;;)
    {
      CHECK_TYPEDEF (t);
      if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
	break;
      t = POINTER_TARGET_TYPE (t);
    }

  if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
    error ("not implemented: member type in check_field");

  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error ("Internal error: `this' is not an aggregate");

  return check_field_in (t, name);
}

/* C++: Given an aggregate type CURTYPE, and a member name NAME,
   return the address of this member as a "pointer to member"
   type.  If INTYPE is non-null, then it will be the type
   of the member we are looking for.  This will help us resolve
   "pointers to member functions".  This function is used
   to resolve user expressions of the form "DOMAIN::NAME".  */

value_ptr
value_struct_elt_for_reference (struct type *domain, int offset,
				struct type *curtype, char *name,
				struct type *intype, int look_for_this)
{
  register struct type *t = curtype;
  register int i;
  value_ptr v;
  
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error ("Internal error: non-aggregate type to value_struct_elt_for_reference");

  for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
    {
      char *t_field_name = TYPE_FIELD_NAME (t, i);

      if (t_field_name && STREQ (t_field_name, name))
	{
		value_ptr argp;
	  if (TYPE_FIELD_STATIC (t, i))
	    {
	      v = value_static_field (t, i);
	      if (v == NULL)
		error ("Internal error: could not find static variable %s",
		       name);
	      return v;
	    }
	  if (TYPE_FIELD_PACKED (t, i))
	    error ("pointers to bitfield members not allowed");
	  if (look_for_this)
	    {
	      /* It can be a class data member. */
	      argp = value_of_this (1);
	      if (argp != 0)
		{
		  char *class_name;
		  class_name = alloca (strlen (TYPE_TAG_NAME(domain)) +strlen ("data member of ")+1);
		  strcat (class_name, "data member of ");
		  strcat (class_name, TYPE_TAG_NAME(domain));
		  v = value_struct_elt (&argp, NULL, name, NULL, class_name);
		  if (v != 0)
		    return v;
		}
	    }
	  return value_from_longest
	    (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
							domain)),
	     offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
	}
    }
  
  /* C++: If it was not found as a data field, then try to
     return it as a pointer to a method.  */

  /* Destructors are a special case.  */
  if (destructor_name_p (name, t))
    {
      error ("member pointers to destructors not implemented yet");
    }

  /* Perform all necessary dereferencing.  */
  while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
    intype = POINTER_TARGET_TYPE (intype);

  for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
    {
      char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
      char dem_opname[64];

      if (strncmp (t_field_name, "__", 2) == 0 ||
	  strncmp (t_field_name, "op", 2) == 0 ||
	  strncmp (t_field_name, "type", 4) == 0)
	{
	  if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
	    t_field_name = dem_opname;
	  else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
	    t_field_name = dem_opname;
	}
      if (t_field_name && STREQ (t_field_name, name))
	{
	  int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
	  struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);

	  if (intype == 0 && j > 1)
	    error ("non-unique member `%s' requires type instantiation", name);
	  if (intype)
	    {
	      while (j--)
		if (TYPE_FN_FIELD_TYPE (f, j) == intype)
		  break;
	      if (j < 0)
		error ("no member function matches that type instantiation");
	    }
	  else
	    j = 0;

	  if (TYPE_FN_FIELD_STUB (f, j))
	    check_stub_method (t, i, j);
	  if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
	    {
	      return value_from_longest
		(lookup_reference_type
		 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
				      domain)),
		 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
	    }
	  else
	    {
	      struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
						0, VAR_NAMESPACE, 0, NULL);
	      if (s == NULL)
		{
		  v = 0;
		}
	      else
		{
		  v = read_var_value (s, 0);
#if 0
		  VALUE_TYPE (v) = lookup_reference_type
		    (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
					 domain));
#endif
		}
	      return v;
	    }
	}
    }
  for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
    {
      value_ptr v;
      int base_offset;

      if (BASETYPE_VIA_VIRTUAL (t, i))
	base_offset = 0;
      else
	base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
      v = value_struct_elt_for_reference (domain,
					  offset + base_offset,
					  TYPE_BASECLASS (t, i),
					  name,
					  intype, look_for_this);
      if (v)
	return v;
    }
  return 0;
}


/* Given a pointer value V, find the real (RTTI) type
   of the object it points to.
   Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
   and refer to the values computed for the object pointed to. */

struct type *
value_rtti_target_type (value_ptr v, int *full, int *top, int *using_enc)
{
  value_ptr target;

  target = value_ind (v);

  return value_rtti_type (target, full, top, using_enc);
}

/* Given a value pointed to by ARGP, check its real run-time type, and
   if that is different from the enclosing type, create a new value
   using the real run-time type as the enclosing type (and of the same
   type as ARGP) and return it, with the embedded offset adjusted to
   be the correct offset to the enclosed object
   RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
   parameters, computed by value_rtti_type(). If these are available,
   they can be supplied and a second call to value_rtti_type() is avoided.
   (Pass RTYPE == NULL if they're not available */

value_ptr
value_full_object (value_ptr argp, struct type *rtype, int xfull, int xtop,
		   int xusing_enc)
{
  struct type *real_type;
  int full = 0;
  int top = -1;
  int using_enc = 0;
  value_ptr new_val;

  if (rtype)
    {
      real_type = rtype;
      full = xfull;
      top = xtop;
      using_enc = xusing_enc;
    }
  else
    real_type = value_rtti_type (argp, &full, &top, &using_enc);

  /* If no RTTI data, or if object is already complete, do nothing */
  if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
    return argp;

  /* If we have the full object, but for some reason the enclosing
     type is wrong, set it *//* pai: FIXME -- sounds iffy */
  if (full)
    {
      argp = value_change_enclosing_type (argp, real_type);
      return argp;
    }

  /* Check if object is in memory */
  if (VALUE_LVAL (argp) != lval_memory)
    {
      warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));

      return argp;
    }

  /* All other cases -- retrieve the complete object */
  /* Go back by the computed top_offset from the beginning of the object,
     adjusting for the embedded offset of argp if that's what value_rtti_type
     used for its computation. */
  new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
			   (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
			   VALUE_BFD_SECTION (argp));
  VALUE_TYPE (new_val) = VALUE_TYPE (argp);
  VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
  return new_val;
}




/* C++: return the value of the class instance variable, if one exists.
   Flag COMPLAIN signals an error if the request is made in an
   inappropriate context.  */

value_ptr
value_of_this (int complain)
{
  struct symbol *func, *sym;
  struct block *b;
  int i;
  static const char funny_this[] = "this";
  value_ptr this;

  if (selected_frame == 0)
    {
      if (complain)
	error ("no frame selected");
      else
	return 0;
    }

  func = get_frame_function (selected_frame);
  if (!func)
    {
      if (complain)
	error ("no `this' in nameless context");
      else
	return 0;
    }

  b = SYMBOL_BLOCK_VALUE (func);
  i = BLOCK_NSYMS (b);
  if (i <= 0)
    {
      if (complain)
	error ("no args, no `this'");
      else
	return 0;
    }

  /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
     symbol instead of the LOC_ARG one (if both exist).  */
  sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
  if (sym == NULL)
    {
      if (complain)
	error ("current stack frame not in method");
      else
	return NULL;
    }

  this = read_var_value (sym, selected_frame);
  if (this == 0 && complain)
    error ("`this' argument at unknown address");
  return this;
}

/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
   long, starting at LOWBOUND.  The result has the same lower bound as
   the original ARRAY.  */

value_ptr
value_slice (value_ptr array, int lowbound, int length)
{
  struct type *slice_type;
  struct range_type *slice_range_type, *range_type;
  LONGEST lowerbound, upperbound, offset;
  value_ptr slice;
  struct type *array_type;
  array_type = check_typedef (VALUE_TYPE (array));
  COERCE_VARYING_ARRAY (array, array_type);
  if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
      && TYPE_CODE (array_type) != TYPE_CODE_STRING
      && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
    error ("cannot take slice of non-array");
  range_type = ARRAY_RANGE_TYPE (array_type);
  lowerbound = RANGE_LOWER_BOUND (range_type);
  upperbound = RANGE_UPPER_BOUND (range_type);
  if (lowbound < lowerbound || length < 0
      || lowbound + length - 1 > upperbound
  /* Chill allows zero-length strings but not arrays. */
      || (current_language->la_language == language_chill
	  && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
    error ("slice out of range");
  /* TYPEFIX-type-allocation: need a way to free this type when we are
     done with it.  */
  slice_range_type = make_range_type (NULL, 
					RANGE_INDEX_TYPE (range_type),
					lowbound, lowbound + length - 1);
  if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
    {
      int i;
      slice_type = (struct type *)make_set_type (NULL, slice_range_type);
      TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
      slice = value_zero (slice_type, not_lval);
      for (i = 0; i < length; i++)
	{
	  int element = value_bit_index (array_type,
					 VALUE_CONTENTS (array),
					 lowbound + i);
	  if (element < 0)
	    error ("internal error accessing bitstring");
	  else if (element > 0)
	    {
	      int j = i % TARGET_CHAR_BIT;
	      if (BITS_BIG_ENDIAN)
		j = TARGET_CHAR_BIT - 1 - j;
	      VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
	    }
	}
      /* We should set the address, bitssize, and bitspos, so the clice
         can be used on the LHS, but that may require extensions to
         value_assign.  For now, just leave as a non_lval.  FIXME.  */
    }
  else
    {
      struct type *element_type = ARRAY_ELEMENT_TYPE (array_type);
      offset
	= (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
      slice_type = (struct type *)make_array_type (NULL,  element_type,
				      slice_range_type);
      TYPE_CODE (slice_type) = TYPE_CODE (array_type);
      slice = allocate_value (slice_type);
      if (VALUE_LAZY (array))
	VALUE_LAZY (slice) = 1;
      else
	memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
		TYPE_LENGTH (slice_type));
      if (VALUE_LVAL (array) == lval_internalvar)
	VALUE_LVAL (slice) = lval_internalvar_component;
      else
	VALUE_LVAL (slice) = VALUE_LVAL (array);
      VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
      VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
    }
  return slice;
}

/* Assuming chill_varying_type (VARRAY) is true, return an equivalent
   value as a fixed-length array. */

value_ptr
varying_to_slice (value_ptr varray)
{
  struct type *vtype = check_typedef (VALUE_TYPE (varray));
  LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
				VALUE_CONTENTS (varray)
				+ TYPE_FIELD_BITPOS (vtype, 0) / 8);
  return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
}

/* Create a value for a FORTRAN complex number.  Currently most of
   the time values are coerced to COMPLEX*16 (i.e. a complex number
   composed of 2 doubles.  This really should be a smarter routine
   that figures out precision inteligently as opposed to assuming
   doubles. FIXME: fmb */

value_ptr
value_literal_complex (value_ptr arg1, value_ptr arg2, struct type *type)
{
  register value_ptr val;
  struct type *real_type = TYPE_TARGET_TYPE (type);

  val = allocate_value (type);
  arg1 = value_cast (real_type, arg1);
  arg2 = value_cast (real_type, arg2);

  memcpy (VALUE_CONTENTS_RAW (val),
	  VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
  memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
	  VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
  return val;
}

/* Cast a value into the appropriate complex data type. */

static value_ptr
cast_into_complex (struct type *type, register value_ptr val)
{
  struct type *real_type = TYPE_TARGET_TYPE (type);
  if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
    {
      struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
      value_ptr re_val = allocate_value (val_real_type);
      value_ptr im_val = allocate_value (val_real_type);

      memcpy (VALUE_CONTENTS_RAW (re_val),
	      VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
      memcpy (VALUE_CONTENTS_RAW (im_val),
	      VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
	      TYPE_LENGTH (val_real_type));

      return value_literal_complex (re_val, im_val, type);
    }
  else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
	   || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
    return value_literal_complex (val, value_zero (real_type, not_lval), type);
  else
    error ("cannot cast non-number to complex");
}

void
_initialize_valops (void)
{
#if 0
  add_show_from_set
    (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
		  "Set automatic abandonment of expressions upon failure.",
		  &setlist),
     &showlist);
#endif

  add_show_from_set
    (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
		  "Set overload resolution in evaluating C++ functions.",
		  &setlist),
     &showlist);
  overload_resolution = 1;

  add_show_from_set (
  add_set_cmd ("unwindonsignal", no_class, var_boolean,
	       (char *) &unwind_on_signal_p,
"Set unwinding of stack if a signal is received while in a call dummy.\n\
The unwindonsignal lets the user determine what gdb should do if a signal\n\
is received while in a function called from gdb (call dummy).  If set, gdb\n\
unwinds the stack and restore the context to what as it was before the call.\n\
The default is to stop in the frame where the signal was received.", &setlist),
		     &showlist);
}