GTK Tutorial <author>Ian Main <tt><htmlurl url="mailto:imain@gimp.org" name="<imain@gimp.org>"></tt>, Tony Gale <tt><htmlurl url="mailto:gale@gimp.org" name="<gale@gimp.org>"></tt <date>March 8th, 1998 <!-- ***************************************************************** --> <sect>Introduction <!-- ***************************************************************** --> <p> GTK (GIMP Toolkit) was originally developed as a toolkit for the GIMP (General Image Manipulation Program). GTK is built on top of GDK (GIMP Drawing Kit) which is basically wrapper around the Xlib functions. It's called the GIMP toolkit because it was original written for developing the GIMP, but has now been used in several free software projects. The authors are <itemize> <item> Peter Mattis <tt><htmlurl url="mailto:petm@xcf.berkeley.edu" name="petm@xcf.berkeley.edu"></tt> <item> Spencer Kimball <tt><htmlurl url="mailto:spencer@xcf.berkeley.edu" name="spencer@xcf.berkeley.edu"></tt> <item> Josh MacDonald <tt><htmlurl url="mailto:jmacd@xcf.berkeley.edu" name="jmacd@xcf.berkeley.edu"></tt> </itemize> <p> GTK is essentially an object oriented application programmers interface (API). Although written completely in C, it is implemented using the idea of classes and callback functions (pointers to functions). <p> There is also a third component called glib which contains a few replacements for some standard calls, as well as some additional functions for handling linked lists etc. The replacement functions are used to increase GTK's portability, as some of the functions implemented here are not available or are nonstandard on other unicies such as g_strerror(). Some also contain enhancements to the libc versions such as g_malloc has enhanced debugging utilities. <p> This tutorial is an attempt to document as much as possible of GTK, it is by no means complete. This tutorial assumes a good understanding of C, and how to create C programs. It would be a great benefit for the reader to have previous X programming experience, but it shouldn't be necessary. If you are learning GTK as your first widget set, please comment on how you found this tutorial, and what you had troubles with. Note that there is also a C++ API for GTK (GTK--) in the works, so if you prefer to use C++, you should look into this instead. There's also an Objective C wrapper, and guile bindings available, but I don't follow these. <p> I would very much like to hear any problems you have learning GTK from this document, and would appreciate input as to how it may be improved. <!-- ***************************************************************** --> <sect>Getting Started <!-- ***************************************************************** --> <p> The first thing to do of course, is download the GTK source and install it. You can always get the latest version from ftp.gimp.org in /pub/gtk. You can also view other sources of GTK information on http://www.gimp.org/gtk GTK uses GNU autoconf for configuration. Once untar'd, type ./configure --help to see a list of options. <p> To begin our introduction to GTK, we'll start with the simplest program possible. This program will create a 200x200 pixel window and has no way of exiting except to be killed using the shell. <tscreen><verb> #include <gtk/gtk.h> int main (int argc, char *argv[]) { GtkWidget *window; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_widget_show (window); gtk_main (); return 0; } </verb></tscreen> All programs will of course include the gtk/gtk.h which declares the variables, functions, structures etc. that will be used in your GTK application. <p> The next line: <tscreen><verb> gtk_init (&argc, &argv); </verb></tscreen> calls the function gtk_init(gint *argc, gchar ***argv) which will be called in all GTK applications. This sets up a few things for us such as the default visual and color map and then proceeds to call gdk_init(gint *argc, gchar ***argv). This function initializes the library for use, sets up default signal handlers, and checks the arguments passed to your application on the command line, looking for one of the following: <itemize> <item> <tt/--display/ <item> <tt/--debug-level/ <item> <tt/--no-xshm/ <item> <tt/--sync/ <item> <tt/--show-events/ <item> <tt/--no-show-events/ </itemize> <p> It removes these from the argument list, leaving anything it does not recognize for your application to parse or ignore. This creates a set of standard arguments excepted by all GTK applications. <p> The next two lines of code create and display a window. <tscreen><verb> window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_widget_show (window); </verb></tscreen> The GTK_WINDOW_TOPLEVEL argument specifies that we want the window to undergo window manager decoration and placement. Rather than create a window of 0x0 size, a window without children is set to 200x200 by default so you can still manipulate it. <p> The gtk_widget_show() function, lets GTK know that we are done setting the attributes of this widget, and it can display it. <p> The last line enters the GTK main processing loop. <tscreen><verb> gtk_main (); </verb></tscreen> gtk_main() is another call you will see in every GTK application. When control reaches this point, GTK will sleep waiting for X events (such as button or key presses), timeouts, or file IO notifications to occur. In our simple example however, events are ignored. <!-- ----------------------------------------------------------------- --> <sect1>Hello World in GTK <p> OK, now for a program with a widget (a button). It's the classic hello world ala GTK. <tscreen><verb> /* helloworld.c */ #include <gtk/gtk.h> /* this is a callback function. the data arguments are ignored in this example.. * More on callbacks below. */ void hello (GtkWidget *widget, gpointer data) { g_print ("Hello World\n"); } gint delete_event(GtkWidget *widget, gpointer data) { g_print ("delete event occured\n"); /* if you return TRUE in the "delete_event" signal handler, * GTK will emit the "destroy" signal. Returning FALSE means * you don't want the window to be destroyed. * This is useful for popping up 'are you sure you want to quit ?' * type dialogs. */ /* Change FALSE to TRUE and the main window will be destroyed with * a "delete_event". */ return (FALSE); } /* another callback */ void destroy (GtkWidget *widget, gpointer data) { gtk_main_quit (); } int main (int argc, char *argv[]) { /* GtkWidget is the storage type for widgets */ GtkWidget *window; GtkWidget *button; /* this is called in all GTK applications. arguments are parsed from * the command line and are returned to the application. */ gtk_init (&argc, &argv); /* create a new window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); /* when the window is given the "delete_event" signal (this is given * by the window manager (usually the 'close' option, or on the * titlebar), we ask it to call the delete_event () function * as defined above. The data passed to the callback * function is NULL and is ignored in the callback. */ gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (delete_event), NULL); /* here we connect the "destroy" event to a signal handler. * This event occurs when we call gtk_widget_destroy() on the window, * or if we return 'TRUE' in the "delete_event" callback. */ gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (destroy), NULL); /* sets the border width of the window. */ gtk_container_border_width (GTK_CONTAINER (window), 10); /* creates a new button with the label "Hello World". */ button = gtk_button_new_with_label ("Hello World"); /* When the button receives the "clicked" signal, it will call the * function hello() passing it NULL as it's argument. The hello() function is * defined above. */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (hello), NULL); /* This will cause the window to be destroyed by calling * gtk_widget_destroy(window) when "clicked". Again, the destroy * signal could come from here, or the window manager. */ gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (gtk_widget_destroy), GTK_OBJECT (window)); /* this packs the button into the window (a gtk container). */ gtk_container_add (GTK_CONTAINER (window), button); /* the final step is to display this newly created widget... */ gtk_widget_show (button); /* and the window */ gtk_widget_show (window); /* all GTK applications must have a gtk_main(). Control ends here * and waits for an event to occur (like a key press or mouse event). */ gtk_main (); return 0; } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Compiling Hello World <p> To compile use: <tscreen><verb> gcc -Wall -g helloworld.c -o hello_world `gtk-config --cflags` \ `gtk-config --libs` </verb></tscreen> <p> This uses the program <tt>gtk-config</>, which comes with gtk. This program 'knows' what compiler switches are needed to compile programs that use gtk. <tt>gtk-config --cflags</> will output a list of include directories for the compiler to look in, and <tt>gtk-config --libs</> will output the list of libraries for the compiler to link with and the directories to find them in. <p> The libraries that are usually linked in are: <itemize> <item>The GTK library (-lgtk), the widget library, based on top of GDK. <item>The GDK library (-lgdk), the Xlib wrapper. <item>The glib library (-lglib), containing miscellaneous functions, only g_print() is used in this particular example. GTK is built on top of glib so you will always require this library. See the section on <ref id="sec_glib" name="glib"> for details. <item>The Xlib library (-lX11) which is used by GDK. <item>The Xext library (-lXext). This contains code for shared memory pixmaps and other X extensions. <item>The math library (-lm). This is used by GTK for various purposes. </itemize> <!-- ----------------------------------------------------------------- --> <sect1>Theory of Signals and Callbacks <p> Before we look in detail at hello world, we'll discuss events and callbacks. GTK is an event driven toolkit, which means it will sleep in gtk_main until an event occurs and control is passed to the appropriate function. <p> This passing of control is done using the idea of "signals". When an event occurs, such as the press of a mouse button, the appropriate signal will be "emitted" by the widget that was pressed. This is how GTK does most of its useful work. To make a button perform an action, we set up a signal handler to catch these signals and call the appropriate function. This is done by using a function such as: <tscreen><verb> gint gtk_signal_connect (GtkObject *object, gchar *name, GtkSignalFunc func, gpointer func_data); </verb></tscreen> <p> Where the first argument is the widget which will be emitting the signal, and the second, the name of the signal you wish to catch. The third is the function you wish to be called when it is caught, and the fourth, the data you wish to have passed to this function. <p> The function specified in the third argument is called a "callback function", and should be of the form: <tscreen><verb> void callback_func(GtkWidget *widget, gpointer *callback_data); </verb></tscreen> <p> Where the first argument will be a pointer to the widget that emitted the signal, and the second, a pointer to the data given as the last argument to the gtk_signal_connect() function as shown above. <p> Another call used in the hello world example, is: <tscreen><verb> gint gtk_signal_connect_object (GtkObject *object, gchar *name, GtkSignalFunc func, GtkObject *slot_object); </verb></tscreen> <p> gtk_signal_connect_object() is the same as gtk_signal_connect() except that the callback function only uses one argument, a pointer to a GTK object. So when using this function to connect signals, the callback should be of the form: <tscreen><verb> void callback_func (GtkObject *object); </verb></tscreen> <p> Where the object is usually a widget. We usually don't setup callbacks for gtk_signal_connect_object however. They are usually used to call a GTK function that accept a single widget or object as an argument, as is the case in our hello world example. The purpose of having two functions to connect signals is simply to allow the callbacks to have a different number of arguments. Many functions in the GTK library accept only a single GtkWidget pointer as an argument, so you want to use the gtk_signal_connect_object() for these, whereas for your functions, you may need to have additional data supplied to the callbacks. <!-- ----------------------------------------------------------------- --> <sect1>Stepping Through Hello World <p> Now that we know the theory behind this, lets clarify by walking through the example hello world program. <p> Here is the callback function that will be called when the button is "clicked". We ignore both the widget and the data in this example, but it is not hard to do things with them. The next example will use the data argument to tell us which button was pressed. <tscreen><verb> void hello (GtkWidget *widget, gpointer *data) { g_print ("Hello World\n"); } </verb></tscreen> <p> This callback is a bit special. The "delete_event" occurs when the window manager sends this event to the application. We have a choice here as to what to do about these events. We can ignore them, make some sort of response, or simply quit the application. The value you return in this callback lets GTK know what action to take. By returning FALSE, we let it know that we don't want to have the "destroy" signal emitted, keeping our application running. By returning TRUE, we ask that "destroy" is emitted, which in turn will call our "destroy" signal handler. <tscreen><verb> gint delete_event(GtkWidget *widget, gpointer data) { g_print ("delete event occured\n"); return (FALSE); } </verb></tscreen> <p> Here is another callback function which just quits by calling gtk_main_quit(). Not really much to say about this, it is pretty self explanatory. <tscreen><verb> void destroy (GtkWidget *widget, gpointer *data) { gtk_main_quit (); } </verb></tscreen> <p> I assume you know about the main() function... yes, as with other applications, all GTK applications will also have one of these. <tscreen><verb> int main (int argc, char *argv[]) { </verb></tscreen> <p> This next part, declares a pointer to a structure of type GtkWidget. These are used below to create a window and a button. <tscreen><verb> GtkWidget *window; GtkWidget *button; </verb></tscreen> <p> Here is our gtk_init again. As before, this initializes the toolkit, and parses the arguments found on the command line. Any argument it recognizes from the command line, it removes from the list, and modifies argc and argv to make it look like they never existed, allowing your application to parse the remaining arguments. <tscreen><verb> gtk_init (&argc, &argv); </verb></tscreen> <p> Create a new window. This is fairly straight forward. Memory is allocated for the GtkWidget *window structure so it now points to a valid structure. It sets up a new window, but it is not displayed until below where we call gtk_widget_show(window) near the end of our program. <tscreen><verb> window = gtk_window_new (GTK_WINDOW_TOPLEVEL); </verb></tscreen> <p> Here is an example of connecting a signal handler to an object, in this case, the window. Here, the "destroy" signal is caught. This is emitted when we use the window manager to kill the window (and we return TRUE in the "delete_event" handler), or when we use the gtk_widget_destroy() call passing in the window widget as the object to destroy. By setting this up, we handle both cases with a single call. Here, it just calls the destroy() function defined above with a NULL argument, which quits GTK for us. <p> The GTK_OBJECT and GTK_SIGNAL_FUNC are macros that perform type casting and checking for us, as well as aid the readability of the code. <tscreen><verb> gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (destroy), NULL); </verb></tscreen> <p> This next function is used to set an attribute of a container object. This just sets the window so it has a blank area along the inside of it 10 pixels wide where no widgets will go. There are other similar functions which we will look at in the section on <ref id="sec_setting_widget_attributes" name="Setting Widget Attributes"> <p> And again, GTK_CONTAINER is a macro to perform type casting. <tscreen><verb> gtk_container_border_width (GTK_CONTAINER (window), 10); </verb></tscreen> <p> This call creates a new button. It allocates space for a new GtkWidget structure in memory, initializes it, and makes the button pointer point to it. It will have the label "Hello World" on it when displayed. <tscreen><verb> button = gtk_button_new_with_label ("Hello World"); </verb></tscreen> <p> Here, we take this button, and make it do something useful. We attach a signal handler to it so when it emits the "clicked" signal, our hello() function is called. The data is ignored, so we simply pass in NULL to the hello() callback function. Obviously, the "clicked" signal is emitted when we click the button with our mouse pointer. <tscreen><verb> gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (hello), NULL); </verb></tscreen> <p> We are also going to use this button to exit our program. This will illustrate how the "destroy" signal may come from either the window manager, or our program. When the button is "clicked", same as above, it calls the first hello() callback function, and then this one in the order they are set up. You may have as many callback function as you need, and all will be executed in the order you connected them. Because the gtk_widget_destroy() function accepts only a GtkWidget *widget as an argument, we use the gtk_signal_connect_object() function here instead of straight gtk_signal_connect(). <tscreen><verb> gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (gtk_widget_destroy), GTK_OBJECT (window)); </verb></tscreen> <p> This is a packing call, which will be explained in depth later on. But it is fairly easy to understand. It simply tells GTK that the button is to be placed in the window where it will be displayed. <tscreen><verb> gtk_container_add (GTK_CONTAINER (window), button); </verb></tscreen> <p> Now that we have everything setup the way we want it to be. With all the signal handlers in place, and the button placed in the window where it should be, we ask GTK to "show" the widgets on the screen. The window widget is shown last so the whole window will pop up at once rather than seeing the window pop up, and then the button form inside of it. Although with such simple example, you'd never notice. <tscreen><verb> gtk_widget_show (button); gtk_widget_show (window); </verb></tscreen> <p> And of course, we call gtk_main() which waits for events to come from the X server and will call on the widgets to emit signals when these events come. <tscreen><verb> gtk_main (); </verb></tscreen> And the final return. Control returns here after gtk_quit() is called. <tscreen><verb> return 0; </verb></tscreen> <p> Now, when we click the mouse button on a GTK button, the widget emits a "clicked" signal. In order for us to use this information, our program sets up a signal handler to catch that signal, which dispatches the function of our choice. In our example, when the button we created is "clicked", the hello() function is called with a NULL argument, and then the next handler for this signal is called. This calls the gtk_widget_destroy() function, passing it the window widget as it's argument, destroying the window widget. This causes the window to emit the "destroy" signal, which is caught, and calls our destroy() callback function, which simply exits GTK. <p> Another course of events, is to use the window manager to kill the window. This will cause the "delete_event" to be emitted. This will call our "delete_event" handler. If we return FALSE here, the window will be left as is and nothing will happen. Returning TRUE will cause GTK to emit the "destroy" signal which of course, calls the "destroy" callback, exiting GTK. <p> Note that these signals are not the same as the Unix system signals, and are not implemented using them, although the terminology is almost identical. <!-- ***************************************************************** --> <sect>Moving On <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1>Data Types <p> There are a few things you probably noticed in the previous examples that need explaining. The gint, gchar etc. that you see are typedefs to int and char respectively. This is done to get around that nasty dependency on the size of simple data types when doing calculations. A good example is "gint32" which will be typedef'd to a 32 bit integer for any given platform, whether it be the 64 bit alpha, or the 32 bit i386. The typedefs are very straight forward and intuitive. They are all defined in glib/glib.h (which gets included from gtk.h). <p> You'll also notice the ability to use GtkWidget when the function calls for a GtkObject. GTK is an object oriented design, and a widget is an object. <!-- ----------------------------------------------------------------- --> <sect1>More on Signal Handlers <p> Lets take another look at the gtk_signal_connect declaration. <tscreen><verb> gint gtk_signal_connect (GtkObject *object, gchar *name, GtkSignalFunc func, gpointer func_data); </verb></tscreen> Notice the gint return value ? This is a tag that identifies your callback function. As said above, you may have as many callbacks per signal and per object as you need, and each will be executed in turn, in the order they were attached. This tag allows you to remove this callback from the list by using: <tscreen><verb> void gtk_signal_disconnect (GtkObject *object, gint id); </verb></tscreen> So, by passing in the widget you wish to remove the handler from, and the tag or id returned by one of the signal_connect functions, you can disconnect a signal handler. <p> Another function to remove all the signal handers from an object is: <tscreen><verb> gtk_signal_handlers_destroy (GtkObject *object); </verb></tscreen> <p> This call is fairly self explanatory. It simply removes all the current signal handlers from the object passed in as the first argument. <!-- ----------------------------------------------------------------- --> <sect1>An Upgraded Hello World <p> Let's take a look at a slightly improved hello world with better examples of callbacks. This will also introduce us to our next topic, packing widgets. <tscreen><verb> /* helloworld2.c */ #include <gtk/gtk.h> /* Our new improved callback. The data passed to this function is printed * to stdout. */ void callback (GtkWidget *widget, gpointer *data) { g_print ("Hello again - %s was pressed\n", (char *) data); } /* another callback */ void delete_event (GtkWidget *widget, gpointer *data) { gtk_main_quit (); } int main (int argc, char *argv[]) { /* GtkWidget is the storage type for widgets */ GtkWidget *window; GtkWidget *button; GtkWidget *box1; /* this is called in all GTK applications. arguments are parsed from * the command line and are returned to the application. */ gtk_init (&argc, &argv); /* create a new window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); /* this is a new call, this just sets the title of our * new window to "Hello Buttons!" */ gtk_window_set_title (GTK_WINDOW (window), "Hello Buttons!"); /* Here we just set a handler for delete_event that immediately * exits GTK. */ gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (delete_event), NULL); /* sets the border width of the window. */ gtk_container_border_width (GTK_CONTAINER (window), 10); /* we create a box to pack widgets into. this is described in detail * in the "packing" section below. The box is not really visible, it * is just used as a tool to arrange widgets. */ box1 = gtk_hbox_new(FALSE, 0); /* put the box into the main window. */ gtk_container_add (GTK_CONTAINER (window), box1); /* creates a new button with the label "Button 1". */ button = gtk_button_new_with_label ("Button 1"); /* Now when the button is clicked, we call the "callback" function * with a pointer to "button 1" as it's argument */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (callback), (gpointer) "button 1"); /* instead of gtk_container_add, we pack this button into the invisible * box, which has been packed into the window. */ gtk_box_pack_start(GTK_BOX(box1), button, TRUE, TRUE, 0); /* always remember this step, this tells GTK that our preparation for * this button is complete, and it can be displayed now. */ gtk_widget_show(button); /* do these same steps again to create a second button */ button = gtk_button_new_with_label ("Button 2"); /* call the same callback function with a different argument, * passing a pointer to "button 2" instead. */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (callback), (gpointer) "button 2"); gtk_box_pack_start(GTK_BOX(box1), button, TRUE, TRUE, 0); /* The order in which we show the buttons is not really important, but I * recommend showing the window last, so it all pops up at once. */ gtk_widget_show(button); gtk_widget_show(box1); gtk_widget_show (window); /* rest in gtk_main and wait for the fun to begin! */ gtk_main (); return 0; } </verb></tscreen> <p> Compile this program using the same linking arguments as our first example. You'll notice this time there is no easy way to exit the program, you have to use your window manager or command line to kill it. A good exercise for the reader would be to insert a third "Quit" button that will exit the program. You may also wish to play with the options to gtk_box_pack_start() while reading the next section. Try resizing the window, and observe the behavior. <p> Just as a side note, there is another useful define for gtk_window_new() - GTK_WINDOW_DIALOG. This interacts with the window manager a little differently and should be used for transient windows. <!-- ***************************************************************** --> <sect>Packing Widgets <!-- ***************************************************************** --> <p> When creating an application, you'll want to put more than one button inside a window. Our first hello world example only used one widget so we could simply use a gtk_container_add call to "pack" the widget into the window. But when you want to put more than one widget into a window, how do you control where that widget is positioned ? This is where packing comes in. <!-- ----------------------------------------------------------------- --> <sect1>Theory of Packing Boxes <p> Most packing is done by creating boxes as in the example above. These are invisible widget containers that we can pack our widgets into and come in two forms, a horizontal box, and a vertical box. When packing widgets into a horizontal box, the objects are inserted horizontally from left to right or right to left depending on the call used. In a vertical box, widgets are packed from top to bottom or vice versa. You may use any combination of boxes inside or beside other boxes to create the desired effect. <p> To create a new horizontal box, we use a call to gtk_hbox_new(), and for vertical boxes, gtk_vbox_new(). The gtk_box_pack_start() and gtk_box_pack_end() functions are used to place objects inside of these containers. The gtk_box_pack_start() function will start at the top and work its way down in a vbox, and pack left to right in an hbox. gtk_box_pack_end() will do the opposite, packing from bottom to top in a vbox, and right to left in an hbox. Using these functions allow us to right justify or left justify our widgets and may be mixed in any way to achieve the desired effect. We will use gtk_box_pack_start() in most of our examples. An object may be another container or a widget. And in fact, many widgets are actually containers themselves including the button, but we usually only use a label inside a button. <p> By using these calls, GTK knows where you want to place your widgets so it can do automatic resizing and other nifty things. there's also a number of options as to how your widgets should be packed. As you can imagine, this method gives us a quite a bit of flexibility when placing and creating widgets. <!-- ----------------------------------------------------------------- --> <sect1>Details of Boxes <p> Because of this flexibility, packing boxes in GTK can be confusing at first. There are a lot of options, and it's not immediately obvious how they all fit together. In the end however, there are basically five different styles you can get. <p> <? <CENTER> > <? <IMG SRC="gtk_tut_packbox1.gif" VSPACE="15" HSPACE="10" WIDTH="528" HEIGHT="235" ALT="Box Packing Example Image"> > <? </CENTER> > Each line contains one horizontal box (hbox) with several buttons. The call to gtk_box_pack is shorthand for the call to pack each of the buttons into the hbox. Each of the buttons is packed into the hbox the same way (i.e. same arguments to the gtk_box_pack_start () function). <p> This is the declaration of the gtk_box_pack_start function. <tscreen><verb> void gtk_box_pack_start (GtkBox *box, GtkWidget *child, gint expand, gint fill, gint padding); </verb></tscreen> The first argument is the box you are packing the object into, the second is this object. The objects will all be buttons for now, so we'll be packing buttons into boxes. <p> The expand argument to gtk_box_pack_start() or gtk_box_pack_end() controls whether the widgets are laid out in the box to fill in all the extra space in the box so the box is expanded to fill the area alloted to it (TRUE). Or the box is shrunk to just fit the widgets (FALSE). Setting expand to FALSE will allow you to do right and left justifying of your widgets. Otherwise, they will all expand to fit in the box, and the same effect could be achieved by using only one of gtk_box_pack_start or pack_end functions. <p> The fill argument to the gtk_box_pack functions control whether the extra space is allocated to the objects themselves (TRUE), or as extra padding in the box around these objects (FALSE). It only has an effect if the expand argument is also TRUE. <p> When creating a new box, the function looks like this: <tscreen><verb> GtkWidget * gtk_hbox_new (gint homogeneous, gint spacing); </verb></tscreen> The homogeneous argument to gtk_hbox_new (and the same for gtk_vbox_new) controls whether each object in the box has the same size (i.e. the same width in an hbox, or the same height in a vbox). If it is set, the expand argument to the gtk_box_pack routines is always turned on. <p> What's the difference between spacing (set when the box is created) and padding (set when elements are packed)? Spacing is added between objects, and padding is added on either side of an object. The following figure should make it clearer: <? <CENTER> > <? <IMG ALIGN="center" SRC="gtk_tut_packbox2.gif" WIDTH="509" HEIGHT="213" VSPACE="15" HSPACE="10" ALT="Box Packing Example Image"> > <? </CENTER> > Here is the code used to create the above images. I've commented it fairly heavily so hopefully you won't have any problems following it. Compile it yourself and play with it. <!-- ----------------------------------------------------------------- --> <sect1>Packing Demonstration Program <p> <tscreen><verb> /* packbox.c */ #include "gtk/gtk.h" void delete_event (GtkWidget *widget, gpointer *data) { gtk_main_quit (); } /* Make a new hbox filled with button-labels. Arguments for the * variables we're interested are passed in to this function. * We do not show the box, but do show everything inside. */ GtkWidget *make_box (gint homogeneous, gint spacing, gint expand, gint fill, gint padding) { GtkWidget *box; GtkWidget *button; char padstr[80]; /* create a new hbox with the appropriate homogeneous and spacing * settings */ box = gtk_hbox_new (homogeneous, spacing); /* create a series of buttons with the appropriate settings */ button = gtk_button_new_with_label ("gtk_box_pack"); gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding); gtk_widget_show (button); button = gtk_button_new_with_label ("(box,"); gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding); gtk_widget_show (button); button = gtk_button_new_with_label ("button,"); gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding); gtk_widget_show (button); /* create a button with the label depending on the value of * expand. */ if (expand == TRUE) button = gtk_button_new_with_label ("TRUE,"); else button = gtk_button_new_with_label ("FALSE,"); gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding); gtk_widget_show (button); /* This is the same as the button creation for "expand" * above, but uses the shorthand form. */ button = gtk_button_new_with_label (fill ? "TRUE," : "FALSE,"); gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding); gtk_widget_show (button); sprintf (padstr, "%d);", padding); button = gtk_button_new_with_label (padstr); gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding); gtk_widget_show (button); return box; } int main (int argc, char *argv[]) { GtkWidget *window; GtkWidget *button; GtkWidget *box1; GtkWidget *box2; GtkWidget *separator; GtkWidget *label; GtkWidget *quitbox; int which; /* Our init, don't forget this! :) */ gtk_init (&argc, &argv); if (argc != 2) { fprintf (stderr, "usage: packbox num, where num is 1, 2, or 3.\n"); /* this just does cleanup in GTK, and exits with an exit status of 1. */ gtk_exit (1); } which = atoi (argv[1]); /* Create our window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); /* You should always remember to connect the destroy signal to the * main window. This is very important for proper intuitive * behavior */ gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (delete_event), NULL); gtk_container_border_width (GTK_CONTAINER (window), 10); /* We create a vertical box (vbox) to pack the horizontal boxes into. * This allows us to stack the horizontal boxes filled with buttons one * on top of the other in this vbox. */ box1 = gtk_vbox_new (FALSE, 0); /* which example to show. These correspond to the pictures above. */ switch (which) { case 1: /* create a new label. */ label = gtk_label_new ("gtk_hbox_new (FALSE, 0);"); /* Align the label to the left side. We'll discuss this function and * others in the section on Widget Attributes. */ gtk_misc_set_alignment (GTK_MISC (label), 0, 0); /* Pack the label into the vertical box (vbox box1). Remember that * widgets added to a vbox will be packed one on top of the other in * order. */ gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0); /* show the label */ gtk_widget_show (label); /* call our make box function - homogeneous = FALSE, spacing = 0, * expand = FALSE, fill = FALSE, padding = 0 */ box2 = make_box (FALSE, 0, FALSE, FALSE, 0); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* call our make box function - homogeneous = FALSE, spacing = 0, * expand = FALSE, fill = FALSE, padding = 0 */ box2 = make_box (FALSE, 0, TRUE, FALSE, 0); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* Args are: homogeneous, spacing, expand, fill, padding */ box2 = make_box (FALSE, 0, TRUE, TRUE, 0); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* creates a separator, we'll learn more about these later, * but they are quite simple. */ separator = gtk_hseparator_new (); /* pack the separator into the vbox. Remember each of these * widgets are being packed into a vbox, so they'll be stacked * vertically. */ gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5); gtk_widget_show (separator); /* create another new label, and show it. */ label = gtk_label_new ("gtk_hbox_new (TRUE, 0);"); gtk_misc_set_alignment (GTK_MISC (label), 0, 0); gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0); gtk_widget_show (label); /* Args are: homogeneous, spacing, expand, fill, padding */ box2 = make_box (TRUE, 0, TRUE, FALSE, 0); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* Args are: homogeneous, spacing, expand, fill, padding */ box2 = make_box (TRUE, 0, TRUE, TRUE, 0); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* another new separator. */ separator = gtk_hseparator_new (); /* The last 3 arguments to gtk_box_pack_start are: expand, fill, padding. */ gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5); gtk_widget_show (separator); break; case 2: /* create a new label, remember box1 is a vbox as created * near the beginning of main() */ label = gtk_label_new ("gtk_hbox_new (FALSE, 10);"); gtk_misc_set_alignment (GTK_MISC (label), 0, 0); gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0); gtk_widget_show (label); /* Args are: homogeneous, spacing, expand, fill, padding */ box2 = make_box (FALSE, 10, TRUE, FALSE, 0); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* Args are: homogeneous, spacing, expand, fill, padding */ box2 = make_box (FALSE, 10, TRUE, TRUE, 0); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); separator = gtk_hseparator_new (); /* The last 3 arguments to gtk_box_pack_start are: expand, fill, padding. */ gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5); gtk_widget_show (separator); label = gtk_label_new ("gtk_hbox_new (FALSE, 0);"); gtk_misc_set_alignment (GTK_MISC (label), 0, 0); gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0); gtk_widget_show (label); /* Args are: homogeneous, spacing, expand, fill, padding */ box2 = make_box (FALSE, 0, TRUE, FALSE, 10); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* Args are: homogeneous, spacing, expand, fill, padding */ box2 = make_box (FALSE, 0, TRUE, TRUE, 10); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); separator = gtk_hseparator_new (); /* The last 3 arguments to gtk_box_pack_start are: expand, fill, padding. */ gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5); gtk_widget_show (separator); break; case 3: /* This demonstrates the ability to use gtk_box_pack_end() to * right justify widgets. First, we create a new box as before. */ box2 = make_box (FALSE, 0, FALSE, FALSE, 0); /* create the label that will be put at the end. */ label = gtk_label_new ("end"); /* pack it using gtk_box_pack_end(), so it is put on the right side * of the hbox created in the make_box() call. */ gtk_box_pack_end (GTK_BOX (box2), label, FALSE, FALSE, 0); /* show the label. */ gtk_widget_show (label); /* pack box2 into box1 (the vbox remember ? :) */ gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* a separator for the bottom. */ separator = gtk_hseparator_new (); /* this explicitly sets the separator to 400 pixels wide by 5 pixels * high. This is so the hbox we created will also be 400 pixels wide, * and the "end" label will be separated from the other labels in the * hbox. Otherwise, all the widgets in the hbox would be packed as * close together as possible. */ gtk_widget_set_usize (separator, 400, 5); /* pack the separator into the vbox (box1) created near the start * of main() */ gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5); gtk_widget_show (separator); } /* Create another new hbox.. remember we can use as many as we need! */ quitbox = gtk_hbox_new (FALSE, 0); /* Our quit button. */ button = gtk_button_new_with_label ("Quit"); /* setup the signal to destroy the window. Remember that this will send * the "destroy" signal to the window which will be caught by our signal * handler as defined above. */ gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (gtk_main_quit), GTK_OBJECT (window)); /* pack the button into the quitbox. * The last 3 arguments to gtk_box_pack_start are: expand, fill, padding. */ gtk_box_pack_start (GTK_BOX (quitbox), button, TRUE, FALSE, 0); /* pack the quitbox into the vbox (box1) */ gtk_box_pack_start (GTK_BOX (box1), quitbox, FALSE, FALSE, 0); /* pack the vbox (box1) which now contains all our widgets, into the * main window. */ gtk_container_add (GTK_CONTAINER (window), box1); /* and show everything left */ gtk_widget_show (button); gtk_widget_show (quitbox); gtk_widget_show (box1); /* Showing the window last so everything pops up at once. */ gtk_widget_show (window); /* And of course, our main function. */ gtk_main (); /* control returns here when gtk_main_quit() is called, but not when * gtk_exit is used. */ return 0; } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Packing Using Tables <p> Let's take a look at another way of packing - Tables. These can be extremely useful in certain situations. Using tables, we create a grid that we can place widgets in. The widgets may take up as many spaces as we specify. The first thing to look at of course, is the gtk_table_new function: <tscreen><verb> GtkWidget* gtk_table_new (gint rows, gint columns, gint homogeneous); </verb></tscreen> <p> The first argument is the number of rows to make in the table, while the second, obviously, the number of columns. The homogeneous argument has to do with how the table's boxes are sized. If homogeneous is TRUE, the table boxes are resized to the size of the largest widget in the table. If homogeneous is FALSE, the size of a table boxes is dictated by the tallest widget in its same row, and the widest widget in its column. The rows and columnts are laid out starting with 0 to n, where n was the number specified in the call to gtk_table_new. So, if you specify rows = 2 and columns = 2, the layout would look something like this: <tscreen><verb> 0 1 2 0+----------+----------+ | | | 1+----------+----------+ | | | 2+----------+----------+ </verb></tscreen> <p> Note that the coordinate system starts in the upper left hand corner. To place a widget into a box, use the following function: <tscreen><verb> void gtk_table_attach (GtkTable *table, GtkWidget *child, gint left_attach, gint right_attach, gint top_attach, gint bottom_attach, gint xoptions, gint yoptions, gint xpadding, gint ypadding); </verb></tscreen> <p> Where the first argument ("table") is the table you've created and the second ("child") the widget you wish to place in the table. The left and right attach arguments specify where to place the widget, and how many boxes to use. If you want a button in the lower right table entry of our 2x2 table, and want it to fill that entry ONLY. left_attach would be = 1, right_attach = 2, top_attach = 1, bottom_attach = 2. Now, if you wanted a widget to take up the whole top row of our 2x2 table, you'd use left_attach = 0, right_attach =2, top_attach = 0, bottom_attach = 1. The xoptions and yoptions are used to specify packing options and may be OR'ed together to allow multiple options. These options are: <itemize> <item>GTK_FILL - If the table box is larger than the widget, and GTK_FILL is specified, the widget will expand to use all the room available. <item>GTK_SHRINK - If the table widget was allocated less space then was requested (usually by the user resizing the window), then the widgets would normally just be pushed off the bottom of the window and disappear. If GTK_SHRINK is specified, the widgets will shrink with the table. <item>GTK_EXPAND - This will cause the table to expand to use up any remaining space in the window. </itemize> Padding is just like in boxes, creating a clear area around the widget specified in pixels. gtk_table_attach() has a LOT of options. So, there's a shortcut: <tscreen><verb> void gtk_table_attach_defaults (GtkTable *table, GtkWidget *widget, gint left_attach, gint right_attach, gint top_attach, gint bottom_attach); </verb></tscreen> The X and Y options default to GTK_FILL | GTK_EXPAND, and X and Y padding are set to 0. The rest of the arguments are identical to the previous function. We also have gtk_table_set_row_spacing() and gtk_table_set_col_spacing(). This places spacing between the rows at the specified row or column. <tscreen><verb> void gtk_table_set_row_spacing (GtkTable *table, gint row, gint spacing); </verb></tscreen> and <tscreen><verb> void gtk_table_set_col_spacing (GtkTable *table, gint column, gint spacing); </verb></tscreen> Note that for columns, the space goes to the right of the column, and for rows, the space goes below the row. You can also set a consistent spacing of all rows and/or columns with: <tscreen><verb> void gtk_table_set_row_spacings (GtkTable *table, gint spacing); </verb></tscreen> <p> And, <tscreen><verb> void gtk_table_set_col_spacings (GtkTable *table, gint spacing); </verb></tscreen> <p> Note that with these calls, the last row and last column do not get any spacing <!-- ----------------------------------------------------------------- --> <sect1>Table Packing Example <p> Here we make a window with three buttons in a 2x2 table. The first two buttons will be placed in the upper row. A third, quit button, is placed in the lower row, spanning both columns. Which means it should look something like this: <p> <? <CENTER> > <? <IMG SRC="gtk_tut_table.gif" VSPACE="15" HSPACE="10" ALT="Table Packing Example Image" WIDTH="180" HEIGHT="120"> > <? </CENTER> > Here's the source code: <tscreen><verb> /* table.c */ #include <gtk/gtk.h> /* our callback. * the data passed to this function is printed to stdout */ void callback (GtkWidget *widget, gpointer *data) { g_print ("Hello again - %s was pressed\n", (char *) data); } /* this callback quits the program */ void delete_event (GtkWidget *widget, gpointer *data) { gtk_main_quit (); } int main (int argc, char *argv[]) { GtkWidget *window; GtkWidget *button; GtkWidget *table; gtk_init (&argc, &argv); /* create a new window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); /* set the window title */ gtk_window_set_title (GTK_WINDOW (window), "Table"); /* set a handler for delete_event that immediately * exits GTK. */ gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (delete_event), NULL); /* sets the border width of the window. */ gtk_container_border_width (GTK_CONTAINER (window), 20); /* create a 2x2 table */ table = gtk_table_new (2, 2, TRUE); /* put the table in the main window */ gtk_container_add (GTK_CONTAINER (window), table); /* create first button */ button = gtk_button_new_with_label ("button 1"); /* when the button is clicked, we call the "callback" function * with a pointer to "button 1" as it's argument */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (callback), (gpointer) "button 1"); /* insert button 1 into the upper left quadrant of the table */ gtk_table_attach_defaults (GTK_TABLE(table), button, 0, 1, 0, 1); gtk_widget_show (button); /* create second button */ button = gtk_button_new_with_label ("button 2"); /* when the button is clicked, we call the "callback" function * with a pointer to "button 2" as it's argument */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (callback), (gpointer) "button 2"); /* insert button 2 into the upper right quadrant of the table */ gtk_table_attach_defaults (GTK_TABLE(table), button, 1, 2, 0, 1); gtk_widget_show (button); /* create "Quit" button */ button = gtk_button_new_with_label ("Quit"); /* when the button is clicked, we call the "delete_event" function * and the program exits */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (delete_event), NULL); /* insert the quit button into the both * lower quadrants of the table */ gtk_table_attach_defaults (GTK_TABLE(table), button, 0, 2, 1, 2); gtk_widget_show (button); gtk_widget_show (table); gtk_widget_show (window); gtk_main (); return 0; } </verb></tscreen> You can compile this program with something like: <tscreen><verb> gcc -g -Wall -ansi -o table table.c -L/usr/X11R6/lib \ -lgdk -lgtk -lglib -lX11 -lXext -lm </verb></tscreen> <!-- ***************************************************************** --> <sect>Widget Overview <!-- ***************************************************************** --> <p> The general steps to creating a widget in GTK are: <enum> <item> gtk_*_new - one of various functions to create a new widget. These are all detailed in this section. <item> Connect all signals we wish to use to the appropriate handlers. <item> Set the attributes of the widget. <item> Pack the widget into a container using the appropriate call such as gtk_container_add() or gtk_box_pack_start(). <item> gtk_widget_show() the widget. </enum> <p> gtk_widget_show() lets GTK know that we are done setting the attributes of the widget, and it is ready to be displayed. You may also use gtk_widget_hide to make it disappear again. The order in which you show the widgets is not important, but I suggest showing the window last so the whole window pops up at once rather than seeing the individual widgets come up on the screen as they're formed. The children of a widget (a window is a widget too) will not be displayed until the window itself is shown using the gtk_widget_show() function. <!-- ----------------------------------------------------------------- --> <sect1> Casting <p> You'll notice as you go on, that GTK uses a type casting system. This is always done using macros that both test the ability to cast the given item, and perform the cast. Some common ones you will see are: <itemize> <item> GTK_WIDGET(widget) <item> GTK_OBJECT(object) <item> GTK_SIGNAL_FUNC(function) <item> GTK_CONTAINER(container) <item> GTK_WINDOW(window) <item> GTK_BOX(box) </itemize> These are all used to cast arguments in functions. You'll see them in the examples, and can usually tell when to use them simply by looking at the function's declaration. As you can see below in the class hierarchy, all GtkWidgets are derived from the GtkObject base class. This means you can use an widget in any place the function asks for an object - simply use the GTK_OBJECT() macro. For example: <tscreen><verb> gtk_signal_connect(GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC(callback_function), callback_data); </verb></tscreen> This casts the button into an object, and provides a cast for the function pointer to the callback. Many widgets are also containers. If you look in the class hierarchy below, you'll notice that many widgets drive from the GtkContainer class. Any one of those widgets may use with the GTK_CONTAINER macro to pass them to functions that ask for containers. Unfortunately, these macros are not extensively covered in the tutorial, but I recomend taking a look through the GTK header files. It can be very educational. In fact, it's not difficult to learn how a widget works just by looking at the function declarations. <!-- ----------------------------------------------------------------- --> <sect1>Widget Hierarchy <p> For your reference, here is the class hierarchy tree used to implement widgets. <tscreen><verb> GtkObject +GtkData | +GtkAdjustment | `GtkTooltips `GtkWidget +GtkContainer | +GtkBin | | +GtkAlignment | | +GtkEventBox | | +GtkFrame | | | `GtkAspectFrame | | +GtkHandleBox | | +GtkItem | | | +GtkListItem | | | +GtkMenuItem | | | | `GtkCheckMenuItem | | | | `GtkRadioMenuItem | | | `GtkTreeItem | | +GtkViewport | | `GtkWindow | | +GtkColorSelectionDialog | | +GtkDialog | | | `GtkInputDialog | | `GtkFileSelection | +GtkBox | | +GtkButtonBox | | | +GtkHButtonBox | | | `GtkVButtonBox | | +GtkHBox | | | +GtkCombo | | | `GtkStatusbar | | `GtkVBox | | +GtkColorSelection | | `GtkGammaCurve | +GtkButton | | +GtkOptionMenu | | `GtkToggleButton | | `GtkCheckButton | | `GtkRadioButton | +GtkCList | +GtkFixed | +GtkList | +GtkMenuShell | | +GtkMenuBar | | `GtkMenu | +GtkNotebook | +GtkPaned | | +GtkHPaned | | `GtkVPaned | +GtkScrolledWindow | +GtkTable | +GtkToolbar | `GtkTree +GtkDrawingArea | `GtkCurve +GtkEditable | +GtkEntry | | `GtkSpinButton | `GtkText +GtkMisc | +GtkArrow | +GtkImage | +GtkLabel | | `GtkTipsQuery | `GtkPixmap +GtkPreview +GtkProgressBar +GtkRange | +GtkScale | | +GtkHScale | | `GtkVScale | `GtkScrollbar | +GtkHScrollbar | `GtkVScrollbar +GtkRuler | +GtkHRuler | `GtkVRuler `GtkSeparator +GtkHSeparator `GtkVSeparator </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Widgets Without Windows <p> The following widgets do not have an associated window. If you want to capture events, you'll have to use the GtkEventBox. See the section on <ref id="sec_The_EventBox_Widget" name="The EventBox Widget"> <tscreen><verb> GtkAlignment GtkArrow GtkBin GtkBox GtkImage GtkItem GtkLabel GtkPixmap GtkScrolledWindow GtkSeparator GtkTable GtkAspectFrame GtkFrame GtkVBox GtkHBox GtkVSeparator GtkHSeparator </verb></tscreen> <p> We'll further our exploration of GTK by examining each widget in turn, creating a few simple functions to display them. Another good source is the testgtk.c program that comes with GTK. It can be found in gtk/testgtk.c. <!-- ***************************************************************** --> <sect>The Button Widget <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1>Normal Buttons <p> We've almost seen all there is to see of the button widget. It's pretty simple. There is however two ways to create a button. You can use the gtk_button_new_with_label() to create a button with a label, or use gtk_button_new() to create a blank button. It's then up to you to pack a label or pixmap into this new button. To do this, create a new box, and then pack your objects into this box using the usual gtk_box_pack_start, and then use gtk_container_add to pack the box into the button. <p> Here's an example of using gtk_button_new to create a button with a picture and a label in it. I've broken the code to create a box up from the rest so you can use it in your programs. <tscreen><verb> /* buttons.c */ #include <gtk/gtk.h> /* create a new hbox with an image and a label packed into it * and return the box.. */ GtkWidget *xpm_label_box (GtkWidget *parent, gchar *xpm_filename, gchar *label_text) { GtkWidget *box1; GtkWidget *label; GtkWidget *pixmapwid; GdkPixmap *pixmap; GdkBitmap *mask; GtkStyle *style; /* create box for xpm and label */ box1 = gtk_hbox_new (FALSE, 0); gtk_container_border_width (GTK_CONTAINER (box1), 2); /* get style of button.. I assume it's to get the background color. * if someone knows the real reason, please enlighten me. */ style = gtk_widget_get_style(parent); /* now on to the xpm stuff.. load xpm */ pixmap = gdk_pixmap_create_from_xpm (parent->window, &mask, &style->bg[GTK_STATE_NORMAL], xpm_filename); pixmapwid = gtk_pixmap_new (pixmap, mask); /* create label for button */ label = gtk_label_new (label_text); /* pack the pixmap and label into the box */ gtk_box_pack_start (GTK_BOX (box1), pixmapwid, FALSE, FALSE, 3); gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 3); gtk_widget_show(pixmapwid); gtk_widget_show(label); return (box1); } /* our usual callback function */ void callback (GtkWidget *widget, gpointer *data) { g_print ("Hello again - %s was pressed\n", (char *) data); } int main (int argc, char *argv[]) { /* GtkWidget is the storage type for widgets */ GtkWidget *window; GtkWidget *button; GtkWidget *box1; gtk_init (&argc, &argv); /* create a new window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Pixmap'd Buttons!"); /* It's a good idea to do this for all windows. */ gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_exit), NULL); gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (gtk_exit), NULL); /* sets the border width of the window. */ gtk_container_border_width (GTK_CONTAINER (window), 10); gtk_widget_realize(window); /* create a new button */ button = gtk_button_new (); /* You should be getting used to seeing most of these functions by now */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (callback), (gpointer) "cool button"); /* this calls our box creating function */ box1 = xpm_label_box(window, "info.xpm", "cool button"); /* pack and show all our widgets */ gtk_widget_show(box1); gtk_container_add (GTK_CONTAINER (button), box1); gtk_widget_show(button); gtk_container_add (GTK_CONTAINER (window), button); gtk_widget_show (window); /* rest in gtk_main and wait for the fun to begin! */ gtk_main (); return 0; } </verb></tscreen> The xpm_label_box function could be used to pack xpm's and labels into any widget that can be a container. <!-- ----------------------------------------------------------------- --> <sect1> Toggle Buttons <p> Toggle buttons are very similar to normal buttons, except they will always be in one of two states, alternated by a click. They may be depressed, and when you click again, they will pop back up. Click again, and they will pop back down. Toggle buttons are the basis for check buttons and radio buttons, as such, many of the calls used for toggle buttons are inherited by radio and check buttons. I will point these out when we come to them. Creating a new toggle button: <tscreen><verb> GtkWidget* gtk_toggle_button_new (void); GtkWidget* gtk_toggle_button_new_with_label (gchar *label); </verb></tscreen> <p> As you can imagine, these work identically to the normal button widget calls. The first creates a blank toggle button, and the second, a button with a label widget already packed into it. <p> To retrieve the state of the toggle widget, including radio and check buttons, we use a macro as shown in our example below. This tests the state of the toggle in a callback. The signal of interest emitted to us by toggle buttons (the toggle button, check button, and radio button widgets), is the "toggled" signal. To check the state of these buttons, set up a signal handler to catch the toggled signal, and use the macro to determine it's state. The callback will look something like: <tscreen><verb> void toggle_button_callback (GtkWidget *widget, gpointer data) { if (GTK_TOGGLE_BUTTON (widget)->active) { /* If control reaches here, the toggle button is down */ } else { /* If control reaches here, the toggle button is up */ } } </verb></tscreen> <!-- COMMENTED! <tscreen><verb> guint gtk_toggle_button_get_type (void); </verb></tscreen> <p> No idea... they all have this, but I dunno what it is :) <tscreen><verb> void gtk_toggle_button_set_mode (GtkToggleButton *toggle_button, gint draw_indicator); </verb></tscreen> <p> No idea. --> <tscreen><verb> void gtk_toggle_button_set_state (GtkToggleButton *toggle_button, gint state); </verb></tscreen> <p> The above call can be used to set the state of the toggle button, and it's children the radio and check buttons. Passing in your created button as the first argument, and a TRUE or FALSE for the second state argument to specify whether it should be up (released) or down (depressed). Default is up, or FALSE. Note that when you use the gtk_toggle_button_set_state() function, and the state is actually changed, it causes the "clicked" signal to be emitted from the button. <tscreen><verb> void gtk_toggle_button_toggled (GtkToggleButton *toggle_button); </verb></tscreen> <p> This simply toggles the button, and emits the "toggled" signal. <!-- ----------------------------------------------------------------- --> <sect1> Check Buttons <p> Check buttons inherent many properties and functions from the the toggle buttons above, but look a little different. Rather than being buttons with text inside them, they are small squares with the text to the right of them. These are often seen for toggling options on and off in applications. The two creation functions are the same as for the normal button. <tscreen><verb> GtkWidget* gtk_check_button_new (void); GtkWidget* gtk_check_button_new_with_label (gchar *label); </verb></tscreen> The new_with_label function creates a check button with a label beside it. Checking the state of the check button is identical to that of the toggle button. <!-- ----------------------------------------------------------------- --> <sect1> Radio Buttons <p> Radio buttons are similar to check buttons except they are grouped so that only one may be selected/depressed at a time. This is good for places in your application where you need to select from a short list of options. Creating a new radio button is done with one of these calls: <tscreen><verb> GtkWidget* gtk_radio_button_new (GSList *group); GtkWidget* gtk_radio_button_new_with_label (GSList *group, gchar *label); </verb></tscreen> <p> You'll notice the extra argument to these calls. They require a group to perform they're duty properly. The first call should pass NULL as the first argument. Then create a group using: <tscreen><verb> GSList* gtk_radio_button_group (GtkRadioButton *radio_button); </verb></tscreen> <p> The important thing to remember is that gtk_radio_button_group must be called for each new button added to the group, with the previous button passed in as an argument. The result is then passed into the call to gtk_radio_button_new or gtk_radio_button_new_with_label. This allows a chain of buttons to be established. The example below should make this clear. It is also a good idea to explicitly set which button should be the default depressed button with: <tscreen><verb> void gtk_toggle_button_set_state (GtkToggleButton *toggle_button, gint state); </verb></tscreen> <p> This is described in the section on toggle buttons, and works in exactly the same way. <p> The following example creates a radio button group with three buttons. <tscreen><verb> /* radiobuttons.c */ #include <gtk/gtk.h> #include <glib.h> void close_application( GtkWidget *widget, gpointer *data ) { gtk_main_quit(); } main(int argc,char *argv[]) { static GtkWidget *window = NULL; GtkWidget *box1; GtkWidget *box2; GtkWidget *button; GtkWidget *separator; GSList *group; gtk_init(&argc,&argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC(close_application), NULL); gtk_window_set_title (GTK_WINDOW (window), "radio buttons"); gtk_container_border_width (GTK_CONTAINER (window), 0); box1 = gtk_vbox_new (FALSE, 0); gtk_container_add (GTK_CONTAINER (window), box1); gtk_widget_show (box1); box2 = gtk_vbox_new (FALSE, 10); gtk_container_border_width (GTK_CONTAINER (box2), 10); gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0); gtk_widget_show (box2); button = gtk_radio_button_new_with_label (NULL, "button1"); gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0); gtk_widget_show (button); group = gtk_radio_button_group (GTK_RADIO_BUTTON (button)); button = gtk_radio_button_new_with_label(group, "button2"); gtk_toggle_button_set_state (GTK_TOGGLE_BUTTON (button), TRUE); gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0); gtk_widget_show (button); group = gtk_radio_button_group (GTK_RADIO_BUTTON (button)); button = gtk_radio_button_new_with_label(group, "button3"); gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0); gtk_widget_show (button); separator = gtk_hseparator_new (); gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 0); gtk_widget_show (separator); box2 = gtk_vbox_new (FALSE, 10); gtk_container_border_width (GTK_CONTAINER (box2), 10); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, TRUE, 0); gtk_widget_show (box2); button = gtk_button_new_with_label ("close"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC(close_application), GTK_OBJECT (window)); gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0); GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT); gtk_widget_grab_default (button); gtk_widget_show (button); gtk_widget_show (window); gtk_main(); return(0); } </verb></tscreen> You can shorten this slightly by using the following syntax, which removes the need for a variable to hold the list of buttons: <tscreen><verb> button2 = gtk_radio_button_new_with_label( gtk_radio_button_group (GTK_RADIO_BUTTON (button1)), "button2"); </verb></tscreen> <!-- ***************************************************************** --> <sect> Miscallaneous Widgets <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1> Labels <p> Labels are used a lot in GTK, and are relatively simple. Labels emit no signals as they do not have an associated X window. If you need to catch signals, or do clipping, use the EventBox widget. To create a new label, use: <tscreen><verb> GtkWidget* gtk_label_new (char *str); </verb></tscreen> Where the sole argument is the string you wish the label to display. To change the label's text after creation, use the function: <tscreen><verb> void gtk_label_set (GtkLabel *label, char *str); </verb></tscreen> <p> Where the first argument is the label you created previously (casted using the GTK_LABEL() macro), and the second is the new string. The space needed for the new string will be automatically adjusted if needed. To retrieve the current string, use: <tscreen><verb> void gtk_label_get (GtkLabel *label, char **str); </verb></tscreen> Where the first arguement is the label you've created, and the second, the return for the string. <!-- ----------------------------------------------------------------- --> <sect1>The Tooltips Widget <p> These are the little text strings that pop up when you leave your pointer over a button or other widget for a few seconds. They are easy to use, so I will just explain them without giving an example. If you want to see some code, take a look at the testgtk.c program distributed with GDK. <p> Some widgets (such as the label) will not work with tooltips. <p> The first call you will use to create a new tooltip. You only need to do this once in a given function. The GtkTooltip this function returns can be used to create multiple tooltips. <tscreen><verb> GtkTooltips *gtk_tooltips_new (void); </verb></tscreen> Once you have created a new tooltip, and the widget you wish to use it on, simply use this call to set it. <tscreen><verb> void gtk_tooltips_set_tips (GtkTooltips *tooltips, GtkWidget *widget, gchar *tips_text); </verb></tscreen> The first argument is the tooltip you've already created, followed by the widget you wish to have this tooltip pop up for, and the text you wish it to say. <p> Here's a short example: <tscreen><verb> GtkTooltips *tooltips; GtkWidget *button; ... tooltips = gtk_tooltips_new (); button = gtk_button_new_with_label ("button 1"); ... gtk_tooltips_set_tips (tooltips, button, "This is button 1"); </verb></tscreen> There are other calls used with tooltips. I will just list them with a brief description of what they do. <tscreen><verb> void gtk_tooltips_destroy (GtkTooltips *tooltips); </verb></tscreen> Destroy the created tooltips. <tscreen><verb> void gtk_tooltips_enable (GtkTooltips *tooltips); </verb></tscreen> Enable a disabled set of tooltips. <tscreen><verb> void gtk_tooltips_disable (GtkTooltips *tooltips); </verb></tscreen> Disable an enabled set of tooltips. <tscreen><verb> void gtk_tooltips_set_delay (GtkTooltips *tooltips, gint delay); </verb></tscreen> Sets how many milliseconds you have to hold you pointer over the widget before the tooltip will pop up. The default is 1000 milliseconds or 1 second. <tscreen><verb> void gtk_tooltips_set_tips (GtkTooltips *tooltips, GtkWidget *widget, gchar *tips_text); </verb></tscreen> Change the tooltip text of an already created tooltip. <tscreen><verb> void gtk_tooltips_set_colors (GtkTooltips *tooltips, GdkColor *background, GdkColor *foreground); </verb></tscreen> Set the foreground and background color of the tooltips. Again, I have no idea how to specify the colors. <p> And that's all the functions associated with tooltips. More than you'll ever want to know :) <!-- ----------------------------------------------------------------- --> <sect1> Progress Bars <p> Progress bars are used to show the status of an operation. They are pretty easy to use, as you will see with the code below. But first lets start out with the call to create a new progress bar. <tscreen><verb> GtkWidget *gtk_progress_bar_new (void); </verb></tscreen> Now that the progress bar has been created we can use it. <tscreen><verb> void gtk_progress_bar_update (GtkProgressBar *pbar, gfloat percentage); </verb></tscreen> The first argument is the progress bar you wish to operate on, and the second argument is the amount 'completed', meaning the amount the progress bar has been filled from 0-100% (a real number between 0 and 1). Progress Bars are usually used with timeouts or other such functions (see section on <ref id="sec_timeouts" name="Timeouts, I/O and Idle Functions">) to give the illusion of multitasking. All will employ the gtk_progress_bar_update function in the same manner. Here is an example of the progress bar, updated using timeouts. This code also shows you how to reset the Progress Bar. <tscreen><verb> /* progressbar.c */ #include <gtk/gtk.h> static int ptimer = 0; int pstat = TRUE; /* This function increments and updates the progress bar, it also resets the progress bar if pstat is FALSE */ gint progress (gpointer data) { gfloat pvalue; /* get the current value of the progress bar */ pvalue = GTK_PROGRESS_BAR (data)->percentage; if ((pvalue >= 1.0) || (pstat == FALSE)) { pvalue = 0.0; pstat = TRUE; } pvalue += 0.01; gtk_progress_bar_update (GTK_PROGRESS_BAR (data), pvalue); return TRUE; } /* This function signals a reset of the progress bar */ void progress_r (void) { pstat = FALSE; } void destroy (GtkWidget *widget, gpointer *data) { gtk_main_quit (); } int main (int argc, char *argv[]) { GtkWidget *window; GtkWidget *button; GtkWidget *label; GtkWidget *table; GtkWidget *pbar; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (destroy), NULL); gtk_container_border_width (GTK_CONTAINER (window), 10); table = gtk_table_new(3,2,TRUE); gtk_container_add (GTK_CONTAINER (window), table); label = gtk_label_new ("Progress Bar Example"); gtk_table_attach_defaults(GTK_TABLE(table), label, 0,2,0,1); gtk_widget_show(label); /* Create a new progress bar, pack it into the table, and show it */ pbar = gtk_progress_bar_new (); gtk_table_attach_defaults(GTK_TABLE(table), pbar, 0,2,1,2); gtk_widget_show (pbar); /* Set the timeout to handle automatic updating of the progress bar */ ptimer = gtk_timeout_add (100, progress, pbar); /* This button signals the progress bar to be reset */ button = gtk_button_new_with_label ("Reset"); gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (progress_r), NULL); gtk_table_attach_defaults(GTK_TABLE(table), button, 0,1,2,3); gtk_widget_show(button); button = gtk_button_new_with_label ("Cancel"); gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (destroy), NULL); gtk_table_attach_defaults(GTK_TABLE(table), button, 1,2,2,3); gtk_widget_show (button); gtk_widget_show(table); gtk_widget_show(window); gtk_main (); return 0; } </verb></tscreen> In this small program there are four areas that concern the general operation of Progress Bars, we will look at them in the order they are called. <tscreen><verb> pbar = gtk_progress_bar_new (); </verb></tscreen> This code creates a new progress bar, called pbar. <tscreen><verb> ptimer = gtk_timeout_add (100, progress, pbar); </verb></tscreen> This code, uses timeouts to enable a constant time interval, timeouts are not necessary in the use of Progress Bars. <tscreen><verb> pvalue = GTK_PROGRESS_BAR (data)->percentage; </verb></tscreen> This code assigns the current value of the percentage bar to pvalue. <tscreen><verb> gtk_progress_bar_update (GTK_PROGRESS_BAR (data), pvalue); </verb></tscreen> Finally, this code updates the progress bar with the value of pvalue And that is all there is to know about Progress Bars, enjoy. <!-- ----------------------------------------------------------------- --> <sect1> Dialogs <p> The Dialog widget is very simple, and is actually just a window with a few things pre-packed into it for you. The structure for a Dialog is: <tscreen><verb> struct GtkDialog { GtkWindow window; GtkWidget *vbox; GtkWidget *action_area; }; </verb></tscreen> So you see, it simple creates a window, and then packs a vbox into the top, then a seperator, and then an hbox for the "action_area". The Dialog widget can be used for pop-up messages to the user, and other similar tasks. It is really basic, and there is only one function for the dialog box, which is: <tscreen><verb> GtkWidget* gtk_dialog_new (void); </verb></tscreen> So to create a new dialog box, use, <tscreen><verb> GtkWidget window; window = gtk_dialog_new (); </verb></tscreen> This will create the dialog box, and it is now up to you to use it. you could pack a button in the action_area by doing something like so: <tscreen><verb> button = ... gtk_box_pack_start (GTK_BOX (GTK_DIALOG (window)->action_area), button, TRUE, TRUE, 0); gtk_widget_show (button); </verb></tscreen> And you could add to the vbox area by packing, for instance, a label in it, try something like this: <tscreen><verb> label = gtk_label_new ("Dialogs are groovy"); gtk_box_pack_start (GTK_BOX (GTK_DIALOG (window)->vbox), label, TRUE, TRUE, 0); gtk_widget_show (label); </verb></tscreen> As an example in using the dialog box, you could put two buttons in the action_area, a Cancel button and an Ok button, and a label in the vbox area, asking the user a question or giving an error etc. Then you could attach a different signal to each of the buttons and perform the operation the user selects. <!-- ----------------------------------------------------------------- --> <sect1> Pixmaps <p> Pixmaps are data structures that contain pictures. These pictures can be used in various places, but most visibly as icons on the X-Windows desktop, or as cursors. A bitmap is a 2-color pixmap. To use pixmaps in GTK, we must first build a GdkPixmap structure using routines from the GDK layer. Pixmaps can either be created from in-memory data, or from data read from a file. We'll go through each of the calls to create a pixmap. <tscreen><verb> GdkPixmap *gdk_bitmap_create_from_data( GdkWindow *window, gchar *data, gint width, gint height ); </verb></tscreen> <p> This routine is used to create a single-plane pixmap (2 colors) from data in memory. Each bit of the data represents whether that pixel is off or on. Width and height are in pixels. The GdkWindow pointer is to the current window, since a pixmap resources are meaningful only in the context of the screen where it is to be displayed. <tscreen><verb> GdkPixmap* gdk_pixmap_create_from_data( GdkWindow *window, gchar *data, gint width, gint height, gint depth, GdkColor *fg, GdkColor *bg ); </verb></tscreen> This is used to create a pixmap of the given depth (number of colors) from the bitmap data specified. fg and bg are the foreground and background color to use. <tscreen><verb> GdkPixmap* gdk_pixmap_create_from_xpm( GdkWindow *window, GdkBitmap **mask, GdkColor *transparent_color, const gchar *filename ); </verb></tscreen> XPM format is a readable pixmap representation for the X Window System. It is widely used and many different utilities are available for creating image files in this format. The file specified by filename must contain an image in that format and it is loaded into the pixmap structure. The mask specifies what bits of the pixmap are opaque. All other bits are colored using the color specified by transparent_color. An example using this follows below. <tscreen><verb> GdkPixmap* gdk_pixmap_create_from_xpm_d (GdkWindow *window, GdkBitmap **mask, GdkColor *transparent_color, gchar **data); </verb></tscreen> Small images can be incorporated into a program as data in the XPM format. A pixmap is created using this data, instead of reading it from a file. An example of such data is <tscreen><verb> /* XPM */ static const char * xpm_data[] = { "16 16 3 1", " c None", ". c #000000000000", "X c #FFFFFFFFFFFF", " ", " ...... ", " .XXX.X. ", " .XXX.XX. ", " .XXX.XXX. ", " .XXX..... ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " ......... ", " ", " "}; </verb></tscreen> <tscreen><verb> void gdk_pixmap_destroy( GdkPixmap *pixmap ); </verb></tscreen> <p> When we're done using a pixmap and not likely to reuse it again soon, it is a good idea to release the resource using gdk_pixmap_destroy. Pixmaps should be considered a precious resource. Once we've created a pixmap, we can display it as a GTK widget. We must create a pixmap widget to contain the GDK pixmap. This is done using <tscreen><verb> GtkWidget* gtk_pixmap_new( GdkPixmap *pixmap, GdkBitmap *mask ); </verb></tscreen> <p> The other pixmap widget calls are <tscreen><verb> guint gtk_pixmap_get_type( void ); void gtk_pixmap_set( GtkPixmap *pixmap, GdkPixmap *val, GdkBitmap *mask); void gtk_pixmap_get( GtkPixmap *pixmap, GdkPixmap **val, GdkBitmap **mask); </verb></tscreen> <p> gtk_pixmap_set is used to change the pixmap that the widget is currently managing. Val is the pixmap created using GDK. The following is an example of using a pixmap in a button. <tscreen><verb> /* pixmap.c */ #include <gtk/gtk.h> /* XPM data of Open-File icon */ static const char * xpm_data[] = { "16 16 3 1", " c None", ". c #000000000000", "X c #FFFFFFFFFFFF", " ", " ...... ", " .XXX.X. ", " .XXX.XX. ", " .XXX.XXX. ", " .XXX..... ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " ......... ", " ", " "}; /* when invoked (via signal delete_event), terminates the application. */ void close_application( GtkWidget *widget, gpointer *data ) { gtk_main_quit(); } /* is invoked when the button is clicked. It just prints a message. */ void button_clicked( GtkWidget *widget, gpointer *data ) { printf( "button clicked\n" ); } int main( int argc, char *argv[] ) { /* GtkWidget is the storage type for widgets */ GtkWidget *window, *pixmapwid, *button; GdkPixmap *pixmap; GdkBitmap *mask; GtkStyle *style; /* create the main window, and attach delete_event signal to terminating the application */ gtk_init( &argc, &argv ); window = gtk_window_new( GTK_WINDOW_TOPLEVEL ); gtk_signal_connect( GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (close_application), NULL ); gtk_container_border_width( GTK_CONTAINER (window), 10 ); gtk_widget_show( window ); /* now for the pixmap from gdk */ style = gtk_widget_get_style( window ); pixmap = gdk_pixmap_create_from_xpm_d( window->window, &mask, &style->bg[GTK_STATE_NORMAL], (gchar **)xpm_data ); /* a pixmap widget to contain the pixmap */ pixmapwid = gtk_pixmap_new( pixmap, mask ); gtk_widget_show( pixmapwid ); /* a button to contain the pixmap widget */ button = gtk_button_new(); gtk_container_add( GTK_CONTAINER(button), pixmapwid ); gtk_container_add( GTK_CONTAINER(window), button ); gtk_widget_show( button ); gtk_signal_connect( GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC(button_clicked), NULL ); /* show the window */ gtk_main (); return 0; } </verb></tscreen> To load a file from an XPM data file called icon0.xpm in the current directory, we would have created the pixmap thus <tscreen><verb> /* load a pixmap from a file */ pixmap = gdk_pixmap_create_from_xpm( window->window, &mask, &style->bg[GTK_STATE_NORMAL], "./icon0.xpm" ); pixmapwid = gtk_pixmap_new( pixmap, mask ); gtk_widget_show( pixmapwid ); gtk_container_add( GTK_CONTAINER(window), pixmapwid ); </verb></tscreen> Using Shapes <p> A disadvantage of using pixmaps is that the displayed object is always rectangular, regardless of the image. We would like to create desktops and applications with icons that have more natural shapes. For example, for a game interface, we would like to have round buttons to push. The way to do this is using shaped windows. A shaped window is simply a pixmap where the background pixels are transparent. This way, when the background image is multi-colored, we don't overwrite it with a rectangular, non-matching border around our icon. The following example displays a full wheelbarrow image on the desktop. <tscreen><verb> /* wheelbarrow.c */ #include <gtk/gtk.h> /* XPM */ static char * WheelbarrowFull_xpm[] = { "48 48 64 1", " c None", ". c #DF7DCF3CC71B", "X c #965875D669A6", "o c #71C671C671C6", "O c #A699A289A699", "+ c #965892489658", "@ c #8E38410330C2", "# c #D75C7DF769A6", "$ c #F7DECF3CC71B", "% c #96588A288E38", "& c #A69992489E79", "* c #8E3886178E38", "= c #104008200820", "- c #596510401040", "; c #C71B30C230C2", ": c #C71B9A699658", "> c #618561856185", ", c #20811C712081", "< c #104000000000", "1 c #861720812081", "2 c #DF7D4D344103", "3 c #79E769A671C6", "4 c #861782078617", "5 c #41033CF34103", "6 c #000000000000", "7 c #49241C711040", "8 c #492445144924", "9 c #082008200820", "0 c #69A618611861", "q c #B6DA71C65144", "w c #410330C238E3", "e c #CF3CBAEAB6DA", "r c #71C6451430C2", "t c #EFBEDB6CD75C", "y c #28A208200820", "u c #186110401040", "i c #596528A21861", "p c #71C661855965", "a c #A69996589658", "s c #30C228A230C2", "d c #BEFBA289AEBA", "f c #596545145144", "g c #30C230C230C2", "h c #8E3882078617", "j c #208118612081", "k c #38E30C300820", "l c #30C2208128A2", "z c #38E328A238E3", "x c #514438E34924", "c c #618555555965", "v c #30C2208130C2", "b c #38E328A230C2", "n c #28A228A228A2", "m c #41032CB228A2", "M c #104010401040", "N c #492438E34103", "B c #28A2208128A2", "V c #A699596538E3", "C c #30C21C711040", "Z c #30C218611040", "A c #965865955965", "S c #618534D32081", "D c #38E31C711040", "F c #082000000820", " ", " .XoO ", " +@#$%o& ", " *=-;#::o+ ", " >,<12#:34 ", " 45671#:X3 ", " +89<02qwo ", "e* >,67;ro ", "ty> 459@>+&& ", "$2u+ ><ipas8* ", "%$;=* *3:.Xa.dfg> ", "Oh$;ya *3d.a8j,Xe.d3g8+ ", " Oh$;ka *3d$a8lz,,xxc:.e3g54 ", " Oh$;kO *pd$%svbzz,sxxxxfX..&wn> ", " Oh$@mO *3dthwlsslszjzxxxxxxx3:td8M4 ", " Oh$@g& *3d$XNlvvvlllm,mNwxxxxxxxfa.:,B* ", " Oh$@,Od.czlllllzlmmqV@V#V@fxxxxxxxf:%j5& ", " Oh$1hd5lllslllCCZrV#r#:#2AxxxxxxxxxcdwM* ", " OXq6c.%8vvvllZZiqqApA:mq:Xxcpcxxxxxfdc9* ", " 2r<6gde3bllZZrVi7S@SV77A::qApxxxxxxfdcM ", " :,q-6MN.dfmZZrrSS:#riirDSAX@Af5xxxxxfevo", " +A26jguXtAZZZC7iDiCCrVVii7Cmmmxxxxxx%3g", " *#16jszN..3DZZZZrCVSA2rZrV7Dmmwxxxx&en", " p2yFvzssXe:fCZZCiiD7iiZDiDSSZwwxx8e*>", " OA1<jzxwwc:$d%NDZZZZCCCZCCZZCmxxfd.B ", " 3206Bwxxszx%et.eaAp77m77mmmf3&eeeg* ", " @26MvzxNzvlbwfpdettttttttttt.c,n& ", " *;16=lsNwwNwgsvslbwwvccc3pcfu<o ", " p;<69BvwwsszslllbBlllllllu<5+ ", " OS0y6FBlvvvzvzss,u=Blllj=54 ", " c1-699Blvlllllu7k96MMMg4 ", " *10y8n6FjvllllB<166668 ", " S-kg+>666<M<996-y6n<8* ", " p71=4 m69996kD8Z-66698&& ", " &i0ycm6n4 ogk17,0<6666g ", " N-k-<> >=01-kuu666> ", " ,6ky& &46-10ul,66, ", " Ou0<> o66y<ulw<66& ", " *kk5 >66By7=xu664 ", " <<M4 466lj<Mxu66o ", " *>> +66uv,zN666* ", " 566,xxj669 ", " 4666FF666> ", " >966666M ", " oM6668+ ", " *4 ", " ", " "}; /* when invoked (via signal delete_event), terminates the application. */ void close_application( GtkWidget *widget, gpointer *data ) { gtk_main_quit(); } int main (int argc, char *argv[]) { /* GtkWidget is the storage type for widgets */ GtkWidget *window, *pixmap, *fixed; GdkPixmap *gdk_pixmap; GdkBitmap *mask; GtkStyle *style; GdkGC *gc; /* create the main window, and attach delete_event signal to terminate the application. Note that the main window will not have a titlebar since we're making it a popup. */ gtk_init (&argc, &argv); window = gtk_window_new( GTK_WINDOW_POPUP ); gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (close_application), NULL); gtk_widget_show (window); /* now for the pixmap and the pixmap widget */ style = gtk_widget_get_default_style(); gc = style->black_gc; gdk_pixmap = gdk_pixmap_create_from_xpm_d( window->window, &mask, &style->bg[GTK_STATE_NORMAL], WheelbarrowFull_xpm ); pixmap = gtk_pixmap_new( gdk_pixmap, mask ); gtk_widget_show( pixmap ); /* To display the pixmap, we use a fixed widget to place the pixmap */ fixed = gtk_fixed_new(); gtk_widget_set_usize( fixed, 200, 200 ); gtk_fixed_put( GTK_FIXED(fixed), pixmap, 0, 0 ); gtk_container_add( GTK_CONTAINER(window), fixed ); gtk_widget_show( fixed ); /* This masks out everything except for the image itself */ gtk_widget_shape_combine_mask( window, mask, 0, 0 ); /* show the window */ gtk_widget_set_uposition( window, 20, 400 ); gtk_widget_show( window ); gtk_main (); return 0; } </verb></tscreen> <p> To make the wheelbarrow image sensitive, we could attach the button press event signal to make it do something. The following few lines would make the picture sensitive to a mouse button being pressed which makes the application terminate. <tscreen><verb> gtk_widget_set_events( window, gtk_widget_get_events( window ) | GDK_BUTTON_PRESS_MASK ); gtk_signal_connect( GTK_OBJECT(window), "button_press_event", GTK_SIGNAL_FUNC(close_application), NULL ); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Rulers <p> Ruler widgets are used to indicate the location of the mouse pointer in a given window. A window can have a vertical ruler spanning across the width and a horizontal ruler spanning down the height. A small triangular indicator on the ruler shows the exact location of the pointer relative to the ruler. A ruler must first be created. Horizontal and vertical rulers are created using <tscreen><verb> GtkWidget *gtk_hruler_new(void); /* horizontal ruler */ GtkWidget *gtk_vruler_new(void); /* vertical ruler */ </verb></tscreen> Once a ruler is created, we can define the unit of measurement. Units of measure for rulers can be GTK_PIXELS, GTK_INCHES or GTK_CENTIMETERS. This is set using <tscreen><verb> void gtk_ruler_set_metric( GtkRuler *ruler, GtkMetricType metric ); </verb></tscreen> The default measure is GTK_PIXELS. <tscreen><verb> gtk_ruler_set_metric( GTK_RULER(ruler), GTK_PIXELS ); </verb></tscreen> Other important characteristics of a ruler are how to mark the units of scale and where the position indicator is initially placed. These are set for a ruler using <tscreen><verb> void gtk_ruler_set_range (GtkRuler *ruler, gfloat lower, gfloat upper, gfloat position, gfloat max_size); </verb></tscreen> The lower and upper arguments define the extents of the ruler, and max_size is the largest possible number that will be displayed. Position defines the initial position of the pointer indicator within the ruler. A vertical ruler can span an 800 pixel wide window thus <tscreen><verb> gtk_ruler_set_range( GTK_RULER(vruler), 0, 800, 0, 800); </verb></tscreen> The markings displayed on the ruler will be from 0 to 800, with a number for every 100 pixels. If instead we wanted the ruler to range from 7 to 16, we would code <tscreen><verb> gtk_ruler_set_range( GTK_RULER(vruler), 7, 16, 0, 20); </verb></tscreen> The indicator on the ruler is a small triangular mark that indicates the position of the pointer relative to the ruler. If the ruler is used to follow the mouse pointer, the motion_notify_event signal should be connected to the motion_notify_event method of the ruler. To follow all mouse movements within a window area, we would use <tscreen><verb> #define EVENT_METHOD(i, x) GTK_WIDGET_CLASS(GTK_OBJECT(i)->klass)->x gtk_signal_connect_object( GTK_OBJECT(area), "motion_notify_event", (GtkSignalFunc)EVENT_METHOD(ruler, motion_notify_event), GTK_OBJECT(ruler) ); </verb></tscreen> The following example creates a drawing area with a horizontal ruler above it and a vertical ruler to the left of it. The size of the drawing area is 600 pixels wide by 400 pixels high. The horizontal ruler spans from 7 to 13 with a mark every 100 pixels, while the vertical ruler spans from 0 to 400 with a mark every 100 pixels. Placement of the drawing area and the rulers are done using a table. <tscreen><verb> /* rulers.c */ #include <gtk/gtk.h> #define EVENT_METHOD(i, x) GTK_WIDGET_CLASS(GTK_OBJECT(i)->klass)->x #define XSIZE 600 #define YSIZE 400 /* this routine gets control when the close button is clicked */ void close_application( GtkWidget *widget, gpointer *data ) { gtk_main_quit(); } /* the main routine */ int main( int argc, char *argv[] ) { GtkWidget *window, *table, *area, *hrule, *vrule; /* initialize gtk and create the main window */ gtk_init( &argc, &argv ); window = gtk_window_new( GTK_WINDOW_TOPLEVEL ); gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC( close_application ), NULL); gtk_container_border_width (GTK_CONTAINER (window), 10); /* create a table for placing the ruler and the drawing area */ table = gtk_table_new( 3, 2, FALSE ); gtk_container_add( GTK_CONTAINER(window), table ); area = gtk_drawing_area_new(); gtk_drawing_area_size( (GtkDrawingArea *)area, XSIZE, YSIZE ); gtk_table_attach( GTK_TABLE(table), area, 1, 2, 1, 2, GTK_EXPAND|GTK_FILL, GTK_FILL, 0, 0 ); gtk_widget_set_events( area, GDK_POINTER_MOTION_MASK | GDK_POINTER_MOTION_HINT_MASK ); /* The horizontal ruler goes on top. As the mouse moves across the drawing area, a motion_notify_event is passed to the appropriate event handler for the ruler. */ hrule = gtk_hruler_new(); gtk_ruler_set_metric( GTK_RULER(hrule), GTK_PIXELS ); gtk_ruler_set_range( GTK_RULER(hrule), 7, 13, 0, 20 ); gtk_signal_connect_object( GTK_OBJECT(area), "motion_notify_event", (GtkSignalFunc)EVENT_METHOD(hrule, motion_notify_event), GTK_OBJECT(hrule) ); /* GTK_WIDGET_CLASS(GTK_OBJECT(hrule)->klass)->motion_notify_event, */ gtk_table_attach( GTK_TABLE(table), hrule, 1, 2, 0, 1, GTK_EXPAND|GTK_SHRINK|GTK_FILL, GTK_FILL, 0, 0 ); /* The vertical ruler goes on the left. As the mouse moves across the drawing area, a motion_notify_event is passed to the appropriate event handler for the ruler. */ vrule = gtk_vruler_new(); gtk_ruler_set_metric( GTK_RULER(vrule), GTK_PIXELS ); gtk_ruler_set_range( GTK_RULER(vrule), 0, YSIZE, 10, YSIZE ); gtk_signal_connect_object( GTK_OBJECT(area), "motion_notify_event", (GtkSignalFunc) GTK_WIDGET_CLASS(GTK_OBJECT(vrule)->klass)->motion_notify_event, GTK_OBJECT(vrule) ); gtk_table_attach( GTK_TABLE(table), vrule, 0, 1, 1, 2, GTK_FILL, GTK_EXPAND|GTK_SHRINK|GTK_FILL, 0, 0 ); /* now show everything */ gtk_widget_show( area ); gtk_widget_show( hrule ); gtk_widget_show( vrule ); gtk_widget_show( table ); gtk_widget_show( window ); gtk_main(); return 0; } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Statusbars <p> Statusbars are simple widgets used to display a text message. They keep a stack of the messages pushed onto them, so that popping the current message will re-display the previous text message. In order to allow different parts of an application to use the same statusbar to display messages, the statusbar widget issues Context Identifiers which are used to identify different 'users'. The message on top of the stack is the one displayed, no matter what context it is in. Messages are stacked in last-in-first-out order, not context identifier order. A statusbar is created with a call to: <tscreen><verb> GtkWidget* gtk_statusbar_new (void); </verb></tscreen> A new Context Identifier is requested using a call to the following function with a short textual description of the context: <tscreen><verb> guint gtk_statusbar_get_context_id (GtkStatusbar *statusbar, const gchar *context_description); </verb></tscreen> There are three functions that can operate on statusbars. <tscreen><verb> guint gtk_statusbar_push (GtkStatusbar *statusbar, guint context_id, gchar *text); void gtk_statusbar_pop (GtkStatusbar *statusbar) guint context_id); void gtk_statusbar_remove (GtkStatusbar *statusbar, guint context_id, guint message_id); </verb></tscreen> The first, gtk_statusbar_push, is used to add a new message to the statusbar. It returns a Message Identifier, which can be passed later to the function gtk_statusbar_remove to remove the message with the given Message and Context Identifiers from the statusbar's stack. The function gtk_statusbar_pop removes the message highest in the stack with the given Context Identifier. The following example creates a statusbar and two buttons, one for pushing items onto the statusbar, and one for popping the last item back off. <tscreen><verb> /* statusbar.c */ #include <gtk/gtk.h> #include <glib.h> GtkWidget *status_bar; void push_item (GtkWidget *widget, gpointer *data) { static int count = 1; char buff[20]; g_snprintf(buff, 20, "Item %d", count++); gtk_statusbar_push( GTK_STATUSBAR(status_bar), (guint) &data, buff); return; } void pop_item (GtkWidget *widget, gpointer *data) { gtk_statusbar_pop( GTK_STATUSBAR(status_bar), (guint) &data ); return; } int main (int argc, char *argv[]) { GtkWidget *window; GtkWidget *vbox; GtkWidget *button; int context_id; gtk_init (&argc, &argv); /* create a new window */ window = gtk_window_new(GTK_WINDOW_TOPLEVEL); gtk_widget_set_usize( GTK_WIDGET (window), 200, 100); gtk_window_set_title(GTK_WINDOW (window), "GTK Statusbar Example"); gtk_signal_connect(GTK_OBJECT (window), "delete_event", (GtkSignalFunc) gtk_exit, NULL); vbox = gtk_vbox_new(FALSE, 1); gtk_container_add(GTK_CONTAINER(window), vbox); gtk_widget_show(vbox); status_bar = gtk_statusbar_new(); gtk_box_pack_start (GTK_BOX (vbox), status_bar, TRUE, TRUE, 0); gtk_widget_show (status_bar); context_id = gtk_statusbar_get_context_id( GTK_STATUSBAR(status_bar), "Statusbar example"); button = gtk_button_new_with_label("push item"); gtk_signal_connect(GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC (push_item), &context_id); gtk_box_pack_start(GTK_BOX(vbox), button, TRUE, TRUE, 2); gtk_widget_show(button); button = gtk_button_new_with_label("pop last item"); gtk_signal_connect(GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC (pop_item), &context_id); gtk_box_pack_start(GTK_BOX(vbox), button, TRUE, TRUE, 2); gtk_widget_show(button); /* always display the window as the last step so it all splashes on * the screen at once. */ gtk_widget_show(window); gtk_main (); return 0; } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Text Entries <p> The Entry widget allows text to be typed and displayed in a single line text box. The text may be set with functions calls that allow new text to replace, prepend or append the current contents of the Entry widget. There are two functions for creating Entry widgets: <tscreen><verb> GtkWidget* gtk_entry_new (void); GtkWidget* gtk_entry_new_with_max_length (guint16 max); </verb></tscreen> The first just creates a new Entry widget, whilst the second creates a new Entry and sets a limit on the length of the text within the Entry.. There are several functions for altering the text which is currently within the Entry widget. <tscreen><verb> void gtk_entry_set_text (GtkEntry *entry, const gchar *text); void gtk_entry_append_text (GtkEntry *entry, const gchar *text); void gtk_entry_prepend_text (GtkEntry *entry, const gchar *text); </verb></tscreen> The function gtk_entry_set_text sets the contents of the Entry widget, replacing the current contents. The functions gtk_entry_append_text and gtk_entry_prepend_text allow the current contents to be appended and prepended to. The next function allows the current insertion point to be set. <tscreen><verb> void gtk_entry_set_position (GtkEntry *entry, gint position); </verb></tscreen> The contents of the Entry can be retrieved by using a call to the following function. This is useful in the callback functions described below. <tscreen><verb> gchar* gtk_entry_get_text (GtkEntry *entry); </verb></tscreen> If we don't want the contents of the Entry to be changed by someone typing into it, we can change it's edittable state. <tscreen><verb> void gtk_entry_set_editable (GtkEntry *entry, gboolean editable); </verb></tscreen> This function allows us to toggle the edittable state of the Entry widget by passing in TRUE or FALSE values for the editable argument. If we are using the Entry where we don't want the text entered to be visible, for example when a password is being entered, we can use the following function, which also takes a boolean flag. <tscreen><verb> void gtk_entry_set_visibility (GtkEntry *entry, gboolean visible); </verb></tscreen> A region of the text may be set as selected by using the following function. This would most often be used after setting some default text in an Entry, making it easy for the user to remove it. <tscreen><verb> void gtk_entry_select_region (GtkEntry *entry, gint start, gint end); </verb></tscreen> If we want to catch when the user has entered text, we can connect to the <tt/activate/ or <tt/changed/ signal. Activate is raised when the user hits the enter key within the Entry widget. Changed is raised when the text changes at all, e.g. for every character entered or removed. The following code is an example of using an Entry widget. <tscreen><verb> /* entry.c */ #include <gtk/gtk.h> void enter_callback(GtkWidget *widget, GtkWidget *entry) { gchar *entry_text; entry_text = gtk_entry_get_text(GTK_ENTRY(entry)); printf("Entry contents: %s\n", entry_text); } void entry_toggle_editable (GtkWidget *checkbutton, GtkWidget *entry) { gtk_entry_set_editable(GTK_ENTRY(entry), GTK_TOGGLE_BUTTON(checkbutton)->active); } void entry_toggle_visibility (GtkWidget *checkbutton, GtkWidget *entry) { gtk_entry_set_visibility(GTK_ENTRY(entry), GTK_TOGGLE_BUTTON(checkbutton)->active); } int main (int argc, char *argv[]) { GtkWidget *window; GtkWidget *vbox, *hbox; GtkWidget *entry; GtkWidget *button; GtkWidget *check; gtk_init (&argc, &argv); /* create a new window */ window = gtk_window_new(GTK_WINDOW_TOPLEVEL); gtk_widget_set_usize( GTK_WIDGET (window), 200, 100); gtk_window_set_title(GTK_WINDOW (window), "GTK Entry"); gtk_signal_connect(GTK_OBJECT (window), "delete_event", (GtkSignalFunc) gtk_exit, NULL); vbox = gtk_vbox_new (FALSE, 0); gtk_container_add (GTK_CONTAINER (window), vbox); gtk_widget_show (vbox); entry = gtk_entry_new_with_max_length (50); gtk_signal_connect(GTK_OBJECT(entry), "activate", GTK_SIGNAL_FUNC(enter_callback), entry); gtk_entry_set_text (GTK_ENTRY (entry), "hello"); gtk_entry_append_text (GTK_ENTRY (entry), " world"); gtk_entry_select_region (GTK_ENTRY (entry), 0, GTK_ENTRY(entry)->text_length); gtk_box_pack_start (GTK_BOX (vbox), entry, TRUE, TRUE, 0); gtk_widget_show (entry); hbox = gtk_hbox_new (FALSE, 0); gtk_container_add (GTK_CONTAINER (vbox), hbox); gtk_widget_show (hbox); check = gtk_check_button_new_with_label("Editable"); gtk_box_pack_start (GTK_BOX (hbox), check, TRUE, TRUE, 0); gtk_signal_connect (GTK_OBJECT(check), "toggled", GTK_SIGNAL_FUNC(entry_toggle_editable), entry); gtk_toggle_button_set_state(GTK_TOGGLE_BUTTON(check), TRUE); gtk_widget_show (check); check = gtk_check_button_new_with_label("Visible"); gtk_box_pack_start (GTK_BOX (hbox), check, TRUE, TRUE, 0); gtk_signal_connect (GTK_OBJECT(check), "toggled", GTK_SIGNAL_FUNC(entry_toggle_visibility), entry); gtk_toggle_button_set_state(GTK_TOGGLE_BUTTON(check), TRUE); gtk_widget_show (check); button = gtk_button_new_with_label ("Close"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC(gtk_exit), GTK_OBJECT (window)); gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0); GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT); gtk_widget_grab_default (button); gtk_widget_show (button); gtk_widget_show(window); gtk_main(); return(0); } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Color Selection <P> The color selection widget is, not surprisingly, a widget for interactive selection of colors. This composite widget lets the user select a color by manipulating RGB (Red, Green, Blue) and HSV (Hue, Saturation, Value) triples. This is done either by adjusting single values with sliders or entries, or by picking the desired color from a hue-saturation wheel/value bar. Optionally, the opacity of the color can also be set. The color selection widget currently emits only one signal, "color_changed", which is emitted whenever the current color in the widget changes, either when the user changes it or if it's set explicitly through gtk_color_selection_set_color(). Lets have a look at what the color selection widget has to offer us. The widget comes in two flavours; gtk_color_selection and gtk_color_selection_dialog: <tscreen><verb> GtkWidget *gtk_color_selection_new(void); </verb></tscreen> You'll probably not be using this constructor directly. It creates an orphan GtkColorSelection widget which you'll have to parent yourself. The GtkColorSelection widget inherits from the GtkVBox widget. <tscreen><verb> GtkWidget *gtk_color_selection_dialog_new(const gchar *title); </verb></tscreen> This is the most common color selection constructor. It creates a GtkColorSelectionDialog, which inherits from a GtkDialog. It consists of a GtkFrame containing a GtkColorSelection widget, a GtkHSeparator and a GtkHBox with three buttons, "Ok", "Cancel" and "Help". You can reach these buttons by accessing the "ok_button", "cancel_button" and "help_button" widgets in the GtkColorSelectionDialog structure, (i.e. GTK_COLOR_SELECTION_DIALOG(colorseldialog)->ok_button). <tscreen><verb> void gtk_color_selection_set_update_policy(GtkColorSelection *colorsel, GtkUpdateType policy); </verb></tscreen> This function sets the update policy. The default policy is GTK_UPDATE_CONTINOUS which means that the current color is updated continously when the user drags the sliders or presses the mouse and drags in the hue-saturation wheel or value bar. If you experience performance problems, you may want to set the policy to GTK_UPDATE_DISCONTINOUS or GTK_UPDATE_DELAYED. <tscreen><verb> void gtk_color_selection_set_opacity(GtkColorSelection *colorsel, gint use_opacity); </verb></tscreen> The color selection widget supports adjusting the opacity of a color (also known as the alpha channel). This is disabled by default. Calling this function with use_opacity set to TRUE enables opacity. Likewise, use_opacity set to FALSE will disable opacity. <tscreen><verb> void gtk_color_selection_set_color(GtkColorSelection *colorsel, gdouble *color); </verb></tscreen> You can set the current color explicitly by calling this function with a pointer to an array of colors (gdouble). The length of the array depends on whether opacity is enabled or not. Position 0 contains the red component, 1 is green, 2 is blue and opacity is at position 3 (only if opacity is enabled, see gtk_color_selection_set_opacity()). All values are between 0.0 and 1.0. <tscreen><verb> void gtk_color_selection_get_color(GtkColorSelection *colorsel, gdouble *color); </verb></tscreen> When you need to query the current color, typically when you've received a "color_changed" signal, you use this function. Color is a pointer to the array of colors to fill in. See the gtk_color_selection_set_color() function for the description of this array. <!-- Need to do a whole section on DnD - TRG Drag and drop ------------- The color sample areas (right under the hue-saturation wheel) supports drag and drop. The type of drag and drop is "application/x-color". The message data consists of an array of 4 (or 5 if opacity is enabled) gdouble values, where the value at position 0 is 0.0 (opacity on) or 1.0 (opacity off) followed by the red, green and blue values at positions 1,2 and 3 respectively. If opacity is enabled, the opacity is passed in the value at position 4. --> Here's a simple example demonstrating the use of the GtkColorSelectionDialog. The program displays a window containing a drawing area. Clicking on it opens a color selection dialog, and changing the color in the color selection dialog changes the background color. <tscreen><verb> #include <glib.h> #include <gdk/gdk.h> #include <gtk/gtk.h> GtkWidget *colorseldlg = NULL; GtkWidget *drawingarea = NULL; /* Color changed handler */ void color_changed_cb (GtkWidget *widget, GtkColorSelection *colorsel) { gdouble color[3]; GdkColor gdk_color; GdkColormap *colormap; /* Get drawingarea colormap */ colormap = gdk_window_get_colormap (drawingarea->window); /* Get current color */ gtk_color_selection_get_color (colorsel,color); /* Fit to a unsigned 16 bit integer (0..65535) and insert into the GdkColor structure */ gdk_color.red = (guint16)(color[0]*65535.0); gdk_color.green = (guint16)(color[1]*65535.0); gdk_color.blue = (guint16)(color[2]*65535.0); /* Allocate color */ gdk_color_alloc (colormap, &gdk_color); /* Set window background color */ gdk_window_set_background (drawingarea->window, &gdk_color); /* Clear window */ gdk_window_clear (drawingarea->window); } /* Drawingarea event handler */ gint area_event (GtkWidget *widget, GdkEvent *event, gpointer client_data) { gint handled = FALSE; GtkWidget *colorsel; /* Check if we've received a button pressed event */ if (event->type == GDK_BUTTON_PRESS && colorseldlg == NULL) { /* Yes, we have an event and there's no colorseldlg yet! */ handled = TRUE; /* Create color selection dialog */ colorseldlg = gtk_color_selection_dialog_new("Select background color"); /* Get the GtkColorSelection widget */ colorsel = GTK_COLOR_SELECTION_DIALOG(colorseldlg)->colorsel; /* Connect to the "color_changed" signal, set the client-data to the colorsel widget */ gtk_signal_connect(GTK_OBJECT(colorsel), "color_changed", (GtkSignalFunc)color_changed_cb, (gpointer)colorsel); /* Show the dialog */ gtk_widget_show(colorseldlg); } return handled; } /* Close down and exit handler */ void destroy_window (GtkWidget *widget, gpointer client_data) { gtk_main_quit (); } /* Main */ gint main (gint argc, gchar *argv[]) { GtkWidget *window; /* Initialize the toolkit, remove gtk-related commandline stuff */ gtk_init (&argc,&argv); /* Create toplevel window, set title and policies */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW(window), "Color selection test"); gtk_window_set_policy (GTK_WINDOW(window), TRUE, TRUE, TRUE); /* Attach to the "delete" and "destroy" events so we can exit */ gtk_signal_connect (GTK_OBJECT(window), "delete_event", (GtkSignalFunc)destroy_window, (gpointer)window); gtk_signal_connect (GTK_OBJECT(window), "destroy", (GtkSignalFunc)destroy_window, (gpointer)window); /* Create drawingarea, set size and catch button events */ drawingarea = gtk_drawing_area_new (); gtk_drawing_area_size (GTK_DRAWING_AREA(drawingarea), 200, 200); gtk_widget_set_events (drawingarea, GDK_BUTTON_PRESS_MASK); gtk_signal_connect (GTK_OBJECT(drawingarea), "event", (GtkSignalFunc)area_event, (gpointer)drawingarea); /* Add drawingarea to window, then show them both */ gtk_container_add (GTK_CONTAINER(window), drawingarea); gtk_widget_show (drawingarea); gtk_widget_show (window); /* Enter the gtk main loop (this never returns) */ gtk_main (); /* Satisfy grumpy compilers */ return 0; } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> File Selections <p> The file selection widget is a quick and simple way to display a File dialog box. It comes complete with Ok, Cancel, and Help buttons, a great way to cut down on programming time. To create a new file selection box use: <tscreen><verb> GtkWidget* gtk_file_selection_new (gchar *title); </verb></tscreen> To set the filename, for example to bring up a specific directory, or give a default filename, use this function: <tscreen><verb> void gtk_file_selection_set_filename (GtkFileSelection *filesel, gchar *filename); </verb></tscreen> To grab the text that the user has entered or clicked on, use this function: <tscreen><verb> gchar* gtk_file_selection_get_filename (GtkFileSelection *filesel); </verb></tscreen> There are also pointers to the widgets contained within the file selection widget. These are: <itemize> <item>dir_list <item>file_list <item>selection_entry <item>selection_text <item>main_vbox <item>ok_button <item>cancel_button <item>help_button </itemize> Most likely you will want to use the ok_button, cancel_button, and help_button pointers in signaling their use. Included here is an example stolen from testgtk.c, modified to run on it's own. As you will see, there is nothing much to creating a file selection widget. While, in this example, the Help button appears on the screen, it does nothing as there is not a signal attached to it. <tscreen><verb> /* filesel.c */ #include <gtk/gtk.h> /* Get the selected filename and print it to the console */ void file_ok_sel (GtkWidget *w, GtkFileSelection *fs) { g_print ("%s\n", gtk_file_selection_get_filename (GTK_FILE_SELECTION (fs))); } void destroy (GtkWidget *widget, gpointer *data) { gtk_main_quit (); } int main (int argc, char *argv[]) { GtkWidget *filew; gtk_init (&argc, &argv); /* Create a new file selection widget */ filew = gtk_file_selection_new ("File selection"); gtk_signal_connect (GTK_OBJECT (filew), "destroy", (GtkSignalFunc) destroy, &filew); /* Connect the ok_button to file_ok_sel function */ gtk_signal_connect (GTK_OBJECT (GTK_FILE_SELECTION (filew)->ok_button), "clicked", (GtkSignalFunc) file_ok_sel, filew ); /* Connect the cancel_button to destroy the widget */ gtk_signal_connect_object (GTK_OBJECT (GTK_FILE_SELECTION (filew)->cancel_button), "clicked", (GtkSignalFunc) gtk_widget_destroy, GTK_OBJECT (filew)); /* Lets set the filename, as if this were a save dialog, and we are giving a default filename */ gtk_file_selection_set_filename (GTK_FILE_SELECTION(filew), "penguin.png"); gtk_widget_show(filew); gtk_main (); return 0; } </verb></tscreen> <!-- ***************************************************************** --> <sect> Container Widgets <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1> Notebooks <p> The NoteBook Widget is a collection of 'pages' that overlap each other, each page contains different information. This widget has become more common lately in GUI programming, and it is a good way to show blocks similar information that warrant separation in their display. The first function call you will need to know, as you can probably guess by now, is used to create a new notebook widget. <tscreen><verb> GtkWidget* gtk_notebook_new (void); </verb></tscreen> Once the notebook has been created, there are 12 functions that operate on the notebook widget. Let's look at them individually. The first one we will look at is how to position the page indicators. These page indicators or 'tabs' as they are referred to, can be positioned in four ways; top, bottom, left, or right. <tscreen><verb> void gtk_notebook_set_tab_pos (GtkNotebook *notebook, GtkPositionType pos); </verb></tscreen> GtkPostionType will be one of the following, and they are pretty self explanatory. <itemize> <item> GTK_POS_LEFT <item> GTK_POS_RIGHT <item> GTK_POS_TOP <item> GTK_POS_BOTTOM </itemize> GTK_POS_TOP is the default. Next we will look at how to add pages to the notebook. There are three ways to add pages to the NoteBook. Let's look at the first two together as they are quite similar. <tscreen><verb> void gtk_notebook_append_page (GtkNotebook *notebook, GtkWidget *child, GtkWidget *tab_label); void gtk_notebook_prepend_page (GtkNotebook *notebook, GtkWidget *child, GtkWidget *tab_label); </verb></tscreen> These functions add pages to the notebook by inserting them from the back of the notebook (append), or the front of the notebook (prepend). *child is the widget that is placed within the notebook page, and *tab_label is the label for the page being added. The final function for adding a page to the notebook contains all of the properties of the previous two, but it allows you to specify what position you want the page to be in the notebook. <tscreen><verb> void gtk_notebook_insert_page (GtkNotebook *notebook, GtkWidget *child, GtkWidget *tab_label, gint position); </verb></tscreen> The parameters are the same as _append_ and _prepend_ except it contains an extra parameter, position. This parameter is used to specify what place this page will inserted to. Now that we know how to add a page, lets see how we can remove a page from the notebook. <tscreen><verb> void gtk_notebook_remove_page (GtkNotebook *notebook, gint page_num); </verb></tscreen> This function takes the page specified by page_num and removes it from the widget *notebook. To find out what the current page is in a notebook use the function: <tscreen><verb> gint gtk_notebook_current_page (GtkNotebook *notebook); </verb></tscreen> These next two functions are simple calls to move the notebook page forward or backward. Simply provide the respective function call with the notebook widget you wish to operate on. Note: When the NoteBook is currently on the last page, and gtk_notebook_next_page is called, the notebook will wrap back to the first page. Likewise, if the NoteBook is on the first page, and gtk_notebook_prev_page is called, the notebook will wrap to the last page. <tscreen><verb> void gtk_notebook_next_page (GtkNoteBook *notebook); void gtk_notebook_prev_page (GtkNoteBook *notebook); </verb></tscreen> This next function sets the 'active' page. If you wish the notebook to be opened to page 5 for example, you would use this function. Without using this function, the notebook defaults to the first page. <tscreen><verb> void gtk_notebook_set_page (GtkNotebook *notebook, gint page_num); </verb></tscreen> The next two functions add or remove the notebook page tabs and the notebook border respectively. <tscreen><verb> void gtk_notebook_set_show_tabs (GtkNotebook *notebook, gint show_tabs); void gtk_notebook_set_show_border (GtkNotebook *notebook, gint show_border); </verb></tscreen> show_tabs and show_border can both be either TRUE or FALSE (0 or 1). Now lets look at an example, it is expanded from the testgtk.c code that comes with the GTK distribution, and it shows all 13 functions. This small program, creates a window with a notebook and six buttons. The notebook contains 11 pages, added in three different ways, appended, inserted, and prepended. The buttons allow you rotate the tab positions, add/remove the tabs and border, remove a page, change pages in both a forward and backward manner, and exit the program. <tscreen><verb> /* notebook.c */ #include <gtk/gtk.h> /* This function rotates the position of the tabs */ void rotate_book (GtkButton *button, GtkNotebook *notebook) { gtk_notebook_set_tab_pos (notebook, (notebook->tab_pos +1) %4); } /* Add/Remove the page tabs and the borders */ void tabsborder_book (GtkButton *button, GtkNotebook *notebook) { gint tval = FALSE; gint bval = FALSE; if (notebook->show_tabs == 0) tval = TRUE; if (notebook->show_border == 0) bval = TRUE; gtk_notebook_set_show_tabs (notebook, tval); gtk_notebook_set_show_border (notebook, bval); } /* Remove a page from the notebook */ void remove_book (GtkButton *button, GtkNotebook *notebook) { gint page; page = gtk_notebook_current_page(notebook); gtk_notebook_remove_page (notebook, page); /* Need to refresh the widget -- This forces the widget to redraw itself. */ gtk_widget_draw(GTK_WIDGET(notebook), NULL); } void delete (GtkWidget *widget, gpointer *data) { gtk_main_quit (); } int main (int argc, char *argv[]) { GtkWidget *window; GtkWidget *button; GtkWidget *table; GtkWidget *notebook; GtkWidget *frame; GtkWidget *label; GtkWidget *checkbutton; int i; char bufferf[32]; char bufferl[32]; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (delete), NULL); gtk_container_border_width (GTK_CONTAINER (window), 10); table = gtk_table_new(2,6,TRUE); gtk_container_add (GTK_CONTAINER (window), table); /* Create a new notebook, place the position of the tabs */ notebook = gtk_notebook_new (); gtk_notebook_set_tab_pos (GTK_NOTEBOOK (notebook), GTK_POS_TOP); gtk_table_attach_defaults(GTK_TABLE(table), notebook, 0,6,0,1); gtk_widget_show(notebook); /* lets append a bunch of pages to the notebook */ for (i=0; i < 5; i++) { sprintf(bufferf, "Append Frame %d", i+1); sprintf(bufferl, "Page %d", i+1); frame = gtk_frame_new (bufferf); gtk_container_border_width (GTK_CONTAINER (frame), 10); gtk_widget_set_usize (frame, 100, 75); gtk_widget_show (frame); label = gtk_label_new (bufferf); gtk_container_add (GTK_CONTAINER (frame), label); gtk_widget_show (label); label = gtk_label_new (bufferl); gtk_notebook_append_page (GTK_NOTEBOOK (notebook), frame, label); } /* now lets add a page to a specific spot */ checkbutton = gtk_check_button_new_with_label ("Check me please!"); gtk_widget_set_usize(checkbutton, 100, 75); gtk_widget_show (checkbutton); label = gtk_label_new ("Add spot"); gtk_container_add (GTK_CONTAINER (checkbutton), label); gtk_widget_show (label); label = gtk_label_new ("Add page"); gtk_notebook_insert_page (GTK_NOTEBOOK (notebook), checkbutton, label, 2); /* Now finally lets prepend pages to the notebook */ for (i=0; i < 5; i++) { sprintf(bufferf, "Prepend Frame %d", i+1); sprintf(bufferl, "PPage %d", i+1); frame = gtk_frame_new (bufferf); gtk_container_border_width (GTK_CONTAINER (frame), 10); gtk_widget_set_usize (frame, 100, 75); gtk_widget_show (frame); label = gtk_label_new (bufferf); gtk_container_add (GTK_CONTAINER (frame), label); gtk_widget_show (label); label = gtk_label_new (bufferl); gtk_notebook_prepend_page (GTK_NOTEBOOK(notebook), frame, label); } /* Set what page to start at (page 4) */ gtk_notebook_set_page (GTK_NOTEBOOK(notebook), 3); /* create a bunch of buttons */ button = gtk_button_new_with_label ("close"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (delete), NULL); gtk_table_attach_defaults(GTK_TABLE(table), button, 0,1,1,2); gtk_widget_show(button); button = gtk_button_new_with_label ("next page"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", (GtkSignalFunc) gtk_notebook_next_page, GTK_OBJECT (notebook)); gtk_table_attach_defaults(GTK_TABLE(table), button, 1,2,1,2); gtk_widget_show(button); button = gtk_button_new_with_label ("prev page"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", (GtkSignalFunc) gtk_notebook_prev_page, GTK_OBJECT (notebook)); gtk_table_attach_defaults(GTK_TABLE(table), button, 2,3,1,2); gtk_widget_show(button); button = gtk_button_new_with_label ("tab position"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", (GtkSignalFunc) rotate_book, GTK_OBJECT(notebook)); gtk_table_attach_defaults(GTK_TABLE(table), button, 3,4,1,2); gtk_widget_show(button); button = gtk_button_new_with_label ("tabs/border on/off"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", (GtkSignalFunc) tabsborder_book, GTK_OBJECT (notebook)); gtk_table_attach_defaults(GTK_TABLE(table), button, 4,5,1,2); gtk_widget_show(button); button = gtk_button_new_with_label ("remove page"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", (GtkSignalFunc) remove_book, GTK_OBJECT(notebook)); gtk_table_attach_defaults(GTK_TABLE(table), button, 5,6,1,2); gtk_widget_show(button); gtk_widget_show(table); gtk_widget_show(window); gtk_main (); return 0; } </verb></tscreen> <p> Hopefully this helps you on your way with creating notebooks for your GTK applications. <!-- ----------------------------------------------------------------- --> <sect1> Scrolled Windows <p> Scrolled windows are used to create a scrollable area inside a real window. You may insert any types of widgets to these scrolled windows, and they will all be accessable regardless of the size by using the scrollbars. The following function is used to create a new scolled window. <tscreen><verb> GtkWidget* gtk_scrolled_window_new (GtkAdjustment *hadjustment, GtkAdjustment *vadjustment); </verb></tscreen> <p> Where the first argument is the adjustment for the horizontal direction, and the second, the adjustment for the vertical direction. These are almost always set to NULL. <tscreen><verb> void gtk_scrolled_window_set_policy (GtkScrolledWindow *scrolled_window, GtkPolicyType hscrollbar_policy, GtkPolicyType vscrollbar_policy); </verb></tscreen> This sets the policy to be used with respect to the scrollbars. The first arguement is the scrolled window you wish to change. The second sets the policiy for the horizontal scrollbar, and the third, the vertical scrollbar. The policy may be one of GTK_POLICY AUTOMATIC, or GTK_POLICY_ALWAYS. GTK_POLICY_AUTOMATIC will automatically decide whether you need scrollbars, wheras GTK_POLICY_ALWAYS will always leave the scrollbars there. Here is a simple example that packs 100 toggle buttons into a scrolled window. I've only commented on the parts that may be new to you. <tscreen><verb> /* scrolledwin.c */ #include <gtk/gtk.h> void destroy(GtkWidget *widget, gpointer *data) { gtk_main_quit(); } int main (int argc, char *argv[]) { static GtkWidget *window; GtkWidget *scrolled_window; GtkWidget *table; GtkWidget *button; char buffer[32]; int i, j; gtk_init (&argc, &argv); /* Create a new dialog window for the scrolled window to be * packed into. A dialog is just like a normal window except it has a * vbox and a horizontal seperator packed into it. It's just a shortcut * for creating dialogs */ window = gtk_dialog_new (); gtk_signal_connect (GTK_OBJECT (window), "destroy", (GtkSignalFunc) destroy, NULL); gtk_window_set_title (GTK_WINDOW (window), "dialog"); gtk_container_border_width (GTK_CONTAINER (window), 0); gtk_widget_set_usize(window, 300, 300); /* create a new scrolled window. */ scrolled_window = gtk_scrolled_window_new (NULL, NULL); gtk_container_border_width (GTK_CONTAINER (scrolled_window), 10); /* the policy is one of GTK_POLICY AUTOMATIC, or GTK_POLICY_ALWAYS. * GTK_POLICY_AUTOMATIC will automatically decide whether you need * scrollbars, wheras GTK_POLICY_ALWAYS will always leave the scrollbars * there. The first one is the horizontal scrollbar, the second, * the vertical. */ gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_window), GTK_POLICY_AUTOMATIC, GTK_POLICY_ALWAYS); /* The dialog window is created with a vbox packed into it. */ gtk_box_pack_start (GTK_BOX (GTK_DIALOG(window)->vbox), scrolled_window, TRUE, TRUE, 0); gtk_widget_show (scrolled_window); /* create a table of 10 by 10 squares. */ table = gtk_table_new (10, 10, FALSE); /* set the spacing to 10 on x and 10 on y */ gtk_table_set_row_spacings (GTK_TABLE (table), 10); gtk_table_set_col_spacings (GTK_TABLE (table), 10); /* pack the table into the scrolled window */ gtk_container_add (GTK_CONTAINER (scrolled_window), table); gtk_widget_show (table); /* this simply creates a grid of toggle buttons on the table * to demonstrate the scrolled window. */ for (i = 0; i < 10; i++) for (j = 0; j < 10; j++) { sprintf (buffer, "button (%d,%d)\n", i, j); button = gtk_toggle_button_new_with_label (buffer); gtk_table_attach_defaults (GTK_TABLE (table), button, i, i+1, j, j+1); gtk_widget_show (button); } /* Add a "close" button to the bottom of the dialog */ button = gtk_button_new_with_label ("close"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", (GtkSignalFunc) gtk_widget_destroy, GTK_OBJECT (window)); /* this makes it so the button is the default. */ GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT); gtk_box_pack_start (GTK_BOX (GTK_DIALOG (window)->action_area), button, TRUE, TRUE, 0); /* This grabs this button to be the default button. Simply hitting * the "Enter" key will cause this button to activate. */ gtk_widget_grab_default (button); gtk_widget_show (button); gtk_widget_show (window); gtk_main(); return(0); } </verb></tscreen> <p> Try playing with resizing the window. You'll notice how the scrollbars react. You may also wish to use the gtk_widget_set_usize() call to set the default size of the window or other widgets. <!-- ***************************************************************** --> <sect> List Widgets <!-- ***************************************************************** --> <p> The GtkList widget is designed to act as a vertical container for widgets that should be of the type GtkListItem. A GtkList widget has its own window to receive events and it's own background color which is usualy white. As it is directly derived from a GtkContainer it can be treated as such by using the GTK_CONTAINER(List) macro, see the GtkContainer widget for more on this. One should already be familar whith the usage of a GList and its related functions g_list_*() to be able to use the GtkList widget to its fully extends. There is one field inside the structure definition of the GtkList widget that will be of greater interest to us, this is: <tscreen><verb> struct _GtkList { ... GList *selection; guint selection_mode; ... }; </verb></tscreen> The selection field of a GtkList points to a linked list of all items that are cureently selected, or `NULL' if the selection is empty. So to learn about the current selection we read the GTK_LIST()->selection field, but do not modify it since the internal fields are maintained by the gtk_list_*() functions. The selection_mode of the GtkList determines the selection facilities of a GtkList and therefore the contents of the GTK_LIST()->selection field: The selection_mode may be one of the following: <itemize> <item> GTK_SELECTION_SINGLE - The selection is either `NULL' or contains a GList* pointer for a single selected item. <item> GTK_SELECTION_BROWSE - The selection is `NULL' if the list contains no widgets or insensitive ones only, otherwise it contains a GList pointer for one GList structure, and therefore exactly one list item. <item> GTK_SELECTION_MULTIPLE - The selection is `NULL' if no list items are selected or a GList pointer for the first selected item. That in turn points to a GList structure for the second selected item and so on. <item> GTK_SELECTION_EXTENDED - The selection is always `NULL'. </itemize> <p> The default is GTK_SELECTION_MULTIPLE. <!-- ----------------------------------------------------------------- --> <sect1> Signals <p> <tscreen><verb> void selection_changed (GtkList *LIST) </verb></tscreen> This signal will be invoked whenever a the selection field of a GtkList has changed. This happens when a child of the GtkList got selected or unselected. <tscreen><verb> void select_child (GtkList *LIST, GtkWidget *CHILD) </verb></tscreen> This signal is invoked when a child of the GtkList is about to get selected. This happens mainly on calls to gtk_list_select_item(), gtk_list_select_child(), button presses and sometimes indirectly triggered on some else occasions where children get added to or removed from the GtkList. <tscreen><verb> void unselect_child (GtkList *LIST, GtkWidget *CHILD) </verb></tscreen> This signal is invoked when a child of the GtkList is about to get unselected. This happens mainly on calls to gtk_list_unselect_item(), gtk_list_unselect_child(), button presses and sometimes indirectly triggered on some else occasions where children get added to or removed from the GtkList. <!-- ----------------------------------------------------------------- --> <sect1> Functions <p> <tscreen><verb> guint gtk_list_get_type (void) </verb></tscreen> Returns the `GtkList' type identifier. <tscreen><verb> GtkWidget* gtk_list_new (void) </verb></tscreen> Create a new `GtkList' object. The new widget is returned as a pointer to a `GtkWidget' object. `NULL' is returned on failure. <tscreen><verb> void gtk_list_insert_items (GtkList *LIST, GList *ITEMS, gint POSITION) </verb></tscreen> Insert list items into the LIST, starting at POSITION. ITEMS is a doubly linked list where each nodes data pointer is expected to point to a newly created GtkListItem. The GList nodes of ITEMS are taken over by the LIST. <tscreen><verb> void gtk_list_append_items (GtkList *LIST, GList *ITEMS) </verb></tscreen> Insert list items just like gtk_list_insert_items() at the end of the LIST. The GList nodes of ITEMS are taken over by the LIST. <tscreen><verb> void gtk_list_prepend_items (GtkList *LIST, GList *ITEMS) </verb></tscreen> Insert list items just like gtk_list_insert_items() at the very beginning of the LIST. The GList nodes of ITEMS are taken over by the LIST. <tscreen><verb> void gtk_list_remove_items (GtkList *LIST, GList *ITEMS) </verb></tscreen> Remove list items from the LIST. ITEMS is a doubly linked list where each nodes data pointer is expected to point to a direct child of LIST. It is the callers responsibility to make a call to g_list_free(ITEMS) afterwards. Also the caller has to destroy the list items himself. <tscreen><verb> void gtk_list_clear_items (GtkList *LIST, gint START, gint END) </verb></tscreen> Remove and destroy list items from the LIST. a widget is affected if its current position within LIST is in the range specified by START and END. <tscreen><verb> void gtk_list_select_item (GtkList *LIST, gint ITEM) </verb></tscreen> Invoke the select_child signal for a list item specified through its current position within LIST. <tscreen><verb> void gtk_list_unselect_item (GtkList *LIST, gint ITEM) </verb></tscreen> Invoke the unselect_child signal for a list item specified through its current position within LIST. <tscreen><verb> void gtk_list_select_child (GtkList *LIST, GtkWidget *CHILD) </verb></tscreen> Invoke the select_child signal for the specified CHILD. <tscreen><verb> void gtk_list_unselect_child (GtkList *LIST, GtkWidget *CHILD) </verb></tscreen> Invoke the unselect_child signal for the specified CHILD. <tscreen><verb> gint gtk_list_child_position (GtkList *LIST, GtkWidget *CHILD) </verb></tscreen> Return the position of CHILD within LIST. `-1' is returned on failure. <tscreen><verb> void gtk_list_set_selection_mode (GtkList *LIST, GtkSelectionMode MODE) </verb></tscreen> Set LIST to the selection mode MODE wich can be of GTK_SELECTION_SINGLE, GTK_SELECTION_BROWSE, GTK_SELECTION_MULTIPLE or GTK_SELECTION_EXTENDED. <tscreen><verb> GtkList* GTK_LIST (gpointer OBJ) </verb></tscreen> Cast a generic pointer to `GtkList*'. *Note Standard Macros::, for more info. <tscreen><verb> GtkListClass* GTK_LIST_CLASS (gpointer CLASS) </verb></tscreen> Cast a generic pointer to `GtkListClass*'. *Note Standard Macros::, for more info. <tscreen><verb> gint GTK_IS_LIST (gpointer OBJ) </verb></tscreen> Determine if a generic pointer refers to a `GtkList' object. *Note Standard Macros::, for more info. <!-- ----------------------------------------------------------------- --> <sect1> Example <p> Following is an example program that will print out the changes of the selection of a GtkList, and lets you "arrest" list items into a prison by selecting them with the rightmost mouse button: <tscreen><verb> /* list.c */ /* include the gtk+ header files * include stdio.h, we need that for the printf() function */ #include <gtk/gtk.h> #include <stdio.h> /* this is our data identification string to store * data in list items */ const gchar *list_item_data_key="list_item_data"; /* prototypes for signal handler that we are going to connect * to the GtkList widget */ static void sigh_print_selection (GtkWidget *gtklist, gpointer func_data); static void sigh_button_event (GtkWidget *gtklist, GdkEventButton *event, GtkWidget *frame); /* main function to set up the user interface */ gint main (int argc, gchar *argv[]) { GtkWidget *separator; GtkWidget *window; GtkWidget *vbox; GtkWidget *scrolled_window; GtkWidget *frame; GtkWidget *gtklist; GtkWidget *button; GtkWidget *list_item; GList *dlist; guint i; gchar buffer[64]; /* initialize gtk+ (and subsequently gdk) */ gtk_init(&argc, &argv); /* create a window to put all the widgets in * connect gtk_main_quit() to the "destroy" event of * the window to handle window manager close-window-events */ window=gtk_window_new(GTK_WINDOW_TOPLEVEL); gtk_window_set_title(GTK_WINDOW(window), "GtkList Example"); gtk_signal_connect(GTK_OBJECT(window), "destroy", GTK_SIGNAL_FUNC(gtk_main_quit), NULL); /* inside the window we need a box to arrange the widgets * vertically */ vbox=gtk_vbox_new(FALSE, 5); gtk_container_border_width(GTK_CONTAINER(vbox), 5); gtk_container_add(GTK_CONTAINER(window), vbox); gtk_widget_show(vbox); /* this is the scolled window to put the GtkList widget inside */ scrolled_window=gtk_scrolled_window_new(NULL, NULL); gtk_widget_set_usize(scrolled_window, 250, 150); gtk_container_add(GTK_CONTAINER(vbox), scrolled_window); gtk_widget_show(scrolled_window); /* create the GtkList widget * connect the sigh_print_selection() signal handler * function to the "selection_changed" signal of the GtkList * to print out the selected items each time the selection * has changed */ gtklist=gtk_list_new(); gtk_container_add(GTK_CONTAINER(scrolled_window), gtklist); gtk_widget_show(gtklist); gtk_signal_connect(GTK_OBJECT(gtklist), "selection_changed", GTK_SIGNAL_FUNC(sigh_print_selection), NULL); /* we create a "Prison" to put a list item in ;) */ frame=gtk_frame_new("Prison"); gtk_widget_set_usize(frame, 200, 50); gtk_container_border_width(GTK_CONTAINER(frame), 5); gtk_frame_set_shadow_type(GTK_FRAME(frame), GTK_SHADOW_OUT); gtk_container_add(GTK_CONTAINER(vbox), frame); gtk_widget_show(frame); /* connect the sigh_button_event() signal handler to the GtkList * wich will handle the "arresting" of list items */ gtk_signal_connect(GTK_OBJECT(gtklist), "button_release_event", GTK_SIGNAL_FUNC(sigh_button_event), frame); /* create a separator */ separator=gtk_hseparator_new(); gtk_container_add(GTK_CONTAINER(vbox), separator); gtk_widget_show(separator); /* finaly create a button and connect it´s "clicked" signal * to the destroyment of the window */ button=gtk_button_new_with_label("Close"); gtk_container_add(GTK_CONTAINER(vbox), button); gtk_widget_show(button); gtk_signal_connect_object(GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC(gtk_widget_destroy), GTK_OBJECT(window)); /* now we create 5 list items, each having it´s own * label and add them to the GtkList using gtk_container_add() * also we query the text string from the label and * associate it with the list_item_data_key for each list item */ for (i=0; i<5; i++) { GtkWidget *label; gchar *string; sprintf(buffer, "ListItemContainer with Label #%d", i); label=gtk_label_new(buffer); list_item=gtk_list_item_new(); gtk_container_add(GTK_CONTAINER(list_item), label); gtk_widget_show(label); gtk_container_add(GTK_CONTAINER(gtklist), list_item); gtk_widget_show(list_item); gtk_label_get(GTK_LABEL(label), &string); gtk_object_set_data(GTK_OBJECT(list_item), list_item_data_key, string); } /* here, we are creating another 5 labels, this time * we use gtk_list_item_new_with_label() for the creation * we can´t query the text string from the label because * we don´t have the labels pointer and therefore * we just associate the list_item_data_key of each * list item with the same text string * for adding of the list items we put them all into a doubly * linked list (GList), and then add them by a single call to * gtk_list_append_items() * because we use g_list_prepend() to put the items into the * doubly linked list, their order will be descending (instead * of ascending when using g_list_append()) */ dlist=NULL; for (; i<10; i++) { sprintf(buffer, "List Item with Label %d", i); list_item=gtk_list_item_new_with_label(buffer); dlist=g_list_prepend(dlist, list_item); gtk_widget_show(list_item); gtk_object_set_data(GTK_OBJECT(list_item), list_item_data_key, "ListItem with integrated Label"); } gtk_list_append_items(GTK_LIST(gtklist), dlist); /* finaly we want to see the window, don´t we? ;) */ gtk_widget_show(window); /* fire up the main event loop of gtk */ gtk_main(); /* we get here after gtk_main_quit() has been called which * happens if the main window gets destroyed */ return 0; } /* this is the signal handler that got connected to button * press/release events of the GtkList */ void sigh_button_event (GtkWidget *gtklist, GdkEventButton *event, GtkWidget *frame) { /* we only do something if the third (rightmost mouse button * was released */ if (event->type==GDK_BUTTON_RELEASE && event->button==3) { GList *dlist, *free_list; GtkWidget *new_prisoner; /* fetch the currently selected list item which * will be our next prisoner ;) */ dlist=GTK_LIST(gtklist)->selection; if (dlist) new_prisoner=GTK_WIDGET(dlist->data); else new_prisoner=NULL; /* look for already prisoned list items, we * will put them back into the list * remember to free the doubly linked list that * gtk_container_children() returns */ dlist=gtk_container_children(GTK_CONTAINER(frame)); free_list=dlist; while (dlist) { GtkWidget *list_item; list_item=dlist->data; gtk_widget_reparent(list_item, gtklist); dlist=dlist->next; } g_list_free(free_list); /* if we have a new prisoner, remove him from the * GtkList and put him into the frame "Prison" * we need to unselect the item before */ if (new_prisoner) { GList static_dlist; static_dlist.data=new_prisoner; static_dlist.next=NULL; static_dlist.prev=NULL; gtk_list_unselect_child(GTK_LIST(gtklist), new_prisoner); gtk_widget_reparent(new_prisoner, frame); } } } /* this is the signal handler that gets called if GtkList * emits the "selection_changed" signal */ void sigh_print_selection (GtkWidget *gtklist, gpointer func_data) { GList *dlist; /* fetch the doubly linked list of selected items * of the GtkList, remember to treat this as read-only! */ dlist=GTK_LIST(gtklist)->selection; /* if there are no selected items there is nothing more * to do than just telling the user so */ if (!dlist) { g_print("Selection cleared\n"); return; } /* ok, we got a selection and so we print it */ g_print("The selection is a "); /* get the list item from the doubly linked list * and then query the data associated with list_item_data_key * we then just print it */ while (dlist) { GtkObject *list_item; gchar *item_data_string; list_item=GTK_OBJECT(dlist->data); item_data_string=gtk_object_get_data(list_item, list_item_data_key); g_print("%s ", item_data_string); dlist=dlist->next; } g_print("\n"); } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> List Item Widget <p> The GtkListItem widget is designed to act as a container holding up to one child, providing functions for selection/deselection just like the GtkList widget requires them for its children. A GtkListItem has its own window to receive events and has its own background color which is usualy white. As it is directly derived from a GtkItem it can be treated as such by using the GTK_ITEM(ListItem) macro, see the GtkItem widget for more on this. Usualy a GtkListItem just holds a label to identify e.g. a filename within a GtkList -- therefore the convenient function gtk_list_item_new_with_label() is provided. The same effect can be achieved by creating a GtkLabel on its own, setting its alignment to xalign=0 and yalign=0.5 with a subsequent container addition to the GtkListItem. As one is not forced to add a GtkLabel to a GtkListItem, you could also add a GtkVBox or a GtkArrow etc. to the GtkListItem. <!-- ----------------------------------------------------------------- --> <sect1> Signals <p> A GtkListItem does not create new signals on its own, but inherits the signals of a GtkItem. *Note GtkItem::, for more info. <!-- ----------------------------------------------------------------- --> <sect1> Functions <p> <tscreen><verb> guint gtk_list_item_get_type (void) </verb></tscreen> Returns the `GtkListItem' type identifier. <tscreen><verb> GtkWidget* gtk_list_item_new (void) </verb></tscreen> Create a new `GtkListItem' object. The new widget is returned as a pointer to a `GtkWidget' object. `NULL' is returned on failure. <tscreen><verb> GtkWidget* gtk_list_item_new_with_label (gchar *LABEL) </verb></tscreen> Create a new `GtkListItem' object, having a single GtkLabel as the sole child. The new widget is returned as a pointer to a `GtkWidget' object. `NULL' is returned on failure. <tscreen><verb> void gtk_list_item_select (GtkListItem *LIST_ITEM) </verb></tscreen> This function is basicaly a wrapper around a call to gtk_item_select (GTK_ITEM (list_item)) which will emit the select signal. *Note GtkItem::, for more info. <tscreen><verb> void gtk_list_item_deselect (GtkListItem *LIST_ITEM) </verb></tscreen> This function is basicaly a wrapper around a call to gtk_item_deselect (GTK_ITEM (list_item)) which will emit the deselect signal. *Note GtkItem::, for more info. <tscreen><verb> GtkListItem* GTK_LIST_ITEM (gpointer OBJ) </verb></tscreen> Cast a generic pointer to `GtkListItem*'. *Note Standard Macros::, for more info. <tscreen><verb> GtkListItemClass* GTK_LIST_ITEM_CLASS (gpointer CLASS) </verb></tscreen> Cast a generic pointer to `GtkListItemClass*'. *Note Standard Macros::, for more info. <tscreen><verb> gint GTK_IS_LIST_ITEM (gpointer OBJ) </verb></tscreen> Determine if a generic pointer refers to a `GtkListItem' object. *Note Standard Macros::, for more info. <!-- ----------------------------------------------------------------- --> <sect1> Example <p> Please see the GtkList example on this, which covers the usage of a GtkListItem as well. <!-- ***************************************************************** --> <sect>Menu Widgets <!-- ***************************************************************** --> <p> There are two ways to create menus, there's the easy way, and there's the hard way. Both have their uses, but you can usually use the menufactory (the easy way). The "hard" way is to create all the menus using the calls directly. The easy way is to use the gtk_menu_factory calls. This is much simpler, but there are advantages and disadvantages to each approach. The menufactory is much easier to use, and to add new menus to, although writing a few wrapper functions to create menus using the manual method could go a long way towards usability. With the menufactory, it is not possible to add images or the character '/' to the menus. <!-- ----------------------------------------------------------------- --> <sect1>Manual Menu Creation <p> In the true tradition of teaching, we'll show you the hard way first. <tt>:)</> <p> There are three widgets that go into making a menubar and submenus: <itemize> <item>a menu item, which is what the user wants to select, e.g. 'Save' <item>a menu, which acts as a container for the menu items, and <item>a menubar, which is a container for each of the individual menus, </itemize> This is slightly complicated by the fact that menu item widgets are used for two different things. They are both the widets that are packed into the menu, and the widget that is packed into the menubar, which, when selected, activiates the menu. Let's look at the functions that are used to create menus and menubars. This first function is used to create a new menubar. <tscreen><verb> GtkWidget *gtk_menu_bar_new(void); </verb></tscreen> This rather self explanatory function creates a new menubar. You use gtk_container_add to pack this into a window, or the box_pack functions to pack it into a box - the same as buttons. <tscreen><verb> GtkWidget *gtk_menu_new(); </verb></tscreen> This function returns a pointer to a new menu, it is never actually shown (with gtk_widget_show), it is just a container for the menu items. Hopefully this will become more clear when you look at the example below. <p> The next two calls are used to create menu items that are packed into the menu (and menubar). <tscreen><verb> GtkWidget *gtk_menu_item_new(); </verb></tscreen> and <tscreen><verb> GtkWidget *gtk_menu_item_new_with_label(const char *label); </verb></tscreen> These calls are used to create the menu items that are to be displayed. Remember to differentiate between a "menu" as created with gtk_menu_new and a "menu item" as created by the gtk_menu_item_new functions. The menu item will be an actual button with an associated action, whereas a menu will be a container holding menu items. The gtk_menu_new_with_label and gtk_menu_new functions are just as you'd expect after reading about the buttons. One creates a new menu item with a label already packed into it, and the other just creates a blank menu item. Once you've created a menu item you have to put it into a menu. This is done using the function gtk_menu_append. In order to capture when the item is selected by the user, we need to connect to the <tt/activate/ signal in the usual way. So, if we wanted to create a standard <tt/File/ menu, with the options <tt/Open/, <tt/Save/ and <tt/Quit/ the code would look something like <tscreen><verb> file_menu = gtk_menu_new(); /* Don't need to show menus */ /* Create the menu items */ open_item = gtk_menu_item_new_with_label("Open"); save_item = gtk_menu_item_new_with_label("Save"); quit_item = gtk_menu_item_new_with_label("Quit"); /* Add them to the menu */ gtk_menu_append( GTK_MENU(file_menu), open_item); gtk_menu_append( GTK_MENU(file_menu), save_item); gtk_menu_append( GTK_MENU(file_menu), quit_item); /* Attach the callback functions to the activate signal */ gtk_signal_connect_object( GTK_OBJECT(open_items), "activate", GTK_SIGNAL_FUNC(menuitem_response), (gpointer) "file.open"); gtk_signal_connect_object( GTK_OBJECT(save_items), "activate", GTK_SIGNAL_FUNC(menuitem_response), (gpointer) "file.save"); /* We can attach the Quit menu item to our exit function */ gtk_signal_connect_object( GTK_OBJECT(quit_items), "activate", GTK_SIGNAL_FUNC(destroy), (gpointer) "file.quit"); /* We do need to show menu items */ gtk_widget_show( open_item ); gtk_widget_show( save_item ); gtk_widget_show( quit_item ); </verb></tscreen> At this point we have our menu. Now we need to create a menubar and a menu item for the <tt/File/ entry, to which we add our menu. The code looks like this <tscreen><verb> menu_bar = gtk_menu_bar_new(); gtk_container_add( GTK_CONTAINER(window), menu_bar); gtk_widget_show( menu_bar ); file_item = gtk_menu_item_new_with_label("File"); gtk_widget_show(file_item); </verb></tscreen> Now we need to associate the menu with <tt/file_item/. This is done with the function <tscreen> void gtk_menu_item_set_submenu( GtkMenuItem *menu_item, GtkWidget *submenu); </tscreen> So, our example would continue with <tscreen><verb> gtk_menu_item_set_submenu( GTK_MENU_ITEM(file_item), file_menu); </verb></tscreen> All that is left to do is to add the menu to the menubar, which is accomplished using the function <tscreen> void gtk_menu_bar_append( GtkMenuBar *menu_bar, GtkWidget *menu_item); </tscreen> which in our case looks like this: <tscreen><verb> gtk_menu_bar_append( menu_bar, file_item ); </verb></tscreen> If we wanted the menu right justified on the menubar, such as help menus often are, we can use the following function (again on <tt/file_item/ in the current example) before attaching it to the menubar. <tscreen><verb> void gtk_menu_item_right_justify (GtkMenuItem *menu_item); </verb></tscreen> Here is a summary of the steps needed to create a menu bar with menus attached: <itemize> <item> Create a new menu using gtk_menu_new() <item> Use multiple calls to gtk_menu_item_new() for each item you wish to have on your menu. And use gtk_menu_append() to put each of these new items on to the menu. <item> Create a menu item using gtk_menu_item_new(). This will be the root of the menu, the text appearing here will be on the menubar itself. <item> Use gtk_menu_item_set_submenu() to attach the menu to the root menu item (The one created in the above step). <item> Create a new menubar using gtk_menu_bar_new. This step only needs to be done once when creating a series of menus on one menu bar. <item> Use gtk_menu_bar_append to put the root menu onto the menubar. </itemize> <p> Creating a popup menu is nearly the same. The difference is that the menu is not posted `automatically' by a menubar, but explicitly by calling the function gtk_menu_popup() from a button-press event, for example. Take these steps: <itemize> <item>Create an event handling function. It needs to have the prototype <tscreen> static gint handler(GtkWidget *widget, GdkEvent *event); </tscreen> and it will use the event to find out where to pop up the menu. <item>In the event handler, if event is a mouse button press, treat <tt>event</tt> as a button event (which it is) and use it as shown in the sample code to pass information to gtk_menu_popup(). <item>Bind that event handler to a widget with <tscreen> gtk_signal_connect_object(GTK_OBJECT(widget), "event", GTK_SIGNAL_FUNC (handler), GTK_OBJECT(menu)); </tscreen> where <tt>widget</tt> is the widget you are binding to, <tt>handler</tt> is the handling function, and <tt>menu</tt> is a menu created with gtk_menu_new(). This can be a menu which is also posted by a menu bar, as shown in the sample code. </itemize> <!-- ----------------------------------------------------------------- --> <sect1>Manual Menu Example <p> That should about do it. Let's take a look at an example to help clarify. <tscreen><verb> /* menu.c */ #include <gtk/gtk.h> static gint button_press (GtkWidget *, GdkEvent *); static void menuitem_response (gchar *); int main (int argc, char *argv[]) { GtkWidget *window; GtkWidget *menu; GtkWidget *menu_bar; GtkWidget *root_menu; GtkWidget *menu_items; GtkWidget *vbox; GtkWidget *button; char buf[128]; int i; gtk_init (&argc, &argv); /* create a new window */ window = gtk_window_new(GTK_WINDOW_TOPLEVEL); gtk_widget_set_usize( GTK_WIDGET (window), 200, 100); gtk_window_set_title(GTK_WINDOW (window), "GTK Menu Test"); gtk_signal_connect(GTK_OBJECT (window), "delete_event", (GtkSignalFunc) gtk_exit, NULL); /* Init the menu-widget, and remember -- never * gtk_show_widget() the menu widget!! * This is the menu that holds the menu items, the one that * will pop up when you click on the "Root Menu" in the app */ menu = gtk_menu_new(); /* Next we make a little loop that makes three menu-entries for "test-menu". * Notice the call to gtk_menu_append. Here we are adding a list of * menu items to our menu. Normally, we'd also catch the "clicked" * signal on each of the menu items and setup a callback for it, * but it's omitted here to save space. */ for(i = 0; i < 3; i++) { /* Copy the names to the buf. */ sprintf(buf, "Test-undermenu - %d", i); /* Create a new menu-item with a name... */ menu_items = gtk_menu_item_new_with_label(buf); /* ...and add it to the menu. */ gtk_menu_append(GTK_MENU (menu), menu_items); /* Do something interesting when the menuitem is selected */ gtk_signal_connect_object(GTK_OBJECT(menu_items), "activate", GTK_SIGNAL_FUNC(menuitem_response), (gpointer) g_strdup(buf)); /* Show the widget */ gtk_widget_show(menu_items); } /* This is the root menu, and will be the label * displayed on the menu bar. There won't be a signal handler attached, * as it only pops up the rest of the menu when pressed. */ root_menu = gtk_menu_item_new_with_label("Root Menu"); gtk_widget_show(root_menu); /* Now we specify that we want our newly created "menu" to be the menu * for the "root menu" */ gtk_menu_item_set_submenu(GTK_MENU_ITEM (root_menu), menu); /* A vbox to put a menu and a button in: */ vbox = gtk_vbox_new(FALSE, 0); gtk_container_add(GTK_CONTAINER(window), vbox); gtk_widget_show(vbox); /* Create a menu-bar to hold the menus and add it to our main window */ menu_bar = gtk_menu_bar_new(); gtk_box_pack_start(GTK_BOX(vbox), menu_bar, FALSE, FALSE, 2); gtk_widget_show(menu_bar); /* Create a button to which to attach menu as a popup */ button = gtk_button_new_with_label("press me"); gtk_signal_connect_object(GTK_OBJECT(button), "event", GTK_SIGNAL_FUNC (button_press), GTK_OBJECT(menu)); gtk_box_pack_end(GTK_BOX(vbox), button, TRUE, TRUE, 2); gtk_widget_show(button); /* And finally we append the menu-item to the menu-bar -- this is the * "root" menu-item I have been raving about =) */ gtk_menu_bar_append(GTK_MENU_BAR (menu_bar), root_menu); /* always display the window as the last step so it all splashes on * the screen at once. */ gtk_widget_show(window); gtk_main (); return 0; } /* Respond to a button-press by posting a menu passed in as widget. * * Note that the "widget" argument is the menu being posted, NOT * the button that was pressed. */ static gint button_press (GtkWidget *widget, GdkEvent *event) { if (event->type == GDK_BUTTON_PRESS) { GdkEventButton *bevent = (GdkEventButton *) event; gtk_menu_popup (GTK_MENU(widget), NULL, NULL, NULL, NULL, bevent->button, bevent->time); /* Tell calling code that we have handled this event; the buck * stops here. */ return TRUE; } /* Tell calling code that we have not handled this event; pass it on. */ return FALSE; } /* Print a string when a menu item is selected */ static void menuitem_response (gchar *string) { printf("%s\n", string); } </verb></tscreen> You may also set a menu item to be insensitive and, using an accelerator table, bind keys to menu functions. <!-- ----------------------------------------------------------------- --> <sect1>Using GtkMenuFactory <p> Now that we've shown you the hard way, here's how you do it using the gtk_menu_factory calls. <!-- ----------------------------------------------------------------- --> <sect1>Menu Factory Example <p> Here is an example using the GTK menu factory. This is the first file, menufactory.h. We keep a separate menufactory.c and mfmain.c because of the global variables used in the menufactory.c file. <tscreen><verb> /* menufactory.h */ #ifndef __MENUFACTORY_H__ #define __MENUFACTORY_H__ #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ void get_main_menu (GtkWidget **menubar, GtkAcceleratorTable **table); void menus_create(GtkMenuEntry *entries, int nmenu_entries); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* __MENUFACTORY_H__ */ </verb></tscreen> <p> And here is the menufactory.c file. <tscreen><verb> /* menufactory.c */ #include <gtk/gtk.h> #include <strings.h> #include "mfmain.h" static void menus_remove_accel(GtkWidget * widget, gchar * signal_name, gchar * path); static gint menus_install_accel(GtkWidget * widget, gchar * signal_name, gchar key, gchar modifiers, gchar * path); void menus_init(void); void menus_create(GtkMenuEntry * entries, int nmenu_entries); /* this is the GtkMenuEntry structure used to create new menus. The * first member is the menu definition string. The second, the * default accelerator key used to access this menu function with * the keyboard. The third is the callback function to call when * this menu item is selected (by the accelerator key, or with the * mouse.) The last member is the data to pass to your callback function. */ static GtkMenuEntry menu_items[] = { {"<Main>/File/New", "<control>N", NULL, NULL}, {"<Main>/File/Open", "<control>O", NULL, NULL}, {"<Main>/File/Save", "<control>S", NULL, NULL}, {"<Main>/File/Save as", NULL, NULL, NULL}, {"<Main>/File/<separator>", NULL, NULL, NULL}, {"<Main>/File/Quit", "<control>Q", file_quit_cmd_callback, "OK, I'll quit"}, {"<Main>/Options/Test", NULL, NULL, NULL} }; /* calculate the number of menu_item's */ static int nmenu_items = sizeof(menu_items) / sizeof(menu_items[0]); static int initialize = TRUE; static GtkMenuFactory *factory = NULL; static GtkMenuFactory *subfactory[1]; static GHashTable *entry_ht = NULL; void get_main_menu(GtkWidget ** menubar, GtkAcceleratorTable ** table) { if (initialize) menus_init(); if (menubar) *menubar = subfactory[0]->widget; if (table) *table = subfactory[0]->table; } void menus_init(void) { if (initialize) { initialize = FALSE; factory = gtk_menu_factory_new(GTK_MENU_FACTORY_MENU_BAR); subfactory[0] = gtk_menu_factory_new(GTK_MENU_FACTORY_MENU_BAR); gtk_menu_factory_add_subfactory(factory, subfactory[0], "<Main>"); menus_create(menu_items, nmenu_items); } } void menus_create(GtkMenuEntry * entries, int nmenu_entries) { char *accelerator; int i; if (initialize) menus_init(); if (entry_ht) for (i = 0; i < nmenu_entries; i++) { accelerator = g_hash_table_lookup(entry_ht, entries[i].path); if (accelerator) { if (accelerator[0] == '\0') entries[i].accelerator = NULL; else entries[i].accelerator = accelerator; } } gtk_menu_factory_add_entries(factory, entries, nmenu_entries); for (i = 0; i < nmenu_entries; i++) if (entries[i].widget) { gtk_signal_connect(GTK_OBJECT(entries[i].widget), "install_accelerator", (GtkSignalFunc) menus_install_accel, entries[i].path); gtk_signal_connect(GTK_OBJECT(entries[i].widget), "remove_accelerator", (GtkSignalFunc) menus_remove_accel, entries[i].path); } } static gint menus_install_accel(GtkWidget * widget, gchar * signal_name, gchar key, gchar modifiers, gchar * path) { char accel[64]; char *t1, t2[2]; accel[0] = '\0'; if (modifiers & GDK_CONTROL_MASK) strcat(accel, "<control>"); if (modifiers & GDK_SHIFT_MASK) strcat(accel, "<shift>"); if (modifiers & GDK_MOD1_MASK) strcat(accel, "<alt>"); t2[0] = key; t2[1] = '\0'; strcat(accel, t2); if (entry_ht) { t1 = g_hash_table_lookup(entry_ht, path); g_free(t1); } else entry_ht = g_hash_table_new(g_str_hash, g_str_equal); g_hash_table_insert(entry_ht, path, g_strdup(accel)); return TRUE; } static void menus_remove_accel(GtkWidget * widget, gchar * signal_name, gchar * path) { char *t; if (entry_ht) { t = g_hash_table_lookup(entry_ht, path); g_free(t); g_hash_table_insert(entry_ht, path, g_strdup("")); } } void menus_set_sensitive(char *path, int sensitive) { GtkMenuPath *menu_path; if (initialize) menus_init(); menu_path = gtk_menu_factory_find(factory, path); if (menu_path) gtk_widget_set_sensitive(menu_path->widget, sensitive); else g_warning("Unable to set sensitivity for menu which doesn't exist: %s", path); } </verb></tscreen> <p> And here's the mfmain.h <tscreen><verb> /* mfmain.h */ #ifndef __MFMAIN_H__ #define __MFMAIN_H__ #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ void file_quit_cmd_callback(GtkWidget *widget, gpointer data); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* __MFMAIN_H__ */ </verb></tscreen> <p> And mfmain.c <tscreen><verb> /* mfmain.c */ #include <gtk/gtk.h> #include "mfmain.h" #include "menufactory.h" int main(int argc, char *argv[]) { GtkWidget *window; GtkWidget *main_vbox; GtkWidget *menubar; GtkAcceleratorTable *accel; gtk_init(&argc, &argv); window = gtk_window_new(GTK_WINDOW_TOPLEVEL); gtk_signal_connect(GTK_OBJECT(window), "destroy", GTK_SIGNAL_FUNC(file_quit_cmd_callback), "WM destroy"); gtk_window_set_title(GTK_WINDOW(window), "Menu Factory"); gtk_widget_set_usize(GTK_WIDGET(window), 300, 200); main_vbox = gtk_vbox_new(FALSE, 1); gtk_container_border_width(GTK_CONTAINER(main_vbox), 1); gtk_container_add(GTK_CONTAINER(window), main_vbox); gtk_widget_show(main_vbox); get_main_menu(&menubar, &accel); gtk_window_add_accelerator_table(GTK_WINDOW(window), accel); gtk_box_pack_start(GTK_BOX(main_vbox), menubar, FALSE, TRUE, 0); gtk_widget_show(menubar); gtk_widget_show(window); gtk_main(); return(0); } /* This is just to demonstrate how callbacks work when using the * menufactory. Often, people put all the callbacks from the menus * in a separate file, and then have them call the appropriate functions * from there. Keeps it more organized. */ void file_quit_cmd_callback (GtkWidget *widget, gpointer data) { g_print ("%s\n", (char *) data); gtk_exit(0); } </verb></tscreen> <p> And a makefile so it'll be easier to compile it. <tscreen><verb> # Makefile.mf CC = gcc PROF = -g C_FLAGS = -Wall $(PROF) -L/usr/local/include -DDEBUG L_FLAGS = $(PROF) -L/usr/X11R6/lib -L/usr/local/lib L_POSTFLAGS = -lgtk -lgdk -lglib -lXext -lX11 -lm PROGNAME = menufactory O_FILES = menufactory.o mfmain.o $(PROGNAME): $(O_FILES) rm -f $(PROGNAME) $(CC) $(L_FLAGS) -o $(PROGNAME) $(O_FILES) $(L_POSTFLAGS) .c.o: $(CC) -c $(C_FLAGS) $< clean: rm -f core *.o $(PROGNAME) nohup.out distclean: clean rm -f *~ </verb></tscreen> <p> For now, there's only this example. An explanation and lots 'o' comments will follow later. <!-- ***************************************************************** --> <sect> Text Widget <!-- ***************************************************************** --> <p> The Text widget allows multiple lines of text to be displayed and edited. It supports both multi-colored and multi-font text, allowing them to be mixed in any way we wish. It also has a wide set of key based text editing commands, which are compatible with Emacs. <!-- ----------------------------------------------------------------- --> <sect1>Creating and Configuring a Text box <p> There is only one function for creating a new Text widget. <tscreen><verb> GtkWidget* gtk_text_new (GtkAdjustment *hadj, GtkAdjustment *vadj); </verb></tscreen> The arguments allow us to give the Text widget pointers to Adjustments that can be used to track the viewing position of the widget. Passing NULL values to either or both of these arguments will cause the gtk_text_new function to create it's own. <tscreen><verb> void gtk_text_set_adjustments (GtkText *text, GtkAdjustment *hadj, GtkAdjustment *vadj); </verb></tscreen> The above function allows the horizontal and vertical adjustments of a Text widget to be changed at any time. There are two main ways in which a Text widget can be used: to allow the user to edit a body of text, or to allow us to display multiple lines of text to the user. In order for us to switch between these modes of operation, the text widget has the following function: <tscreen><verb> void gtk_text_set_editable (GtkText *text, gint editable); </verb></tscreen> The <tt/editable/ argument is a TRUE or FALSE value that specifies whether the user is permitted to edit the contents of the Text widget. When the text widget is editable, it will display a cursor at the current insertion point. <!-- ----------------------------------------------------------------- --> <sect1>Text Manipulation <P> The current insertion point of a Text widget can be set using <tscreen><verb> void gtk_text_set_point (GtkText *text, guint index); </verb></tscreen> where <tt/index/ is the position to set the insertion point. Analogous to this is the function for getting the current insertion point: <tscreen><verb> guint gtk_text_get_point (GtkText *text); </verb></tscreen> A function that is useful in combination with the above two functions is <tscreen><verb> guint gtk_text_get_length (GtkText *text); </verb></tscreen> which returns the current length of the Text widget. The length is the number of characters that are within the text block of the widget, including characters such as carriage-return, which marks the end of lines. In order to insert text at the current insertion point of a Text widget, the function gtk_text_insert is used, which also allows us to specify background and foreground colors and a font for the text. <tscreen><verb> void gtk_text_insert (GtkText *text, GdkFont *font, GdkColor *fore, GdkColor *back, const char *chars, gint length); </verb></tscreen> Passing a value of <tt/NULL/ in as the value for the foreground color, background colour or font will result in the values set within the widget style to be used. Using a value of <tt/-1/ for the length parameter will result in the whole of the text string given to be inserted. <!-- ***************************************************************** --> <sect> Undocumented Widgets <!-- ***************************************************************** --> <p> These all require authors! :) Please consider contributing to our tutorial. If you must use one of these widgets that are undocumented, I strongly suggest you take a look at their respective header files in the GTK distro. GTK's function names are very descriptive. Once you have an understanding of how things work, it's not easy to figure out how to use a widget simply by looking at it's function declarations. This, along with a few examples from others' code, and it should be no problem. When you do come to understand all the functions of a new undocumented widget, please consider writing a tutorial on it so others may benifit from your time. <!-- ----------------------------------------------------------------- --> <sect1> Range Controls <!-- ----------------------------------------------------------------- --> <sect1> Text Boxes <p> <!-- ----------------------------------------------------------------- --> <sect1> Previews <p> (This may need to be rewritten to follow the style of the rest of the tutorial) <tscreen><verb> Previews serve a number of purposes in GIMP/GTK. The most important one is this. High quality images may take up to tens of megabytes of memory - easy! Any operation on an image that big is bound to take a long time. If it takes you 5-10 trial-and-errors (i.e. 10-20 steps, since you have to revert after you make an error) to choose the desired modification, it make take you literally hours to make the right one - if you don't run out of memory first. People who have spent hours in color darkrooms know the feeling. Previews to the rescue! But the annoyance of the delay is not the only issue. Oftentimes it is helpful to compare the Before and After versions side-by-side or at least back-to-back. If you're working with big images and 10 second delays, obtaining the Before and After impressions is, to say the least, difficult. For 30M images (4"x6", 600dpi, 24 bit) the side-by-side comparison is right out for most people, while back-to-back is more like back-to-1001, 1002, ..., 1010-back! Previews to the rescue! But there's more. Previews allow for side-by-side pre-previews. In other words, you write a plug-in (e.g. the filterpack simulation) which would have a number of here's-what-it-would-look-like-if-you-were-to-do-this previews. An approach like this acts as a sort of a preview palette and is very effective fow subtle changes. Let's go previews! There's more. For certain plug-ins real-time image-specific human intervention maybe necessary. In the SuperNova plug-in, for example, the user is asked to enter the coordinates of the center of the future supernova. The easiest way to do this, really, is to present the user with a preview and ask him to intereactively select the spot. Let's go previews! Finally, a couple of misc uses. One can use previews even when not working with big images. For example, they are useful when rendering compicated patterns. (Just check out the venerable Diffraction plug-in + many other ones!) As another example, take a look at the colormap rotation plug-in (work in progress). You can also use previews for little logo's inside you plug-ins and even for an image of yourself, The Author. Let's go previews! When Not to Use Previews Don't use previews for graphs, drawing etc. GDK is much faster for that. Use previews only for rendered images! Let's go previews! You can stick a preview into just about anything. In a vbox, an hbox, a table, a button, etc. But they look their best in tight frames around them. Previews by themselves do not have borders and look flat without them. (Of course, if the flat look is what you want...) Tight frames provide the necessary borders. [Image][Image] Previews in many ways are like any other widgets in GTK (whatever that means) except they possess an addtional feature: they need to be filled with some sort of an image! First, we will deal exclusively with the GTK aspect of previews and then we'll discuss how to fill them. GtkWidget *preview! Without any ado: /* Create a preview widget, set its size, an show it */ GtkWidget *preview; preview=gtk_preview_new(GTK_PREVIEW_COLOR) /*Other option: GTK_PREVIEW_GRAYSCALE);*/ gtk_preview_size (GTK_PREVIEW (preview), WIDTH, HEIGHT); gtk_widget_show(preview); my_preview_rendering_function(preview); Oh yeah, like I said, previews look good inside frames, so how about: GtkWidget *create_a_preview(int Width, int Height, int Colorfulness) { GtkWidget *preview; GtkWidget *frame; frame = gtk_frame_new(NULL); gtk_frame_set_shadow_type (GTK_FRAME (frame), GTK_SHADOW_IN); gtk_container_border_width (GTK_CONTAINER(frame),0); gtk_widget_show(frame); preview=gtk_preview_new (Colorfulness?GTK_PREVIEW_COLOR :GTK_PREVIEW_GRAYSCALE); gtk_preview_size (GTK_PREVIEW (preview), Width, Height); gtk_container_add(GTK_CONTAINER(frame),preview); gtk_widget_show(preview); my_preview_rendering_function(preview); return frame; } That's my basic preview. This routine returns the "parent" frame so you can place it somewhere else in your interface. Of course, you can pass the parent frame to this routine as a parameter. In many situations, however, the contents of the preview are changed continually by your application. In this case you may want to pass a pointer to the preview to a "create_a_preview()" and thus have control of it later. One more important note that may one day save you a lot of time. Sometimes it is desirable to label you preview. For example, you may label the preview containing the original image as "Original" and the one containing the modified image as "Less Original". It might occure to you to pack the preview along with the appropriate label into a vbox. The unexpected caveat is that if the label is wider than the preview (which may happen for a variety of reasons unforseeable to you, from the dynamic decision on the size of the preview to the size of the font) the frame expands and no longer fits tightly over the preview. The same problem can probably arise in other situations as well. [Image] The solution is to place the preview and the label into a 2x1 table and by attaching them with the following paramters (this is one possible variations of course. The key is no GTK_FILL in the second attachment): gtk_table_attach(GTK_TABLE(table),label,0,1,0,1, 0, GTK_EXPAND|GTK_FILL, 0,0); gtk_table_attach(GTK_TABLE(table),frame,0,1,1,2, GTK_EXPAND, GTK_EXPAND, 0,0); And here's the result: [Image] Misc Making a preview clickable is achieved most easily by placing it in a button. It also adds a nice border around the preview and you may not even need to place it in a frame. See the Filter Pack Simulation plug-in for an example. This is pretty much it as far as GTK is concerned. Filling In a Preview In order to familiarize ourselves with the basics of filling in previews, let's create the following pattern (contrived by trial and error): [Image] void my_preview_rendering_function(GtkWidget *preview) { #define SIZE 100 #define HALF (SIZE/2) guchar *row=(guchar *) malloc(3*SIZE); /* 3 bits per dot */ gint i, j; /* Coordinates */ double r, alpha, x, y; if (preview==NULL) return; /* I usually add this when I want */ /* to avoid silly crashes. You */ /* should probably make sure that */ /* everything has been nicely */ /* initialized! */ for (j=0; j < ABS(cos(2*alpha)) ) { /* Are we inside the shape? */ /* glib.h contains ABS(x). */ row[i*3+0] = sqrt(1-r)*255; /* Define Red */ row[i*3+1] = 128; /* Define Green */ row[i*3+2] = 224; /* Define Blue */ } /* "+0" is for alignment! */ else { row[i*3+0] = r*255; row[i*3+1] = ABS(sin((float)i/SIZE*2*PI))*255; row[i*3+2] = ABS(sin((float)j/SIZE*2*PI))*255; } } gtk_preview_draw_row( GTK_PREVIEW(preview),row,0,j,SIZE); /* Insert "row" into "preview" starting at the point with */ /* coordinates (0,j) first column, j_th row extending SIZE */ /* pixels to the right */ } free(row); /* save some space */ gtk_widget_draw(preview,NULL); /* what does this do? */ gdk_flush(); /* or this? */ } Non-GIMP users can have probably seen enough to do a lot of things already. For the GIMP users I have a few pointers to add. Image Preview It is probably wize to keep a reduced version of the image around with just enough pixels to fill the preview. This is done by selecting every n'th pixel where n is the ratio of the size of the image to the size of the preview. All further operations (including filling in the previews) are then performed on the reduced number of pixels only. The following is my implementation of reducing the image. (Keep in mind that I've had only basic C!) (UNTESTED CODE ALERT!!!) typedef struct { gint width; gint height; gint bbp; guchar *rgb; guchar *mask; } ReducedImage; enum { SELECTION_ONLY, SELCTION_IN_CONTEXT, ENTIRE_IMAGE }; ReducedImage *Reduce_The_Image(GDrawable *drawable, GDrawable *mask, gint LongerSize, gint Selection) { /* This function reduced the image down to the the selected preview size */ /* The preview size is determine by LongerSize, i.e. the greater of the */ /* two dimentions. Works for RGB images only! */ gint RH, RW; /* Reduced height and reduced width */ gint width, height; /* Width and Height of the area being reduced */ gint bytes=drawable->bpp; ReducedImage *temp=(ReducedImage *)malloc(sizeof(ReducedImage)); guchar *tempRGB, *src_row, *tempmask, *src_mask_row,R,G,B; gint i, j, whichcol, whichrow, x1, x2, y1, y2; GPixelRgn srcPR, srcMask; gint NoSelectionMade=TRUE; /* Assume that we're dealing with the entire */ /* image. */ gimp_drawable_mask_bounds (drawable->id, &x1, &y1, &x2, &y2); width = x2-x1; height = y2-y1; /* If there's a SELECTION, we got its bounds!) if (width != drawable->width && height != drawable->height) NoSelectionMade=FALSE; /* Become aware of whether the user has made an active selection */ /* This will become important later, when creating a reduced mask. */ /* If we want to preview the entire image, overrule the above! */ /* Of course, if no selection has been made, this does nothing! */ if (Selection==ENTIRE_IMAGE) { x1=0; x2=drawable->width; y1=0; y2=drawable->height; } /* If we want to preview a selection with some surronding area we */ /* have to expand it a little bit. Consider it a bit of a riddle. */ if (Selection==SELECTION_IN_CONTEXT) { x1=MAX(0, x1-width/2.0); x2=MIN(drawable->width, x2+width/2.0); y1=MAX(0, y1-height/2.0); y2=MIN(drawable->height, y2+height/2.0); } /* How we can determine the width and the height of the area being */ /* reduced. */ width = x2-x1; height = y2-y1; /* The lines below determine which dimension is to be the longer */ /* side. The idea borrowed from the supernova plug-in. I suspect I */ /* could've thought of it myself, but the truth must be told. */ /* Plagiarism stinks! */ if (width>height) { RW=LongerSize; RH=(float) height * (float) LongerSize/ (float) width; } else { RH=LongerSize; RW=(float)width * (float) LongerSize/ (float) height; } /* The intire image is stretched into a string! */ tempRGB = (guchar *) malloc(RW*RH*bytes); tempmask = (guchar *) malloc(RW*RH); gimp_pixel_rgn_init (&srcPR, drawable, x1, y1, width, height, FALSE, FALSE); gimp_pixel_rgn_init (&srcMask, mask, x1, y1, width, height, FALSE, FALSE); /* Grab enough to save a row of image and a row of mask. */ src_row = (guchar *) malloc (width*bytes); src_mask_row = (guchar *) malloc (width); for (i=0; i < RH; i++) { whichrow=(float)i*(float)height/(float)RH; gimp_pixel_rgn_get_row (&srcPR, src_row, x1, y1+whichrow, width); gimp_pixel_rgn_get_row (&srcMask, src_mask_row, x1, y1+whichrow, width); for (j=0; j < RW; j++) { whichcol=(float)j*(float)width/(float)RW; /* No selection made = each point is completely selected! */ if (NoSelectionMade) tempmask[i*RW+j]=255; else tempmask[i*RW+j]=src_mask_row[whichcol]; /* Add the row to the one long string which now contains the image! */ tempRGB[i*RW*bytes+j*bytes+0]=src_row[whichcol*bytes+0]; tempRGB[i*RW*bytes+j*bytes+1]=src_row[whichcol*bytes+1]; tempRGB[i*RW*bytes+j*bytes+2]=src_row[whichcol*bytes+2]; /* Hold on to the alpha as well */ if (bytes==4) tempRGB[i*RW*bytes+j*bytes+3]=src_row[whichcol*bytes+3]; } } temp->bpp=bytes; temp->width=RW; temp->height=RH; temp->rgb=tempRGB; temp->mask=tempmask; return temp; } The following is a preview function which used the same ReducedImage type! Note that it uses fakes transparancy (if one is present by means of fake_transparancy which is defined as follows: gint fake_transparency(gint i, gint j) { if ( ((i%20)- 10) * ((j%20)- 10)>0 ) return 64; else return 196; } Now here's the preview function: void my_preview_render_function(GtkWidget *preview, gint changewhat, gint changewhich) { gint Inten, bytes=drawable->bpp; gint i, j, k; float partial; gint RW=reduced->width; gint RH=reduced->height; guchar *row=malloc(bytes*RW);; for (i=0; i < RH; i++) { for (j=0; j < RW; j++) { row[j*3+0] = reduced->rgb[i*RW*bytes + j*bytes + 0]; row[j*3+1] = reduced->rgb[i*RW*bytes + j*bytes + 1]; row[j*3+2] = reduced->rgb[i*RW*bytes + j*bytes + 2]; if (bytes==4) for (k=0; k<3; k++) { float transp=reduced->rgb[i*RW*bytes+j*bytes+3]/255.0; row[3*j+k]=transp*a[3*j+k]+(1-transp)*fake_transparency(i,j); } } gtk_preview_draw_row( GTK_PREVIEW(preview),row,0,i,RW); } free(a); gtk_widget_draw(preview,NULL); gdk_flush(); } Applicable Routines guint gtk_preview_get_type (void); /* No idea */ void gtk_preview_uninit (void); /* No idea */ GtkWidget* gtk_preview_new (GtkPreviewType type); /* Described above */ void gtk_preview_size (GtkPreview *preview, gint width, gint height); /* Allows you to resize an existing preview. */ /* Apparantly there's a bug in GTK which makes */ /* this process messy. A way to clean up a mess */ /* is to manually resize the window containing */ /* the preview after resizing the preview. */ void gtk_preview_put (GtkPreview *preview, GdkWindow *window, GdkGC *gc, gint srcx, gint srcy, gint destx, gint desty, gint width, gint height); /* No idea */ void gtk_preview_put_row (GtkPreview *preview, guchar *src, guchar *dest, gint x, gint y, gint w); /* No idea */ void gtk_preview_draw_row (GtkPreview *preview, guchar *data, gint x, gint y, gint w); /* Described in the text */ void gtk_preview_set_expand (GtkPreview *preview, gint expand); /* No idea */ /* No clue for any of the below but */ /* should be standard for most widgets */ void gtk_preview_set_gamma (double gamma); void gtk_preview_set_color_cube (guint nred_shades, guint ngreen_shades, guint nblue_shades, guint ngray_shades); void gtk_preview_set_install_cmap (gint install_cmap); void gtk_preview_set_reserved (gint nreserved); GdkVisual* gtk_preview_get_visual (void); GdkColormap* gtk_preview_get_cmap (void); GtkPreviewInfo* gtk_preview_get_info (void); That's all, folks! </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Curves <p> <!-- ***************************************************************** --> <sect>The EventBox Widget<label id="sec_The_EventBox_Widget"> <!-- ***************************************************************** --> <p> Some gtk widgets don't have associated X windows, so they just draw on thier parents. Because of this, they cannot recieve events and if they are incorrectly sized, they don't clip so you can get messy overwritting etc. If you require more from these widgets, the EventBox is for you. At first glance, the EventBox widget might appear to be totally useless. It draws nothing on the screen and responds to no events. However, it does serve a function - it provides an X window for its child widget. This is important as many GTK widgets do not have an associated X window. Not having an X window saves memory and improves performance, but also has some drawbacks. A widget without an X window cannot receive events, and does not perform any clipping on it's contents. Although the name ``EventBox'' emphasizes the event-handling function, the widget also can be used for clipping. (And more ... see the example below.) <p> To create a new EventBox widget, use: <tscreen><verb> GtkWidget* gtk_event_box_new (void); </verb></tscreen> <p> A child widget can then be added to this EventBox: <tscreen><verb> gtk_container_add (GTK_CONTAINER(event_box), widget); </verb></tscreen> <p> The following example demonstrates both uses of an EventBox - a label is created that clipped to a small box, and set up so that a mouse-click on the label causes the program to exit. <tscreen><verb> /* eventbox.c */ #include <gtk/gtk.h> int main (int argc, char *argv[]) { GtkWidget *window; GtkWidget *event_box; GtkWidget *label; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Event Box"); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_exit), NULL); gtk_container_border_width (GTK_CONTAINER (window), 10); /* Create an EventBox and add it to our toplevel window */ event_box = gtk_event_box_new (); gtk_container_add (GTK_CONTAINER(window), event_box); gtk_widget_show (event_box); /* Create a long label */ label = gtk_label_new ("Click here to quit, quit, quit, quit, quit"); gtk_container_add (GTK_CONTAINER (event_box), label); gtk_widget_show (label); /* Clip it short. */ gtk_widget_set_usize (label, 110, 20); /* And bind an action to it */ gtk_widget_set_events (event_box, GDK_BUTTON_PRESS_MASK); gtk_signal_connect (GTK_OBJECT(event_box), "button_press_event", GTK_SIGNAL_FUNC (gtk_exit), NULL); /* Yet one more thing you need an X window for ... */ gtk_widget_realize (event_box); gdk_window_set_cursor (event_box->window, gdk_cursor_new (GDK_HAND1)); gtk_widget_show (window); gtk_main (); return 0; } </verb></tscreen> <!-- ***************************************************************** --> <sect>Setting Widget Attributes<label id="sec_setting_widget_attributes"> <!-- ***************************************************************** --> <p> This describes the functions used to operate on widgets. These can be used to set style, padding, size etc. (Maybe I should make a whole section on accelerators.) <tscreen><verb> void gtk_widget_install_accelerator (GtkWidget *widget, GtkAcceleratorTable *table, gchar *signal_name, gchar key, guint8 modifiers); void gtk_widget_remove_accelerator (GtkWidget *widget, GtkAcceleratorTable *table, gchar *signal_name); void gtk_widget_activate (GtkWidget *widget); void gtk_widget_set_name (GtkWidget *widget, gchar *name); gchar* gtk_widget_get_name (GtkWidget *widget); void gtk_widget_set_sensitive (GtkWidget *widget, gint sensitive); void gtk_widget_set_style (GtkWidget *widget, GtkStyle *style); GtkStyle* gtk_widget_get_style (GtkWidget *widget); GtkStyle* gtk_widget_get_default_style (void); void gtk_widget_set_uposition (GtkWidget *widget, gint x, gint y); void gtk_widget_set_usize (GtkWidget *widget, gint width, gint height); void gtk_widget_grab_focus (GtkWidget *widget); void gtk_widget_show (GtkWidget *widget); void gtk_widget_hide (GtkWidget *widget); </verb></tscreen> <!-- ***************************************************************** --> <sect>Timeouts, IO and Idle Functions<label id="sec_timeouts"> <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1>Timeouts <p> You may be wondering how you make GTK do useful work when in gtk_main. Well, you have several options. Using the following functions you can create a timeout function that will be called every "interval" milliseconds. <tscreen><verb> gint gtk_timeout_add (guint32 interval, GtkFunction function, gpointer data); </verb></tscreen> The first argument is the number of milliseconds between calls to your function. The second argument is the function you wish to have called, and the third, the data passed to this callback function. The return value is an integer "tag" which may be used to stop the timeout by calling: <tscreen><verb> void gtk_timeout_remove (gint tag); </verb></tscreen> You may also stop the timeout function by returning zero or FALSE from your callback function. Obviously this means if you want your function to continue to be called, it should return a non-zero value, ie TRUE. The declaration of your callback should look something like this: <tscreen><verb> gint timeout_callback (gpointer data); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Monitoring IO <p> Another nifty feature of GTK, is the ability to have it check for data on a file descriptor for you (as returned by open(2) or socket(2)). This is especially useful for networking applications. The function: <tscreen><verb> gint gdk_input_add (gint source, GdkInputCondition condition, GdkInputFunction function, gpointer data); </verb></tscreen> Where the first argument is the file descriptor you wish to have watched, and the second specifies what you want GDK to look for. This may be one of: <p> GDK_INPUT_READ - Call your function when there is data ready for reading on your file descriptor. <p> GDK_INPUT_WRITE - Call your function when the file descriptor is ready for writing. <p> As I'm sure you've figured out already, the third argument is the function you wish to have called when the above conditions are satisfied, and the fourth is the data to pass to this function. <p> The return value is a tag that may be used to stop GDK from monitoring this file descriptor using the following function. <p> <tscreen><verb> void gdk_input_remove (gint tag); </verb></tscreen> <p> The callback function should be declared: <p> <tscreen><verb> void input_callback (gpointer data, gint source, GdkInputCondition condition); </verb></tscreen> <p> <!-- ----------------------------------------------------------------- --> <sect1>Idle Functions <p> What if you have a function you want called when nothing else is happening ? <tscreen><verb> gint gtk_idle_add (GtkFunction function, gpointer data); </verb></tscreen> This causes GTK to call the specified function whenever nothing else is happening. <tscreen><verb> void gtk_idle_remove (gint tag); </verb></tscreen> <p> I won't explain the meaning of the arguments as they follow very much like the ones above. The function pointed to by the first argument to gtk_idle_add will be called whenever the opportunity arises. As with the others, returning FALSE will stop the idle function from being called. <!-- ***************************************************************** --> <sect>Managing Selections <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1> Overview <p> One type of interprocess communication supported by GTK is <em>selections</em>. A selection identifies a chunk of data, for instance, a portion of text, selected by the user in some fashion, for instance, by dragging with the mouse. Only one application on a display, (he <em>owner</em>_ can own a particular selection at one time, so when a selection is claimed by one application, the previous owner must indicate to the user that selection has been relinquished. Other applications can request the contents of a selection in different forms, called <em>targets</em>. There can be any number of selections, but most X applications only handle one, the <em>primary selection</em>. <p> In most cases, it isn't necessary for a GTK application to deal with selections itself. The standard widgets, such as the Entry widget, already have the capability to claim the selection when appropriate (e.g., when the user drags over text), and to retrieve the contents of the selection owned by another widget, or another application (e.g., when the user clicks the second mouse button). However, there may be cases in which you want to give other widgets the ability to supply the selection, or you wish to retrieve targets not supported by default. <p> A fundamental concept needed to understand selection handling is that of the <em>atom</em>. An atom is an integer that uniquely identifies a string (on a certain display). Certain atoms are predefined by the X server, and in some cases there are constants in in <tt>gtk.h</tt> corresponding to these atoms. For instance the constant <tt>GDK_PRIMARY_SELECTION</tt> corresponds to the string "PRIMARY". In other cases, you should use the functions <tt>gdk_atom_intern()</tt>, to get the atom corresponding to a string, and <tt>gdk_atom_name()</tt>, to get the name of an atom. Both selections and targets are identifed by atoms. <!-- ----------------------------------------------------------------- --> <sect1> Retrieving the selection <p> Retrieving the selection is an asynchronous process. To start the process, you call: <tscreen><verb> gint gtk_selection_convert (GtkWidget *widget, GdkAtom selection, GdkAtom target, guint32 time) </verb</tscreen> This <em>converts</em> the selection into the form specified by <tt/target/. If it all possible, the time field should be the time from the event that triggered the selection. This helps make sure that events occur in the order that the user requested them. However, if it is not available (for instance, if the conversion was triggered by a "clicked" signal), then you can use the constant <tt>GDK_CURRENT_TIME</tt>. <p> When the selection owner responds to the request, a "selection_received" signal is sent to your application. The handler for this signal receives a pointer to a <tt>GtkSelectionData</tt> structure, which is defined as: <tscreen><verb> struct _GtkSelectionData { GdkAtom selection; GdkAtom target; GdkAtom type; gint format; guchar *data; gint length; }; </verb></tscreen> <tt>selection</tt> and <tt>target</tt> are the values you gave in your <tt>gtk_selection_convert()</tt> call. <tt>type</tt> is an atom that identifies the type of data returned by the selection owner. Some possible values are "STRING", a string of latin-1 characters, "ATOM", a series of atoms, "INTEGER", an integer, etc. Most targets can only return one type. <tt/format/ gives the length of the units (for instance characters) in bits. Usually, you don't care about this when receiving data. <tt>data</tt> is a pointer to the returned data, and <tt>length</tt> gives the length of the returned data, in bytes. If <tt>length</tt> is negative, then an error occurred and the selection could not be retrieved. This might happen if no application owned the selection, or if you requested a target that the application didn't support. The buffer is actually guaranteed to be one byte longer than <tt>length</tt>; the extra byte will always be zero, so it isn't necessary to make a copy of strings just to null terminate them. <p> In the following example, we retrieve the special target "TARGETS", which is a list of all targets into which the selection can be converted. <tscreen><verb> /* gettargets.c */ #include <gtk/gtk.h> void selection_received (GtkWidget *widget, GtkSelectionData *selection_data, gpointer data); /* Signal handler invoked when user clicks on the "Get Targets" button */ void get_targets (GtkWidget *widget, gpointer data) { static GdkAtom targets_atom = GDK_NONE; /* Get the atom corresonding to the string "TARGETS" */ if (targets_atom == GDK_NONE) targets_atom = gdk_atom_intern ("TARGETS", FALSE); /* And request the "TARGETS" target for the primary selection */ gtk_selection_convert (widget, GDK_SELECTION_PRIMARY, targets_atom, GDK_CURRENT_TIME); } /* Signal handler called when the selections owner returns the data */ void selection_received (GtkWidget *widget, GtkSelectionData *selection_data, gpointer data) { GdkAtom *atoms; GList *item_list; int i; /* **** IMPORTANT **** Check to see if retrieval succeeded */ if (selection_data->length < 0) { g_print ("Selection retrieval failed\n"); return; } /* Make sure we got the data in the expected form */ if (selection_data->type != GDK_SELECTION_TYPE_ATOM) { g_print ("Selection \"TARGETS\" was not returned as atoms!\n"); return; } /* Print out the atoms we received */ atoms = (GdkAtom *)selection_data->data; item_list = NULL; for (i=0; i<selection_data->length/sizeof(GdkAtom); i++) { char *name; name = gdk_atom_name (atoms[i]); if (name != NULL) g_print ("%s\n",name); else g_print ("(bad atom)\n"); } return; } int main (int argc, char *argv[]) { GtkWidget *window; GtkWidget *button; gtk_init (&argc, &argv); /* Create the toplevel window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Event Box"); gtk_container_border_width (GTK_CONTAINER (window), 10); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_exit), NULL); /* Create a button the user can click to get targets */ button = gtk_button_new_with_label ("Get Targets"); gtk_container_add (GTK_CONTAINER (window), button); gtk_signal_connect (GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC (get_targets), NULL); gtk_signal_connect (GTK_OBJECT(button), "selection_received", GTK_SIGNAL_FUNC (selection_received), NULL); gtk_widget_show (button); gtk_widget_show (window); gtk_main (); return 0; } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Supplying the selection <p> Supplying the selection is a bit more complicated. You must register handlers that will be called when your selection is requested. For each selection/target pair you will handle, you make a call to: <tscreen><verb> void gtk_selection_add_handler (GtkWidget *widget, GdkAtom selection, GdkAtom target, GtkSelectionFunction function, GtkRemoveFunction remove_func, gpointer data); </verb></tscreen> <tt/widget/, <tt/selection/, and <tt/target/ identify the requests this handler will manage. <tt/remove_func/ if not NULL, will be called when the signal handler is removed. This is useful, for instance, for interpreted languages which need to keep track of a reference count for <tt/data/. <p> The callback function has the signature: <tscreen><verb> typedef void (*GtkSelectionFunction) (GtkWidget *widget, GtkSelectionData *selection_data, gpointer data); </verb></tscreen> The GtkSelectionData is the same as above, but this time, we're responsible for filling in the fields <tt/type/, <tt/format/, <tt/data/, and <tt/length/. (The <tt/format/ field is actually important here - the X server uses it to figure out whether the data needs to be byte-swapped or not. Usually it will be 8 - <em/i.e./ a character - or 32 - <em/i.e./ a. integer.) This is done by calling the function: <tscreen><verb> void gtk_selection_data_set (GtkSelectionData *selection_data, GdkAtom type, gint format, guchar *data, gint length); </verb></tscreen> This function takes care of properly making a copy of the data so that you don't have to worry about keeping it around. (You should not fill in the fields of the GtkSelectionData structure by hand.) <p> When prompted by the user, you claim ownership of the selection by calling: <tscreen><verb> gint gtk_selection_owner_set (GtkWidget *widget, GdkAtom selection, guint32 time); </verb></tscreen> If another application claims ownership of the selection, you will receive a "selection_clear_event". As an example of supplying the selection, the following program adds selection functionality to a toggle button. When the toggle button is depressed, the program claims the primary selection. The only target supported (aside from certain targets like "TARGETS" supplied by GTK itself), is the "STRING" target. When this target is requested, a string representation of the time is returned. <tscreen><verb> /* setselection.c */ #include <gtk/gtk.h> #include <time.h> /* Callback when the user toggles the selection */ void selection_toggled (GtkWidget *widget, gint *have_selection) { if (GTK_TOGGLE_BUTTON(widget)->active) { *have_selection = gtk_selection_owner_set (widget, GDK_SELECTION_PRIMARY, GDK_CURRENT_TIME); /* if claiming the selection failed, we return the button to the out state */ if (!*have_selection) gtk_toggle_button_set_state (GTK_TOGGLE_BUTTON(widget), FALSE); } else { if (*have_selection) { /* Before clearing the selection by setting the owner to NULL, we check if we are the actual owner */ if (gdk_selection_owner_get (GDK_SELECTION_PRIMARY) == widget->window) gtk_selection_owner_set (NULL, GDK_SELECTION_PRIMARY, GDK_CURRENT_TIME); *have_selection = FALSE; } } } /* Called when another application claims the selection */ gint selection_clear (GtkWidget *widget, GdkEventSelection *event, gint *have_selection) { *have_selection = FALSE; gtk_toggle_button_set_state (GTK_TOGGLE_BUTTON(widget), FALSE); return TRUE; } /* Supplies the current time as the selection. */ void selection_handle (GtkWidget *widget, GtkSelectionData *selection_data, gpointer data) { gchar *timestr; time_t current_time; current_time = time (NULL); timestr = asctime (localtime(&current_time)); /* When we return a single string, it should not be null terminated. That will be done for us */ gtk_selection_data_set (selection_data, GDK_SELECTION_TYPE_STRING, 8, timestr, strlen(timestr)); } int main (int argc, char *argv[]) { GtkWidget *window; GtkWidget *selection_button; static int have_selection = FALSE; gtk_init (&argc, &argv); /* Create the toplevel window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Event Box"); gtk_container_border_width (GTK_CONTAINER (window), 10); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_exit), NULL); /* Create a toggle button to act as the selection */ selection_button = gtk_toggle_button_new_with_label ("Claim Selection"); gtk_container_add (GTK_CONTAINER (window), selection_button); gtk_widget_show (selection_button); gtk_signal_connect (GTK_OBJECT(selection_button), "toggled", GTK_SIGNAL_FUNC (selection_toggled), &have_selection); gtk_signal_connect (GTK_OBJECT(selection_button), "selection_clear_event", GTK_SIGNAL_FUNC (selection_clear), &have_selection); gtk_selection_add_handler (selection_button, GDK_SELECTION_PRIMARY, GDK_SELECTION_TYPE_STRING, selection_handle, NULL); gtk_widget_show (selection_button); gtk_widget_show (window); gtk_main (); return 0; } </verb></tscreen> <!-- ***************************************************************** --> <sect>glib<label id="sec_glib"> <!-- ***************************************************************** --> <p> glib provides many useful functions and definitions available for use when creating GDK and GTK applications. I will list them all here with a brief explanation. Many are duplicates of standard libc functions so I won't go into detail on those. This is mostly to be used as a reference, so you know what is available for use. <!-- ----------------------------------------------------------------- --> <sect1>Definitions <p> Definitions for the extremes of many of the standard types are: <tscreen><verb> G_MINFLOAT G_MAXFLOAT G_MINDOUBLE G_MAXDOUBLE G_MINSHORT G_MAXSHORT G_MININT G_MAXINT G_MINLONG G_MAXLONG </verb></tscreen> Also, the following typedefs. The ones left unspecified are dynamically set depending on the architecture. Remember to avoid counting on the size of a pointer if you want to be portable! Eg, a pointer on an Alpha is 8 bytes, but 4 on Intel. <tscreen><verb> char gchar; short gshort; long glong; int gint; char gboolean; unsigned char guchar; unsigned short gushort; unsigned long gulong; unsigned int guint; float gfloat; double gdouble; long double gldouble; void* gpointer; gint8 guint8 gint16 guint16 gint32 guint32 </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Doubly Linked Lists <p> The following functions are used to create, manage, and destroy doubly linked lists. I assume you know what linked lists are, as it is beyond the scope of this document to explain them. Of course, it's not required that you know these for general use of GTK, but they are nice to know. <tscreen><verb> GList* g_list_alloc (void); void g_list_free (GList *list); void g_list_free_1 (GList *list); GList* g_list_append (GList *list, gpointer data); GList* g_list_prepend (GList *list, gpointer data); GList* g_list_insert (GList *list, gpointer data, gint position); GList* g_list_remove (GList *list, gpointer data); GList* g_list_remove_link (GList *list, GList *link); GList* g_list_reverse (GList *list); GList* g_list_nth (GList *list, gint n); GList* g_list_find (GList *list, gpointer data); GList* g_list_last (GList *list); GList* g_list_first (GList *list); gint g_list_length (GList *list); void g_list_foreach (GList *list, GFunc func, gpointer user_data); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Singly Linked Lists <p> Many of the above functions for singly linked lists are identical to the above. Here is a complete list: <tscreen><verb> GSList* g_slist_alloc (void); void g_slist_free (GSList *list); void g_slist_free_1 (GSList *list); GSList* g_slist_append (GSList *list, gpointer data); GSList* g_slist_prepend (GSList *list, gpointer data); GSList* g_slist_insert (GSList *list, gpointer data, gint position); GSList* g_slist_remove (GSList *list, gpointer data); GSList* g_slist_remove_link (GSList *list, GSList *link); GSList* g_slist_reverse (GSList *list); GSList* g_slist_nth (GSList *list, gint n); GSList* g_slist_find (GSList *list, gpointer data); GSList* g_slist_last (GSList *list); gint g_slist_length (GSList *list); void g_slist_foreach (GSList *list, GFunc func, gpointer user_data); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Memory Management <p> <tscreen><verb> gpointer g_malloc (gulong size); </verb></tscreen> This is a replacement for malloc(). You do not need to check the return vaule as it is done for you in this function. <tscreen><verb> gpointer g_malloc0 (gulong size); </verb></tscreen> Same as above, but zeroes the memory before returning a pointer to it. <tscreen><verb> gpointer g_realloc (gpointer mem, gulong size); </verb></tscreen> Relocates "size" bytes of memory starting at "mem". Obviously, the memory should have been previously allocated. <tscreen><verb> void g_free (gpointer mem); </verb></tscreen> Frees memory. Easy one. <tscreen><verb> void g_mem_profile (void); </verb></tscreen> Dumps a profile of used memory, but requries that you add #define MEM_PROFILE to the top of glib/gmem.c and re-make and make install. <tscreen><verb> void g_mem_check (gpointer mem); </verb></tscreen> Checks that a memory location is valid. Requires you add #define MEM_CHECK to the top of gmem.c and re-make and make install. <!-- ----------------------------------------------------------------- --> <sect1>Timers <p> Timer functions.. <tscreen><verb> GTimer* g_timer_new (void); void g_timer_destroy (GTimer *timer); void g_timer_start (GTimer *timer); void g_timer_stop (GTimer *timer); void g_timer_reset (GTimer *timer); gdouble g_timer_elapsed (GTimer *timer, gulong *microseconds); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>String Handling <p> A whole mess of string handling functions. They all look very interesting, and probably better for many purposes than the standard C string functions, but require documentation. <tscreen><verb> GString* g_string_new (gchar *init); void g_string_free (GString *string, gint free_segment); GString* g_string_assign (GString *lval, gchar *rval); GString* g_string_truncate (GString *string, gint len); GString* g_string_append (GString *string, gchar *val); GString* g_string_append_c (GString *string, gchar c); GString* g_string_prepend (GString *string, gchar *val); GString* g_string_prepend_c (GString *string, gchar c); void g_string_sprintf (GString *string, gchar *fmt, ...); void g_string_sprintfa (GString *string, gchar *fmt, ...); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Utility and Error Functions <p> <tscreen><verb> gchar* g_strdup (const gchar *str); </verb></tscreen> Replacement strdup function. Copies the original strings contents to newly allocated memory, and returns a pointer to it. <tscreen><verb> gchar* g_strerror (gint errnum); </verb></tscreen> I recommend using this for all error messages. It's much nicer, and more portable than perror() or others. The output is usually of the form: <tscreen><verb> program name:function that failed:file or further description:strerror </verb></tscreen> Here's an example of one such call used in our hello_world program: <tscreen><verb> g_print("hello_world:open:%s:%s\n", filename, g_strerror(errno)); </verb></tscreen> <tscreen><verb> void g_error (gchar *format, ...); </verb></tscreen> Prints an error message. The format is just like printf, but it prepends "** ERROR **: " to your message, and exits the program. Use only for fatal errors. <tscreen><verb> void g_warning (gchar *format, ...); </verb></tscreen> Same as above, but prepends "** WARNING **: ", and does not exit the program. <tscreen><verb> void g_message (gchar *format, ...); </verb></tscreen> Prints "message: " prepended to the string you pass in. <tscreen><verb> void g_print (gchar *format, ...); </verb></tscreen> Replacement for printf(). And our last function: <tscreen><verb> gchar* g_strsignal (gint signum); </verb></tscreen> Prints out the name of the Unix system signal given the signal number. Useful in generic signal handling functions. All of the above are more or less just stolen from glib.h. If anyone cares to document any function, just send me an email! <!-- ***************************************************************** --> <sect>GTK's rc Files <!-- ***************************************************************** --> <p> GTK has it's own way of dealing with application defaults, by using rc files. These can be used to set the colors of just about any widget, and can also be used to tile pixmaps onto the background of some widgets. <!-- ----------------------------------------------------------------- --> <sect1>Functions For rc Files <p> When your application starts, you should include a call to: <tscreen><verb> void gtk_rc_parse (char *filename); </verb></tscreen> <p> Passing in the filename of your rc file. This will cause GTK to parse this file, and use the style settings for the widget types defined there. <p> If you wish to have a special set of widgets that can take on a different style from others, or any other logical division of widgets, use a call to: <tscreen><verb> void gtk_widget_set_name (GtkWidget *widget, gchar *name); </verb></tscreen> <p> Passing your newly created widget as the first argument, and the name you wish to give it as the second. This will allow you to change the attributes of this widget by name through the rc file. <p> If we use a call something like this: <tscreen><verb> button = gtk_button_new_with_label ("Special Button"); gtk_widget_set_name (button, "special button"); </verb></tscreen> <p> Then this button is given the name "special button" and may be addressed by name in the rc file as "special button.GtkButton". [<--- Verify ME!] <p> The example rc file below, sets the properties of the main window, and lets all children of that main window inherit the style described by the "main button" style. The code used in the application is: <tscreen><verb> window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_widget_set_name (window, "main window"); </verb></tscreen> <p> And then the style is defined in the rc file using: <tscreen><verb> widget "main window.*GtkButton*" style "main_button" </verb></tscreen> <p> Which sets all the GtkButton widgets in the "main window" to the "main_buttons" style as defined in the rc file. <p> As you can see, this is a fairly powerful and flexible system. Use your imagination as to how best to take advantage of this. <!-- ----------------------------------------------------------------- --> <sect1>GTK's rc File Format <p> The format of the GTK file is illustrated in the example below. This is the testgtkrc file from the GTK distribution, but I've added a few comments and things. You may wish to include this explanation your application to allow the user to fine tune his application. <p> There are several directives to change the attributes of a widget. <itemize> <item>fg - Sets the foreground color of a widget. <item>bg - Sets the background color of a widget. <item>bg_pixmap - Sets the background of a widget to a tiled pixmap. <item>font - Sets the font to be used with the given widget. </itemize> <p> In addition to this, there are several states a widget can be in, and you can set different colors, pixmaps and fonts for each state. These states are: <itemize> <item>NORMAL - The normal state of a widget, without the mouse over top of it, and not being pressed etc. <item>PRELIGHT - When the mouse is over top of the widget, colors defined using this state will be in effect. <item>ACTIVE - When the widget is pressed or clicked it will be active, and the attributes assigned by this tag will be in effect. <item>INSENSITIVE - When a widget is set insensitive, and cannot be activated, it will take these attributes. <item>SELECTED - When an object is selected, it takes these attributes. </itemize> <p> When using the "fg" and "bg" keywords to set the colors of widgets, the format is: <tscreen><verb> fg[<STATE>] = { Red, Green, Blue } </verb></tscreen> <p> Where STATE is one of the above states (PRELIGHT, ACTIVE etc), and the Red, Green and Blue are values in the range of 0 - 1.0, { 1.0, 1.0, 1.0 } being white. They must be in float form, or they will register as 0, so a straight "1" will not work, it must be "1.0". A straight "0" is fine because it doesn't matter if it's not recognized. Unrecognized values are set to 0. <p> bg_pixmap is very similar to the above, except the colors are replaced by a filename. pixmap_path is a list of paths seperated by ":"'s. These paths will be searched for any pixmap you specify. <p> The font directive is simply: <tscreen><verb> font = "<font name>" </verb></tscreen> <p> Where the only hard part is figuring out the font string. Using xfontsel or similar utility should help. <p> The "widget_class" sets the style of a class of widgets. These classes are listed in the widget overview on the class hierarchy. <p> The "widget" directive sets a specificaly named set of widgets to a given style, overriding any style set for the given widget class. These widgets are registered inside the application using the gtk_widget_set_name() call. This allows you to specify the attributes of a widget on a per widget basis, rather than setting the attributes of an entire widget class. I urge you to document any of these special widgets so users may customize them. <p> When the keyword "<tt>parent</>" is used as an attribute, the widget will take on the attributes of it's parent in the application. <p> When defining a style, you may assign the attributes of a previously defined style to this new one. <tscreen><verb> style "main_button" = "button" { font = "-adobe-helvetica-medium-r-normal--*-100-*-*-*-*-*-*" bg[PRELIGHT] = { 0.75, 0, 0 } } </verb></tscreen> <p> This example takes the "button" style, and creates a new "main_button" style simply by changing the font and prelight background color of the "button" style. <p> Of course, many of these attributes don't apply to all widgets. It's a simple matter of common sense really. Anything that could apply, should. <!-- ----------------------------------------------------------------- --> <sect1>Example rc file <p> <tscreen><verb> # pixmap_path "<dir 1>:<dir 2>:<dir 3>:..." # pixmap_path "/usr/include/X11R6/pixmaps:/home/imain/pixmaps" # # style <name> [= <name>] # { # <option> # } # # widget <widget_set> style <style_name> # widget_class <widget_class_set> style <style_name> # Here is a list of all the possible states. Note that some do not apply to # certain widgets. # # NORMAL - The normal state of a widget, without the mouse over top of # it, and not being pressed etc. # # PRELIGHT - When the mouse is over top of the widget, colors defined # using this state will be in effect. # # ACTIVE - When the widget is pressed or clicked it will be active, and # the attributes assigned by this tag will be in effect. # # INSENSITIVE - When a widget is set insensitive, and cannot be # activated, it will take these attributes. # # SELECTED - When an object is selected, it takes these attributes. # # Given these states, we can set the attributes of the widgets in each of # these states using the following directives. # # fg - Sets the foreground color of a widget. # fg - Sets the background color of a widget. # bg_pixmap - Sets the background of a widget to a tiled pixmap. # font - Sets the font to be used with the given widget. # # This sets a style called "button". The name is not really important, as # it is assigned to the actual widgets at the bottom of the file. style "window" { #This sets the padding around the window to the pixmap specified. #bg_pixmap[<STATE>] = "<pixmap filename>" bg_pixmap[NORMAL] = "warning.xpm" } style "scale" { #Sets the foreground color (font color) to red when in the "NORMAL" #state. fg[NORMAL] = { 1.0, 0, 0 } #Sets the background pixmap of this widget to that of it's parent. bg_pixmap[NORMAL] = "<parent>" } style "button" { # This shows all the possible states for a button. The only one that # doesn't apply is the SELECTED state. fg[PRELIGHT] = { 0, 1.0, 1.0 } bg[PRELIGHT] = { 0, 0, 1.0 } bg[ACTIVE] = { 1.0, 0, 0 } fg[ACTIVE] = { 0, 1.0, 0 } bg[NORMAL] = { 1.0, 1.0, 0 } fg[NORMAL] = { .99, 0, .99 } bg[INSENSITIVE] = { 1.0, 1.0, 1.0 } fg[INSENSITIVE] = { 1.0, 0, 1.0 } } # In this example, we inherit the attributes of the "button" style and then # override the font and background color when prelit to create a new # "main_button" style. style "main_button" = "button" { font = "-adobe-helvetica-medium-r-normal--*-100-*-*-*-*-*-*" bg[PRELIGHT] = { 0.75, 0, 0 } } style "toggle_button" = "button" { fg[NORMAL] = { 1.0, 0, 0 } fg[ACTIVE] = { 1.0, 0, 0 } # This sets the background pixmap of the toggle_button to that of it's # parent widget (as defined in the application). bg_pixmap[NORMAL] = "<parent>" } style "text" { bg_pixmap[NORMAL] = "marble.xpm" fg[NORMAL] = { 1.0, 1.0, 1.0 } } style "ruler" { font = "-adobe-helvetica-medium-r-normal--*-80-*-*-*-*-*-*" } # pixmap_path "~/.pixmaps" # These set the widget types to use the styles defined above. # The widget types are listed in the class hierarchy, but could probably be # just listed in this document for the users reference. widget_class "GtkWindow" style "window" widget_class "GtkDialog" style "window" widget_class "GtkFileSelection" style "window" widget_class "*Gtk*Scale" style "scale" widget_class "*GtkCheckButton*" style "toggle_button" widget_class "*GtkRadioButton*" style "toggle_button" widget_class "*GtkButton*" style "button" widget_class "*Ruler" style "ruler" widget_class "*GtkText" style "text" # This sets all the buttons that are children of the "main window" to # the main_buton style. These must be documented to be taken advantage of. widget "main window.*GtkButton*" style "main_button" </verb></tscreen> <!-- ***************************************************************** --> <sect>Writing Your Own Widgets <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1> Overview <p> Although the GTK distribution comes with many types of widgets that should cover most basic needs, there may come a time when you need to create your own new widget type. Since GTK uses widget inheretence extensively, and there is already a widget that is close to what you want, it is often possible to make a useful new widget type in just a few lines of code. But before starting work on a new widget, check around first to make sure that someone has not already written it. This will prevent duplication of effort and keep the number of GTK widgets out there to a minimum, which will help keep both the code and the interface of different applications consistent. As a flip side to this, once you finish your widget, announce it to the world so other people can benefit. The best place to do this is probably the <tt>gtk-list</tt>. Complete sources for the example widgets are available at the place you got this tutorial, or from: <htmlurl url="http://www.msc.cornell.edu/~otaylor/gtk-gimp/tutorial" name="http://www.msc.cornell.edu/~otaylor/gtk-gimp/tutorial"> <!-- ----------------------------------------------------------------- --> <sect1> The Anatomy Of A Widget <p> In order to create a new widget, it is important to have an understanding of how GTK objects work. This section is just meant as a brief overview. See the reference documentation for the details. <p> GTK widgets are implemented in an object oriented fashion. However, they are implemented in standard C. This greatly improves portability and stability over using current generation C++ compilers; however, it does mean that the widget writer has to pay attention to some of the implementation details. The information common to all instances of one class of widgets (e.g., to all Button widgets) is stored in the <em>class structure</em>. There is only one copy of this in which is stored information about the class's signals (which act like virtual functions in C). To support inheritance, the first field in the class structure must be a copy of the parent's class structure. The declaration of the class structure of GtkButtton looks like: <tscreen><verb> struct _GtkButtonClass { GtkContainerClass parent_class; void (* pressed) (GtkButton *button); void (* released) (GtkButton *button); void (* clicked) (GtkButton *button); void (* enter) (GtkButton *button); void (* leave) (GtkButton *button); }; </verb></tscreen> <p> When a button is treated as a container (for instance, when it is resized), its class structure can be casted to GtkContainerClass, and the relevant fields used to handle the signals. <p> There is also a structure for each widget that is created on a per-instance basis. This structure has fields to store information that is different for each instance of the widget. We'll call this structure the <em>object structure</em>. For the Button class, it looks like: <tscreen><verb> struct _GtkButton { GtkContainer container; GtkWidget *child; guint in_button : 1; guint button_down : 1; }; </verb></tscreen> <p> Note that, similar to the class structure, the first field is the object structure of the parent class, so that this structure can be casted to the parent class's object structure as needed. <!-- ----------------------------------------------------------------- --> <sect1> Creating a Composite widget <!-- ----------------------------------------------------------------- --> <sect2> Introduction <p> One type of widget that you may be interested in creating is a widget that is merely an aggregate of other GTK widgets. This type of widget does nothing that couldn't be done without creating new widgets, but provides a convenient way of packaging user interface elements for reuse. The FileSelection and ColorSelection widgets in the standard distribution are examples of this type of widget. <p> The example widget that we'll create in this section is the Tictactoe widget, a 3x3 array of toggle buttons which triggers a signal when all three buttons in a row, column, or on one of the diagonals are depressed. <!-- ----------------------------------------------------------------- --> <sect2> Choosing a parent class <p> The parent class for a composite widget is typically the container class that holds all of the elements of the composite widget. For example, the parent class of the FileSelection widget is the Dialog class. Since our buttons will be arranged in a table, it might seem natural to make our parent class the GtkTable class. Unfortunately, this turns out not to work. The creation of a widget is divided among two functions - a <tt/WIDGETNAME_new()/ function that the user calls, and a <tt/WIDGETNAME_init()/ function which does the basic work of initializing the widget which is independent of the arguments passed to the <tt/_new()/ function. Descendent widgets only call the <tt/_init/ function of their parent widget. But this division of labor doesn't work well for tables, which when created, need to know the number of rows and columns in the table. Unless we want to duplicate most of the functionality of <tt/gtk_table_new()/ in our Tictactoe widget, we had best avoid deriving it from GtkTable. For that reason, we derive it from GtkVBox instead, and stick our table inside the VBox. <!-- ----------------------------------------------------------------- --> <sect2> The header file <p> Each widget class has a header file which declares the object and class structures for that widget, along with public functions. A couple of features are worth pointing out. To prevent duplicate definitions, we wrap the entire header file in: <tscreen><verb> #ifndef __TICTACTOE_H__ #define __TICTACTOE_H__ . . . #endif /* __TICTACTOE_H__ */ </verb></tscreen> And to keep C++ programs that include the header file happy, in: <tscreen><verb> #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ . . . #ifdef __cplusplus } #endif /* __cplusplus */ </verb></tscreen> Along with the functions and structures, we declare three standard macros in our header file, <tt/TICTACTOE(obj)/, <tt/TICTACTOE_CLASS(klass)/, and <tt/IS_TICTACTOE(obj)/, which cast a pointer into a pointer to the the object or class structure, and check if an object is a Tictactoe widget respectively. <p> Here is the complete header file: <tscreen><verb> /* tictactoe.h */ #ifndef __TICTACTOE_H__ #define __TICTACTOE_H__ #include <gdk/gdk.h> #include <gtk/gtkvbox.h> #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ #define TICTACTOE(obj) GTK_CHECK_CAST (obj, tictactoe_get_type (), Tictactoe) #define TICTACTOE_CLASS(klass) GTK_CHECK_CLASS_CAST (klass, tictactoe_get_type (), TictactoeClass) #define IS_TICTACTOE(obj) GTK_CHECK_TYPE (obj, tictactoe_get_type ()) typedef struct _Tictactoe Tictactoe; typedef struct _TictactoeClass TictactoeClass; struct _Tictactoe { GtkVBox vbox; GtkWidget *buttons[3][3]; }; struct _TictactoeClass { GtkVBoxClass parent_class; void (* tictactoe) (Tictactoe *ttt); }; guint tictactoe_get_type (void); GtkWidget* tictactoe_new (void); void tictactoe_clear (Tictactoe *ttt); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* __TICTACTOE_H__ */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2> The <tt/_get_type()/ function. <p> We now continue on to the implementation of our widget. A core function for every widget is the function <tt/WIDGETNAME_get_type()/. This function, when first called, tells GTK about the widget class, and gets an ID that uniquely identifies the widget class. Upon subsequent calls, it just returns the ID. <tscreen><verb> guint tictactoe_get_type () { static guint ttt_type = 0; if (!ttt_type) { GtkTypeInfo ttt_info = { "Tictactoe", sizeof (Tictactoe), sizeof (TictactoeClass), (GtkClassInitFunc) tictactoe_class_init, (GtkObjectInitFunc) tictactoe_init, (GtkArgFunc) NULL, }; ttt_type = gtk_type_unique (gtk_vbox_get_type (), &ttt_info); } return ttt_type; } </verb></tscreen> <p> The GtkTypeInfo structure has the following definition: <tscreen><verb> struct _GtkTypeInfo { gchar *type_name; guint object_size; guint class_size; GtkClassInitFunc class_init_func; GtkObjectInitFunc object_init_func; GtkArgFunc arg_func; }; </verb></tscreen> <p> The fields of this structure are pretty self-explanatory. We'll ignore the <tt/arg_func/ field here: It has an important, but as yet largely unimplemented, role in allowing widget options to be conveniently set from interpreted languages. Once GTK has a correctly filled in copy of this structure, it knows how to create objects of a particular widget type. <!-- ----------------------------------------------------------------- --> <sect2> The <tt/_class_init()/ function <p> The <tt/WIDGETNAME_class_init()/ function initializes the fields of the widget's class structure, and sets up any signals for the class. For our Tictactoe widget it looks like: <tscreen><verb> enum { TICTACTOE_SIGNAL, LAST_SIGNAL }; static gint tictactoe_signals[LAST_SIGNAL] = { 0 }; static void tictactoe_class_init (TictactoeClass *class) { GtkObjectClass *object_class; object_class = (GtkObjectClass*) class; tictactoe_signals[TICTACTOE_SIGNAL] = gtk_signal_new ("tictactoe", GTK_RUN_FIRST, object_class->type, GTK_SIGNAL_OFFSET (TictactoeClass, tictactoe), gtk_signal_default_marshaller, GTK_ARG_NONE, 0); gtk_object_class_add_signals (object_class, tictactoe_signals, LAST_SIGNAL); class->tictactoe = NULL; } </verb></tscreen> <p> Our widget has just one signal, the ``tictactoe'' signal that is invoked when a row, column, or diagonal is completely filled in. Not every composite widget needs signals, so if you are reading this for the first time, you may want to skip to the next section now, as things are going to get a bit complicated. The function: <tscreen><verb> gint gtk_signal_new (gchar *name, GtkSignalRunType run_type, gint object_type, gint function_offset, GtkSignalMarshaller marshaller, GtkArgType return_val, gint nparams, ...); </verb></tscreen> Creates a new signal. The parameters are: <itemize> <item> <tt/name/: The name of the signal. <item> <tt/run_type/: Whether the default handler runs before or after user handlers. Usually this will be <tt/GTK_RUN_FIRST/, or <tt/GTK_RUN_LAST/, although there are other possibilities. <item> <tt/object_type/: The ID of the object that this signal applies to. (It will also apply to that objects descendents) <item> <tt/function_offset/: The offset within the class structure of a pointer to the default handler. <item> <tt/marshaller/: A function that is used to invoke the signal handler. For signal handlers that have no arguments other than the object that emitted the signal and user data, we can use the presupplied marshaller function <tt/gtk_signal_default_marshaller/. <item> <tt/return_val/: The type of the return val. <item> <tt/nparams/: The number of parameters of the signal handler (other than the two default ones mentioned above) <item> <tt/.../: The types of the parameters. </itemize> When specifying types, the <tt/GtkArgType/ enumeration is used: <tscreen><verb> typedef enum { GTK_ARG_INVALID, GTK_ARG_NONE, GTK_ARG_CHAR, GTK_ARG_SHORT, GTK_ARG_INT, GTK_ARG_LONG, GTK_ARG_POINTER, GTK_ARG_OBJECT, GTK_ARG_FUNCTION, GTK_ARG_SIGNAL } GtkArgType; </verb></tscreen> <p> <tt/gtk_signal_new()/ returns a unique integer identifier for the signal, that we store in the <tt/tictactoe_signals/ array, which we index using an enumeration. (Conventionally, the enumeration elements are the signal name, uppercased, but here there would be a conflict with the <tt/TICTACTOE()/ macro, so we called it <tt/TICTACTOE_SIGNAL/ instead. After creating our signals, we need to tell GTK to associate our signals with the Tictactoe class. We do that by calling <tt/gtk_object_class_add_signals()/. We then set the pointer which points to the default handler for the ``tictactoe'' signal to NULL, indicating that there is no default action. <!-- ----------------------------------------------------------------- --> <sect2> The <tt/_init()/ function. <p> Each widget class also needs a function to initialize the object structure. Usually, this function has the fairly limited role of setting the fields of the structure to default values. For composite widgets, however, this function also creates the component widgets. <tscreen><verb> static void tictactoe_init (Tictactoe *ttt) { GtkWidget *table; gint i,j; table = gtk_table_new (3, 3, TRUE); gtk_container_add (GTK_CONTAINER(ttt), table); gtk_widget_show (table); for (i=0;i<3; i++) for (j=0;j<3; j++) { ttt->buttons[i][j] = gtk_toggle_button_new (); gtk_table_attach_defaults (GTK_TABLE(table), ttt->buttons[i][j], i, i+1, j, j+1); gtk_signal_connect (GTK_OBJECT (ttt->buttons[i][j]), "toggled", GTK_SIGNAL_FUNC (tictactoe_toggle), ttt); gtk_widget_set_usize (ttt->buttons[i][j], 20, 20); gtk_widget_show (ttt->buttons[i][j]); } } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2> And the rest... <p> There is one more function that every widget (except for base widget types like GtkBin that cannot be instantiated) needs to have - the function that the user calls to create an object of that type. This is conventionally called <tt/WIDGETNAME_new()/In some widgets, thought not for the Tictactoe widgets, this function takes arguments, and does some setup based on the arguments. The other two functions are specific to the Tictactoe widget. <p> <tt/tictactoe_clear()/ is a public function that resets all the buttons in the widget to the up position. Note the use of <tt/gtk_signal_handler_block_by_data()/ to keep our signal handler for button toggles from being triggered unnecessarily. <p> <tt/tictactoe_toggle()/ is the signal handler that is invoked when the user clicks on a button. It checks to see if there are any winning combinations that involve the toggled button, and if so, emits the "tictactoe" signal. <tscreen><verb> GtkWidget* tictactoe_new () { return GTK_WIDGET ( gtk_type_new (tictactoe_get_type ())); } void tictactoe_clear (Tictactoe *ttt) { int i,j; for (i=0;i<3;i++) for (j=0;j<3;j++) { gtk_signal_handler_block_by_data (GTK_OBJECT(ttt->buttons[i][j]), ttt); gtk_toggle_button_set_state (GTK_TOGGLE_BUTTON (ttt->buttons[i][j]), FALSE); gtk_signal_handler_unblock_by_data (GTK_OBJECT(ttt->buttons[i][j]), ttt); } } static void tictactoe_toggle (GtkWidget *widget, Tictactoe *ttt) { int i,k; static int rwins[8][3] = { { 0, 0, 0 }, { 1, 1, 1 }, { 2, 2, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 } }; static int cwins[8][3] = { { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 0, 0 }, { 1, 1, 1 }, { 2, 2, 2 }, { 0, 1, 2 }, { 2, 1, 0 } }; int success, found; for (k=0; k<8; k++) { success = TRUE; found = FALSE; for (i=0;i<3;i++) { success = success && GTK_TOGGLE_BUTTON(ttt->buttons[rwins[k][i]][cwins[k][i]])->active; found = found || ttt->buttons[rwins[k][i]][cwins[k][i]] == widget; } if (success && found) { gtk_signal_emit (GTK_OBJECT (ttt), tictactoe_signals[TICTACTOE_SIGNAL]); break; } } } </verb></tscreen> <p> And finally, an example program using our Tictactoe widget: <tscreen><verb> #include <gtk/gtk.h> #include "tictactoe.h" /* Invoked when a row, column or diagonal is completed */ void win (GtkWidget *widget, gpointer data) { g_print ("Yay!\n"); tictactoe_clear (TICTACTOE (widget)); } int main (int argc, char *argv[]) { GtkWidget *window; GtkWidget *ttt; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Aspect Frame"); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_exit), NULL); gtk_container_border_width (GTK_CONTAINER (window), 10); /* Create a new Tictactoe widget */ ttt = tictactoe_new (); gtk_container_add (GTK_CONTAINER (window), ttt); gtk_widget_show (ttt); /* And attach to its "tictactoe" signal */ gtk_signal_connect (GTK_OBJECT (ttt), "tictactoe", GTK_SIGNAL_FUNC (win), NULL); gtk_widget_show (window); gtk_main (); return 0; } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Creating a widget from scratch. <!-- ----------------------------------------------------------------- --> <sect2> Introduction <p> In this section, we'll learn more about how widgets display themselves on the screen and interact with events. As an example of this, we'll create a analog dial widget with a pointer that the user can drag to set the value. <!-- ----------------------------------------------------------------- --> <sect2> Displaying a widget on the screen <p> There are several steps that are involved in displaying on the screen. After the widget is created with a call to <tt/WIDGETNAME_new()/, several more functions are needed: <itemize> <item> <tt/WIDGETNAME_realize()/ is responsible for creating an X window for the widget if it has one. <item> <tt/WIDGETNAME_map()/ is invoked after the user calls <tt/gtk_widget_show()/. It is responsible for making sure the widget is actually drawn on the screen (<em/mapped/). For a container class, it must also make calls to <tt/map()/> functions of any child widgets. <item> <tt/WIDGETNAME_draw()/ is invoked when <tt/gtk_widget_draw()/ is called for the widget or one of its ancestors. It makes the actual calls to the drawing functions to draw the widget on the screen. For container widgets, this function must make calls to <tt/gtk_widget_draw()/ for its child widgets. <item> <tt/WIDGETNAME_expose()/ is a handler for expose events for the widget. It makes the necessary calls to the drawing functions to draw the exposed portion on the screen. For container widgets, this function must generate expose events for its child widgets which don't have their own windows. (If they have their own windows, then X will generate the necessary expose events) </itemize> <p> You might notice that the last two functions are quite similar - each is responsible for drawing the widget on the screen. In fact many types of widgets don't really care about the difference between the two. The default <tt/draw()/ function in the widget class simply generates a synthetic expose event for the redrawn area. However, some types of widgets can save work by distinguishing between the two functions. For instance, if a widget has multiple X windows, then since expose events identify the exposed window, it can redraw only the affected window, which is not possible for calls to <tt/draw()/. <p> Container widgets, even if they don't care about the difference for themselves, can't simply use the default <tt/draw()/ function because their child widgets might care about the difference. However, it would be wasteful to duplicate the drawing code between the two functions. The convention is that such widgets have a function called <tt/WIDGETNAME_paint()/ that does the actual work of drawing the widget, that is then called by the <tt/draw()/ and <tt/expose()/ functions. <p> In our example approach, since the dial widget is not a container widget, and only has a single window, we can take the simplest approach and use the default <tt/draw()/ function and only implement an <tt/expose()/ function. <!-- ----------------------------------------------------------------- --> <sect2> The origins of the Dial Widget <p> Just as all land animals are just variants on the first amphibian that crawled up out of the mud, Gtk widgets tend to start off as variants of some other, previously written widget. Thus, although this section is entilted ``Creating a Widget from Scratch'', the Dial widget really began with the source code for the Range widget. This was picked as a starting point because it would be nice if our Dial had the same interface as the Scale widgets which are just specialized descendents of the Range widget. So, though the source code is presented below in finished form, it should not be implied that it was written, <em>deus ex machina</em> in this fashion. Also, if you aren't yet familiar with how scale widgets work from the application writer's point of view, it would be a good idea to look them over before continuing. <!-- ----------------------------------------------------------------- --> <sect2> The Basics <p> Quite a bit of our widget should look pretty familiar from the Tictactoe widget. First, we have a header file: <tscreen><verb> /* GTK - The GIMP Toolkit * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifndef __GTK_DIAL_H__ #define __GTK_DIAL_H__ #include <gdk/gdk.h> #include <gtk/gtkadjustment.h> #include <gtk/gtkwidget.h> #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ #define GTK_DIAL(obj) GTK_CHECK_CAST (obj, gtk_dial_get_type (), GtkDial) #define GTK_DIAL_CLASS(klass) GTK_CHECK_CLASS_CAST (klass, gtk_dial_get_type (), GtkDialClass) #define GTK_IS_DIAL(obj) GTK_CHECK_TYPE (obj, gtk_dial_get_type ()) typedef struct _GtkDial GtkDial; typedef struct _GtkDialClass GtkDialClass; struct _GtkDial { GtkWidget widget; /* update policy (GTK_UPDATE_[CONTINUOUS/DELAYED/DISCONTINUOUS]) */ guint policy : 2; /* Button currently pressed or 0 if none */ guint8 button; /* Dimensions of dial components */ gint radius; gint pointer_width; /* ID of update timer, or 0 if none */ guint32 timer; /* Current angle */ gfloat angle; /* Old values from adjustment stored so we know when something changes */ gfloat old_value; gfloat old_lower; gfloat old_upper; /* The adjustment object that stores the data for this dial */ GtkAdjustment *adjustment; }; struct _GtkDialClass { GtkWidgetClass parent_class; }; GtkWidget* gtk_dial_new (GtkAdjustment *adjustment); guint gtk_dial_get_type (void); GtkAdjustment* gtk_dial_get_adjustment (GtkDial *dial); void gtk_dial_set_update_policy (GtkDial *dial, GtkUpdateType policy); void gtk_dial_set_adjustment (GtkDial *dial, GtkAdjustment *adjustment); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* __GTK_DIAL_H__ */ </verb></tscreen> Since there is quite a bit more going on in this widget, than the last one, we have more fields in the data structure, but otherwise things are pretty similar. <p> Next, after including header files, and declaring a few constants, we have some functions to provide information about the widget and initialize it: <tscreen><verb> #include <math.h> #include <stdio.h> #include <gtk/gtkmain.h> #include <gtk/gtksignal.h> #include "gtkdial.h" #define SCROLL_DELAY_LENGTH 300 #define DIAL_DEFAULT_SIZE 100 /* Forward declararations */ [ omitted to save space ] /* Local data */ static GtkWidgetClass *parent_class = NULL; guint gtk_dial_get_type () { static guint dial_type = 0; if (!dial_type) { GtkTypeInfo dial_info = { "GtkDial", sizeof (GtkDial), sizeof (GtkDialClass), (GtkClassInitFunc) gtk_dial_class_init, (GtkObjectInitFunc) gtk_dial_init, (GtkArgFunc) NULL, }; dial_type = gtk_type_unique (gtk_widget_get_type (), &dial_info); } return dial_type; } static void gtk_dial_class_init (GtkDialClass *class) { GtkObjectClass *object_class; GtkWidgetClass *widget_class; object_class = (GtkObjectClass*) class; widget_class = (GtkWidgetClass*) class; parent_class = gtk_type_class (gtk_widget_get_type ()); object_class->destroy = gtk_dial_destroy; widget_class->realize = gtk_dial_realize; widget_class->expose_event = gtk_dial_expose; widget_class->size_request = gtk_dial_size_request; widget_class->size_allocate = gtk_dial_size_allocate; widget_class->button_press_event = gtk_dial_button_press; widget_class->button_release_event = gtk_dial_button_release; widget_class->motion_notify_event = gtk_dial_motion_notify; } static void gtk_dial_init (GtkDial *dial) { dial->button = 0; dial->policy = GTK_UPDATE_CONTINUOUS; dial->timer = 0; dial->radius = 0; dial->pointer_width = 0; dial->angle = 0.0; dial->old_value = 0.0; dial->old_lower = 0.0; dial->old_upper = 0.0; dial->adjustment = NULL; } GtkWidget* gtk_dial_new (GtkAdjustment *adjustment) { GtkDial *dial; dial = gtk_type_new (gtk_dial_get_type ()); if (!adjustment) adjustment = (GtkAdjustment*) gtk_adjustment_new (0.0, 0.0, 0.0, 0.0, 0.0, 0.0); gtk_dial_set_adjustment (dial, adjustment); return GTK_WIDGET (dial); } static void gtk_dial_destroy (GtkObject *object) { GtkDial *dial; g_return_if_fail (object != NULL); g_return_if_fail (GTK_IS_DIAL (object)); dial = GTK_DIAL (object); if (dial->adjustment) gtk_object_unref (GTK_OBJECT (dial->adjustment)); if (GTK_OBJECT_CLASS (parent_class)->destroy) (* GTK_OBJECT_CLASS (parent_class)->destroy) (object); } </verb></tscreen> Note that this <tt/init()/ function does less than for the Tictactoe widget, since this is not a composite widget, and the <tt/new()/ function does more, since it now has an argument. Also, note that when we store a pointer to the Adjustment object, we increment its reference count, (and correspondingly decrement when we no longer use it) so that GTK can keep track of when it can be safely destroyed. <p> Also, there are a few function to manipulate the widget's options: <tscreen><verb> GtkAdjustment* gtk_dial_get_adjustment (GtkDial *dial) { g_return_val_if_fail (dial != NULL, NULL); g_return_val_if_fail (GTK_IS_DIAL (dial), NULL); return dial->adjustment; } void gtk_dial_set_update_policy (GtkDial *dial, GtkUpdateType policy) { g_return_if_fail (dial != NULL); g_return_if_fail (GTK_IS_DIAL (dial)); dial->policy = policy; } void gtk_dial_set_adjustment (GtkDial *dial, GtkAdjustment *adjustment) { g_return_if_fail (dial != NULL); g_return_if_fail (GTK_IS_DIAL (dial)); if (dial->adjustment) { gtk_signal_disconnect_by_data (GTK_OBJECT (dial->adjustment), (gpointer) dial); gtk_object_unref (GTK_OBJECT (dial->adjustment)); } dial->adjustment = adjustment; gtk_object_ref (GTK_OBJECT (dial->adjustment)); gtk_signal_connect (GTK_OBJECT (adjustment), "changed", (GtkSignalFunc) gtk_dial_adjustment_changed, (gpointer) dial); gtk_signal_connect (GTK_OBJECT (adjustment), "value_changed", (GtkSignalFunc) gtk_dial_adjustment_value_changed, (gpointer) dial); dial->old_value = adjustment->value; dial->old_lower = adjustment->lower; dial->old_upper = adjustment->upper; gtk_dial_update (dial); } </verb></tscreen> <sect2> <tt/gtk_dial_realize()/ <p> Now we come to some new types of functions. First, we have a function that does the work of creating the X window. Notice that a mask is passed to the function <tt/gdk_window_new()/ which specifies which fields of the GdkWindowAttr structure actually have data in them (the remaining fields wll be given default values). Also worth noting is the way the event mask of the widget is created. We call <tt/gtk_widget_get_events()/ to retrieve the event mask that the user has specified for this widget (with <tt/gtk_widget_set_events()/, and add the events that we are interested in ourselves. <p> After creating the window, we set its style and background, and put a pointer to the widget in the user data field of the GdkWindow. This last step allows GTK to dispatch events for this window to the correct widget. <tscreen><verb> static void gtk_dial_realize (GtkWidget *widget) { GtkDial *dial; GdkWindowAttr attributes; gint attributes_mask; g_return_if_fail (widget != NULL); g_return_if_fail (GTK_IS_DIAL (widget)); GTK_WIDGET_SET_FLAGS (widget, GTK_REALIZED); dial = GTK_DIAL (widget); attributes.x = widget->allocation.x; attributes.y = widget->allocation.y; attributes.width = widget->allocation.width; attributes.height = widget->allocation.height; attributes.wclass = GDK_INPUT_OUTPUT; attributes.window_type = GDK_WINDOW_CHILD; attributes.event_mask = gtk_widget_get_events (widget) | GDK_EXPOSURE_MASK | GDK_BUTTON_PRESS_MASK | GDK_BUTTON_RELEASE_MASK | GDK_POINTER_MOTION_MASK | GDK_POINTER_MOTION_HINT_MASK; attributes.visual = gtk_widget_get_visual (widget); attributes.colormap = gtk_widget_get_colormap (widget); attributes_mask = GDK_WA_X | GDK_WA_Y | GDK_WA_VISUAL | GDK_WA_COLORMAP; widget->window = gdk_window_new (widget->parent->window, &attributes, attributes_mask); widget->style = gtk_style_attach (widget->style, widget->window); gdk_window_set_user_data (widget->window, widget); gtk_style_set_background (widget->style, widget->window, GTK_STATE_ACTIVE); } </verb></tscreen> <sect2> Size negotiation <p> Before the first time that the window containing a widget is displayed, and whenever the layout of the window changes, GTK asks each child widget for its desired size. This request is handled by the function, <tt/gtk_dial_size_request()/. Since our widget isn't a container widget, and has no real constraints on its size, we just return a reasonable default value. <tscreen><verb> static void gtk_dial_size_request (GtkWidget *widget, GtkRequisition *requisition) { requisition->width = DIAL_DEFAULT_SIZE; requisition->height = DIAL_DEFAULT_SIZE; } </verb></tscreen> <p> After all the widgets have requested an ideal size, the layout of the window is computed and each child widget is notified of its actual size. Usually, this will at least as large as the requested size, but if for instance, the user has resized the window, it may occasionally be smaller than the requested size. The size notification is handled by the function <tt/gtk_dial_size_allocate()/. Notice that as well as computing the sizes of some component pieces for future use, this routine also does the grunt work of moving the widgets X window into the new position and size. <tscreen><verb> static void gtk_dial_size_allocate (GtkWidget *widget, GtkAllocation *allocation) { GtkDial *dial; g_return_if_fail (widget != NULL); g_return_if_fail (GTK_IS_DIAL (widget)); g_return_if_fail (allocation != NULL); widget->allocation = *allocation; if (GTK_WIDGET_REALIZED (widget)) { dial = GTK_DIAL (widget); gdk_window_move_resize (widget->window, allocation->x, allocation->y, allocation->width, allocation->height); dial->radius = MAX(allocation->width,allocation->height) * 0.45; dial->pointer_width = dial->radius / 5; } } </verb></tscreen>. <!-- ----------------------------------------------------------------- --> <sect2> <tt/gtk_dial_expose()/ <p> As mentioned above, all the drawing of this widget is done in the handler for expose events. There's not much to remark on here except the use of the function <tt/gtk_draw_polygon/ to draw the pointer with three dimensional shading according to the colors stored in the widget's style. <tscreen><verb> static gint gtk_dial_expose (GtkWidget *widget, GdkEventExpose *event) { GtkDial *dial; GdkPoint points[3]; gdouble s,c; gdouble theta; gint xc, yc; gint tick_length; gint i; g_return_val_if_fail (widget != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE); g_return_val_if_fail (event != NULL, FALSE); if (event->count > 0) return FALSE; dial = GTK_DIAL (widget); gdk_window_clear_area (widget->window, 0, 0, widget->allocation.width, widget->allocation.height); xc = widget->allocation.width/2; yc = widget->allocation.height/2; /* Draw ticks */ for (i=0; i<25; i++) { theta = (i*M_PI/18. - M_PI/6.); s = sin(theta); c = cos(theta); tick_length = (i%6 == 0) ? dial->pointer_width : dial->pointer_width/2; gdk_draw_line (widget->window, widget->style->fg_gc[widget->state], xc + c*(dial->radius - tick_length), yc - s*(dial->radius - tick_length), xc + c*dial->radius, yc - s*dial->radius); } /* Draw pointer */ s = sin(dial->angle); c = cos(dial->angle); points[0].x = xc + s*dial->pointer_width/2; points[0].y = yc + c*dial->pointer_width/2; points[1].x = xc + c*dial->radius; points[1].y = yc - s*dial->radius; points[2].x = xc - s*dial->pointer_width/2; points[2].y = yc - c*dial->pointer_width/2; gtk_draw_polygon (widget->style, widget->window, GTK_STATE_NORMAL, GTK_SHADOW_OUT, points, 3, TRUE); return FALSE; } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2> Event handling <p> The rest of the widget's code handles various types of events, and isn't too different from what would be found in many GTK applications. Two types of events can occur - either the user can click on the widget with the mouse and drag to move the pointer, or the value of the Adjustment object can change due to some external circumstance. <p> When the user clicks on the widget, we check to see if the click was appropriately near the pointer, and if so, store then button that the user clicked with in the <tt/button/ field of the widget structure, and grab all mouse events with a call to <tt/gtk_grab_add()/. Subsequent motion of the mouse causes the value of the control to be recomputed (by the function <tt/gtk_dial_update_mouse/). Depending on the policy that has been set, "value_changed" events are either generated instantly (<tt/GTK_UPDATE_CONTINUOUS/), after a delay in a timer added with <tt/gtk_timeout_add()/ (<tt/GTK_UPDATE_DELAYED/), or only when the button is released (<tt/GTK_UPDATE_DISCONTINUOUS/). <tscreen><verb> static gint gtk_dial_button_press (GtkWidget *widget, GdkEventButton *event) { GtkDial *dial; gint dx, dy; double s, c; double d_parallel; double d_perpendicular; g_return_val_if_fail (widget != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE); g_return_val_if_fail (event != NULL, FALSE); dial = GTK_DIAL (widget); /* Determine if button press was within pointer region - we do this by computing the parallel and perpendicular distance of the point where the mouse was pressed from the line passing through the pointer */ dx = event->x - widget->allocation.width / 2; dy = widget->allocation.height / 2 - event->y; s = sin(dial->angle); c = cos(dial->angle); d_parallel = s*dy + c*dx; d_perpendicular = fabs(s*dx - c*dy); if (!dial->button && (d_perpendicular < dial->pointer_width/2) && (d_parallel > - dial->pointer_width)) { gtk_grab_add (widget); dial->button = event->button; gtk_dial_update_mouse (dial, event->x, event->y); } return FALSE; } static gint gtk_dial_button_release (GtkWidget *widget, GdkEventButton *event) { GtkDial *dial; g_return_val_if_fail (widget != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE); g_return_val_if_fail (event != NULL, FALSE); dial = GTK_DIAL (widget); if (dial->button == event->button) { gtk_grab_remove (widget); dial->button = 0; if (dial->policy == GTK_UPDATE_DELAYED) gtk_timeout_remove (dial->timer); if ((dial->policy != GTK_UPDATE_CONTINUOUS) && (dial->old_value != dial->adjustment->value)) gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed"); } return FALSE; } static gint gtk_dial_motion_notify (GtkWidget *widget, GdkEventMotion *event) { GtkDial *dial; GdkModifierType mods; gint x, y, mask; g_return_val_if_fail (widget != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE); g_return_val_if_fail (event != NULL, FALSE); dial = GTK_DIAL (widget); if (dial->button != 0) { x = event->x; y = event->y; if (event->is_hint || (event->window != widget->window)) gdk_window_get_pointer (widget->window, &x, &y, &mods); switch (dial->button) { case 1: mask = GDK_BUTTON1_MASK; break; case 2: mask = GDK_BUTTON2_MASK; break; case 3: mask = GDK_BUTTON3_MASK; break; default: mask = 0; break; } if (mods & mask) gtk_dial_update_mouse (dial, x,y); } return FALSE; } static gint gtk_dial_timer (GtkDial *dial) { g_return_val_if_fail (dial != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (dial), FALSE); if (dial->policy == GTK_UPDATE_DELAYED) gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed"); return FALSE; } static void gtk_dial_update_mouse (GtkDial *dial, gint x, gint y) { gint xc, yc; gfloat old_value; g_return_if_fail (dial != NULL); g_return_if_fail (GTK_IS_DIAL (dial)); xc = GTK_WIDGET(dial)->allocation.width / 2; yc = GTK_WIDGET(dial)->allocation.height / 2; old_value = dial->adjustment->value; dial->angle = atan2(yc-y, x-xc); if (dial->angle < -M_PI/2.) dial->angle += 2*M_PI; if (dial->angle < -M_PI/6) dial->angle = -M_PI/6; if (dial->angle > 7.*M_PI/6.) dial->angle = 7.*M_PI/6.; dial->adjustment->value = dial->adjustment->lower + (7.*M_PI/6 - dial->angle) * (dial->adjustment->upper - dial->adjustment->lower) / (4.*M_PI/3.); if (dial->adjustment->value != old_value) { if (dial->policy == GTK_UPDATE_CONTINUOUS) { gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed"); } else { gtk_widget_draw (GTK_WIDGET(dial), NULL); if (dial->policy == GTK_UPDATE_DELAYED) { if (dial->timer) gtk_timeout_remove (dial->timer); dial->timer = gtk_timeout_add (SCROLL_DELAY_LENGTH, (GtkFunction) gtk_dial_timer, (gpointer) dial); } } } } </verb></tscreen> <p> Changes to the Adjustment by external means are communicated to our widget by the ``changed'' and ``value_changed'' signals. The handlers for these functions call <tt/gtk_dial_update()/ to validate the arguments, compute the new pointer angle, and redraw the widget (by calling <tt/gtk_widget_draw()/). <tscreen><verb> static void gtk_dial_update (GtkDial *dial) { gfloat new_value; g_return_if_fail (dial != NULL); g_return_if_fail (GTK_IS_DIAL (dial)); new_value = dial->adjustment->value; if (new_value < dial->adjustment->lower) new_value = dial->adjustment->lower; if (new_value > dial->adjustment->upper) new_value = dial->adjustment->upper; if (new_value != dial->adjustment->value) { dial->adjustment->value = new_value; gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed"); } dial->angle = 7.*M_PI/6. - (new_value - dial->adjustment->lower) * 4.*M_PI/3. / (dial->adjustment->upper - dial->adjustment->lower); gtk_widget_draw (GTK_WIDGET(dial), NULL); } static void gtk_dial_adjustment_changed (GtkAdjustment *adjustment, gpointer data) { GtkDial *dial; g_return_if_fail (adjustment != NULL); g_return_if_fail (data != NULL); dial = GTK_DIAL (data); if ((dial->old_value != adjustment->value) || (dial->old_lower != adjustment->lower) || (dial->old_upper != adjustment->upper)) { gtk_dial_update (dial); dial->old_value = adjustment->value; dial->old_lower = adjustment->lower; dial->old_upper = adjustment->upper; } } static void gtk_dial_adjustment_value_changed (GtkAdjustment *adjustment, gpointer data) { GtkDial *dial; g_return_if_fail (adjustment != NULL); g_return_if_fail (data != NULL); dial = GTK_DIAL (data); if (dial->old_value != adjustment->value) { gtk_dial_update (dial); dial->old_value = adjustment->value; } } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2> Possible Enhancements <p> The Dial widget as we've described it so far runs about 670 lines of code. Although that might sound like a fair bit, we've really accomplished quite a bit with that much code, especially since much of that length is headers and boilerplate. However, there are quite a few more enhancements that could be made to this widget: <itemize> <item> If you try this widget out, you'll find that there is some flashing as the pointer is dragged around. This is because the entire widget is erased every time the pointer is moved before being redrawn. Often, the best way to handle this problem is to draw to an offscreen pixmap, then copy the final results onto the screen in one step. (The ProgressBar widget draws itself in this fashion.) <item> The user should be able to use the up and down arrow keys to increase and decrease the value. <item> It would be nice if the widget had buttons to increase and decrease the value in small or large steps. Although it would be possible to use embedded Button widgets for this, we would also like the buttons to auto-repeat when held down, as the arrows on a scrollbar do. Most of the code to implement this type of behavior can be found in the GtkRange widget. <item> The Dial widget could be made into a container widget with a single child widget positioned at the bottom between the buttons mentioned above. The user could then add their choice of a label or entry widget to display the current value of the dial. </itemize> <!-- ----------------------------------------------------------------- --> <sect1> Learning More <p> Only a small part of the many details involved in creating widgets could be described above. If you want to write your own widgets, the best source of examples is the GTK source itself. Ask yourself some questions about the widget you want to write: is it a Container widget? does it have its own window? is it a modification of an existing widget? Then find a similar widget, and start making changes. Good luck! <!-- ***************************************************************** --> <sect>Scribble, A Simple Example Drawing Program <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1> Overview <p> In this section, we will build a simple drawing program. In the process, we will examine how to handle mouse events, how to draw in a window, and how to do drawing better by using a backing pixmap. After creating the simple drawing program, we will extend it by adding support for XInput devices, such as drawing tablets. GTK provides support routines which makes getting extended information, such as pressure and tilt, from such devices quite easy. <!-- ----------------------------------------------------------------- --> <sect1> Event Handling <p> The GTK signals we have already discussed are for high-level actions, such as a menu item being selected. However, sometimes it is useful to learn about lower-level occurrences, such as the mouse being moved, or a key being pressed. There are also GTK signals corresponding to these low-level <em>events</em>. The handlers for these signals have an extra parameter which is a pointer to a structure containing information about the event. For instance, motion events handlers are passed a pointer to a GdkEventMotion structure which looks (in part) like: <tscreen><verb> struct _GdkEventMotion { GdkEventType type; GdkWindow *window; guint32 time; gdouble x; gdouble y; ... guint state; ... }; </verb></tscreen> <tt/type/ will be set to the event type, in this case <tt/GDK_MOTION_NOTIFY/, window is the window in which the event occured. <tt/x/ and <tt/y/ give the coordinates of the event, and <tt/state/ specifies the modifier state when the event occurred (that is, it specifies which modifier keys and mouse buttons were pressed.) It is the bitwise OR of some of the following: <tscreen><verb> GDK_SHIFT_MASK GDK_LOCK_MASK GDK_CONTROL_MASK GDK_MOD1_MASK GDK_MOD2_MASK GDK_MOD3_MASK GDK_MOD4_MASK GDK_MOD5_MASK GDK_BUTTON1_MASK GDK_BUTTON2_MASK GDK_BUTTON3_MASK GDK_BUTTON4_MASK GDK_BUTTON5_MASK </verb></tscreen> <p> As for other signals, to determine what happens when an event occurs we call <tt>gtk_signal_connect()</tt>. But we also need let GTK know which events we want to be notified about. To do this, we call the function: <tscreen><verb> void gtk_widget_set_events (GtkWidget *widget, gint events); </verb></tscreen> The second field specifies the events we are interested in. It is the bitwise OR of constants that specify different types of events. For future reference the event types are: <tscreen><verb> GDK_EXPOSURE_MASK GDK_POINTER_MOTION_MASK GDK_POINTER_MOTION_HINT_MASK GDK_BUTTON_MOTION_MASK GDK_BUTTON1_MOTION_MASK GDK_BUTTON2_MOTION_MASK GDK_BUTTON3_MOTION_MASK GDK_BUTTON_PRESS_MASK GDK_BUTTON_RELEASE_MASK GDK_KEY_PRESS_MASK GDK_KEY_RELEASE_MASK GDK_ENTER_NOTIFY_MASK GDK_LEAVE_NOTIFY_MASK GDK_FOCUS_CHANGE_MASK GDK_STRUCTURE_MASK GDK_PROPERTY_CHANGE_MASK GDK_PROXIMITY_IN_MASK GDK_PROXIMITY_OUT_MASK </verb></tscreen> There are a few subtle points that have to be observed when calling <tt/gtk_widget_set_events()/. First, it must be called before the X window for a GTK widget is created. In practical terms, this means you should call it immediately after creating the widget. Second, the widget must have an associated X window. For efficiency, many widget types do not have their own window, but draw in their parent's window. These widgets are: <tscreen><verb> GtkAlignment GtkArrow GtkBin GtkBox GtkImage GtkItem GtkLabel GtkPaned GtkPixmap GtkScrolledWindow GtkSeparator GtkTable GtkViewport GtkAspectFrame GtkFrame GtkVPaned GtkHPaned GtkVBox GtkHBox GtkVSeparator GtkHSeparator </verb></tscreen> To capture events for these widgets, you need to use an EventBox widget. See the section on <ref id="sec_The_EventBox_Widget" name="The EventBox Widget"> for details. <p> For our drawing program, we want to know when the mouse button is pressed and when the mouse is moved, so we specify <tt/GDK_POINTER_MOTION_MASK/ and <tt/GDK_BUTTON_PRESS_MASK/. We also want to know when we need to redraw our window, so we specify <tt/GDK_EXPOSURE_MASK/. Although we want to be notified via a Configure event when our window size changes, we don't have to specify the corresponding <tt/GDK_STRUCTURE_MASK/ flag, because it is automatically specified for all windows. <p> It turns out, however, that there is a problem with just specifying <tt/GDK_POINTER_MOTION_MASK/. This will cause the server to add a new motion event to the event queue every time the user moves the mouse. Imagine that it takes us 0.1 seconds to handle a motion event, but the X server queues a new motion event every 0.05 seconds. We will soon get way behind the users drawing. If the user draws for 5 seconds, it will take us another 5 seconds to catch up after they release the mouse button! What we would like is to only get one motion event for each event we process. The way to do this is to specify <tt/GDK_POINTER_MOTION_HINT_MASK/. <p> When we specify <tt/GDK_POINTER_MOTION_HINT_MASK/, the server sends us a motion event the first time the pointer moves after entering our window, or after a button press or release event. Subsequent motion events will be suppressed until we explicitely ask for the position of the pointer using the function: <tscreen><verb> GdkWindow* gdk_window_get_pointer (GdkWindow *window, gint *x, gint *y, GdkModifierType *mask); </verb></tscreen> (There is another function, <tt>gtk_widget_get_pointer()</tt> which has a simpler interface, but turns out not to be very useful, since it only retrieves the position of the mouse, not whether the buttons are pressed.) <p> The code to set the events for our window then looks like: <tscreen><verb> gtk_signal_connect (GTK_OBJECT (drawing_area), "expose_event", (GtkSignalFunc) expose_event, NULL); gtk_signal_connect (GTK_OBJECT(drawing_area),"configure_event", (GtkSignalFunc) configure_event, NULL); gtk_signal_connect (GTK_OBJECT (drawing_area), "motion_notify_event", (GtkSignalFunc) motion_notify_event, NULL); gtk_signal_connect (GTK_OBJECT (drawing_area), "button_press_event", (GtkSignalFunc) button_press_event, NULL); gtk_widget_set_events (drawing_area, GDK_EXPOSURE_MASK | GDK_LEAVE_NOTIFY_MASK | GDK_BUTTON_PRESS_MASK | GDK_POINTER_MOTION_MASK | GDK_POINTER_MOTION_HINT_MASK); </verb></tscreen> We'll save the "expose_event" and "configure_event" handlers for later. The "motion_notify_event" and "button_press_event" handlers pretty simple: <tscreen><verb> static gint button_press_event (GtkWidget *widget, GdkEventButton *event) { if (event->button == 1 && pixmap != NULL) draw_brush (widget, event->x, event->y); return TRUE; } static gint motion_notify_event (GtkWidget *widget, GdkEventMotion *event) { int x, y; GdkModifierType state; if (event->is_hint) gdk_window_get_pointer (event->window, &x, &y, &state); else { x = event->x; y = event->y; state = event->state; } if (state & GDK_BUTTON1_MASK && pixmap != NULL) draw_brush (widget, x, y); return TRUE; } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> The DrawingArea Widget, And Drawing <p> We know turn to the process of drawing on the screen. The widget we use for this is the DrawingArea widget. A drawing area widget is essentially an X window and nothing more. It is a blank canvas in which we can draw whatever we like. A drawing area is created using the call: <tscreen><verb> GtkWidget* gtk_drawing_area_new (void); </verb></tscreen> A default size for the widget can be specified by calling: <tscreen><verb> void gtk_drawing_area_size (GtkDrawingArea *darea, gint width, gint height); </verb></tscreen> This default size can be overriden, as is true for all widgets, by calling <tt>gtk_widget_set_usize()</tt>, and that, in turn, can be overridden if the user manually resizes the the window containing the drawing area. <p> It should be noted that when we create a DrawingArea widget, we are, <em>completely</em> responsible for drawing the contents. If our window is obscured then uncovered, we get an exposure event and must redraw what was previously hidden. <p> Having to remember everything that was drawn on the screen so we can properly redraw it can, to say the least, be a nuisance. In addition, it can be visually distracting if portions of the window are cleared, then redrawn step by step. The solution to this problem is to use an offscreen <em>backing pixmap</em>. Instead of drawing directly to the screen, we draw to an image stored in server memory but not displayed, then when the image changes or new portions of the image are displayed, we copy the relevant portions onto the screen. <p> To create an offscreen pixmap, we call the function: <tscreen><verb> GdkPixmap* gdk_pixmap_new (GdkWindow *window, gint width, gint height, gint depth); </verb></tscreen> The <tt>window</tt> parameter specifies a GDK window that this pixmap takes some of its properties from. <tt>width</tt> and <tt>height</tt> specify the size of the pixmap. <tt>depth</tt> specifies the <em>color depth</em>, that is the number of bits per pixel, for the new window. If the depth is specified as <tt>-1</tt>, it will match the depth of <tt>window</tt>. <p> We create the pixmap in our "configure_event" handler. This event is generated whenever the window changes size, including when it is originally created. <tscreen><verb> /* Backing pixmap for drawing area */ static GdkPixmap *pixmap = NULL; /* Create a new backing pixmap of the appropriate size */ static gint configure_event (GtkWidget *widget, GdkEventConfigure *event) { if (pixmap) { gdk_pixmap_destroy(pixmap); } pixmap = gdk_pixmap_new(widget->window, widget->allocation.width, widget->allocation.height, -1); gdk_draw_rectangle (pixmap, widget->style->white_gc, TRUE, 0, 0, widget->allocation.width, widget->allocation.height); return TRUE; } </verb></tscreen> The call to <tt>gdk_draw_rectangle()</tt> clears the pixmap initially to white. We'll say more about that in a moment. <p> Our exposure event handler then simply copies the relevant portion of the pixmap onto the screen (we determine the area we need to redraw by using the event->area field of the exposure event): <tscreen><verb> /* Refill the screen from the backing pixmap */ static gint expose_event (GtkWidget *widget, GdkEventExpose *event) { gdk_draw_pixmap(widget->window, widget->style->fg_gc[GTK_WIDGET_STATE (widget)], pixmap, event->area.x, event->area.y, event->area.x, event->area.y, event->area.width, event->area.height); return FALSE; } </verb></tscreen> We've now seen how to keep the screen up to date with our pixmap, but how do we actually draw interesting stuff on our pixmap? There are a large number of calls in GTK's GDK library for drawing on <em>drawables</em>. A drawable is simply something that can be drawn upon. It can be a window, a pixmap, or a bitmap (a black and white image). We've already seen two such calls above, <tt>gdk_draw_rectangle()</tt> and <tt>gdk_draw_pixmap()</tt>. The complete list is: <tscreen><verb> gdk_draw_line () gdk_draw_rectangle () gdk_draw_arc () gdk_draw_polygon () gdk_draw_string () gdk_draw_text () gdk_draw_pixmap () gdk_draw_bitmap () gdk_draw_image () gdk_draw_points () gdk_draw_segments () </verb></tscreen> See the reference documentation or the header file <tt><gdk/gdk.h></tt> for further details on these functions. These functions all share the same first two arguments. The first argument is the drawable to draw upon, the second argument is a <em>graphics context</em> (GC). <p> A graphics context encapsulates information about things such as foreground and background color and line width. GDK has a full set of functions for creating and modifying graphics contexts, but to keep things simple we'll just use predefined graphics contexts. Each widget has an associated style. (Which can be modified in a gtkrc file, see the section GTK's rc file.) This, among other things, stores a number of graphics contexts. Some examples of accessing these graphics contexts are: <tscreen><verb> widget->style->white_gc widget->style->black_gc widget->style->fg_gc[GTK_STATE_NORMAL] widget->style->bg_gc[GTK_WIDGET_STATE(widget)] </verb></tscreen> The fields <tt>fg_gc</tt>, <tt>bg_gc</tt>, <tt>dark_gc</tt>, and <tt>light_gc</tt> are indexed by a parameter of type <tt>GtkStateType</tt> which can take on the values: <tscreen><verb> GTK_STATE_NORMAL, GTK_STATE_ACTIVE, GTK_STATE_PRELIGHT, GTK_STATE_SELECTED, GTK_STATE_INSENSITIVE </verb></tscreen> For instance, the for <tt/GTK_STATE_SELECTED/ the default foreground color is white and the default background color, dark blue. <p> Our function <tt>draw_brush()</tt>, which does the actual drawing on the screen, is then: <tscreen><verb> /* Draw a rectangle on the screen */ static void draw_brush (GtkWidget *widget, gdouble x, gdouble y) { GdkRectangle update_rect; update_rect.x = x - 5; update_rect.y = y - 5; update_rect.width = 10; update_rect.height = 10; gdk_draw_rectangle (pixmap, widget->style->black_gc, TRUE, update_rect.x, update_rect.y, update_rect.width, update_rect.height); gtk_widget_draw (widget, &update_rect); } </verb></tscreen> After we draw the rectangle representing the brush onto the pixmap, we call the function: <tscreen><verb> void gtk_widget_draw (GtkWidget *widget, GdkRectangle *area); </verb></tscreen> which notifies X that the area given by the <tt>area</tt> parameter needs to be updated. X will eventually generate an expose event (possibly combining the areas passed in several calls to <tt>gtk_widget_draw()</tt>) which will cause our expose event handler to copy the relevant portions to the screen. <p> We have now covered the entire drawing program except for a few mundane details like creating the main window. The complete source code is available from the location from which you got this tutorial, or from: <htmlurl url="http://www.msc.cornell.edu/~otaylor/gtk-gimp/tutorial" name="http://www.msc.cornell.edu/~otaylor/gtk-gimp/tutorial"> <!-- ----------------------------------------------------------------- --> <sect1> Adding XInput support <p> It is now possible to buy quite inexpensive input devices such as drawing tablets, which allow drawing with a much greater ease of artistic expression than does a mouse. The simplest way to use such devices is simply as a replacement for the mouse, but that misses out many of the advantages of these devices, such as: <itemize> <item> Pressure sensitivity <item> Tilt reporting <item> Sub-pixel positioning <item> Multiple inputs (for example, a stylus with a point and eraser) </itemize> For information about the XInput extension, see the <htmlurl url="http://www.msc.cornell.edu/~otaylor/xinput/XInput-HOWTO.html" name="XInput-HOWTO">. <p> If we examine the full definition of, for example, the GdkEventMotion structure, we see that it has fields to support extended device information. <tscreen><verb> struct _GdkEventMotion { GdkEventType type; GdkWindow *window; guint32 time; gdouble x; gdouble y; gdouble pressure; gdouble xtilt; gdouble ytilt; guint state; gint16 is_hint; GdkInputSource source; guint32 deviceid; }; </verb></tscreen> <tt/pressure/ gives the pressure as a floating point number between 0 and 1. <tt/xtilt/ and <tt/ytilt/ can take on values between -1 and 1, corresponding to the degree of tilt in each direction. <tt/source/ and <tt/deviceid/ specify the device for which the event occurred in two different ways. <tt/source/ gives some simple information about the type of device. It can take the enumeration values. <tscreen><verb> GDK_SOURCE_MOUSE GDK_SOURCE_PEN GDK_SOURCE_ERASER GDK_SOURCE_CURSOR </verb></tscreen> <tt/deviceid/ specifies a unique numeric ID for the device. This can be used to find out further information about the device using the <tt/gdk_input_list_devices()/ call (see below). The special value <tt/GDK_CORE_POINTER/ is used for the core pointer device. (Usually the mouse.) <sect2> Enabling extended device information <p> To let GTK know about our interest in the extended device information, we merely have to add a single line to our program: <tscreen><verb> gtk_widget_set_extension_events (drawing_area, GDK_EXTENSION_EVENTS_CURSOR); </verb></tscreen> By giving the value <tt/GDK_EXTENSION_EVENTS_CURSOR/ we say that we are interested in extension events, but only if we don't have to draw our own cursor. See the section <ref id="sec_Further_Sophistications" name="Further Sophistications"> below for more information about drawing the cursor. We could also give the values <tt/GDK_EXTENSION_EVENTS_ALL/ if we were willing to draw our own cursor, or <tt/GDK_EXTENSION_EVENTS_NONE/ to revert back to the default condition. <p> This is not completely the end of the story however. By default, no extension devices are enabled. We need a mechanism to allow users to enable and configure their extension devices. GTK provides the InputDialog widget to automate this process. The following procedure manages an InputDialog widget. It creates the dialog if it isn't present, and raises it to the top otherwise. <tscreen><verb> void input_dialog_destroy (GtkWidget *w, gpointer data) { *((GtkWidget **)data) = NULL; } void create_input_dialog () { static GtkWidget *inputd = NULL; if (!inputd) { inputd = gtk_input_dialog_new(); gtk_signal_connect (GTK_OBJECT(inputd), "destroy", (GtkSignalFunc)input_dialog_destroy, &inputd); gtk_signal_connect_object (GTK_OBJECT(GTK_INPUT_DIALOG(inputd)->close_button), "clicked", (GtkSignalFunc)gtk_widget_hide, GTK_OBJECT(inputd)); gtk_widget_hide ( GTK_INPUT_DIALOG(inputd)->save_button); gtk_widget_show (inputd); } else { if (!GTK_WIDGET_MAPPED(inputd)) gtk_widget_show(inputd); else gdk_window_raise(inputd->window); } } </verb></tscreen> (You might want to take note of the way we handle this dialog. By connecting to the "destroy" signal, we make sure that we don't keep a pointer to dialog around after it is destroyed - that could lead to a segfault.) <p> The InputDialog has two buttons "Close" and "Save", which by default have no actions assigned to them. In the above function we make "Close" hide the dialog, hide the "Save" button, since we don't implement saving of XInput options in this program. <sect2> Using extended device information <p> Once we've enabled the device, we can just use the extended device information in the extra fields of the event structures. In fact, it is always safe to use this information since these fields will have reasonable default values even when extended events are not enabled. <p> Once change we do have to make is to call <tt/gdk_input_window_get_pointer()/ instead of <tt/gdk_window_get_pointer/. This is necessary because <tt/gdk_window_get_pointer/ doesn't return the extended device information. <tscreen><verb> void gdk_input_window_get_pointer (GdkWindow *window, guint32 deviceid, gdouble *x, gdouble *y, gdouble *pressure, gdouble *xtilt, gdouble *ytilt, GdkModifierType *mask); </verb></tscreen> When calling this function, we need to specify the device ID as well as the window. Usually, we'll get the device ID from the <tt/deviceid/ field of an event structure. Again, this function will return reasonable values when extension events are not enabled. (In this case, <tt/event->deviceid/ will have the value <tt/GDK_CORE_POINTER/). So the basic structure of our button-press and motion event handlers, doesn't change much - we just need to add code to deal with the extended information. <tscreen><verb> static gint button_press_event (GtkWidget *widget, GdkEventButton *event) { print_button_press (event->deviceid); if (event->button == 1 && pixmap != NULL) draw_brush (widget, event->source, event->x, event->y, event->pressure); return TRUE; } static gint motion_notify_event (GtkWidget *widget, GdkEventMotion *event) { gdouble x, y; gdouble pressure; GdkModifierType state; if (event->is_hint) gdk_input_window_get_pointer (event->window, event->deviceid, &x, &y, &pressure, NULL, NULL, &state); else { x = event->x; y = event->y; pressure = event->pressure; state = event->state; } if (state & GDK_BUTTON1_MASK && pixmap != NULL) draw_brush (widget, event->source, x, y, pressure); return TRUE; } </verb></tscreen> We also need to do something with the new information. Our new <tt/draw_brush()/ function draws with a different color for each <tt/event->source/ and changes the brush size depending on the pressure. <tscreen><verb> /* Draw a rectangle on the screen, size depending on pressure, and color on the type of device */ static void draw_brush (GtkWidget *widget, GdkInputSource source, gdouble x, gdouble y, gdouble pressure) { GdkGC *gc; GdkRectangle update_rect; switch (source) { case GDK_SOURCE_MOUSE: gc = widget->style->dark_gc[GTK_WIDGET_STATE (widget)]; break; case GDK_SOURCE_PEN: gc = widget->style->black_gc; break; case GDK_SOURCE_ERASER: gc = widget->style->white_gc; break; default: gc = widget->style->light_gc[GTK_WIDGET_STATE (widget)]; } update_rect.x = x - 10 * pressure; update_rect.y = y - 10 * pressure; update_rect.width = 20 * pressure; update_rect.height = 20 * pressure; gdk_draw_rectangle (pixmap, gc, TRUE, update_rect.x, update_rect.y, update_rect.width, update_rect.height); gtk_widget_draw (widget, &update_rect); } </verb></tscreen> <sect2> Finding out more about a device <p> As an example of how to find out more about a device, our program will print the name of the device that generates each button press. To find out the name of a device, we call the function: <tscreen><verb> GList *gdk_input_list_devices (void); </verb></tscreen> which returns a GList (a linked list type from the glib library) of GdkDeviceInfo structures. The GdkDeviceInfo strucure is defined as: <tscreen><verb> struct _GdkDeviceInfo { guint32 deviceid; gchar *name; GdkInputSource source; GdkInputMode mode; gint has_cursor; gint num_axes; GdkAxisUse *axes; gint num_keys; GdkDeviceKey *keys; }; </verb></tscreen> Most of these fields are configuration information that you can ignore unless you are implemented XInput configuration saving. The we are interested in here is <tt/name/ which is simply the name that X assigns to the device. The other field that isn't configuration information is <tt/has_cursor/. If <tt/has_cursor/ is false, then we we need to draw our own cursor. But since we've specified <tt/GDK_EXTENSION_EVENTS_CURSOR/, we don't have to worry about this. <p> Our <tt/print_button_press()/ function simply iterates through the returned list until it finds a match, then prints out the name of the device. <tscreen><verb> static void print_button_press (guint32 deviceid) { GList *tmp_list; /* gdk_input_list_devices returns an internal list, so we shouldn't free it afterwards */ tmp_list = gdk_input_list_devices(); while (tmp_list) { GdkDeviceInfo *info = (GdkDeviceInfo *)tmp_list->data; if (info->deviceid == deviceid) { printf("Button press on device '%s'\n", info->name); return; } tmp_list = tmp_list->next; } } </verb></tscreen> That completes the changes to ``XInputize'' our program. As with the first version, the complete source is available at the location from which you got this tutorial, or from: <htmlurl url="http://www.msc.cornell.edu/~otaylor/gtk-gimp/tutorial" name="http://www.msc.cornell.edu/~otaylor/gtk-gimp/tutorial"> <sect2> Further sophistications <label id="sec_Further_Sophistications"> <p> Although our program now supports XInput quite well, it lacks some features we would want in a full-featured application. First, the user probably doesn't want to have to configure their device each time they run the program, so we should allow them to save the device configuration. This is done by iterating through the return of <tt/gdk_input_list_devices()/ and writing out the configuration to a file. <p> To restore the state next time the program is run, GDK provides functions to change device configuration: <tscreen><verb> gdk_input_set_extension_events() gdk_input_set_source() gdk_input_set_mode() gdk_input_set_axes() gdk_input_set_key() </verb></tscreen> (The list returned from <tt/gdk_input_list_devices()/ should not be modified directly.) An example of doing this can be found in the drawing program gsumi. (Available from <htmlurl url="http://www.msc.cornell.edu/~otaylor/gsumi/" name="http://www.msc.cornell.edu/~otaylor/gsumi/">) Eventually, it would be nice to have a standard way of doing this for all applications. This probably belongs at a slightly higher level than GTK, perhaps in the GNOME library. <p> Another major ommission that we have mentioned above is the lack of cursor drawing. Platforms other than XFree86 currently do not allow simultaneously using a device as both the core pointer and directly by an application. See the <url url="http://www.msc.cornell.edu/~otaylor/xinput/XInput-HOWTO.html" name="XInput-HOWTO"> for more information about this. This means that applications that want to support the widest audience need to draw their own cursor. <p> An application that draws it's own cursor needs to do two things: determine if the current device needs a cursor drawn or not, and determine if the current device is in proximity. (If the current device is a drawing tablet, it's a nice touch to make the cursor disappear when the stylus is lifted from the tablet. When the device is touching the stylus, that is called "in proximity.") The first is done by searching the device list, as we did to find out the device name. The second is achieved by selecting "proximity_out" events. An example of drawing one's own cursor is found in the 'testinput' program found in the GTK distribution. <!-- ***************************************************************** --> <sect>Tips For Writing GTK Applications <!-- ***************************************************************** --> <p> This section is simply a gathering of wisdom, general style guidelines and hints to creating good GTK applications. It is totally useless right now cause it's only a topic sentence :) Use GNU autoconf and automake! They are your friends :) I am planning to make a quick intro on them here. <!-- ***************************************************************** --> <sect>Contributing <!-- ***************************************************************** --> <p> This document, like so much other great software out there, was created for free by volunteers. If you are at all knowledgeable about any aspect of GTK that does not already have documentation, please consider contributing to this document. <p> If you do decide to contribute, please mail your text to Tony Gale, <tt><htmlurl url="mailto:gale@gimp.org" name="gale@gimp.org"></tt>. Also, be aware that the entirety of this document is free, and any addition by yourself must also be free. That is, people may use any portion of your examples in their programs, and copies of this document may be distributed at will etc. <p> Thank you. <!-- ***************************************************************** --> <sect>Credits <!-- ***************************************************************** --> <p> I would like to thank the following for their contributions to this text. <itemize> <item>Bawer Dagdeviren, <tt><htmlurl url="mailto:chamele0n@geocities.com" name="chamele0n@geocities.com"></tt> for the menus tutorial. <item>Raph Levien, <tt><htmlurl url="mailto:raph@acm.org" name="raph@acm.org"></tt> for hello world ala GTK, widget packing, and general all around wisdom. He's also generously donated a home for this tutorial. <item>Peter Mattis, <tt><htmlurl url="mailto:petm@xcf.berkeley.edu" name="petm@xcf.berkeley.edu"></tt> for the simplest GTK program.. and the ability to make it :) <item>Werner Koch <tt><htmlurl url="mailto:werner.koch@guug.de" name="werner.koch@guug.de"></tt> for converting the original plain text to SGML, and the widget class hierarchy. <item>Mark Crichton <tt><htmlurl url="mailto:crichton@expert.cc.purdue.edu" name="crichton@expert.cc.purdue.edu"></tt> for the menu factory code, and the table packing tutorial. <item>Owen Taylor <tt><htmlurl url="mailto:owt1@cornell.edu" name="owt1@cornell.edu"></tt> for the EventBox widget section (and the patch to the distro). He's also responsible for the selections code and tutorial, as well as the sections on writing your own GTK widgets, and the example application. Thanks a lot Owen for all you help! <item>Mark VanderBoom <tt><htmlurl url="mailto:mvboom42@calvin.edu" name="mvboom42@calvin.edu"></tt> for his wonderful work on the Notebook, Progress Bar, Dialogs, and File selection widgets. Thanks a lot Mark! You've been a great help. <item>Tim Janik <tt><htmlurl url="mailto:timj@psynet.net" name="timj@psynet.net"></tt> for his great job on the Lists Widget. Thanks Tim :) <item>Rajat Datta <tt><htmlurl url="mailto:rajat@ix.netcom.com" name="rajat@ix.netcom.com"</tt> for the excellent job on the Pixmap tutorial. <item>Michael K. Johnson <tt><htmlurl url="mailto:johnsonm@redhat.com" name="johnsonm@redhat.com"></tt> for info and code for popup menus. </itemize> <p> And to all of you who commented and helped refine this document. <p> Thanks. <!-- ***************************************************************** --> <sect> Tutorial Copyright and Permissions Notice <!-- ***************************************************************** --> <p> The GTK Tutorial is Copyright (C) 1997 Ian Main. Copyright (C) 1998 Tony Gale. <p> Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. <P>Permission is granted to copy and distribute modified versions of this document under the conditions for verbatim copying, provided that this copyright notice is included exactly as in the original, and that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. <P>Permission is granted to copy and distribute translations of this document into another language, under the above conditions for modified versions. <P>If you are intending to incorporate this document into a published work, please contact the maintainer, and we will make an effort to ensure that you have the most up to date information available. <P>There is no guarentee that this document lives up to its intended purpose. This is simply provided as a free resource. As such, the authors and maintainers of the information provided within can not make any guarentee that the information is even accurate. </article>