
GENIVI Browser
Proof of Concept

Prep. Marcel Schuette, Pelagicore Revision 0.4 Date March 17, 2014 No. of pages

15Qual. Marcel Schuette LanguageEN LocationMunich, Germany
File Name browser Status Dra�

Contents

1 Introduction and project background 2

2 Scope of this document 3

3 Requirements 4
3.1 General Requirements . 4
3.2 Architecture . 4
3.3 Browser Interfaces . 5
3.4 Interfaces . 5

4 Overview 6

5 Common part 7

6 Browser Application 8
6.1 Introduction . 8
6.2 Usage . 8
6.3 Structure . 8
6.4 Implementation . 8

7 Test Application 10
7.1 Introduction . 10
7.2 Usage . 10
7.3 Structure . 11
7.4 Implementation . 11

8 Demo User-Interface 12
8.1 Introduction . 12
8.2 Usage . 13
8.3 Structure . 13
8.4 Implementation . 13

9 Automated tests 15
9.1 Introduction . 15
9.2 Usage . 15

GENIVI Page 1 of 15

1 Introduction and project background

The GENIVI Networking Expert Group (NW-EG) would like to exercise a D-Bus-based so�ware
component to test the usability and quality of a web browser that uses the D-Bus interface.
Therefore the expert group instructed a browser Proof-of-Concept (PoC) to be executed to
evaluate existing APIs and concepts.

GENIVI Page 2 of 15

2 Scope of this document

This document should give an overview about the architecture of the GENIVI Browser PoC
anddetails about the various components and their implementation. With that document, it
shouldbepossible tounderstand the source codemoreeasily andgetabetterunderstanding
of the used concept. Nevertheless the document doesn’t replace reading the source code.

GENIVI Page 3 of 15

3 Requirements

The NW-EG defined a set of D-Bus APIs between the browser application and the HMI. These
D-Bus APIswere provided as XML files. In addition, a headerwith definitions of specific types
and structures were provided prior to project start.

The NW-EG defined the following requirements:

3.1 General Requirements

ID Requirement Description
SW-BRW-
POC-001

Environment The proof of concept must run under Ubuntu Linux 12.04
in a Virtual Box virtual machine installed on a desktop PC.

SW-BRW-
POC-002

Environment The implementation of the browser PoCwill be doneusing
the Qt 5 package which is under the LGPL v2.1 license.

SW-BRW-
POC-003

Documentation Documentation describing how to install the so�ware and
run a set of acceptance tests shall be provided

3.2 Architecture

ID Requirement Description
SW-BRW-
POC-004

Separation of
Browser HMI
and Browser-
Core

TheBrowser shall be separated inHMIandBrowserCore. A
provided Qt-based test-HMI will control the Browser Core.

SW-BRW-
POC-005

Test-HMI as
Separate Pro-
cess

The provided test-HMI application will run as an indepen-
dent process.

SW-BRW-
POC-006

QtWebkit1 im-
plementation

TheBrowser PoCapplicationmust use theQt5Webkit1 im-
plementation.

SW-BRW-
POC-007

QtWebview The Browser POC must use QGraphicsWebView instead of
QML webview.

GENIVI Page 4 of 15

3.3 Browser Interfaces

ID Requirement Description
SW-BRW-
POC-008

D-Bus API The Browser PoC shall implement the specified APIs as
handed over in xml-form (see interfaces section)

SW-BRW-
POC-009

Qt Webkit
Bridge

The Qt Webkit bridge should be useable in the Browser
POC

SW-BRW-
POC-010

Netscape Plu-
gin API (NPAPI)

The Browser POC should support the Netscape Plugin API
(NPAPI)

SW-BRW-
POC-011

Configuration The browser POC should implement a basic configuration
mechanism for the browser

3.4 Interfaces

The following D-Bus interfaces files were provided as input to the project:

1) IBookmarkManager.xml

2) IBrowser.xml

3) ICacheManager.xml

4) IErrorLogger.xml

5) INetworkManager.xml

6) IUserInput.xml

7) IWebPageWindow.xml

These interfaces represent a subset of the GENIVI APIs defined by NW-EG and contains only
methods and signals, which has to be supported by the PoC. The XML files can be found
in the repository (http://git.projects.genivi.org/browser-poc.git/) in the folder
/common. For detailed information about the methods and signals for D-Bus interfaces were
defined, you can have a look at the files in the repository.

GENIVI Page 5 of 15

4 Overview

Following the requirements, theGENIVIBrowserPoC is implementedwithQt5andQtWebkit1.
Althoughexistingprojects like thesnowshoebrowserwere taken intoaccount, a ‘fromscratch’
approach was chosen. The specific requirements of the project made a re-use of an existing
project not appropriate, as a reduction of e�orts was not expected.

The GENIVI Browser PoC consists of following components, which are also represented in
separate folders in the repository:

• A browser application

• A test user-interface application (testUI)

• A demo user-interface application (demoUI)

• A set of automated tests (browser/unit-tests/*)

• A folder with common components

According to the defined architecture the browser application, which is responsible for web
page rendering and bookmark management, is separated from the HMI (represented by the
demoUI application and the testUI application). For more detailed information about the
architecture defined by NW-EG, you can have a look at the group’s wiki page (https://
collab.genivi.org/wiki/display/genivi/Networking+Expert+Group).

For instructions, how to build all applications or only a single application, refer to the file
BUILDINSTRUCTIONS.

GENIVI Page 6 of 15

5 Common part

here is a common part in the project, which contains files, which are shared by all applica-
tions. This common part is represented in the repository in the folder /common:

• The XML files describing the interfaces

• A class defining a bookmark object (bookmark.h and bookmark.cpp)

• Aclassdefining theD-Bus interfacesonclient side (demoUIand testapplication) (browserd-
bus.h and browserdbus.cpp)

• A header file defining common types and structures (browserdefs.h)

The XML files are used to automatically generate the interface classes for client and server.
Via the generated interfaces of these classes, the clients can call remote objects in the server
via D-Bus.

GENIVI Page 7 of 15

6 Browser Application

6.1 Introduction

The Browser application is the core part of the PoC. It is responsible for rendering and dis-
playing a webpage with the QGraphicsWebView element. It also implements the defined
server side interfaces forIBrowser,IUserInput,IWebPageWindow,ICacheManager,IErrorLogger,
INetworkManager and IBookmarkManager. The bookmark manager includes also logic for
persistent bookmark storage in the system.

6.2 Usage

The browser application always needs to be started before the user-interface application
(demoUI or testUI) is started, because it creates the D-Bus connection. As thewindowwill be
created by the user-interface application, no window is shown at application start. You can
add an instance id as parameter to the application start, e.g. ./browser 23. The instance id
will be added to D-Bus service name, e.g. genivi.poc.browser23. If no parameter is given,
a default instance id 1 is used.

6.3 Structure

The source code of the browser application can to be found in the /browser folder in the
repository:

*.cpp, *.h source and header files
browser.pro Qt project file
unit-tests/* sub-directories containing tests

6.4 Implementation

The browser application is implemented using QGraphicsWebView and QtWebkit1.

There isoneclassavailable foreachdefined interfacegroup (XML file) implementing the func-
tions for the defined interfaces on server side. These functions interact with the QGraphic-
sWebView APIs.

As a central class the browserhelper class creates the connection toD-Bus on the session bus
and registers a service name on the D-Bus server. The default service name for the GENIVI
browser PoC is genivi.poc.browser + instance id, e.g. genivi.poc.browser23. The
default instance id is 1, if no parameter is given, or the parameter given at application start.

The class also creates all interface objects and D-Bus interface adaptors, registers needed
typeswith theD-Bus systemand registers thebrowser andbookmark interface classwith the

GENIVI Page 8 of 15

D-Busconnectionunderanobjectpath (/Browser/IBrowserand /Browser/IBookmarkManager).
The interface for webpagewindow and userinput will be registered, when a new page is ac-
tually created.

Each class is implemented in one header file and one cpp file, with the extensions .h and
.cpp respectively. Each .cpp file mentioned below also has an associated .h file containing
the class definition.

bookmarkmanager.cpp implements the IBookmarkManager interfaces andmanages persis-
tent storage of bookmarks.

userinput.cpp implements the IUserInput interfaces.

browser.cpp implements the IBrowser interfaces, creates and set up a declarative view with
themainQML file (thewebview) and registers webpagewindowand userinput objects under
a unique object path (/Browser/IWebPageWindow + window handle resp.
/Browser/IWebPageWindow + window handle/IUserInput). This is needed to control di�er-
ent webpages or tabs (created by the createPageWindow interface) with the testUI applica-
tion. That means e.g. routing a reload command to the right webpage window.

browserconfig.cpp handles persistant storage of configuration values and provides a single-
ton for any part of the browser to access and set these values.

browserpage.cpp is a subclass of QWebPage allowing BrowserView to intercept dialog boxes
and prompts.

cachemanager.cpp handles caching policies using QNetworkConnectionManager.

errorlogger.cpp handles error logging to an in-memory storage, and allows D-Bus clients to
query the error log.

browser/unit-tests/ contains the following: browserdbus for D-Bus tests of the browser and
sub-components (webpageview, browserview, browserpage, etc), browserview for non-D-
Bus tests of the broweserview, cachemanagerdbus and errorloggerdbus for D-bus tests of
cachemanager and errorloggerdbus respectively.

GENIVI Page 9 of 15

7 Test Application

7.1 Introduction

With the test user-interface application, you are able to test all implemented interfaces with
all defined parameters. For this purpose, not the UI design of the application was the key
requirement, but the possibility to test the functionality. This test application was also used
to do manual tests, which resulted in a test report (https://collab.genivi.org/wiki/
display/genivi/Browser+Proof-Of-Concept+-+Web+content#BrowserProof-Of-Concept-

Webcontent-Testreport).

Figure 1: The picture above shows the testUI application with the bookmark manager tab
visible.

7.2 Usage

Before the testUI application is started, the browser application must be started. At startup
only the bar on the top is visible, not the tabs or buttons. First the testUI must connect to
the D-Bus service. Therefore add the correct instance id and press the connect button. The
instance id is defined with the browser application start, either 1 as default or the number
given as parameter at browser start.

GENIVI Page 10 of 15

The testUI application shows tabs representing the six interfacegroups (IBookmarkManager,
IBrowser, IUserInput, IWebPageWindow, ICacheManager and IErrorLogger). To navi-
gate between the groups, just press on the tab header.

On each page (or tab) each defined interface with its parameter is visually grouped within a
small frame. Each group consists of a button and optional input fields, spin boxes or combo
boxes, depending on the definition of the parameters. By pressing the button of a group,
the client calls a D-Bus interface with given parameters, which calls a remote object on the
server side.

To be able to handle more than one opened window (e.g. redirect a press on the reload
button to the right window) with the testUI application, four buttons (numbered from 1 to
4) were added to the bar on the top. For simplicity reasons the buttons are limited to four,
means only four windows can be managed with the testUI application. The numbers on the
buttons refer to the sequence thewindowswere opened. E.g., if youwant to reload the third
opened window, first press button 3 and then the reload button on the IWebPageWindow
tab.

7.3 Structure

The source code of the test user-interface application can to be found in the /testapp folder
in the repository:

main.cpp mainsource file
testapp.pro Qt project file
qml/testapp/* QML files for user interface
images/* Imagesused in implementation (icons taken fromKDEoxygen

theme 4.10.3)

7.4 Implementation

The testUI application supports all interfaces described in the XML files.

The testUI application is implemented as a Qt Quick 2 application. The user-interface is de-
scribed with QML using Qt Quick Controls (reusable UI controls provided by Qt 5.1). Besides
the main.QML file, which describes the main view with all tabs, each interface group is de-
scribed in a separate QML file. The backend logic of the testUI application is written in C++.
The main task of the C++ part is to set up the view for QML, load the QML file and register
customC++ type in theQML system (bookmark and browserdbus classes). The browserdbus
class represents the D-Bus interface for the client. It creates the D-Bus channel connections,
registers custom typeswith theQtDBustype systemanddefines and calls all D-Bus interfaces
and handles the return values. The output of all return values, resulting from D-Bus remote
object calls, is logged onto the console.

GENIVI Page 11 of 15

8 Demo User-Interface

8.1 Introduction

The idea of the demouser-interface application is to have a user-interface, which looksmore
like a possible real browser user-interface (other than the testUI application) and can be
used to demonstrate the GENIVI Browser PoC at shows and events. The demoUI application
doesn’t support the full set of defined interfaces, but only a subset needed to demonstrate
the used features. The chosen features were selected to be the main features known from
common web browsers.

Figure2: Thepictureabove shows thedemouser-interfaceapplicationwithopenbookmarks
pane. The website shown in the background is part of the browser application.

The demoUI supports the following features:

• loading a web page defined by a URL

• bookmark management (add, select, delete and delete all bookmarks)

• navigation back and forward in the browser history

• reload and stop loading a web page

• display a progress bar representing the loading progress of a web page (displayed be-
low the URL in the input field)

• keypad navigation on web page with keyboard navigation keys

GENIVI Page 12 of 15

8.2 Usage

Before the demoUI application is started, the browser applicationmust be started. With the
start of the demoUI application, also the browser application becomes visible. The two ap-
plications (browser and demoUI) are arranged in a seamless way, to represent the look of
only one application.

The icons in the demoUI are hopefully self-explaining and known from other web browser
user-interfaces. To load an URL type the URL in the input field on the top and press the enter
keyonanattachedkeyboard. The two top-right icons represent ‘addbookmark tobookmark
list’ and ‘show bookmark list’ functionality. If the bookmark pane is open, you can select
bookmarks to be loaded in the webview, delete individual bookmarks by pressing the red
‘minus’ icon at the front of a bookmark or delete all bookmarks with the red button on the
bottom of the pane. For keypad navigation on webpages, the up-, down-, right- or le�-key
(linemode) or the space bar (page down) and tab key (page up) (pagemode) can be pressed.
It’s important that the demoUI application has the focus to receive the key presses. To ac-
tivate a link on a web page or move the web page, the browser application window can be
directly accessed. These actions are not handled over a D-Bus interface.

8.3 Structure

The source codeof thedemouser-interface application can tobe found in the/demoui folder
in the repository:

main.cpp mainsource file
demoui.pro Qt project file
qml/demoui/* QML files for user interface
qtquick2application/* Classes for displaying a QtQuick UI
images/* Images used in implementation (icons taken from

KDE oxygen theme 4.10.3)

8.4 Implementation

The demoUI supports the following D-Bus interfaces:

• IBrowser

– createPageWindow (with fixed parameters)

• IWebPageWindow

– load

– reload

– stop

GENIVI Page 13 of 15

– back

– forward

– scroll (line or page scrolling)

– onLoadStarted

– onLoadProgress

– onLoadFinished

• IBookmarkManager

– addItem (with url and title, all other parameter fix)

– getItems (with fixed parameters)

– deleteItem

– deleteAllItems (with fixed parameters)

The demoUI is implemented as Qt Quick 2 application. The user-interface is described with
QML. Thebackend logic of thedemoUI is done inC++. Main taskof theC++part is to set up the
view for QML, load the QML file, register custom C++ type in the QML system (bookmark and
browserdbus classes). The browserdbus class represents theD-Bus interface for the client. It
creates the D-Bus channel connections, registers custom types with the QtDBustype system
and defines and calls all D-Bus interfaces and handles the return values. The output of all
return values, resulting from D-Bus remote object calls, is logged onto the console.

If the bookmark pane is open, the demoUI application (geometry) is resized. The height of
the application is changed. This resize is needed, to show the pane, which has the height
of the complete browser, and to allow (if closed) getting access to the browser window (e.g.
pressing on links on the browser window). Otherwise the above lying application with the
focus (even if parts of the application are transparent) would get all mouse and key events
and it wouldn’t be possible to click on links on a web page.

GENIVI Page 14 of 15

9 Automated tests

9.1 Introduction

The projects ships with an automated test suite, located under browser/unit-tests. The
tests are divided into di�erent sub-groups, each placed in its own directory. The test direc-
tories ending with "dbus" communicate with the browser over D-Bus.

The browserdbus directry contains tests for the browser component and sub-components.
These tests will interact with a Webkit surface using mouse and keyboard input over D-Bus.
For mouse input, the xdotool1 is used, and this tool is required to be installed in $PATH run
these tests. These tests also require the actual browser to be running.

The browserview directory contains tests of the browserview component, these tests do
not run over D-Bus.

The cachemanagerdbus directory contains D-Bus tests for the cachemanager. These tests
require the browser to be running.

The errorloggerdbus directory contains D-Bus tests for the error logger component. The
testswill launch theneccessarybrowser components itself, anddoesnot require thebrowser
to be running. The tests will use the same D-Bus name space as the browser component, so
running the browser during these tests will result in an error.

9.2 Usage

The tests are implemented using the QTest framework, which is shipped with Qt. Each test
needs to be built separately, but issuing qmake in the directory containing the test. The test
binaries accept the standardQTest parameters, which can be listed by passing �-help to the
test binary.

Of particular interest is the -maxwarnings 1 option, which limits the qDebug output pro-
duced by the unit tests, listing only the name of each test case and the status of the test
(pass or fail).

Example: ./browserdbus-tests -maxwarnings 1

1http://www.semicomplete.com/projects/xdotool/

GENIVI Page 15 of 15

