1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
|
#include <signal.h>
#if WITH_COMMON
#include "sim-main.h"
#include "sim-options.h"
#include "sim-hw.h"
#else
#include "mn10300_sim.h"
#endif
#include "sysdep.h"
#include "bfd.h"
#include "sim-assert.h"
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#else
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#endif
#include "bfd.h"
#ifndef INLINE
#ifdef __GNUC__
#define INLINE inline
#else
#define INLINE
#endif
#endif
host_callback *mn10300_callback;
int mn10300_debug;
struct _state State;
/* simulation target board. NULL=default configuration */
static char* board = NULL;
static DECLARE_OPTION_HANDLER (mn10300_option_handler);
enum {
OPTION_BOARD = OPTION_START,
};
static SIM_RC
mn10300_option_handler (sd, cpu, opt, arg, is_command)
SIM_DESC sd;
sim_cpu *cpu;
int opt;
char *arg;
int is_command;
{
int cpu_nr;
switch (opt)
{
case OPTION_BOARD:
{
if (arg)
{
board = zalloc(strlen(arg) + 1);
strcpy(board, arg);
}
return SIM_RC_OK;
}
}
return SIM_RC_OK;
}
static const OPTION mn10300_options[] =
{
#define BOARD_AM32 "stdeval1"
{ {"board", required_argument, NULL, OPTION_BOARD},
'\0', "none" /* rely on compile-time string concatenation for other options */
"|" BOARD_AM32
, "Customize simulation for a particular board.", mn10300_option_handler },
{ {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
};
#if WITH_COMMON
#else
static void dispatch PARAMS ((uint32, uint32, int));
static long hash PARAMS ((long));
static void init_system PARAMS ((void));
static SIM_OPEN_KIND sim_kind;
static char *myname;
#define MAX_HASH 127
struct hash_entry
{
struct hash_entry *next;
long opcode;
long mask;
struct simops *ops;
#ifdef HASH_STAT
unsigned long count;
#endif
};
static int max_mem = 0;
struct hash_entry hash_table[MAX_HASH+1];
/* This probably doesn't do a very good job at bucket filling, but
it's simple... */
static INLINE long
hash(insn)
long insn;
{
/* These are one byte insns, we special case these since, in theory,
they should be the most heavily used. */
if ((insn & 0xffffff00) == 0)
{
switch (insn & 0xf0)
{
case 0x00:
return 0x70;
case 0x40:
return 0x71;
case 0x10:
return 0x72;
case 0x30:
return 0x73;
case 0x50:
return 0x74;
case 0x60:
return 0x75;
case 0x70:
return 0x76;
case 0x80:
return 0x77;
case 0x90:
return 0x78;
case 0xa0:
return 0x79;
case 0xb0:
return 0x7a;
case 0xe0:
return 0x7b;
default:
return 0x7c;
}
}
/* These are two byte insns */
if ((insn & 0xffff0000) == 0)
{
if ((insn & 0xf000) == 0x2000
|| (insn & 0xf000) == 0x5000)
return ((insn & 0xfc00) >> 8) & 0x7f;
if ((insn & 0xf000) == 0x4000)
return ((insn & 0xf300) >> 8) & 0x7f;
if ((insn & 0xf000) == 0x8000
|| (insn & 0xf000) == 0x9000
|| (insn & 0xf000) == 0xa000
|| (insn & 0xf000) == 0xb000)
return ((insn & 0xf000) >> 8) & 0x7f;
if ((insn & 0xff00) == 0xf000
|| (insn & 0xff00) == 0xf100
|| (insn & 0xff00) == 0xf200
|| (insn & 0xff00) == 0xf500
|| (insn & 0xff00) == 0xf600)
return ((insn & 0xfff0) >> 4) & 0x7f;
if ((insn & 0xf000) == 0xc000)
return ((insn & 0xff00) >> 8) & 0x7f;
return ((insn & 0xffc0) >> 6) & 0x7f;
}
/* These are three byte insns. */
if ((insn & 0xff000000) == 0)
{
if ((insn & 0xf00000) == 0x000000)
return ((insn & 0xf30000) >> 16) & 0x7f;
if ((insn & 0xf00000) == 0x200000
|| (insn & 0xf00000) == 0x300000)
return ((insn & 0xfc0000) >> 16) & 0x7f;
if ((insn & 0xff0000) == 0xf80000)
return ((insn & 0xfff000) >> 12) & 0x7f;
if ((insn & 0xff0000) == 0xf90000)
return ((insn & 0xfffc00) >> 10) & 0x7f;
return ((insn & 0xff0000) >> 16) & 0x7f;
}
/* These are four byte or larger insns. */
if ((insn & 0xf0000000) == 0xf0000000)
return ((insn & 0xfff00000) >> 20) & 0x7f;
return ((insn & 0xff000000) >> 24) & 0x7f;
}
static INLINE void
dispatch (insn, extension, length)
uint32 insn;
uint32 extension;
int length;
{
struct hash_entry *h;
h = &hash_table[hash(insn)];
while ((insn & h->mask) != h->opcode
|| (length != h->ops->length))
{
if (!h->next)
{
(*mn10300_callback->printf_filtered) (mn10300_callback,
"ERROR looking up hash for 0x%x, PC=0x%x\n", insn, PC);
exit(1);
}
h = h->next;
}
#ifdef HASH_STAT
h->count++;
#endif
/* Now call the right function. */
(h->ops->func)(insn, extension);
PC += length;
}
void
sim_size (power)
int power;
{
if (State.mem)
free (State.mem);
max_mem = 1 << power;
State.mem = (uint8 *) calloc (1, 1 << power);
if (!State.mem)
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "Allocation of main memory failed.\n");
exit (1);
}
}
static void
init_system ()
{
if (!State.mem)
sim_size(19);
}
int
sim_write (sd, addr, buffer, size)
SIM_DESC sd;
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
int i;
init_system ();
for (i = 0; i < size; i++)
store_byte (addr + i, buffer[i]);
return size;
}
/* Compare two opcode table entries for qsort. */
static int
compare_simops (arg1, arg2)
const PTR arg1;
const PTR arg2;
{
unsigned long code1 = ((struct simops *)arg1)->opcode;
unsigned long code2 = ((struct simops *)arg2)->opcode;
if (code1 < code2)
return -1;
if (code2 < code1)
return 1;
return 0;
}
SIM_DESC
sim_open (kind, cb, abfd, argv)
SIM_OPEN_KIND kind;
host_callback *cb;
struct _bfd *abfd;
char **argv;
{
struct simops *s;
struct hash_entry *h;
char **p;
int i;
mn10300_callback = cb;
/* Sort the opcode array from smallest opcode to largest.
This will generally improve simulator performance as the smaller
opcodes are generally preferred to the larger opcodes. */
for (i = 0, s = Simops; s->func; s++, i++)
;
qsort (Simops, i, sizeof (Simops[0]), compare_simops);
sim_kind = kind;
myname = argv[0];
for (p = argv + 1; *p; ++p)
{
if (strcmp (*p, "-E") == 0)
++p; /* ignore endian spec */
else
#ifdef DEBUG
if (strcmp (*p, "-t") == 0)
mn10300_debug = DEBUG;
else
#endif
(*mn10300_callback->printf_filtered) (mn10300_callback, "ERROR: unsupported option(s): %s\n",*p);
}
/* put all the opcodes in the hash table */
for (s = Simops; s->func; s++)
{
h = &hash_table[hash(s->opcode)];
/* go to the last entry in the chain */
while (h->next)
{
/* Don't insert the same opcode more than once. */
if (h->opcode == s->opcode
&& h->mask == s->mask
&& h->ops == s)
break;
else
h = h->next;
}
/* Don't insert the same opcode more than once. */
if (h->opcode == s->opcode
&& h->mask == s->mask
&& h->ops == s)
continue;
if (h->ops)
{
h->next = calloc(1,sizeof(struct hash_entry));
h = h->next;
}
h->ops = s;
h->mask = s->mask;
h->opcode = s->opcode;
#if HASH_STAT
h->count = 0;
#endif
}
/* fudge our descriptor for now */
return (SIM_DESC) 1;
}
void
sim_close (sd, quitting)
SIM_DESC sd;
int quitting;
{
/* nothing to do */
}
void
sim_set_profile (n)
int n;
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile %d\n", n);
}
void
sim_set_profile_size (n)
int n;
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile_size %d\n", n);
}
int
sim_stop (sd)
SIM_DESC sd;
{
return 0;
}
void
sim_resume (sd, step, siggnal)
SIM_DESC sd;
int step, siggnal;
{
uint32 inst;
reg_t oldpc;
struct hash_entry *h;
if (step)
State.exception = SIGTRAP;
else
State.exception = 0;
State.exited = 0;
do
{
unsigned long insn, extension;
/* Fetch the current instruction. */
inst = load_mem_big (PC, 2);
oldpc = PC;
/* Using a giant case statement may seem like a waste because of the
code/rodata size the table itself will consume. However, using
a giant case statement speeds up the simulator by 10-15% by avoiding
cascading if/else statements or cascading case statements. */
switch ((inst >> 8) & 0xff)
{
/* All the single byte insns except 0x80, 0x90, 0xa0, 0xb0
which must be handled specially. */
case 0x00:
case 0x04:
case 0x08:
case 0x0c:
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
case 0x18:
case 0x19:
case 0x1a:
case 0x1b:
case 0x1c:
case 0x1d:
case 0x1e:
case 0x1f:
case 0x3c:
case 0x3d:
case 0x3e:
case 0x3f:
case 0x40:
case 0x41:
case 0x44:
case 0x45:
case 0x48:
case 0x49:
case 0x4c:
case 0x4d:
case 0x50:
case 0x51:
case 0x52:
case 0x53:
case 0x54:
case 0x55:
case 0x56:
case 0x57:
case 0x60:
case 0x61:
case 0x62:
case 0x63:
case 0x64:
case 0x65:
case 0x66:
case 0x67:
case 0x68:
case 0x69:
case 0x6a:
case 0x6b:
case 0x6c:
case 0x6d:
case 0x6e:
case 0x6f:
case 0x70:
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
case 0x76:
case 0x77:
case 0x78:
case 0x79:
case 0x7a:
case 0x7b:
case 0x7c:
case 0x7d:
case 0x7e:
case 0x7f:
case 0xcb:
case 0xd0:
case 0xd1:
case 0xd2:
case 0xd3:
case 0xd4:
case 0xd5:
case 0xd6:
case 0xd7:
case 0xd8:
case 0xd9:
case 0xda:
case 0xdb:
case 0xe0:
case 0xe1:
case 0xe2:
case 0xe3:
case 0xe4:
case 0xe5:
case 0xe6:
case 0xe7:
case 0xe8:
case 0xe9:
case 0xea:
case 0xeb:
case 0xec:
case 0xed:
case 0xee:
case 0xef:
case 0xff:
insn = (inst >> 8) & 0xff;
extension = 0;
dispatch (insn, extension, 1);
break;
/* Special cases where dm == dn is used to encode a different
instruction. */
case 0x80:
case 0x85:
case 0x8a:
case 0x8f:
case 0x90:
case 0x95:
case 0x9a:
case 0x9f:
case 0xa0:
case 0xa5:
case 0xaa:
case 0xaf:
case 0xb0:
case 0xb5:
case 0xba:
case 0xbf:
insn = inst;
extension = 0;
dispatch (insn, extension, 2);
break;
case 0x81:
case 0x82:
case 0x83:
case 0x84:
case 0x86:
case 0x87:
case 0x88:
case 0x89:
case 0x8b:
case 0x8c:
case 0x8d:
case 0x8e:
case 0x91:
case 0x92:
case 0x93:
case 0x94:
case 0x96:
case 0x97:
case 0x98:
case 0x99:
case 0x9b:
case 0x9c:
case 0x9d:
case 0x9e:
case 0xa1:
case 0xa2:
case 0xa3:
case 0xa4:
case 0xa6:
case 0xa7:
case 0xa8:
case 0xa9:
case 0xab:
case 0xac:
case 0xad:
case 0xae:
case 0xb1:
case 0xb2:
case 0xb3:
case 0xb4:
case 0xb6:
case 0xb7:
case 0xb8:
case 0xb9:
case 0xbb:
case 0xbc:
case 0xbd:
case 0xbe:
insn = (inst >> 8) & 0xff;
extension = 0;
dispatch (insn, extension, 1);
break;
/* The two byte instructions. */
case 0x20:
case 0x21:
case 0x22:
case 0x23:
case 0x28:
case 0x29:
case 0x2a:
case 0x2b:
case 0x42:
case 0x43:
case 0x46:
case 0x47:
case 0x4a:
case 0x4b:
case 0x4e:
case 0x4f:
case 0x58:
case 0x59:
case 0x5a:
case 0x5b:
case 0x5c:
case 0x5d:
case 0x5e:
case 0x5f:
case 0xc0:
case 0xc1:
case 0xc2:
case 0xc3:
case 0xc4:
case 0xc5:
case 0xc6:
case 0xc7:
case 0xc8:
case 0xc9:
case 0xca:
case 0xce:
case 0xcf:
case 0xf0:
case 0xf1:
case 0xf2:
case 0xf3:
case 0xf4:
case 0xf5:
case 0xf6:
insn = inst;
extension = 0;
dispatch (insn, extension, 2);
break;
/* The three byte insns with a 16bit operand in little endian
format. */
case 0x01:
case 0x02:
case 0x03:
case 0x05:
case 0x06:
case 0x07:
case 0x09:
case 0x0a:
case 0x0b:
case 0x0d:
case 0x0e:
case 0x0f:
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x2c:
case 0x2d:
case 0x2e:
case 0x2f:
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37:
case 0x38:
case 0x39:
case 0x3a:
case 0x3b:
case 0xcc:
insn = load_byte (PC);
insn <<= 16;
insn |= load_half (PC + 1);
extension = 0;
dispatch (insn, extension, 3);
break;
/* The three byte insns without 16bit operand. */
case 0xde:
case 0xdf:
case 0xf8:
case 0xf9:
insn = load_mem_big (PC, 3);
extension = 0;
dispatch (insn, extension, 3);
break;
/* Four byte insns. */
case 0xfa:
case 0xfb:
if ((inst & 0xfffc) == 0xfaf0
|| (inst & 0xfffc) == 0xfaf4
|| (inst & 0xfffc) == 0xfaf8)
insn = load_mem_big (PC, 4);
else
{
insn = inst;
insn <<= 16;
insn |= load_half (PC + 2);
extension = 0;
}
dispatch (insn, extension, 4);
break;
/* Five byte insns. */
case 0xcd:
insn = load_byte (PC);
insn <<= 24;
insn |= (load_half (PC + 1) << 8);
insn |= load_byte (PC + 3);
extension = load_byte (PC + 4);
dispatch (insn, extension, 5);
break;
case 0xdc:
insn = load_byte (PC);
insn <<= 24;
extension = load_word (PC + 1);
insn |= (extension & 0xffffff00) >> 8;
extension &= 0xff;
dispatch (insn, extension, 5);
break;
/* Six byte insns. */
case 0xfc:
case 0xfd:
insn = (inst << 16);
extension = load_word (PC + 2);
insn |= ((extension & 0xffff0000) >> 16);
extension &= 0xffff;
dispatch (insn, extension, 6);
break;
case 0xdd:
insn = load_byte (PC) << 24;
extension = load_word (PC + 1);
insn |= ((extension >> 8) & 0xffffff);
extension = (extension & 0xff) << 16;
extension |= load_byte (PC + 5) << 8;
extension |= load_byte (PC + 6);
dispatch (insn, extension, 7);
break;
case 0xfe:
insn = inst << 16;
extension = load_word (PC + 2);
insn |= ((extension >> 16) & 0xffff);
extension <<= 8;
extension &= 0xffff00;
extension |= load_byte (PC + 6);
dispatch (insn, extension, 7);
break;
default:
abort ();
}
}
while (!State.exception);
#ifdef HASH_STAT
{
int i;
for (i = 0; i < MAX_HASH; i++)
{
struct hash_entry *h;
h = &hash_table[i];
printf("hash 0x%x:\n", i);
while (h)
{
printf("h->opcode = 0x%x, count = 0x%x\n", h->opcode, h->count);
h = h->next;
}
printf("\n\n");
}
fflush (stdout);
}
#endif
}
int
sim_trace (sd)
SIM_DESC sd;
{
#ifdef DEBUG
mn10300_debug = DEBUG;
#endif
sim_resume (sd, 0, 0);
return 1;
}
void
sim_info (sd, verbose)
SIM_DESC sd;
int verbose;
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "sim_info\n");
}
SIM_RC
sim_create_inferior (sd, abfd, argv, env)
SIM_DESC sd;
struct _bfd *abfd;
char **argv;
char **env;
{
if (abfd != NULL)
PC = bfd_get_start_address (abfd);
else
PC = 0;
return SIM_RC_OK;
}
void
sim_set_callbacks (p)
host_callback *p;
{
mn10300_callback = p;
}
/* All the code for exiting, signals, etc needs to be revamped.
This is enough to get c-torture limping though. */
void
sim_stop_reason (sd, reason, sigrc)
SIM_DESC sd;
enum sim_stop *reason;
int *sigrc;
{
if (State.exited)
*reason = sim_exited;
else
*reason = sim_stopped;
if (State.exception == SIGQUIT)
*sigrc = 0;
else
*sigrc = State.exception;
}
int
sim_read (sd, addr, buffer, size)
SIM_DESC sd;
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
int i;
for (i = 0; i < size; i++)
buffer[i] = load_byte (addr + i);
return size;
}
void
sim_do_command (sd, cmd)
SIM_DESC sd;
char *cmd;
{
(*mn10300_callback->printf_filtered) (mn10300_callback, "\"%s\" is not a valid mn10300 simulator command.\n", cmd);
}
SIM_RC
sim_load (sd, prog, abfd, from_tty)
SIM_DESC sd;
char *prog;
bfd *abfd;
int from_tty;
{
extern bfd *sim_load_file (); /* ??? Don't know where this should live. */
bfd *prog_bfd;
prog_bfd = sim_load_file (sd, myname, mn10300_callback, prog, abfd,
sim_kind == SIM_OPEN_DEBUG,
0, sim_write);
if (prog_bfd == NULL)
return SIM_RC_FAIL;
if (abfd == NULL)
bfd_close (prog_bfd);
return SIM_RC_OK;
}
#endif /* not WITH_COMMON */
#if WITH_COMMON
/* For compatibility */
SIM_DESC simulator;
/* These default values correspond to expected usage for the chip. */
SIM_DESC
sim_open (kind, cb, abfd, argv)
SIM_OPEN_KIND kind;
host_callback *cb;
struct _bfd *abfd;
char **argv;
{
SIM_DESC sd = sim_state_alloc (kind, cb);
mn10300_callback = cb;
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
/* for compatibility */
simulator = sd;
/* FIXME: should be better way of setting up interrupts. For
moment, only support watchpoints causing a breakpoint (gdb
halt). */
STATE_WATCHPOINTS (sd)->pc = &(PC);
STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
STATE_WATCHPOINTS (sd)->interrupt_handler = NULL;
STATE_WATCHPOINTS (sd)->interrupt_names = NULL;
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
return 0;
sim_add_option_table (sd, NULL, mn10300_options);
/* Allocate core managed memory */
sim_do_command (sd, "memory region 0,0x100000");
sim_do_command (sd, "memory region 0x40000000,0x200000");
/* getopt will print the error message so we just have to exit if this fails.
FIXME: Hmmm... in the case of gdb we need getopt to call
print_filtered. */
if (sim_parse_args (sd, argv) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
sim_module_uninstall (sd);
return 0;
}
if ( NULL != board
&& (strcmp(board, BOARD_AM32) == 0 ) )
{
/* environment */
STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
sim_do_command (sd, "memory region 0x44000000,0x40000");
sim_do_command (sd, "memory region 0x48000000,0x400000");
/* device support for mn1030002 */
/* interrupt controller */
sim_hw_parse (sd, "/mn103int@0x34000100/reg 0x34000100 0x7C 0x34000200 0x8 0x34000280 0x8");
/* DEBUG: NMI input's */
sim_hw_parse (sd, "/glue@0x30000000/reg 0x30000000 12");
sim_hw_parse (sd, "/glue@0x30000000 > int0 nmirq /mn103int");
sim_hw_parse (sd, "/glue@0x30000000 > int1 watchdog /mn103int");
sim_hw_parse (sd, "/glue@0x30000000 > int2 syserr /mn103int");
/* DEBUG: ACK input */
sim_hw_parse (sd, "/glue@0x30002000/reg 0x30002000 4");
sim_hw_parse (sd, "/glue@0x30002000 > int ack /mn103int");
/* DEBUG: LEVEL output */
sim_hw_parse (sd, "/glue@0x30004000/reg 0x30004000 8");
sim_hw_parse (sd, "/mn103int > nmi int0 /glue@0x30004000");
sim_hw_parse (sd, "/mn103int > level int1 /glue@0x30004000");
/* DEBUG: A bunch of interrupt inputs */
sim_hw_parse (sd, "/glue@0x30006000/reg 0x30006000 32");
sim_hw_parse (sd, "/glue@0x30006000 > int0 irq-0 /mn103int");
sim_hw_parse (sd, "/glue@0x30006000 > int1 irq-1 /mn103int");
sim_hw_parse (sd, "/glue@0x30006000 > int2 irq-2 /mn103int");
sim_hw_parse (sd, "/glue@0x30006000 > int3 irq-3 /mn103int");
sim_hw_parse (sd, "/glue@0x30006000 > int4 irq-4 /mn103int");
sim_hw_parse (sd, "/glue@0x30006000 > int5 irq-5 /mn103int");
sim_hw_parse (sd, "/glue@0x30006000 > int6 irq-6 /mn103int");
sim_hw_parse (sd, "/glue@0x30006000 > int7 irq-7 /mn103int");
/* processor interrupt device */
/* the device */
sim_hw_parse (sd, "/mn103cpu@0x20000000");
sim_hw_parse (sd, "/mn103cpu@0x20000000/reg 0x20000000 0x42");
/* DEBUG: ACK output wired upto a glue device */
sim_hw_parse (sd, "/glue@0x20002000");
sim_hw_parse (sd, "/glue@0x20002000/reg 0x20002000 4");
sim_hw_parse (sd, "/mn103cpu > ack int0 /glue@0x20002000");
/* DEBUG: RESET/NMI/LEVEL wired up to a glue device */
sim_hw_parse (sd, "/glue@0x20004000");
sim_hw_parse (sd, "/glue@0x20004000/reg 0x20004000 12");
sim_hw_parse (sd, "/glue@0x20004000 > int0 reset /mn103cpu");
sim_hw_parse (sd, "/glue@0x20004000 > int1 nmi /mn103cpu");
sim_hw_parse (sd, "/glue@0x20004000 > int2 level /mn103cpu");
/* REAL: The processor wired up to the real interrupt controller */
sim_hw_parse (sd, "/mn103cpu > ack ack /mn103int");
sim_hw_parse (sd, "/mn103int > level level /mn103cpu");
sim_hw_parse (sd, "/mn103int > nmi nmi /mn103cpu");
/* PAL */
/* the device */
sim_hw_parse (sd, "/pal@0x31000000");
sim_hw_parse (sd, "/pal@0x31000000/reg 0x31000000 64");
sim_hw_parse (sd, "/pal@0x31000000/poll? true");
/* DEBUG: PAL wired up to a glue device */
sim_hw_parse (sd, "/glue@0x31002000");
sim_hw_parse (sd, "/glue@0x31002000/reg 0x31002000 16");
sim_hw_parse (sd, "/pal@0x31000000 > countdown int0 /glue@0x31002000");
sim_hw_parse (sd, "/pal@0x31000000 > timer int1 /glue@0x31002000");
sim_hw_parse (sd, "/pal@0x31000000 > int int2 /glue@0x31002000");
sim_hw_parse (sd, "/glue@0x31002000 > int0 int3 /glue@0x31002000");
sim_hw_parse (sd, "/glue@0x31002000 > int1 int3 /glue@0x31002000");
sim_hw_parse (sd, "/glue@0x31002000 > int2 int3 /glue@0x31002000");
/* REAL: The PAL wired up to the real interrupt controller */
sim_hw_parse (sd, "/pal@0x31000000 > countdown irq-0 /mn103int");
sim_hw_parse (sd, "/pal@0x31000000 > timer irq-1 /mn103int");
sim_hw_parse (sd, "/pal@0x31000000 > int irq-2 /mn103int");
/* 8 and 16 bit timers */
sim_hw_parse (sd, "/mn103tim@0x34001000/reg 0x34001000 36 0x34001080 100 0x34004000 16");
/* Hook timer interrupts up to interrupt controller */
sim_hw_parse (sd, "/mn103tim > timer-0-underflow timer-0-underflow /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-1-underflow timer-1-underflow /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-2-underflow timer-2-underflow /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-3-underflow timer-3-underflow /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-4-underflow timer-4-underflow /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-5-underflow timer-5-underflow /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-6-underflow timer-6-underflow /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-6-compare-a timer-6-compare-a /mn103int");
sim_hw_parse (sd, "/mn103tim > timer-6-compare-b timer-6-compare-b /mn103int");
/* Serial devices 0,1,2 */
sim_hw_parse (sd, "/mn103ser@0x34000800/reg 0x34000800 48");
sim_hw_parse (sd, "/mn103ser@0x34000800/poll? true");
/* Hook serial interrupts up to interrupt controller */
sim_hw_parse (sd, "/mn103ser > serial-0-receive serial-0-receive /mn103int");
sim_hw_parse (sd, "/mn103ser > serial-0-transmit serial-0-transmit /mn103int");
sim_hw_parse (sd, "/mn103ser > serial-1-receive serial-1-receive /mn103int");
sim_hw_parse (sd, "/mn103ser > serial-1-transmit serial-1-transmit /mn103int");
sim_hw_parse (sd, "/mn103ser > serial-2-receive serial-2-receive /mn103int");
sim_hw_parse (sd, "/mn103ser > serial-2-transmit serial-2-transmit /mn103int");
sim_hw_parse (sd, "/mn103iop@0x36008000/reg 0x36008000 8 0x36008020 8 0x36008040 0xc 0x36008060 8 0x36008080 8");
/* Memory control registers */
sim_do_command (sd, "memory region 0x32000020,0x30");
/* Cache control register */
sim_do_command (sd, "memory region 0x20000070,0x4");
/* Cache purge regions */
sim_do_command (sd, "memory region 0x28400000,0x800");
sim_do_command (sd, "memory region 0x28401000,0x800");
/* DMA registers */
sim_do_command (sd, "memory region 0x32000100,0xF");
sim_do_command (sd, "memory region 0x32000200,0xF");
sim_do_command (sd, "memory region 0x32000400,0xF");
sim_do_command (sd, "memory region 0x32000800,0xF");
}
else
{
if ( NULL != board )
{
printf("Error: invalid --board option.\n");
return 0;
}
}
/* check for/establish the a reference program image */
if (sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL
? *STATE_PROG_ARGV (sd)
: NULL),
abfd) != SIM_RC_OK)
{
sim_module_uninstall (sd);
return 0;
}
/* establish any remaining configuration options */
if (sim_config (sd) != SIM_RC_OK)
{
sim_module_uninstall (sd);
return 0;
}
if (sim_post_argv_init (sd) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
sim_module_uninstall (sd);
return 0;
}
/* set machine specific configuration */
/* STATE_CPU (sd, 0)->psw_mask = (PSW_NP | PSW_EP | PSW_ID | PSW_SAT */
/* | PSW_CY | PSW_OV | PSW_S | PSW_Z); */
return sd;
}
void
sim_close (sd, quitting)
SIM_DESC sd;
int quitting;
{
sim_module_uninstall (sd);
}
SIM_RC
sim_create_inferior (sd, prog_bfd, argv, env)
SIM_DESC sd;
struct _bfd *prog_bfd;
char **argv;
char **env;
{
memset (&State, 0, sizeof (State));
if (prog_bfd != NULL) {
PC = bfd_get_start_address (prog_bfd);
} else {
PC = 0;
}
CIA_SET (STATE_CPU (sd, 0), (unsigned64) PC);
return SIM_RC_OK;
}
void
sim_do_command (sd, cmd)
SIM_DESC sd;
char *cmd;
{
char *mm_cmd = "memory-map";
char *int_cmd = "interrupt";
if (sim_args_command (sd, cmd) != SIM_RC_OK)
{
if (strncmp (cmd, mm_cmd, strlen (mm_cmd) == 0))
sim_io_eprintf (sd, "`memory-map' command replaced by `sim memory'\n");
else if (strncmp (cmd, int_cmd, strlen (int_cmd)) == 0)
sim_io_eprintf (sd, "`interrupt' command replaced by `sim watch'\n");
else
sim_io_eprintf (sd, "Unknown command `%s'\n", cmd);
}
}
#endif /* WITH_COMMON */
/* FIXME These would more efficient to use than load_mem/store_mem,
but need to be changed to use the memory map. */
uint8
get_byte (x)
uint8 *x;
{
return *x;
}
uint16
get_half (x)
uint8 *x;
{
uint8 *a = x;
return (a[1] << 8) + (a[0]);
}
uint32
get_word (x)
uint8 *x;
{
uint8 *a = x;
return (a[3]<<24) + (a[2]<<16) + (a[1]<<8) + (a[0]);
}
void
put_byte (addr, data)
uint8 *addr;
uint8 data;
{
uint8 *a = addr;
a[0] = data;
}
void
put_half (addr, data)
uint8 *addr;
uint16 data;
{
uint8 *a = addr;
a[0] = data & 0xff;
a[1] = (data >> 8) & 0xff;
}
void
put_word (addr, data)
uint8 *addr;
uint32 data;
{
uint8 *a = addr;
a[0] = data & 0xff;
a[1] = (data >> 8) & 0xff;
a[2] = (data >> 16) & 0xff;
a[3] = (data >> 24) & 0xff;
}
int
sim_fetch_register (sd, rn, memory, length)
SIM_DESC sd;
int rn;
unsigned char *memory;
int length;
{
put_word (memory, State.regs[rn]);
return -1;
}
int
sim_store_register (sd, rn, memory, length)
SIM_DESC sd;
int rn;
unsigned char *memory;
int length;
{
State.regs[rn] = get_word (memory);
return -1;
}
void
mn10300_core_signal (SIM_DESC sd,
sim_cpu *cpu,
sim_cia cia,
unsigned map,
int nr_bytes,
address_word addr,
transfer_type transfer,
sim_core_signals sig)
{
const char *copy = (transfer == read_transfer ? "read" : "write");
address_word ip = CIA_ADDR (cia);
switch (sig)
{
case sim_core_unmapped_signal:
sim_io_eprintf (sd, "mn10300-core: %d byte %s to unmapped address 0x%lx at 0x%lx\n",
nr_bytes, copy,
(unsigned long) addr, (unsigned long) ip);
program_interrupt(sd, cpu, cia, SIM_SIGSEGV);
break;
case sim_core_unaligned_signal:
sim_io_eprintf (sd, "mn10300-core: %d byte %s to unaligned address 0x%lx at 0x%lx\n",
nr_bytes, copy,
(unsigned long) addr, (unsigned long) ip);
program_interrupt(sd, cpu, cia, SIM_SIGBUS);
break;
default:
sim_engine_abort (sd, cpu, cia,
"mn10300_core_signal - internal error - bad switch");
}
}
void
program_interrupt (SIM_DESC sd,
sim_cpu *cpu,
sim_cia cia,
SIM_SIGNAL sig)
{
int status;
struct hw *device;
static int in_interrupt = 0;
#ifdef SIM_CPU_EXCEPTION_TRIGGER
SIM_CPU_EXCEPTION_TRIGGER(sd,cpu,cia);
#endif
/* avoid infinite recursion */
if (in_interrupt)
{
(*mn10300_callback->printf_filtered) (mn10300_callback,
"ERROR: recursion in program_interrupt during software exception dispatch.");
}
else
{
in_interrupt = 1;
/* copy NMI handler code from dv-mn103cpu.c */
store_word (SP - 4, CIA_GET (cpu));
store_half (SP - 8, PSW);
/* Set the SYSEF flag in NMICR by backdoor method. See
dv-mn103int.c:write_icr(). This is necessary because
software exceptions are not modelled by actually talking to
the interrupt controller, so it cannot set its own SYSEF
flag. */
if ((NULL != board) && (strcmp(board, BOARD_AM32) == 0))
store_byte (0x34000103, 0x04);
}
PSW &= ~PSW_IE;
SP = SP - 8;
CIA_SET (cpu, 0x40000008);
in_interrupt = 0;
sim_engine_halt(sd, cpu, NULL, cia, sim_stopped, sig);
}
void
mn10300_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word cia)
{
ASSERT(cpu != NULL);
if(State.exc_suspended > 0)
sim_io_eprintf(sd, "Warning, nested exception triggered (%d)\n", State.exc_suspended);
CIA_SET (cpu, cia);
memcpy(State.exc_trigger_regs, State.regs, sizeof(State.exc_trigger_regs));
State.exc_suspended = 0;
}
void
mn10300_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception)
{
ASSERT(cpu != NULL);
if(State.exc_suspended > 0)
sim_io_eprintf(sd, "Warning, nested exception signal (%d then %d)\n",
State.exc_suspended, exception);
memcpy(State.exc_suspend_regs, State.regs, sizeof(State.exc_suspend_regs));
memcpy(State.regs, State.exc_trigger_regs, sizeof(State.regs));
CIA_SET (cpu, PC); /* copy PC back from new State.regs */
State.exc_suspended = exception;
}
void
mn10300_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception)
{
ASSERT(cpu != NULL);
if(exception == 0 && State.exc_suspended > 0)
{
if(State.exc_suspended != SIGTRAP) /* warn not for breakpoints */
sim_io_eprintf(sd, "Warning, resuming but ignoring pending exception signal (%d)\n",
State.exc_suspended);
}
else if(exception != 0 && State.exc_suspended > 0)
{
if(exception != State.exc_suspended)
sim_io_eprintf(sd, "Warning, resuming with mismatched exception signal (%d vs %d)\n",
State.exc_suspended, exception);
memcpy(State.regs, State.exc_suspend_regs, sizeof(State.regs));
CIA_SET (cpu, PC); /* copy PC back from new State.regs */
}
else if(exception != 0 && State.exc_suspended == 0)
{
sim_io_eprintf(sd, "Warning, ignoring spontanous exception signal (%d)\n", exception);
}
State.exc_suspended = 0;
}
|