GENIVI

GENIVI Browser

Proof of Concept
Prep. Marcel Schuette, Pelagicore Revision 0.4 Date March 12, 2014 No. of pages
Qual. Marcel Schuette Language EN Location Munich, Germany 14

File Name browser Status Draft

GENIVI

Contents

1 Introduction and project background

2 Scope of this document

3 Requirements
3.1 GeneralRequirements
3.2 Architecture.
3.3 Browserinterfaces
34 Interfaces

4 Overview

5 Common part

6 Browser Application
6.1 Introduction
6.2 Usage e
6.3 Structure oo
6.4 Implementation

7 Test Application
71 Introduction
72 Usage e
73 Structure o
74 Implementation

8 Demo User-Interface
8.1 Introduction
82 Usage e
83 Structure
8.4 Implementation

GENIVI

Page1of 14

GENIVIr

1 Introduction and project background

The GENIVI Networking Expert Group (NW-EG) would like to exercise a D-Bus-based software
component to test the usability and quality of a web browser that uses the D-Bus interface.
Therefore the expert group instructed a browser Proof-of-Concept (PoC) to be executed to
evaluate existing APIs and concepts.

GENIVI Page 2 of 14

GENIVIr

2 Scope of this document

This document should give an overview about the architecture of the GENIVI Browser PoC
and details about the various components and theirimplementation. With that document, it
should be possible to understand the source code more easily and get a better understanding
of the used concept. Nevertheless the document doesn’t replace reading the source code.

GENIVI Page 3 of 14

3 Requirements

GENIVI

The NW-EG defined a set of D-Bus APIs between the browser application and the HMI. These
D-Bus APIs were provided as XML files. In addition, a header with definitions of specific types
and structures were provided prior to project start.

The NW-EG defined the following requirements:

3.1 General Requirements

ID
SW-BRW-
POC-001
SW-BRW-
POC-002
SW-BRW-
POC-003

Requirement
Environment

Environment

Documentation

3.2 Architecture

ID
SW-BRW-
POC-004

SW-BRW-
POC-005

SW-BRW-
POC-006
SW-BRW-
POC-007

Requirement
Separation of
Browser HMI
and Browser-
Core
Test-HMI as
Separate Pro-
cess

Qt Webkit 1 im-
plementation
QtWebview

3.3 Browser Interfaces

Description

The proof of concept must run under Ubuntu Linux 12.04
in a Virtual Box virtual machine installed on a desktop PC.
The implementation of the browser PoC will be done using
the Qt 5 package which is under the LGPL v2.1 license.
Documentation describing how to install the software and
run a set of acceptance tests shall be provided

Description
The Browser shall be separated in HMI and Browser Core. A
provided Qt-based test-HMI will control the Browser Core.

The provided test-HMI application will run as an indepen-
dent process.

The Browser PoC application must use the Qt5 Webkit1im-
plementation.
The Browser POC must use QGraphicsWebView instead of
QML webview.

ID Requirement Description
SW-BRW- D-Bus API The Browser PoC shall implement the specified APIs as
POC-008 handed over in xml-form (see interfaces section)
SW-BRW- Qt Webkit The Qt Webkit bridge should be useable in the Browser
POC-009 Bridge POC
SW-BRW- Netscape Plu- The Browser POC should support the Netscape Plugin API
POC-010 gin API (NPAPI) (NPAPI)
SW-BRW- Configuration The browser POC should implement a basic configuration
POC-0T1 mechanism for the browser

GENIVI Page 4 of 14

GENIVI

3.4 Interfaces

The following D-Bus interfaces files were provided as input to the project:

1) IBrowser.xml
2) IWebPageWindow.xml

) lUserInput.xml

W

) IBookmarkManager.xml

ul

) IUserlnput.xml

()]

) INetworkManager.xml

~

) IErrorLogger.xml

2]

) IWebPageWindow.xml

9) ICacheManager.xml

These interfaces represent a subset of the GENIVI APIs defined by NW-EG and contains
only methods and signals, which has to be supported by the PoC. The XML files can be found
in the repository (http://git.projects.genivi.org/browser-poc.git/) in the folder
/common. For detailed information about the methods and signals for D-Bus interfaces were
defined, you can have a look at the files in the repository.

GENIVI Page 5 of 14

GENIVI

4 Overview

Following the requirements, the GENIVI Browser PoC is implemented with Qt 5 and Qt We-
bkit 1. Although existing projects like the snowshoe browser were taken into account, a ‘from
scratch’ approach was chosen. The specific requirements of the project made a re-use of an
existing project not appropriate, as a reduction of efforts was not expected.

The GENIVI Browser PoC consists of following components, which are also represented in
separate folders in the repository:

e Abrowser application

e Atest user-interface application (testUl)

e Ademo user-interface application (demoUl)

e Aset of automated tests (browser/unit-tests/*)
e Afolder with common components

According to the defined architecture the browser application, which is responsible for
web page rendering and bookmark management, is separated from the HMI (represented
by the demoUl application and the testUl application). For more detailed information about
the architecture defined by NW-EG, you can have a look at the group’s wiki page (https:
//collab.genivi.org/wiki/display/genivi/Networking+Expert+Group).

Forinstructions, how to build all applications or only a single application, refer to the file
BUILDINSTRUCTIONS, orBuild.instructions.Ubuntu.txt in the repository.

GENIVI Page 6 of 14

GENIVr

5 Common part

here is a common part in the project, which contains files, which are shared by all applica-
tions. This common part is represented in the repository in the folder /common:

e The XML files describing the interfaces
e Aclass defining a bookmark object (bookmark.h|cpp)

e Aclassdefiningthe D-Businterfaceson clientside (demoUl and test application) (browserd-
bus.h|cpp)

e A header file defining common types and structures (browserdefs.h)
The XML files are used to automatically generate the interface classes for client and server.

Via the generated interfaces of these classes, the clients can call remote objects in the server
via D-Bus.

GENIVI Page 7 of 14

GENIVI

6 Browser Application
6.1 Introduction

The Browser application is the core part of the PoC. It is responsible for rendering and dis-
playing a webpage with the QML webview element. It also implements the defined server
sideinterfacesfor IBrowser, IUserInput, IWebPageWindow, ICacheManager, IErrorLogger,
INetworkManager and IBookmarkManager. The bookmark manager includes also logic for
persistent bookmark storage in the system.

6.2 Usage

The browser application always needs to be started before the user-interface application
(demoUl or testUl) is started, because it creates the D-Bus connection. As the window will be
created by the user-interface application, no window is shown at application start. You can
add aninstance id as parameter to the application start, e.g. . /browser 23. Theinstanceid
will be added to D-Bus service name, e.g. genivi.poc.browser23. If no parameter is given,
a default instance id 1is used.

6.3 Structure

The source code of the browser application can to be found in the /browser folder in the
repository:

*.cpp, *.h source and header files
browser.pro Qt project file

6.4 Implementation

The browser application is implemented using Qt Quick 1and Qt Webkit 1. Qt Quick 1 needed
to be used, because of the requirement to use Qt Webkit 1.

There is one class available for each defined interface group (XML file) implementing the
functions for the defined interfaces on server side. These functions interact with the inter-
faces provided by the QML file.

As a central class the browserhelper class creates the connection to D-Bus on the session
bus and registers a service name on the D-Bus server. The default service name for the GENIVI
browser PoC is genivi.poc.browser + instance id,e.g. genivi.poc.browser23. The
defaultinstance id is 1, if no parameter is given, or the parameter given at application start.

The class also creates all interface objects and D-Bus interface adaptors, registers needed
types with the D-Bus system and registers the browser and bookmark interface class with the
D-Bus connection under an object path (/Browser/IBrowser and /Browser/IBookmarkManager).
The interface for webpagewindow and userinput will be registered, when a new page is ac-
tually created.

bookmarkmanager.h|cpp implements the IBookmarkManager interfaces and manages
persistent storage of bookmarks.

GENIVI Page 8 of 14

GENIVI

userinput.h|cpp implements the IUserlnput interfaces.

browser.h|cpp implements the IBrowser interfaces, creates and set up a declarative view
with the main QML file (the webview) and registers webpagewindow and userinput objects
under a unique object path (/Browser/IWebPageWindow + window handle resp.
/Browser/IWebPageWindow + window handle/IUserInput). This is needed to control differ-
ent webpages or tabs (created by the createPageWindow interface) with the testUl applica-
tion. That means e.g. routing a reload command to the right webpage window.

browserconfig.h|cpp handles persistant storage of configuration values and provides a
singleton for any part of the browser to access and set these values.

browserpage.h|cpp is a subclass of QWebPage allowing BrowserView to intercept dialog
boxes and prompts.

cachemanager.h|cpp handles caching policies using QNetworkConnectionManager.

errorlogger.h|cpp handles error logging to anin-memory storage, and allows D-Bus clients
to query the error log.

GENIVI Page 9 of 14

GENIVIr

7 Test Application
7.1 Introduction

With the test user-interface application, you are able to test all implemented interfaces with

all defined parameters. For this purpose, not the Ul design of the application was the key
requirement, but the possibility to test the functionality. This test application was also used

to do manual tests, which resulted in a test report (https://collab.genivi.org/wiki/
display/genivi/Browser+Proof-0f-Concept+-+Web+content#BrowserProof-0f-Concept-
Webcontent-Testreport).

-
IBrowser IwebPageWindow | IUserinput | |BookmarkManager

additem(const conn:brw::Bookmarkitem a_oltem)

1 Add Item

type Folder path title

http://

url icon path thumbnail path
deleteltem(int a_i32Uid)

1 Delete Item

uid
deleteallitems(int a_i3ZBookmarkltemType)

1 Delete All Items

type
getltems(a_strParentFolderPath, a_i32BookmarkType, a_eSortingOrder, a_u3ZStartindex, a_u3ZltemsCount, a_oltems)

1 unsorted - o |° 1 - Get Items
-
folder path type sorting startindex count

Figure 1: The picture above shows the testUl application with the bookmark manager tab
visible.

7.2 Usage

Before the testUl application is started, the browser application must be started. At startup
only the bar on the top is visible, not the tabs or buttons. First the testUl must connect to
the D-Bus service. Therefore add the correct instance id and press the connect button. The
instance id is defined with the browser application start, either 1 as default or the number
given as parameter at browser start.

The testUl application shows tabs representing the four interface groups (IBookmark-
Manager, IBrowser, IUserInput, IWebPageWindow, ICacheManager and IErrorLogger).

GENIVI Page 10 of 14

GENIVI

To navigate between the groups, just press on the tab header.

On each page (or tab) each defined interface with its parameter is visually grouped within
asmall frame. Each group consists of a button and optional input fields, spin boxes or combo
boxes, depending on the definition of the parameters. By pressing the button of a group, the
client calls a D-Bus interface with given parameters, which calls a remote object on the server
side.

To be able to handle more than one opened window (e.g. redirect a press on the reload
button to the right window) with the testUl application, four buttons (numbered from 1 to
4) were added to the bar on the top. For simplicity reasons the buttons are limited to four,
means only four windows can be managed with the testUl application. The numbers on the
buttons refer to the sequence the windows were opened. E.g., if you want to reload the third
opened window, first press button 3 and then the reload button on the IWebPageWindow
tab.

7.3 Structure

The source code of the test user-interface application can to be found in the /testapp folder
in the repository:

main.cpp mainsource file

testapp.pro Qt project file

QML/testapp/* QML files for user interface

images/* Images used inimplementation (icons taken from KDE oxygen

theme 4.10.3)

7.4 Implementation

The testUl application supports all interfaces described in the XML files.

The testUl application is implemented as a Qt Quick 2 application. The user-interface is
described with QML using Qt Quick Controls (reusable Ul controls provided by Qt 5.1). Be-
sides the main.QML file, which describes the main view with all tabs, each interface group
is described in a separate QML file. The backend logic of the testUl application is written in
C++. The main task of the C++ part is to set up the view for QML, load the QML file and register
custom C++typein the QML system (bookmark and browserdbus classes). The browserdbus
class represents the D-Bus interface for the client. It creates the D-Bus channel connections,
registers custom types with the QtDBustype system and defines and calls all D-Bus interfaces
and handles the return values. The output of all return values, resulting from D-Bus remote
object calls, is logged onto the console.

GENIVI Page 11 of 14

GENIVIr

8 Demo User-Interface
8.1 Introduction

The idea of the demo user-interface application is to have a user-interface, which looks more
like a possible real browser user-interface (other than the testUl application) and can be
used to demonstrate the GENIVI Browser PoC at shows and events. The demoUl application
doesn’t support the full set of defined interfaces, but only a subset needed to demonstrate
the used features. The chosen features were selected to be the main features known from
common web browsers.

Q b http://www.bmw.com/com/en/ e IL\(IL@

BMW dealer Brochures Corporate/Special Saleff Shop BMW Fnancial Services Used Vehicles ‘ Search
Home 1 3 4 5 6 7 X Z4 BoiHybrid &MiVe . 5MW Owners BMW Insights
The international BMW website

IT-News, c't, iX, Technology Review, Telepo...

http://www.heise.de/
THE BMW CONCEPT NI4§UPE — __4 =

Pelagicore - Open source autom 1nf'o|:
Stay tuned. f
> http. //w‘ww.pekaglm re. com/

Eﬂ\r atrtornobfle‘:"BWe bsite
htep://www.bmw. comlcqmieﬁ:n_'—ﬁ\iml

Find out more

National websites BMW Desiaon Fewer emissions. More choice.
BMW automobiles in Models below 140 g/km CO2.
wyour country or region

| Select a country or region |v|

M Contact Internet connections Sitemap Lfgal dise)
A Delete all bookmarks

content

Figure 2: The picture above shows the demo user-interface application with open bookmarks
pane. The website shown in the background is part of the browser application.

The demoUl supports the following features:

e loading a web page defined by a URL

e bookmark management (add, select, delete and delete all bookmarks)
e navigation back and forward in the browser history

e reload and stop loading a web page

e display a progress bar representing the loading progress of a web page (displayed be-
low the URL in the input field)

e keypad navigation on web page with keyboard navigation keys

GENIVI Page 12 of 14

GENIVI

8.2 Usage

Before the demoUl application is started, the browser application must be started. With the
start of the demoUl application, also the browser application becomes visible. The two ap-
plications (browser and demoUl) are arranged in a seamless way, to represent the look of
only one application.

Theiconsinthe demoUl are hopefully self-explaining and known from other web browser
user-interfaces. To load an URL type the URL in the input field on the top and press the enter
key on an attached keyboard. The two top-righticons represent ‘add bookmark to bookmark
list” and ‘show bookmark list’ functionality. If the bookmark pane is open, you can select
bookmarks to be loaded in the webview, delete individual bookmarks by pressing the red
‘minus’ icon at the front of a bookmark or delete all bookmarks with the red button on the
bottom of the pane. For keypad navigation on webpages, the up-, down-, right- or left-key
(line mode) or the space bar (page down) and tab key (page up) (page mode) can be pressed.
It’s important that the demoUl application has the focus to receive the key presses. To ac-
tivate a link on a web page or move the web page, the browser application window can be
directly accessed. These actions are not handled over a D-Bus interface.

8.3 Structure

The source code of the demo user-interface application can to be found in the /demoui folder
in the repository:

main.cpp mainsource file

demoui.pro Qt project file

QML/demoui/* QML files for user interface
gtquick2application/* Classes for displaying a QtQuick Ul

images/* Images used in implementation (icons taken from

KDE oxygen theme 4.10.3)

8.4 Implementation

The demoUl supports the following D-Bus interfaces:
e |Browser

- createPageWindow (with fixed parameters)
e IWebPageWindow

- load

- reload

- stop

- back

- forward

- scroll (line or page scrolling)

GENIVI Page 13 of 14

GENIVI

- onlLoadStarted
- onLoadProgress
- onlLoadFinished

e IBookmarkManager

addltem (with url and title, all other parameter fix)

getltems (with fixed parameters)
deleteltem
deleteAllltems (with fixed parameters)

The demoUl is implemented as Qt Quick 2 application. The user-interface is described
with QML. The backend logic of the demoUl is done in C++. Main task of the C++ part is to set
up the view for QML, load the QML file, register custom C++ type in the QML system (book-
mark and browserdbus classes). The browserdbus class represents the D-Bus interface for
the client. It creates the D-Bus channel connections, registers custom types with the QtD-
Bustype system and defines and calls all D-Bus interfaces and handles the return values. The
output of all return values, resulting from D-Bus remote object calls, is logged onto the con-
sole.

If the bookmark pane is open, the demoUl application (geometry) is resized. The height
of the application is changed. This resize is needed, to show the pane, which has the height
of the complete browser, and to allow (if closed) getting access to the browser window (e.g.
pressing on links on the browser window). Otherwise the above lying application with the
focus (even if parts of the application are transparent) would get all mouse and key events
and it wouldn’t be possible to click on links on a web page.

GENIVI Page 14 of 14

