summaryrefslogtreecommitdiff
path: root/gdb/x86-64-tdep.c
blob: 37d8fc80346c1c36db744e924275d60dcd7279d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
/* Target-dependent code for the x86-64 for GDB, the GNU debugger.

   Copyright 2001, 2002 Free Software Foundation, Inc.

   Contributed by Jiri Smid, SuSE Labs.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "inferior.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "arch-utils.h"
#include "regcache.h"
#include "symfile.h"
#include "objfiles.h"
#include "x86-64-tdep.h"
#include "dwarf2cfi.h"
#include "gdb_assert.h"

/* Register numbers of various important registers.  */
#define RAX_REGNUM 0
#define RDX_REGNUM 3
#define RDI_REGNUM 5
#define EFLAGS_REGNUM 17
#define ST0_REGNUM 22
#define XMM1_REGNUM  39

struct register_info
{
  int size;
  char *name;
  struct type **type;
};

/* x86_64_register_raw_size_table[i] is the number of bytes of storage in
   GDB's register array occupied by register i.  */
static struct register_info x86_64_register_info_table[] = {
  /*  0 */ {8, "rax", &builtin_type_int64},
  /*  1 */ {8, "rbx", &builtin_type_int64},
  /*  2 */ {8, "rcx", &builtin_type_int64},
  /*  3 */ {8, "rdx", &builtin_type_int64},
  /*  4 */ {8, "rsi", &builtin_type_int64},
  /*  5 */ {8, "rdi", &builtin_type_int64},
  /*  6 */ {8, "rbp", &builtin_type_void_func_ptr},
  /*  7 */ {8, "rsp", &builtin_type_void_func_ptr},
  /*  8 */ {8, "r8", &builtin_type_int64},
  /*  9 */ {8, "r9", &builtin_type_int64},
  /* 10 */ {8, "r10", &builtin_type_int64},
  /* 11 */ {8, "r11", &builtin_type_int64},
  /* 12 */ {8, "r12", &builtin_type_int64},
  /* 13 */ {8, "r13", &builtin_type_int64},
  /* 14 */ {8, "r14", &builtin_type_int64},
  /* 15 */ {8, "r15", &builtin_type_int64},
  /* 16 */ {8, "rip", &builtin_type_void_func_ptr},
  /* 17 */ {4, "eflags", &builtin_type_int32},
  /* 18 */ {4, "ds", &builtin_type_int32},
  /* 19 */ {4, "es", &builtin_type_int32},
  /* 20 */ {4, "fs", &builtin_type_int32},
  /* 21 */ {4, "gs", &builtin_type_int32},
  /* 22 */ {10, "st0", &builtin_type_i387_ext},
  /* 23 */ {10, "st1", &builtin_type_i387_ext},
  /* 24 */ {10, "st2", &builtin_type_i387_ext},
  /* 25 */ {10, "st3", &builtin_type_i387_ext},
  /* 26 */ {10, "st4", &builtin_type_i387_ext},
  /* 27 */ {10, "st5", &builtin_type_i387_ext},
  /* 28 */ {10, "st6", &builtin_type_i387_ext},
  /* 29 */ {10, "st7", &builtin_type_i387_ext},
  /* 30 */ {4, "fctrl", &builtin_type_int32},
  /* 31 */ {4, "fstat", &builtin_type_int32},
  /* 32 */ {4, "ftag", &builtin_type_int32},
  /* 33 */ {4, "fiseg", &builtin_type_int32},
  /* 34 */ {4, "fioff", &builtin_type_int32},
  /* 35 */ {4, "foseg", &builtin_type_int32},
  /* 36 */ {4, "fooff", &builtin_type_int32},
  /* 37 */ {4, "fop", &builtin_type_int32},
  /* 38 */ {16, "xmm0", &builtin_type_v4sf},
  /* 39 */ {16, "xmm1", &builtin_type_v4sf},
  /* 40 */ {16, "xmm2", &builtin_type_v4sf},
  /* 41 */ {16, "xmm3", &builtin_type_v4sf},
  /* 42 */ {16, "xmm4", &builtin_type_v4sf},
  /* 43 */ {16, "xmm5", &builtin_type_v4sf},
  /* 44 */ {16, "xmm6", &builtin_type_v4sf},
  /* 45 */ {16, "xmm7", &builtin_type_v4sf},
  /* 46 */ {16, "xmm8", &builtin_type_v4sf},
  /* 47 */ {16, "xmm9", &builtin_type_v4sf},
  /* 48 */ {16, "xmm10", &builtin_type_v4sf},
  /* 49 */ {16, "xmm11", &builtin_type_v4sf},
  /* 50 */ {16, "xmm12", &builtin_type_v4sf},
  /* 51 */ {16, "xmm13", &builtin_type_v4sf},
  /* 52 */ {16, "xmm14", &builtin_type_v4sf},
  /* 53 */ {16, "xmm15", &builtin_type_v4sf},
  /* 54 */ {4, "mxcsr", &builtin_type_int32}
};

/* This array is a mapping from Dwarf-2 register 
   numbering to GDB's one. Dwarf-2 numbering is 
   defined in x86-64 ABI, section 3.6.  */
static int x86_64_dwarf2gdb_regno_map[] = {
  0, 1, 2, 3,			/* RAX - RDX */
  4, 5, 6, 7,			/* RSI, RDI, RBP, RSP */
  8, 9, 10, 11,			/* R8 - R11 */
  12, 13, 14, 15,		/* R12 - R15 */
  -1,				/* RA - not mapped */
  XMM1_REGNUM - 1, XMM1_REGNUM,	/* XMM0 ... */
  XMM1_REGNUM + 1, XMM1_REGNUM + 2,
  XMM1_REGNUM + 3, XMM1_REGNUM + 4,
  XMM1_REGNUM + 5, XMM1_REGNUM + 6,
  XMM1_REGNUM + 7, XMM1_REGNUM + 8,
  XMM1_REGNUM + 9, XMM1_REGNUM + 10,
  XMM1_REGNUM + 11, XMM1_REGNUM + 12,
  XMM1_REGNUM + 13, XMM1_REGNUM + 14,	/* ... XMM15 */
  ST0_REGNUM + 0, ST0_REGNUM + 1,	/* ST0 ... */
  ST0_REGNUM + 2, ST0_REGNUM + 3,
  ST0_REGNUM + 4, ST0_REGNUM + 5,
  ST0_REGNUM + 6, ST0_REGNUM + 7	/* ... ST7 */
};

static int x86_64_dwarf2gdb_regno_map_length =
  sizeof (x86_64_dwarf2gdb_regno_map) /
  sizeof (x86_64_dwarf2gdb_regno_map[0]);

/* Number of all registers */
#define X86_64_NUM_REGS (sizeof (x86_64_register_info_table) / \
  sizeof (x86_64_register_info_table[0]))

/* Number of general registers.  */
#define X86_64_NUM_GREGS (22)

int x86_64_num_regs = X86_64_NUM_REGS;
int x86_64_num_gregs = X86_64_NUM_GREGS;

/* Did we already print a note about frame pointer?  */
int omit_fp_note_printed = 0;

/* Number of bytes of storage in the actual machine representation for
   register REGNO.  */
int
x86_64_register_raw_size (int regno)
{
  return x86_64_register_info_table[regno].size;
}

/* x86_64_register_byte_table[i] is the offset into the register file of the
   start of register number i.  We initialize this from
   x86_64_register_info_table.  */
int x86_64_register_byte_table[X86_64_NUM_REGS];

/* Index within `registers' of the first byte of the space for register REGNO.  */
int
x86_64_register_byte (int regno)
{
  return x86_64_register_byte_table[regno];
}

/* Return the GDB type object for the "standard" data type of data in
   register N. */
static struct type *
x86_64_register_virtual_type (int regno)
{
  return *x86_64_register_info_table[regno].type;
}

/* x86_64_register_convertible is true if register N's virtual format is
   different from its raw format.  Note that this definition assumes
   that the host supports IEEE 32-bit floats, since it doesn't say
   that SSE registers need conversion.  Even if we can't find a
   counterexample, this is still sloppy.  */
int
x86_64_register_convertible (int regno)
{
  return IS_FP_REGNUM (regno);
}

/* Convert data from raw format for register REGNUM in buffer FROM to
   virtual format with type TYPE in buffer TO.  In principle both
   formats are identical except that the virtual format has two extra
   bytes appended that aren't used.  We set these to zero.  */
void
x86_64_register_convert_to_virtual (int regnum, struct type *type,
				    char *from, char *to)
{
  char buf[12];

  /* We only support floating-point values.  */
  if (TYPE_CODE (type) != TYPE_CODE_FLT)
    {
      warning ("Cannot convert floating-point register value "
	       "to non-floating-point type.");
      memset (to, 0, TYPE_LENGTH (type));
      return;
    }
  /* First add the necessary padding.  */
  memcpy (buf, from, FPU_REG_RAW_SIZE);
  memset (buf + FPU_REG_RAW_SIZE, 0, sizeof buf - FPU_REG_RAW_SIZE);
  /* Convert to TYPE.  This should be a no-op, if TYPE is equivalent
     to the extended floating-point format used by the FPU.  */
  convert_typed_floating (to, type, buf,
			  x86_64_register_virtual_type (regnum));
}

/* Convert data from virtual format with type TYPE in buffer FROM to
   raw format for register REGNUM in buffer TO.  Simply omit the two
   unused bytes.  */

void
x86_64_register_convert_to_raw (struct type *type, int regnum,
				char *from, char *to)
{
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12);
  /* Simply omit the two unused bytes.  */
  memcpy (to, from, FPU_REG_RAW_SIZE);
}

/* Dwarf-2 <-> GDB register numbers mapping.  */
int
x86_64_dwarf2_reg_to_regnum (int dw_reg)
{
  if (dw_reg < 0 || dw_reg > x86_64_dwarf2gdb_regno_map_length)
    {
      warning ("Dwarf-2 uses unmapped register #%d\n", dw_reg);
      return dw_reg;
    }

  return x86_64_dwarf2gdb_regno_map[dw_reg];
}

/* This is the variable that is set with "set disassembly-flavour", and
   its legitimate values.  */
static const char att_flavour[] = "att";
static const char intel_flavour[] = "intel";
static const char *valid_flavours[] = {
  att_flavour,
  intel_flavour,
  NULL
};
static const char *disassembly_flavour = att_flavour;

static CORE_ADDR
x86_64_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
  char buf[8];

  store_unsigned_integer (buf, 8, CALL_DUMMY_ADDRESS ());

  write_memory (sp - 8, buf, 8);
  return sp - 8;
}

void
x86_64_pop_frame (void)
{
  generic_pop_current_frame (cfi_pop_frame);
}


/* The returning of values is done according to the special algorithm.
   Some types are returned in registers an some (big structures) in memory.
   See ABI for details.
 */

#define MAX_CLASSES 4

enum x86_64_reg_class
{
  X86_64_NO_CLASS,
  X86_64_INTEGER_CLASS,
  X86_64_INTEGERSI_CLASS,
  X86_64_SSE_CLASS,
  X86_64_SSESF_CLASS,
  X86_64_SSEDF_CLASS,
  X86_64_SSEUP_CLASS,
  X86_64_X87_CLASS,
  X86_64_X87UP_CLASS,
  X86_64_MEMORY_CLASS
};

/* Return the union class of CLASS1 and CLASS2.
   See the x86-64 ABI for details.  */

static enum x86_64_reg_class
merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
{
  /* Rule #1: If both classes are equal, this is the resulting class.  */
  if (class1 == class2)
    return class1;

  /* Rule #2: If one of the classes is NO_CLASS, the resulting class is
     the other class.  */
  if (class1 == X86_64_NO_CLASS)
    return class2;
  if (class2 == X86_64_NO_CLASS)
    return class1;

  /* Rule #3: If one of the classes is MEMORY, the result is MEMORY.  */
  if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
    return X86_64_MEMORY_CLASS;

  /* Rule #4: If one of the classes is INTEGER, the result is INTEGER.  */
  if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
      || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
    return X86_64_INTEGERSI_CLASS;
  if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
      || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
    return X86_64_INTEGER_CLASS;

  /* Rule #5: If one of the classes is X87 or X87UP class, MEMORY is used.  */
  if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS
      || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS)
    return X86_64_MEMORY_CLASS;

  /* Rule #6: Otherwise class SSE is used.  */
  return X86_64_SSE_CLASS;
}


/* Classify the argument type.
   CLASSES will be filled by the register class used to pass each word
   of the operand.  The number of words is returned.  In case the parameter
   should be passed in memory, 0 is returned. As a special case for zero
   sized containers, classes[0] will be NO_CLASS and 1 is returned.

   See the x86-64 PS ABI for details.
*/

static int
classify_argument (struct type *type,
		   enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset)
{
  int bytes = TYPE_LENGTH (type);
  int words = (bytes + 8 - 1) / 8;

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_ARRAY:
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      {
	int i;
	enum x86_64_reg_class subclasses[MAX_CLASSES];

	/* On x86-64 we pass structures larger than 16 bytes on the stack.  */
	if (bytes > 16)
	  return 0;

	for (i = 0; i < words; i++)
	  classes[i] = X86_64_NO_CLASS;

	/* Zero sized arrays or structures are NO_CLASS.  We return 0 to
	   signalize memory class, so handle it as special case.  */
	if (!words)
	  {
	    classes[0] = X86_64_NO_CLASS;
	    return 1;
	  }
	switch (TYPE_CODE (type))
	  {
	  case TYPE_CODE_STRUCT:
	    {
	      int j;
	      for (j = 0; j < TYPE_NFIELDS (type); ++j)
		{
		  int num = classify_argument (TYPE_FIELDS (type)[j].type,
					       subclasses,
					       (TYPE_FIELDS (type)[j].loc.
						bitpos + bit_offset) % 256);
		  if (!num)
		    return 0;
		  for (i = 0; i < num; i++)
		    {
		      int pos =
			(TYPE_FIELDS (type)[j].loc.bitpos +
			 bit_offset) / 8 / 8;
		      classes[i + pos] =
			merge_classes (subclasses[i], classes[i + pos]);
		    }
		}
	    }
	    break;
	  case TYPE_CODE_ARRAY:
	    {
	      int num;

	      num = classify_argument (TYPE_TARGET_TYPE (type),
				       subclasses, bit_offset);
	      if (!num)
		return 0;

	      /* The partial classes are now full classes.  */
	      if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4)
		subclasses[0] = X86_64_SSE_CLASS;
	      if (subclasses[0] == X86_64_INTEGERSI_CLASS && bytes != 4)
		subclasses[0] = X86_64_INTEGER_CLASS;

	      for (i = 0; i < words; i++)
		classes[i] = subclasses[i % num];
	    }
	    break;
	  case TYPE_CODE_UNION:
	    {
	      int j;
	      {
		for (j = 0; j < TYPE_NFIELDS (type); ++j)
		  {
		    int num;
		    num = classify_argument (TYPE_FIELDS (type)[j].type,
					     subclasses, bit_offset);
		    if (!num)
		      return 0;
		    for (i = 0; i < num; i++)
		      classes[i] = merge_classes (subclasses[i], classes[i]);
		  }
	      }
	    }
	    break;
	  default:
	    break;
	  }
	/* Final merger cleanup.  */
	for (i = 0; i < words; i++)
	  {
	    /* If one class is MEMORY, everything should be passed in
	       memory.  */
	    if (classes[i] == X86_64_MEMORY_CLASS)
	      return 0;

	    /* The X86_64_SSEUP_CLASS should be always preceeded by
	       X86_64_SSE_CLASS.  */
	    if (classes[i] == X86_64_SSEUP_CLASS
		&& (i == 0 || classes[i - 1] != X86_64_SSE_CLASS))
	      classes[i] = X86_64_SSE_CLASS;

	    /*  X86_64_X87UP_CLASS should be preceeded by X86_64_X87_CLASS.  */
	    if (classes[i] == X86_64_X87UP_CLASS
		&& (i == 0 || classes[i - 1] != X86_64_X87_CLASS))
	      classes[i] = X86_64_SSE_CLASS;
	  }
	return words;
      }
      break;
    case TYPE_CODE_FLT:
      switch (bytes)
	{
	case 4:
	  if (!(bit_offset % 64))
	    classes[0] = X86_64_SSESF_CLASS;
	  else
	    classes[0] = X86_64_SSE_CLASS;
	  return 1;
	case 8:
	  classes[0] = X86_64_SSEDF_CLASS;
	  return 1;
	case 16:
	  classes[0] = X86_64_X87_CLASS;
	  classes[1] = X86_64_X87UP_CLASS;
	  return 2;
	}
      break;
    case TYPE_CODE_INT:
    case TYPE_CODE_PTR:
      switch (bytes)
	{
	case 1:
	case 2:
	case 4:
	case 8:
	  if (bytes * 8 + bit_offset <= 32)
	    classes[0] = X86_64_INTEGERSI_CLASS;
	  else
	    classes[0] = X86_64_INTEGER_CLASS;
	  return 1;
	case 16:
	  classes[0] = classes[1] = X86_64_INTEGER_CLASS;
	  return 2;
	default:
	  break;
	}
    case TYPE_CODE_VOID:
      return 0;
    default:			/* Avoid warning.  */
      break;
    }
  internal_error (__FILE__, __LINE__,
		  "classify_argument: unknown argument type");
}

/* Examine the argument and return set number of register required in each
   class.  Return 0 ifif parameter should be passed in memory.  */

static int
examine_argument (enum x86_64_reg_class classes[MAX_CLASSES],
		  int n, int *int_nregs, int *sse_nregs)
{
  *int_nregs = 0;
  *sse_nregs = 0;
  if (!n)
    return 0;
  for (n--; n >= 0; n--)
    switch (classes[n])
      {
      case X86_64_INTEGER_CLASS:
      case X86_64_INTEGERSI_CLASS:
	(*int_nregs)++;
	break;
      case X86_64_SSE_CLASS:
      case X86_64_SSESF_CLASS:
      case X86_64_SSEDF_CLASS:
	(*sse_nregs)++;
	break;
      case X86_64_NO_CLASS:
      case X86_64_SSEUP_CLASS:
      case X86_64_X87_CLASS:
      case X86_64_X87UP_CLASS:
	break;
      case X86_64_MEMORY_CLASS:
	internal_error (__FILE__, __LINE__,
			"examine_argument: unexpected memory class");
      }
  return 1;
}

#define RET_INT_REGS 2
#define RET_SSE_REGS 2

/* Check if the structure in value_type is returned in registers or in
   memory. If this function returns 1, gdb will call STORE_STRUCT_RETURN and
   EXTRACT_STRUCT_VALUE_ADDRESS else STORE_RETURN_VALUE and EXTRACT_RETURN_VALUE
   will be used.  */
int
x86_64_use_struct_convention (int gcc_p, struct type *value_type)
{
  enum x86_64_reg_class class[MAX_CLASSES];
  int n = classify_argument (value_type, class, 0);
  int needed_intregs;
  int needed_sseregs;

  return (!n ||
	  !examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
	  needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS);
}


/* Extract from an array REGBUF containing the (raw) register state, a
   function return value of TYPE, and copy that, in virtual format,
   into VALBUF.  */

void
x86_64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
{
  enum x86_64_reg_class class[MAX_CLASSES];
  int n = classify_argument (type, class, 0);
  int needed_intregs;
  int needed_sseregs;
  int intreg = 0;
  int ssereg = 0;
  int offset = 0;
  int ret_int_r[RET_INT_REGS] = { RAX_REGNUM, RDX_REGNUM };
  int ret_sse_r[RET_SSE_REGS] = { XMM0_REGNUM, XMM1_REGNUM };

  if (!n ||
      !examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
      needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS)
    {				/* memory class */
      CORE_ADDR addr;
      memcpy (&addr, regbuf, REGISTER_RAW_SIZE (RAX_REGNUM));
      read_memory (addr, valbuf, TYPE_LENGTH (type));
      return;
    }
  else
    {
      int i;
      for (i = 0; i < n; i++)
	{
	  switch (class[i])
	    {
	    case X86_64_NO_CLASS:
	      break;
	    case X86_64_INTEGER_CLASS:
	      memcpy (valbuf + offset,
		      regbuf + REGISTER_BYTE (ret_int_r[(intreg + 1) / 2]),
		      8);
	      offset += 8;
	      intreg += 2;
	      break;
	    case X86_64_INTEGERSI_CLASS:
	      memcpy (valbuf + offset,
		      regbuf + REGISTER_BYTE (ret_int_r[intreg / 2]), 4);
	      offset += 8;
	      intreg++;
	      break;
	    case X86_64_SSEDF_CLASS:
	    case X86_64_SSESF_CLASS:
	    case X86_64_SSE_CLASS:
	      memcpy (valbuf + offset,
		      regbuf + REGISTER_BYTE (ret_sse_r[(ssereg + 1) / 2]),
		      8);
	      offset += 8;
	      ssereg += 2;
	      break;
	    case X86_64_SSEUP_CLASS:
	      memcpy (valbuf + offset + 8,
		      regbuf + REGISTER_BYTE (ret_sse_r[ssereg / 2]), 8);
	      offset += 8;
	      ssereg++;
	      break;
	    case X86_64_X87_CLASS:
	      memcpy (valbuf + offset, regbuf + REGISTER_BYTE (FP0_REGNUM),
		      8);
	      offset += 8;
	      break;
	    case X86_64_X87UP_CLASS:
	      memcpy (valbuf + offset,
		      regbuf + REGISTER_BYTE (FP0_REGNUM) + 8, 8);
	      offset += 8;
	      break;
	    case X86_64_MEMORY_CLASS:
	    default:
	      internal_error (__FILE__, __LINE__,
			      "Unexpected argument class");
	    }
	}
    }
}

/* Handled by unwind informations.  */
static void
x86_64_frame_init_saved_regs (struct frame_info *fi)
{
}

#define INT_REGS 6
#define SSE_REGS 16

CORE_ADDR
x86_64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
		       int struct_return, CORE_ADDR struct_addr)
{
  int intreg = 0;
  int ssereg = 0;
  int i;
  static int int_parameter_registers[INT_REGS] = {
    5 /* RDI */ , 4 /* RSI */ ,
    3 /* RDX */ , 2 /* RCX */ ,
    8 /* R8  */ , 9		/* R9  */
  };
  /* XMM0 - XMM15  */
  static int sse_parameter_registers[SSE_REGS] = {
    XMM1_REGNUM - 1, XMM1_REGNUM, XMM1_REGNUM + 1, XMM1_REGNUM + 2,
    XMM1_REGNUM + 3, XMM1_REGNUM + 4, XMM1_REGNUM + 5, XMM1_REGNUM + 6,
    XMM1_REGNUM + 7, XMM1_REGNUM + 8, XMM1_REGNUM + 9, XMM1_REGNUM + 10,
    XMM1_REGNUM + 11, XMM1_REGNUM + 12, XMM1_REGNUM + 13, XMM1_REGNUM + 14
  };
  int stack_values_count = 0;
  int *stack_values;
  stack_values = alloca (nargs * sizeof (int));
  for (i = 0; i < nargs; i++)
    {
      enum x86_64_reg_class class[MAX_CLASSES];
      int n = classify_argument (args[i]->type, class, 0);
      int needed_intregs;
      int needed_sseregs;

      if (!n ||
	  !examine_argument (class, n, &needed_intregs, &needed_sseregs)
	  || intreg / 2 + needed_intregs > INT_REGS
	  || ssereg / 2 + needed_sseregs > SSE_REGS)
	{			/* memory class */
	  stack_values[stack_values_count++] = i;
	}
      else
	{
	  int j;
	  for (j = 0; j < n; j++)
	    {
	      int offset = 0;
	      switch (class[j])
		{
		case X86_64_NO_CLASS:
		  break;
		case X86_64_INTEGER_CLASS:
		  write_register_gen (int_parameter_registers
				      [(intreg + 1) / 2],
				      VALUE_CONTENTS_ALL (args[i]) + offset);
		  offset += 8;
		  intreg += 2;
		  break;
		case X86_64_INTEGERSI_CLASS:
		  write_register_gen (int_parameter_registers[intreg / 2],
				      VALUE_CONTENTS_ALL (args[i]) + offset);
		  offset += 8;
		  intreg++;
		  break;
		case X86_64_SSEDF_CLASS:
		case X86_64_SSESF_CLASS:
		case X86_64_SSE_CLASS:
		  write_register_gen (sse_parameter_registers
				      [(ssereg + 1) / 2],
				      VALUE_CONTENTS_ALL (args[i]) + offset);
		  offset += 8;
		  ssereg += 2;
		  break;
		case X86_64_SSEUP_CLASS:
		  write_register_gen (sse_parameter_registers[ssereg / 2],
				      VALUE_CONTENTS_ALL (args[i]) + offset);
		  offset += 8;
		  ssereg++;
		  break;
		case X86_64_X87_CLASS:
		case X86_64_MEMORY_CLASS:
		  stack_values[stack_values_count++] = i;
		  break;
		case X86_64_X87UP_CLASS:
		  break;
		default:
		  internal_error (__FILE__, __LINE__,
				  "Unexpected argument class");
		}
	      intreg += intreg % 2;
	      ssereg += ssereg % 2;
	    }
	}
    }
  while (--stack_values_count >= 0)
    {
      struct value *arg = args[stack_values[stack_values_count]];
      int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
      len += 7;
      len -= len % 8;
      sp -= len;
      write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
    }
  return sp;
}

/* Write into the appropriate registers a function return value stored
   in VALBUF of type TYPE, given in virtual format.  */
void
x86_64_store_return_value (struct type *type, char *valbuf)
{
  int len = TYPE_LENGTH (type);

  if (TYPE_CODE_FLT == TYPE_CODE (type))
    {
      /* Floating-point return values can be found in %st(0).  */
      if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
	  && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
	{
	  /* Copy straight over.  */
	  write_register_bytes (REGISTER_BYTE (FP0_REGNUM), valbuf,
				FPU_REG_RAW_SIZE);
	}
      else
	{
	  char buf[FPU_REG_RAW_SIZE];
	  DOUBLEST val;

	  /* Convert the value found in VALBUF to the extended
	     floating point format used by the FPU.  This is probably
	     not exactly how it would happen on the target itself, but
	     it is the best we can do.  */
	  val = extract_floating (valbuf, TYPE_LENGTH (type));
	  floatformat_from_doublest (&floatformat_i387_ext, &val, buf);
	  write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
				FPU_REG_RAW_SIZE);
	}
    }
  else
    {
      int low_size = REGISTER_RAW_SIZE (0);
      int high_size = REGISTER_RAW_SIZE (1);

      if (len <= low_size)
	write_register_bytes (REGISTER_BYTE (0), valbuf, len);
      else if (len <= (low_size + high_size))
	{
	  write_register_bytes (REGISTER_BYTE (0), valbuf, low_size);
	  write_register_bytes (REGISTER_BYTE (1),
				valbuf + low_size, len - low_size);
	}
      else
	internal_error (__FILE__, __LINE__,
			"Cannot store return value of %d bytes long.", len);
    }
}


const char *
x86_64_register_name (int reg_nr)
{
  if (reg_nr < 0 || reg_nr >= X86_64_NUM_REGS)
    return NULL;
  return x86_64_register_info_table[reg_nr].name;
}

int
x86_64_register_number (const char *name)
{
  int reg_nr;

  for (reg_nr = 0; reg_nr < X86_64_NUM_REGS; reg_nr++)
    if (strcmp (name, x86_64_register_info_table[reg_nr].name) == 0)
      return reg_nr;
  return -1;
}



/* We have two flavours of disassembly.  The machinery on this page
   deals with switching between those.  */

static int
gdb_print_insn_x86_64 (bfd_vma memaddr, disassemble_info * info)
{
  if (disassembly_flavour == att_flavour)
    return print_insn_i386_att (memaddr, info);
  else if (disassembly_flavour == intel_flavour)
    return print_insn_i386_intel (memaddr, info);
  /* Never reached -- disassembly_flavour is always either att_flavour
     or intel_flavour.  */
  internal_error (__FILE__, __LINE__, "failed internal consistency check");
}


/* Store the address of the place in which to copy the structure the
   subroutine will return.  This is called from call_function. */
void
x86_64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
  write_register (RDI_REGNUM, addr);
}

int
x86_64_frameless_function_invocation (struct frame_info *frame)
{
  return 0;
}

/* If a function with debugging information and known beginning
   is detected, we will return pc of the next line in the source 
   code. With this approach we effectively skip the prolog.  */

#define PROLOG_BUFSIZE 4
CORE_ADDR
x86_64_skip_prologue (CORE_ADDR pc)
{
  int i;
  struct symtab_and_line v_sal;
  struct symbol *v_function;
  CORE_ADDR endaddr;

  /* We will handle only functions beginning with:
     55          pushq %rbp
     48 89 e5    movq %rsp,%rbp 
   */
  unsigned char prolog_expect[PROLOG_BUFSIZE] = { 0x55, 0x48, 0x89, 0xe5 },
    prolog_buf[PROLOG_BUFSIZE];

  read_memory (pc, (char *) prolog_buf, PROLOG_BUFSIZE);

  /* First check, whether pc points to pushq %rbp, movq %rsp,%rbp.  */
  for (i = 0; i < PROLOG_BUFSIZE; i++)
    if (prolog_expect[i] != prolog_buf[i])
      return pc;		/* ... no, it doesn't. Nothing to skip.  */

  /* OK, we have found the prologue and want PC of the first 
     non-prologue instruction.  */
  pc += PROLOG_BUFSIZE;

  v_function = find_pc_function (pc);
  v_sal = find_pc_line (pc, 0);

  /* If pc doesn't point to a function with debuginfo, 
     some of the following may be NULL.  */
  if (!v_function || !v_function->ginfo.value.block || !v_sal.symtab)
    return pc;

  endaddr = v_function->ginfo.value.block->endaddr;

  for (i = 0; i < v_sal.symtab->linetable->nitems; i++)
    if (v_sal.symtab->linetable->item[i].pc >= pc
	&& v_sal.symtab->linetable->item[i].pc < endaddr)
      {
	pc = v_sal.symtab->linetable->item[i].pc;
	break;
      }

  return pc;
}

/* Sequence of bytes for breakpoint instruction.  */
static unsigned char *
x86_64_breakpoint_from_pc (CORE_ADDR * pc, int *lenptr)
{
  static unsigned char breakpoint[] = { 0xcc };
  *lenptr = 1;
  return breakpoint;
}

static struct gdbarch *
x86_64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int i, sum;

  /* Find a candidate among the list of pre-declared architectures. */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      switch (info.bfd_arch_info->mach)
	{
	case bfd_mach_x86_64:
	case bfd_mach_x86_64_intel_syntax:
	  switch (gdbarch_bfd_arch_info (arches->gdbarch)->mach)
	    {
	    case bfd_mach_x86_64:
	    case bfd_mach_x86_64_intel_syntax:
	      return arches->gdbarch;
	    case bfd_mach_i386_i386:
	    case bfd_mach_i386_i8086:
	    case bfd_mach_i386_i386_intel_syntax:
	      break;
	    default:
	      internal_error (__FILE__, __LINE__,
			      "x86_64_gdbarch_init: unknown machine type");
	    }
	  break;
	case bfd_mach_i386_i386:
	case bfd_mach_i386_i8086:
	case bfd_mach_i386_i386_intel_syntax:
	  switch (gdbarch_bfd_arch_info (arches->gdbarch)->mach)
	    {
	    case bfd_mach_x86_64:
	    case bfd_mach_x86_64_intel_syntax:
	      break;
	    case bfd_mach_i386_i386:
	    case bfd_mach_i386_i8086:
	    case bfd_mach_i386_i386_intel_syntax:
	      return arches->gdbarch;
	    default:
	      internal_error (__FILE__, __LINE__,
			      "x86_64_gdbarch_init: unknown machine type");
	    }
	  break;
	default:
	  internal_error (__FILE__, __LINE__,
			  "x86_64_gdbarch_init: unknown machine type");
	}
    }

  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);

  switch (info.bfd_arch_info->mach)
    {
    case bfd_mach_x86_64:
    case bfd_mach_x86_64_intel_syntax:
      tdep->num_xmm_regs = 16;
      break;
    case bfd_mach_i386_i386:
    case bfd_mach_i386_i8086:
    case bfd_mach_i386_i386_intel_syntax:
      /* This is place for definition of i386 target vector.  */
      break;
    default:
      internal_error (__FILE__, __LINE__,
		      "x86_64_gdbarch_init: unknown machine type");
    }

  set_gdbarch_long_bit (gdbarch, 64);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_ptr_bit (gdbarch, 64);

  set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);

  set_gdbarch_num_regs (gdbarch, X86_64_NUM_REGS);
  set_gdbarch_register_name (gdbarch, x86_64_register_name);
  set_gdbarch_register_size (gdbarch, 8);
  set_gdbarch_register_raw_size (gdbarch, x86_64_register_raw_size);
  set_gdbarch_max_register_raw_size (gdbarch, 16);
  set_gdbarch_register_byte (gdbarch, x86_64_register_byte);

  /* Total amount of space needed to store our copies of the machine's register
     (SIZEOF_GREGS + SIZEOF_FPU_REGS + SIZEOF_FPU_CTRL_REGS + SIZEOF_SSE_REGS) */
  for (i = 0, sum = 0; i < X86_64_NUM_REGS; i++)
    sum += x86_64_register_info_table[i].size;
  set_gdbarch_register_bytes (gdbarch, sum);
  set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
  set_gdbarch_max_register_virtual_size (gdbarch, 16);

  set_gdbarch_register_virtual_type (gdbarch, x86_64_register_virtual_type);

  set_gdbarch_register_convertible (gdbarch, x86_64_register_convertible);
  set_gdbarch_register_convert_to_virtual (gdbarch,
					   x86_64_register_convert_to_virtual);
  set_gdbarch_register_convert_to_raw (gdbarch,
				       x86_64_register_convert_to_raw);

/* Register numbers of various important registers.  */
  set_gdbarch_sp_regnum (gdbarch, 7);	/* (rsp) Contains address of top of stack.  */
  set_gdbarch_fp_regnum (gdbarch, 6);	/* (rbp) */
  set_gdbarch_pc_regnum (gdbarch, 16);	/* (rip) Contains program counter.  */

  set_gdbarch_fp0_regnum (gdbarch, X86_64_NUM_GREGS);	/* First FPU floating-point register.  */

  set_gdbarch_read_fp (gdbarch, cfi_read_fp);

/* Discard from the stack the innermost frame, restoring all registers.  */
  set_gdbarch_pop_frame (gdbarch, x86_64_pop_frame);

  /* FRAME_CHAIN takes a frame's nominal address and produces the frame's
     chain-pointer.  */
  set_gdbarch_frame_chain (gdbarch, cfi_frame_chain);

  set_gdbarch_frameless_function_invocation (gdbarch,
					     x86_64_frameless_function_invocation);
  set_gdbarch_frame_saved_pc (gdbarch, x86_64_linux_frame_saved_pc);

  set_gdbarch_frame_args_address (gdbarch, default_frame_address);
  set_gdbarch_frame_locals_address (gdbarch, default_frame_address);

/* Return number of bytes at start of arglist that are not really args.  */
  set_gdbarch_frame_args_skip (gdbarch, 8);

  set_gdbarch_frame_init_saved_regs (gdbarch, x86_64_frame_init_saved_regs);

/* Frame pc initialization is handled by unwind informations.  */
  set_gdbarch_init_frame_pc (gdbarch, cfi_init_frame_pc);

/* Initialization of unwind informations.  */
  set_gdbarch_init_extra_frame_info (gdbarch, cfi_init_extra_frame_info);

/* Getting saved registers is handled by unwind informations.  */
  set_gdbarch_get_saved_register (gdbarch, cfi_get_saved_register);

  set_gdbarch_frame_init_saved_regs (gdbarch, x86_64_frame_init_saved_regs);

/* Cons up virtual frame pointer for trace */
  set_gdbarch_virtual_frame_pointer (gdbarch, cfi_virtual_frame_pointer);


  set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);

  set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
  set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
  set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
  set_gdbarch_call_dummy_length (gdbarch, 0);
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
  set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
  set_gdbarch_call_dummy_words (gdbarch, 0);
  set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
  set_gdbarch_call_dummy_p (gdbarch, 1);
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
  set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
  set_gdbarch_push_return_address (gdbarch, x86_64_push_return_address);
  set_gdbarch_push_arguments (gdbarch, x86_64_push_arguments);

/* Return number of args passed to a frame, no way to tell.  */
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
/* Don't use default structure extract routine */
  set_gdbarch_deprecated_extract_struct_value_address (gdbarch, 0);

/* If USE_STRUCT_CONVENTION retruns 0, then gdb uses STORE_RETURN_VALUE
   and EXTRACT_RETURN_VALUE to store/fetch the functions return value.  It is
   the case when structure is returned in registers.  */
  set_gdbarch_use_struct_convention (gdbarch, x86_64_use_struct_convention);

/* Store the address of the place in which to copy the structure the
   subroutine will return.  This is called from call_function. */
  set_gdbarch_store_struct_return (gdbarch, x86_64_store_struct_return);

/* Extract from an array REGBUF containing the (raw) register state
   a function return value of type TYPE, and copy that, in virtual format,
   into VALBUF.  */
  set_gdbarch_deprecated_extract_return_value (gdbarch, x86_64_extract_return_value);


/* Write into the appropriate registers a function return value stored
   in VALBUF of type TYPE, given in virtual format.  */
  set_gdbarch_store_return_value (gdbarch, x86_64_store_return_value);


/* Offset from address of function to start of its code.  */
  set_gdbarch_function_start_offset (gdbarch, 0);

  set_gdbarch_skip_prologue (gdbarch, x86_64_skip_prologue);

  set_gdbarch_saved_pc_after_call (gdbarch, x86_64_linux_saved_pc_after_call);

  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_breakpoint_from_pc (gdbarch,
				  (gdbarch_breakpoint_from_pc_ftype *)
				  x86_64_breakpoint_from_pc);

  set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);

/* Amount PC must be decremented by after a breakpoint.  This is often the
   number of bytes in BREAKPOINT but not always.  */
  set_gdbarch_decr_pc_after_break (gdbarch, 1);

/* Use dwarf2 debug frame informations.  */
  set_gdbarch_dwarf2_build_frame_info (gdbarch, dwarf2_build_frame_info);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, x86_64_dwarf2_reg_to_regnum);

  return gdbarch;
}

void
_initialize_x86_64_tdep (void)
{
  register_gdbarch_init (bfd_arch_i386, x86_64_gdbarch_init);

  /* Initialize the table saying where each register starts in the
     register file.  */
  {
    int i, offset;

    offset = 0;
    for (i = 0; i < X86_64_NUM_REGS; i++)
      {
	x86_64_register_byte_table[i] = offset;
	offset += x86_64_register_info_table[i].size;
      }
  }

  tm_print_insn = gdb_print_insn_x86_64;
  tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 3)->mach;

  /* Add the variable that controls the disassembly flavour.  */
  {
    struct cmd_list_element *new_cmd;

    new_cmd = add_set_enum_cmd ("disassembly-flavour", no_class,
				valid_flavours, &disassembly_flavour, "\
Set the disassembly flavour, the valid values are \"att\" and \"intel\", \
and the default value is \"att\".", &setlist);
    add_show_from_set (new_cmd, &showlist);
  }
}