

GENIVI MapViewer API

Release 3.0.1

Status: Approved

22 May 2014

Accepted for release by:
This document has been accepted for the GENIVI Gemini Release by the Expert Group Location Based
Services (EG-LBS).

Abstract:
This document describes the API of the MapViewer Abstract Component.

Keywords:
NavigationAPIs, MapViewer.

 © 2014 GENIVI Alliance 2/18

SPDX-License-Identifier: CC-BY-SA-4.0

Copyright (C) 2012, BMW Car IT GmbH, Continental Automotive GmbH, PCA

Peugeot Citroën, XS Embedded GmbH

This work is licensed under a Creative Commons Attribution-ShareAlike

4.0 International License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/

or send a letter to Creative Commons, 444 Castro Street, Suite 900,

Mountain View, California, 94041, USA.

http://creativecommons.org/licenses/by-sa/4.0/

 © 2014 GENIVI Alliance 3/18

Table of contents

1 Change History ... 4
2 Introduction ... 5
3 Terminology .. 6

4 Requirements .. 7
5 Architecture ... 8

5.1 Interfaces ... 8
5.2 Interaction with other Components ... 9

6 API .. 10

6.1 D-Bus .. 10

6.2 Git Repository ... 10

6.3 Naming Convention .. 10
6.4 Data Types Convention .. 11
6.5 Errors .. 12
6.6 Sequence Diagrams ... 13

6.6.1 navigation application browses map .. 13
6.6.2 navigation application creates map session .. 14

6.6.3 navigation application sets center ... 15
6.6.4 navigation application sets map zoom by delta .. 16
6.6.5 navigation application shows route .. 17

6.7 Interfaces ... 18

 © 2014 GENIVI Alliance 4/18

1 Change History

Version Date Author Change

0.1 27 Feb 2012 Marco Residori

(XS Embedded)

Document Created

0.2 19 Mar 2012 Marco Residori

(XS Embedded)

Updated sequence diagrams.

Updated Interfaces chapter.

0.3 21 Mar 2012 Marco Residori

(XS Embedded)

Updated Interfaces chapter.

1.0 22 Mar 2012 Marco Residori

(XS Embedded)

System Architecture Team (SAT) approval.

2.0 (beta) 07 Jun 2013 Marco Residori

(XS Embedded)

Updated API description.

API Version 2.0.

2.0 17 Jun 2013 Marco Residori

(XS Embedded)

Updated API description.

API fixes: GT-2651.

API Version 2.0 (gemini-final tag)

3.0.0 21 Jan 2014 Marco Residori

(XS Embedded)

Updated API description.

API Version 3.0.0.

3.0.1 22 May 2014 Marco Residori

(XS Embedded)

Updated copyright notes.

 © 2014 GENIVI Alliance 5/18

2 Introduction

This document describes the MapViewer API.

 © 2014 GENIVI Alliance 6/18

3 Terminology

Term Description

TargetPoint Point the camera looks at. If the map viewer is set to follow the car

position, it coincides with the vehicle position.

 © 2014 GENIVI Alliance 7/18

4 Requirements

 Ease of Development

 Extensibility

 Multi-client Behavior

 Simplicity

 © 2014 GENIVI Alliance 8/18

5 Architecture

5.1 Interfaces

cmp MapViewer

«GAbstractComponent»

MapViewer

MapViewerControlSession Configuration

 © 2014 GENIVI Alliance 9/18

5.2 Interaction with other Components

cmp Context

Configuration ConfigurationGuidanceLocationInput MapMatchedPosition MapViewerControlSession SessionRouting

«GNamedPlaceholder»

Nav igationApplication::Nav igationApplication

Configuration ConfigurationGuidanceLocationInput MapMatchedPosition MapViewerControlSession SessionRouting

«GAbstractComponent»

Nav igationCore::Nav igationCore

Routing
SessionGuidanceLocationInput MapMatchedPosition Configuration

«GAbstractComponent»

MapViewer::MapViewer

MapViewerControl Session Configuration

«GAbstractComponent»

EnhancedPositionServ ice::

EnhancedPositionServ ice

EnhancedPositionPositionFeedback

The MapViewer will call the method

GetRouteSegments of the Routing API to get the

information necessary to visualize a route on the map.

«GNamedPlaceholder»

MapDataServ ice::

MapDataServ ice

MapDataAccess

 © 2014 GENIVI Alliance 10/18

6 API

6.1 D-Bus

The MapViewer interfaces are D-Bus interfaces. They are defined using the D-Bus introspection data

format, which is nothing but an IDL expressed in XML format.

For more information about the D-Bus data types please refer to the following website:

http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-signatures

For more information about the D-Bus introspection data format, please refer to the following website:

http://dbus.freedesktop.org/doc/dbus-specification.html#introspection-format

6.2 Git Repository

The MapViewer interfaces can be found in the GENIVI Git repository at:

https://git.genivi.org/git/gitweb.cgi?p=navigation;a=tree;f=MapViewer/api

6.3 Naming Convention

Element Description Example

Interface File genivi.<component name in

lowercase character>.<interface

name in lowercase characters>

genivi.navigationcore.mapviewer

control.xml

Methods/Signal/Properties Camel case naming convention.

First letter uppercase

CreateMapViewInstance

Arguments Camel case naming convention.

First letter lowercase

scaleID

http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-signatures
http://dbus.freedesktop.org/doc/dbus-specification.html#introspection-format
https://git.genivi.org/git/gitweb.cgi?p=navigation;a=tree;f=MapViewer/api

 © 2014 GENIVI Alliance 11/18

6.4 Data Types Convention

D-bus types code are used. Please refer to the following webpage for more information:

http://dbus.freedesktop.org/doc/dbus-specification.html

Element D-Bus Data Type Code Example

Enumerators q (uint16)

Handles y (uint8)

Maps a{qv} Dictionary of tuples (key, value)

The key is expressed as an

enumerator

http://dbus.freedesktop.org/doc/dbus-specification.html

 © 2014 GENIVI Alliance 12/18

6.5 Errors

Error Type Description Example Error

Documentation

Note

User Error Error caused by

user actions

The user tries to start

route guidance,

although guidance is

already running

Application

specific error

string

documented in

the XML file

Can occur in final

product

Hardware Error Error related to

hardware/database

related problems

No map data Application

specific error

string

documented in

the XML file

Can occur in final

product

Protocol Error Error caused by

wrong sequence

of commands

Wrong sequence of

commands to enter

destination

Standard D-Bus

error string

Should not occur

in final product

Bus Error D-Bus

communication

error

Bus busy Standard D-Bus

error string

Can occur in final

product

Programming

Error

Programming

Error

Invalid parameters Standard D-Bus

error string and

debug messages

Should not occur

in production

code

Only application-specific errors are documented directly in the interfaces (XML files). For all other

errors, standard D-Bus strings are used. These kinds of strings are not documented in the interfaces. It

is implicitly assumed that every method may return a standard D-Bus error string.

 © 2014 GENIVI Alliance 13/18

6.6 Sequence Diagrams

6.6.1 navigation application browses map

sd nav igation application browses map

«GNamedPlaceholder»

NavigationApplication

«GAbstractComponent»

MapViewer

MapViewerControl

(from MapViewer)

ref

create map session

SetFollowCarMode(sessionHandle, mapViewInstanceHandle, followCarMode=FALSE)

SetTargetPoint(sessionHandle, mapViewInstanceHandle, targetPoint=(lat,lon,0))

SetMapViewScroll(sessionHandle, mapViewInstanceHandle, scrollDirection=90.0, scrollSpeed=2)

:Result

 © 2014 GENIVI Alliance 14/18

6.6.2 navigation application creates map session

sd nav igation application creates map session

«GAbstractComponent»

MapViewer

«GNamedPlaceh...

NavigationApplication

Session

(from MapViewer)

MapViewerControl

(from MapViewer)CreateSession(client,

sessionHandle)

:

sessionHandle

CreateMapViewInstance (sessionHandle, mapViewSize, mapViewType=MAIN_MAP, mapViewInstanceHandle)

:mapViewInstanceHandle

 © 2014 GENIVI Alliance 15/18

6.6.3 navigation application sets center

sd nav igation application sets center

«GAbstractComponent»

MapViewer

«GNamedPlaceh...

NavigationApplication

MapViewerControl

(from MapViewer)

ref

create map session

SetFollowCarMode(sessionHandle, mapViewInstanceHandle, followCarMode=FALSE)

SetTargetPoint(sessionHandle, mapViewInstanceHandle, targetPoint=(48.10,8.45,0))

 © 2014 GENIVI Alliance 16/18

6.6.4 navigation application sets map zoom by delta

sd nav igation application sets map zoom by delta

«GNamedPlaceh...

NavigationApplication

«GAbstractComponent»

MapViewer

MapViewerControl

(from MapViewer)

ref

create map session

This is just an example of the output that could be

returned by the GetScalesList method

GetScalesList(sessionHandle, mapViewInstanceHandle, scalesList)

:scalesList=((1,100,METER,1000),(2,200,METER,1000),(3,500,METER,1000),(4,1000,METER,1000),(5,5000,METER,1000)), Result

SetMapViewScaleByDelta (sessionHandle, mapViewInstanceHandle, scaleDelta=-1)

 © 2014 GENIVI Alliance 17/18

6.6.5 navigation application shows route

sd nav igation application shows route

«GNamedPlaceh...

NavigationApplication

«GAbstractComponent»

NavigationCore

«GAbstractComponent»

MapViewer

MapViewerControl

(from MapViewer)

Routing

(from NavigationCore)

ref

calculate route

DisplayRoute(sessionHandle, mapViewInstanceHandle, routeHandle,

highlighted=FALSE)

:Result

GetRouteSegments(sessionHandle , routeHandle , detailLevel ,

fieldsToReturn=[START_LATITUDE,END_LATITUDE,START_LONGITUDE,END_LONGITUDE],numberOfSegments,

offset, totalNumberOfSegments, routeSegments)

:routeSegments

show Route on display()

 © 2014 GENIVI Alliance 18/18

6.7 Interfaces

interface
org.genivi.mapviewer.MapViewerControl
version 3.0.0 (21-01-2014)

MapViewerControl = This interface offers functions to control the MapViewer

GetVersion = This method returns the API version implemented by the server application
method GetVersion

version = struct(major,minor,micro,date)
major = when the major changes, then backward compatibility with previous releases is not granted
minor = when the minor changes, then backward compatibility with previous releases is granted, but something
changed in the implementation of the API (e.g. new methods may have been added)
micro = when the micro changes, then backward compatibility with previous releases is granted (bug fixes or
documentation modifications)
date = release date (e.g. 21-06-2011)
out (qqqs) version

CreateMapViewInstance = This method creates a new map instance
Note: when a map instance is created, it is set to 'not visible' by default
method CreateMapViewInstance

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewSize = struct(horizontalSize,verticalSize) of the map instance in pixels.
horizontalSize = horizontal size of the map instance in pixels
verticalSize = vertical size of the map instance in pixels
in (qq) mapViewSize

mapViewType = enum(INVALID,MAIN_MAP,SPLIT_SCREEN, ...)
Note: to be used in case that a specific position of the map instance with respect to the display viewport is required
For example, if the instance 1 is of type MAIN_MAP and the instance 2 is of type SPLIT_SCREEN, the offset of
the map instances
with respect to the display viewport could be (0;0) and (hres/2;0) respectively
in q mapViewType

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u mapViewInstanceHandle

This error is generated if no more map view instance handles are available
error org.genivi.mapviewer.MapViewerControl.Error.NoMoreMapViewInstanceHandles

ReleaseMapViewInstance = This method releases (i.e. destroys) a given map instance. Only invisible map instances can be
released
method ReleaseMapViewInstance

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

This error is generated if an application tries to delete a map view instance handle that is not available
error org.genivi.mapviewer.MapViewerControl.Error.MapViewInstanceNotAvailable

GetMapViewType = This method returns the map type of a map instance as it was set using CreateMapViewInstance
method GetMapViewType

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

mapViewType = enum(INVALID,MAIN_MAP,SPLIT_SCREEN, ...)
out q mapViewType

GetSupportedMapViewTypes = This method retrieves the supported map view types
method GetSupportedMapViewTypes

mapViewTypeList = array[mapViewType]
mapViewType = enum(INVALID,MAIN_MAP,SPLIT_SCREEN, ...)
out aq mapViewTypeList

SetTargetPoint = This method sets the position of the point the camera is always aimed at
Note: the target point is typically visualized in the center of the map
method SetTargetPoint

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

targetPoint = (lat,lon,alt)
lat = latitude in format %3.6f. Range[-90:+90]
lon = longitude in format %3.6f. Range[-180:+180]
alt = altitude to the ground in meters
in (ddi) targetPoint

GetTargetPoint = This method retrieves the target point position
Note: if the FollowCar mode is active, the this method will return the current vehicle position
method GetTargetPoint

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

targetPoint = (lat,lon,alt)
lat = latitude in format %3.6f. Range[-90:+90]
lon = longitude in format %3.6f. Range[-180:+180]
alt = altitude to the ground in meters
out (ddi) targetPoint

SetFollowCarMode = This method sets the FollowCar mode
Note: if the FollowCar is activated, the current car position is interpreted as target point position
method SetFollowCarMode

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

followCarMode = flag. If true, the current car position is interpreted as position of the point the camera must look at
in b followCarMode

GetFollowCarMode = This method returns the current FollowCar-mode
method GetFollowCarMode

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

followCarMode = flag. If true, the current car position is interpreted as position of the point the camera must look at
out b followCarMode

SetCameraPosition = This method sets the coordinates of the point at which the camera must be positioned
Note: the camera heading will be automatically set in such a way, that the camera is aimed at the view point
method SetCameraPosition

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

position = (lat,lon,alt)
lat = latitude in format %3.6f. Range[-90:+90]
lon = longitude in format %3.6f. Range[-180:+180]
alt = altitude to the ground in meters
in (ddi) position

GetCameraPosition = This method returns the coordinates of the point at which the camera is positioned
method GetCameraPosition

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

position = (lat,lon,alt)
lat = latitude in format %3.6f. Range[-90:+90]
lon = longitude in format %3.6f. Range[-180:+180]
alt = altitude to the ground in meters
out (ddi) position

SetCameraHeadingAngle = This method sets the map view heading angle
Note: the camera position will be automatically set in such a way, that it looks at the currently selected target point
method SetCameraHeadingAngle

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

heading = heading angle in degrees. Range [0:360]
The angle in degrees between projection on the ground plane of the line through the center of the screen and the
top-centre of the screen, and the North direction
0 degrees means that the map view is oriented such that North is at the top of the screen
Degrees are measured clockwise such that 90 degrees correspond to the East direction
in i heading

SetCameraHeadingToTarget = This method sets the camera heading in such a way, that the camera always looks at a
given target
Note: the camera position will be automatically set in such a way, that it aims at the current view point
method SetCameraHeadingToTarget

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

target = struct(lat,lon)
lat = latitude of the point towards which the map vertical axis must be aligned in format %3.6f. Range[-90:+90]
lon = longitude of the point towards which the map vertical axis must be aligned in format %3.6f. Range[-180:+180]
in (dd) target

SetCameraHeadingTrackUp = This method sets the camera heading in such a way, that the camera always looks in the
direction in which the car is moving
method SetCameraHeadingTrackUp

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

GetCameraHeading = This method returns the current camera heading
method GetCameraHeading

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

headingType = enum(INVALID,CONSTANT_ANGLE,TRACK_UP,TOWARDS_TARGET, ...)
out q headingType

headingAngle = heading angle in degrees measured from the North axis clockwise. Range[0:360]
Note: meaningful only if heading != TOWARDS_TARGET, otherwise it is just a dummy value and must be set to 0
out i headingAngle

headingTarget = struct(lat,lon)
lat = latitude of the point towards which the map vertical axis must be aligned in format %3.6f. Range[-90:+90]
lon = longitude of the point towards which the map vertical axis must be aligned in format %3.6f. Range[-180:+180]
Note: meaningful only if heading = TOWARDS_TARGET, otherwise it is just a dummy value and must be set to
(0,0)
out (dd) target

SetCameraTiltAngle = This method sets the camera tilt angle
method SetCameraTiltAngle

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

tilt = tilt angle in degrees. Range [-180:180]
Example: 0 = down (straight down to the ground plane), 90 = front (parrallel to the ground plane), 180 = top
(straight up to the sky)
Negative angles [0:-180] result in an upside down view
in i tilt

GetMapViewTiltAngle = This method returns the camera tilt angle
method GetCameraTiltAngle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

tilt = tilt angle in degrees. Range [-180:180]
Example: 0 = down (straight down to the ground plane), 90 = front (parrallel to the ground plane), 180 = top
(straight up to the sky)
Negative angles [0:-180] result in an upside down view
out i tilt

[Op tio n al]

SetCameraRollAngle = This method sets the camera roll angle
method SetCameraRollAngle

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

roll = roll angle in degrees. Range [-180:180]
in i roll

[Op tio n al]

GetCameraRollAngle = This method returns the camera roll angle
method GetCameraRollAngle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

roll = roll angle in degrees. Range [-180:180]
out i roll

SetCameraDistanceFromTargetPoint = This method sets the mode and the camera distance from the target point
Note: this method can be used to zoom in and out
method SetCameraDistanceFromTargetPoint

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

distance = distance from the view point in meters
in u distance

GetCameraDistanceFromTargetPoint = This method gets the mode and the camera distance from the target point
method GetCameraDistanceFromTargetPoint

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

distance = distance from the view point in meters
out u distance

SetMapViewScaleMode = This method sets the scaling mode.
method SetMapViewScaleMode

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

scaleMode = enum(AUTOMATIC,MANUAL,HYBRID)
scaleMode = AUTOMATIC, adjusts the camera distance automatically (e.g. depending on the speed)
scaleMode = MANUAL, the camera distance is specified by the argument 'distance'
scaleMode = HYBRID, e.g. AUTOMATIC depending on the proximity to the target, MANUAL otherwise
in q scaleMode

GetMapViewScaleMode = This method gets the scaling mode.
method GetMapViewScaleMode

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

scaleMode = enum(AUTOMATIC,MANUAL,HYBRID)
scaleMode = AUTOMATIC, adjusts the camera distance automatically (e.g. depending on the speed)
scaleMode = MANUAL, the camera distance is specified by the argument 'distance'
scaleMode = HYBRID, e.g. AUTOMATIC depending on the proximity to the target, MANUAL otherwise
out q scaleMode

GetSupportedMapViewScaleModes = This method gets the supported scaling modes.
method GetSupportedMapViewScaleModes

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

scaleModeList = array[scaleMode]
scaleMode = enum(AUTOMATIC,MANUAL,HYBRID)
scaleMode = AUTOMATIC, adjusts the camera distance automatically (e.g. depending on the speed)
scaleMode = MANUAL, the camera distance is specified by the argument 'distance'
scaleMode = HYBRID, e.g. AUTOMATIC depending on the proximity to the target, MANUAL otherwise
out aq scaleModeList

MapViewScaleChanged = This signal is emitted when the mapview scale changes
signal MapViewScaleChanged

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u mapViewInstanceHandle

scaleID = scale identifier. Range[0:256]
out y scaleID

isMinMax = enum(INVALID,MIN,MAX,MID, ...)
MIN = scale ID minimal value
MID = scale ID intermediate value
MAX = scale ID maximal value
out q isMinMax

AddMapViewScaleChangedListener = This method adds a listener which is notified when map view scale changes.
method AddMapViewScaleChangedListener

RemoveMapViewScaleChangedListener = This method removes a listener which is notified when map view scale changes.
method RemoveMapViewScaleChangedListener

SetCameraHeight = This method sets the camera height
Note: this method is a subset of SetCameraPosition
method SetCameraHeight

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

height = height from the ground in meters
in u height

GetCameraHeight = This method gets the camera height
Note: this method is a subset of GetCameraPosition
method GetCameraHeight

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

height = height from the ground in meters
out u height

SetMapViewPerspective = This method sets the map perspective
method SetMapViewPerspective

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

perspective = enum(INVALID,2D,3D, ...)
in q perspective

GetMapViewPerspective = This method returns the current map perspective
method GetMapViewPerspective

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

perspective = enum(INVALID,2D,3D, ...)
out q perspective

GetSupportedMapViewPerspectives = This method retrieves the supported mapview perspectives
method GetSupportedMapViewPerspectives

perspectiveList = array[perspective]
perspective = enum(INVALID,2D,3D, ...)
out aq perspectiveList

SetMapViewObjectVisibility = This method specifies the type of objects to show on the map.
method SetMapViewObjectVisibility

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value

in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

objectVisibilityList = array[objectVisibility]
objectVisibility = dictionary[key,value]
key = enum[BUILDINGS,TERRAIN, ...]
value = value of type 'b'; if true the objects are shown else they are not shown
in a{qb} objectVisibilityList

GetMapViewObjectVisibility = This method gets the type of objects shown on the map.
method GetMapViewObjectVisibility

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

objectVisibilityList = array[objectVisibility]
objectVisibility = dictionary[key,value]
key = enum[BUILDINGS,TERRAIN, ...]
value = value of type 'b'; if true the objects are shown else they are not shown
out a{qb} objectVisibilityList

GetSupportedMapViewObjectVisibilities = This method gets the supported object visibilities.
method GetSupportedMapViewObjectVisibilities

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

objectVisibilityList = array[objectVisibility]
objectVisibility = enum[BUILDINGS,TERRAIN, ...]
out aq objectVisibilityList

GetScaleList = This method returns a list of supported map scales
Note: a mapscale consists of an unique ID, a ScaleValue, a ScaleUnit and a number of MillimetesPerPixel
method GetScaleList

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

scaleList = array[struct(scaleId,scaleValue,scaleUnit,millimetersPerPixel)]
scaleId = scale identifier. Range [0:256]
scaleValue = scale value. It can assume values like 100, 200, 1000, ...
scaleUnit = unit of measurement. It is an enum(INVALID,METER,KM,MILE,YARD,FOOT, ...)
millimetersPerPixel = number indicating the number of millimeters per pixel
Example: ((1,100,METER,1000),(2,200,METER,1000),(3,500,METER,1000), ...)
out a(qqqu) scaleList

SetMapViewScale = This method sets the map scale by specifying a ScaleID
method SetMapViewScale

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

scaleID = scale identifier. Range[0:256]
in q scaleID

SetMapViewScaleByDelta = This method sets the map scale by specifying a delta value with respect to the currently set
ScaleID
method SetMapViewScaleByDelta

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

scaleDelta = This parameter can have either positive or negative values. '0' means no change. Positive values
indicate larger scales
in n scaleDelta

SetMapViewScaleByMetersPerPixel = This method sets the map scale by specifying the number of meters that a pixel
represents
method SetMapViewScaleByMetersPerPixel

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

metersPerPixel = meters per pixel
in d metersPerPixel

GetMapViewScale = This method returns the currently used map scale
method GetMapViewScale

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

scaleID = scale identifier. Range[0:256]
out y scaleID

isMinMax = enum(INVALID,MIN,MAX,MID, ...)
MIN = scale ID minimal value
MID = scale ID intermediate value
MAX = scale ID maximal value
out q isMinMax

SetMapViewBoundingBox = This method sets the map bounding box
method SetMapViewBoundingBox

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

boundingBox = struct(top-left-corner,bottom-right-corner)
top-left-corner = struct(lat,lon)
bottom-right-corner = struct(lat,lon)
lat = latitude in format %3.6f. Range[-90:+90]
lon = longitude in format %3.6f. Range[-180:+180]
in ((dd)(dd)) boundingBox

GetMapViewBoundingBox = This method returns the bounding box of a given map instance
method GetMapViewBoundingBox

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

boundingBox = struct(top-left-corner,bottom-right-corner)
top-left-corner = struct(lat,lon)
bottom-right-corner = struct(lat,lon)
lat = latitude in format %3.6f. Range[-90:+90]
lon = longitude in format %3.6f. Range[-180:+180]
out ((dd)(dd)) boundingBox

SetMapViewSaveArea = This methods defines the area that the HMI guarantees not to cover with other windows or user
interface elements
method SetMapViewSaveArea

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

boundingBox = struct(rect-left,rect-right,rect-top,rect-bottom)
rect-left = covered area on the left. Range [0:1]
rect-right = covered area on the right. Range [0:1]
rect-top = covered area on top. Range [0:1]
rect-bottom = covered area at the bottom. Range [0:1]
Note: 0.0 means there is no covered area (offset) from that side
When all four parameters are 0 then the save area is equal to the viewport area (being the default)
in (dddd) saveArea

SetMapViewSaveArea = This methods defines the area that the HMI guarantees not to cover with other windows or user
interface elements
method GetMapViewSaveArea

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value

in u mapViewInstanceHandle

boundingBox = struct(rect-left,rect-right,rect-top,rect-bottom)
rect-left = covered area on the left. Range [0:1]
rect-right = covered area on the right. Range [0:1]
rect-top = covered area on top. Range [0:1]
rect-bottom = covered area at the bottom. Range [0:1]
Note: 0.0 means there is no covered area (offset) from that side
When all four parameters are 0 then the save area is equal to the viewport area (being the default)
out (dddd) saveArea

SetMapViewPan = This method pans a given map instance
method SetMapViewPan

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

panningAction = enum(PAN_START,PAN_TO,PAN_END)
PAN_START, start panning the map at the specified screen coordinate identified by the arguments 'x' and 'y'
PAN_TO, pan the map to the specified screen coordinate identified by the arguments 'x' and 'y'; it has no effect
before PAN_START or after PAN_END
PAN_END, pan the map to the specified screen coordinate identified by the arguments 'x' and 'y' and end panning;
it has no effect before PAN_START
in q panningAction

pixelCoordinates = array[struct(x,y)]
x = x-coordinate (x=0 indicates the first left pixel of the map view)
y = y-coordinate (y=0 indicates the first top pixel of the map view)
in a(qq) pixelCoordinates

GetMapViewPan
This method is meant for debugging purposes
method GetMapViewPan

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

valueToReturn = enum(PAN_START,PAN_TO,PAN_END)
in q valueToReturn

pixelCoordinates = array[struct(x,y)]
x = x-coordinate (x=0 indicates the first left pixel of the map view)
y = y-coordinate (y=0 indicates the first top pixel of the map view)
in a(qq) pixelCoordinates

SetMapViewRotation = This method rotates the map
method SetMapViewRotation

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

rotationAngle = rotation angle in degrees measured from the North axis clockwise. Range[0:360]
in i rotationAngle

rotationAnglePerSecond = partial rotation for each second
The value can be set implement a smooth rotation
If rotationAnglePerSecond = rotationAngle it means that the rotation must be instantaneous
in i rotationAnglePerSecond

GetMapViewRotation = This method is particularly interesting for debugging purposes
method GetMapViewRotation

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

rotationAngle = rotation angle in degrees measured from the North axis clockwise. Range[0:360]
out i rotationAngle

rotationAnglePerFrame = partial rotation for each map frame in degrees
out i rotationAnglePerFrame

SetMapViewVisibilityMode = This method sets the current visibility mode
method SetMapViewVisibilityMode

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

visibilityMode = enum(INVALID,VISIBLE,INVISIBLE,FROZEN, ...)
in q visibilityMode

GetMapViewVisibilityMode = This method returns the current visibility mode
method GetMapViewVisibilityMode

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

visibilityMode = enum(INVALID,VISIBLE,INVISIBLE,FROZEN, ...)
out q visibilityMode

GetSupportedMapViewVisibilityModes = This method retrieves the supported mapview visibility modes
method GetSupportedMapViewVisibilityModes

visibilityModeList = array[visibilityMode]
visibilityMode = enum(INVALID,VISIBLE,INVISIBLE,FROZEN, ...)
out aq visibilityModeList

MapViewVisibilityChanged = This signal is emitted when the MapView visibility changes
signal MapViewVisibilityChanged

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u mapViewInstanceHandle

visibilityMode = enum(INVALID,VISIBLE,INVISIBLE,FROZEN, ...)
out q visibilityMode

SetMapViewPerformanceLevel = This method sets the perfomance level of a given map instance
Note: it can be used to set the MapView in application specific performance mode (e.g. low CPU-usage or low memory-
usage)
method SetMapViewPerformanceLevel

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

performanceLevel = enum(INVALID,LEVEL1,LEVEL2,LEVEL3,LEVEL4,LEVEL5, ...)
Note: performance levels are application specific
in q performanceLevel

GetMapViewPerformanceLevel = This method returns the perfomance level of a given map instance
method GetMapViewPerformanceLevel

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

performanceLevel = enum(INVALID,LEVEL1,LEVEL2,LEVEL3,LEVEL4,LEVEL5, ...)
out q performanceLevel

GetSupportedMapViewPerformanceLevels = This method retrieves the supported perfomance levels
method GetSupportedMapViewPerformanceLevels

performanceLevelList = array[performanceLevel]
performanceLevel = enum(INVALID,LEVEL1,LEVEL2,LEVEL3,LEVEL4,LEVEL5, ...)
out aq performanceLevelList

DisplayRoute = This method visualizes one of the calculated routes
method DisplayRoute

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

highlighted = flag. TRUE means highligted,FALSE means not highlighted
Note: the highlighted route must be visualized on top of the other routes
in b highlighted

HideRoute = This method hides one of the visible routes
method HideRoute

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
Note: the routeHandle has to be one of the visible routes
in u routeHandle

GetDisplayedRoutes = This method returns a list of displayed routes
method GetDisplayedRoutes

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

displayedRoutes = array[struct(routeHandle,highlighted)]
routeHandle = Route handle of a displayed route. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
highlighted = flag. TRUE means highlighted,FALSE means not highlighted
out a(ub) displayedRoutes

DisplayedRoutes = This signal is emitted when the list of displayed routes change
signal DisplayedRoutes

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u mapViewInstanceHandle

displayedRoutes = array[struct(routeHandle,highlighted)]
routeHandle = Route handle of a displayed route. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
highlighted = flag. TRUE means highlighted,FALSE means not highlighted
out a(ub) displayedRoutes

GetPoiCategoriesVisible = Get the set of POI categories displayed on the map.
method GetPoiCategoriesVisible

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

poiCategoryIds = array[poiCategoryId]
poiCategoryId = a POI category as defined in the 'GENIVI POIService API'.

out aq poiCategoryIds

SetPoiCategoriesVisible = Add POI categories to the set of POI categories displayed on the map. Any specified category
that until now was displayed with scale limits is now displayed without limits.
method SetPoiCategoriesVisible

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

poiCategoryIds = array[poiCategoryId]
poiCategoryId = a POI category as defined in the 'GENIVI POIService API'.
in aq poiCategoryIds

SetPoiCategoriesVisible = Add POI categories to the set of POI categories displayed on the map, where the POI's are only
displayed in a specific range of scales. Any specified category that until now was displayed without scale limits is now
displayed with limits.
method SetPoiCategoriesVisibleWithinLimits

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

poiCategoryIds = array[poiCategoryId]
poiCategoryId = a POI category as defined in the 'GENIVI POIService API'.
in aq poiCategoryIds

minScaleID = minimun scale on which the POI categories are displayed
in y minScaleID

maxScaleID = maximum scale on which the POI categories are displayed
in y maxScaleID

SetPoiCategoriesNotVisible = Remove POI categories from the set of POI categories displayed on the map.
method SetPoiCategoriesNotVisible

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

poiCategoryIds = array[poiCategoryId]
poiCategoryId = a POI category as defined in the 'GENIVI POIService API'.
in aq poiCategoryIds

SetTrafficIncidentsVisibility = Set the visibility of Traffic Incidents on the map.

method SetTrafficIncidentsVisibility

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

visible = If true, Traffic Incidents are shown on the map, else they are not shown.
in b visible

SetMapViewTheme = This method configures the theme of a given map view instance
method SetMapViewTheme

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

mapViewTheme = enum(INVALID,THEME_1,THEME_2,THEME_3, ...)
Note: Themes are implementation specific. Example: THEME_1 = day color, THEME_2 = night color
in q mapViewTheme

GetMapViewTheme = This method returns the current theme of a given map view instance
method GetMapViewTheme

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

mapViewTheme = enum(INVALID,THEME_1,THEME_2,THEME_3, ...)
Note: Themes are implementation specific. Example: THEME_1 = day color, THEME_2 = night color
out q mapViewTheme

GetSupportedMapViewThemes = This method retrieves the supported mapview themes
method GetSupportedMapViewThemes

mapViewThemeList = array[mapViewTheme]
mapViewTheme = enum(INVALID,THEME_1,THEME_2,THEME_3, ...)
Note: Themes are implementation specific. Example: THEME_1 = day color, THEME_2 = night color
out aq mapViewThemeList

ConvertPixelCoordsToGeoCoords = This method converts pixel coordinates to geographical coordinates
method ConvertPixelCoordsToGeoCoords

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

pixelCoordinates = array[struct(x,y)]
x = x-coordinate (x=0 indicates the first left pixel of the map view)
y = y-coordinate (y=0 indicates the first top pixel of the map view)
in a(qq) pixelCoordinates

geoCoordinates = array[struct(lat,lon)]
lat = latitude in format %3.6f. Range[-90:+90]
lon = longitude in format %3.6f. Range[-180:+180]
out a(dd) geoCoordinates

ConvertGeoCoordsToPixelCoords = This method converts geographical coordinates into pixel coordinates
method ConvertGeoCoordsToPixelCoords

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

geoCoordinates = array[struct(lat,lon)]
lat = latitude in format %3.6f. Range[-90:+90]
lon = longitude in format %3.6f. Range[-180:+180]
in a(dd) geoCoordinates

pixelCoordinates = array[struct(x,y)]
x = x-coordinate (x=0 indicates the first left pixel of the map view)
y = y-coordinate (y=0 indicates the first top pixel of the map view)
out a(qq) pixelCoordinates

DisplayCustomElements = This method visualizes a set of custom elements on the map
method DisplayCustomElements

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

customElements = array[struct(name,iconUri,coordinate,anchorPoint)]
name = name of the custom element
iconUri = uri to the icon of the custome element
coordinate = struct(lat,lon)
lat = latitude in format %3.6f. Range[-90:+90]. Example: 48.053250
lon = longitude in format %3.6f. Range[-180:+180]. Example: 8.321000
anchorPoint=struct(anchorX,anchorY)
anchorPoint defines which point on the icon is used as the reference for associating the icon to the map coordinate
(0,0) is the center of the icon
(-1,-1) is the top left corner of the icon
(1,1) is the bottom right corner of the icon
anchorX = anchor x value
anchorY = anchor y value
in a(ss(dd)(nn)) customElements

customElementHandles = handles to the custom elements displayed on the map. The order of the handles is the
same as the order of custom elements specified in the argument 'customElements'. Range[0x0:0x7fffffff]. 0x0 is

reserved as an invalid handle value
out au customElementHandles

HideCustomElements = This method hides a set of custom elements which were visualized by DisplayCustomElements
method HideCustomElements

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

customElementHandles = Custom element handles. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle
value
in au customElementHandles

GetDisplayedCustomElements = This method retrieves the visualized custom elements on the map
method GetDisplayedCustomElements

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

customElements = array[customElement]
customElement = tuple[customElementHandle,struct(name,iconUri,coordinate,anchorPoint)]
customElementHandle = Custom element handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
name = name of the custom element
iconUri = uri to the icon of the custome element
coordinate = struct(lat,lon)
lat = latitude in format %3.6f. Range[-90:+90]. Example: 48.053250
lon = longitude in format %3.6f. Range[-180:+180]. Example: 8.321000
anchorPoint=struct(anchorX,anchorY)
anchorPoint defines which point on the icon is used as the reference for associating the icon to the map coordinate
(0,0) is the center of the icon
(-1,-1) is the top left corner of the icon
(1,1) is the bottom right corner of the icon
anchorX = anchor x value
anchorY = anchor y value
out a{u(ss(dd)(nn))} customElements

SelectElementsOnMap = This method selects elements on the map view which are at the position specified by user input
method SelectElementsOnMap

mapViewInstanceHandle = Map instance handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u mapViewInstanceHandle

pixelCoordinates = struct(x,y)
x = x-coordinate of the position on the map view specified by user input (x=0 indicates the first left pixel of the map
view)
y = y-coordinate of the position on the map view specified by user input (y=0 indicates the first top pixel of the map
view)
in (qq) pixelCoordinate

selectableTypes = array[selectableType]

selectableType =
enum(INVALID,CUSTOM_ELEMENT,CURRENT_POSITION,WAYPOINT,POI,TRAFFIC_INCIDENT,ROUTE,GEOCOORDINATES)
Note: The order of priority by which the elements are selected is implementation dependent
in aq selectableTypes

maxNumberOfSelectedElements = maximum number of selected elements to return. If 0, all possible elements
which can be selected will be returned
in q maxNumberOfSelectedElements

selectedElements = array[selectableType,struct(lat,lon),value]
selectableType =
enum(INVALID,CUSTOM_ELEMENT,CURRENT_POSITION,WAYPOINT,POI,TRAFFIC_INCIDENT,ROUTE,GEOCOORDINATES)
lat = latitude of the selected element in format %3.6f. Range[-90:+90]
lon = longitude of the selected element in format %3.6f. Range[-180:+180]
selectableType = CUSTOM_ELEMENT, value = value of type '(uss(nn))' that expresses the extra data for a
custom element
Note: the extra data for a custom element is expressed as a
struct(customElementHandle,name,iconUri,struct(anchorX,anchorY))
selectableType = CURRENT_POSITION, value = null
selectableType = WAYPOINT, value = value of type '(uq)' that expresses the extra data for a waypoint
Note: the extra data for a waypoint is expressed as a struct(routeHandle,waypointIndex) where waypointIndex is
the index of the waypoint on the route (the first waypoint is index 0)
selectableType = POI, value = value of type 'u' that expresses a POI handle
selectableType = TRAFFIC_INCIDENT, value = value of type 'i' that expresses a traffic incident identifier
selectableType = ROUTE, value = value of type 'u' that expresses a route handle
selectableType = GEOCOORDINATES, value = null
out a(q(dd)v) selectedElements

interface org.genivi.mapviewer.Session
version 3.0.0 (21-01-2014)

Session = This interface offers functions to create and delete sessions

GetVersion = This method returns the API version implemented by the server application
method GetVersion

version = struct(major,minor,micro,date)
major = when the major changes, then backward compatibility with previous releases is not granted
minor = when the minor changes, then backward compatibility with previous releases is granted, but something
changed in the implementation of the API (e.g. new methods may have been added)
micro = when the micro changes, then backward compatibility with previous releases is granted (bug fixes or
documentation modifications)
date = release date (e.g. 21-06-2011)
out (qqqs) version

CreateSession = This method creates a new session
method CreateSession

client = name or identifier of the client application that requests a new session
The navigation core must internally associate this name to the returned session handle
This parameter can be used to identify the client application and determine if a given feature is enabled for it
in s client

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u sessionHandle

This error is generated if no more session handles are available
error org.genivi.mapviewer.Session.Error.NoMoreSessionHandles

DeleteSession = This method deletes a session and its associated resources
method DeleteSession

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

This error is generated if an application tries to delete a session handle that is not available
error org.genivi.mapviewer.Session.Error.SessionNotAvailable

GetSessionStatus = This method returns whether a given session handle is available or not (for example because it was
deleted)
method GetSessionStatus

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value

in u sessionHandle

sessionStatus = enum(INVALID,AVAILABLE,NOT_AVAILABLE)
out q sessionStatus

GetAllSessions = This method returns a list of all available sessions
method GetAllSessions

sessionsList = array[struct(sessionHandle,client)]
sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
client = name or identifier of the client application that requested the sessionHandle
out a(us) sessionsList

SessionDeleted = This signal is emitted when a session is deleted
signal SessionDeleted

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u sessionHandle

interface
org.genivi.mapviewer.Configuration
version 3.0.0 (21-01-2014)

Configuration = This interface offers functions to set and retrieve configuration parameters

GetVersion = This method returns the API version implemented by the server application
method GetVersion

version = struct(major,minor,micro,date)
major = when the major changes, then backward compatibility with previous releases is not granted
minor = when the minor changes, then backward compatibility with previous releases is granted, but something
changed in the implementation of the API (e.g. new methods may have been added)
micro = when the micro changes, then backward compatibility with previous releases is granted (bug fixes or
documentation modifications)
date = release date (e.g. 21-06-2011)
out (qqqs) version

SetUnitsOfMeasurement = This method sets the units of measurement
method SetUnitsOfMeasurement

unitsOfMeasurementList = array[unitsOfMeasurement]
unitsOfMeasurement = tuple (key,value)
key = enum(INVALID,LENGTH, ...)
key = LENGTH, value = value of type 'q', that represents an enum(INVALID,METER,MILE, ...)
in a{qv} unitsOfMeasurementList

GetUnitsOfMeasurement = This method retrieves the units of measurement
method GetUnitsOfMeasurement

unitsOfMeasurementList = array[unitsOfMeasurement]
unitsOfMeasurement = tuple (key,value)
key = enum(INVALID,LENGTH, ...)
key = LENGTH, value = value of type 'q', that represents an enum(INVALID,METER,MILE, ...)
out a{qv} unitsOfMeasurementList

GetSupportedUnitsOfMeasurement = This method retrieves the supported units of measurement
method GetSupportedUnitsOfMeasurement

unitsOfMeasurementList = array[unitsOfMeasurement]
unitsOfMeasurement = dictionary[key,value]
dictionary = array of tuples (key,value)
key = enum(INVALID,LENGTH, ...)
key = LENGTH, value = value of type 'aq'; 'q' is an enum(INVALID,METER,MILE, ...)

out a{qv} unitsOfMeasurementList

SetTimeFormat = This method sets the time format
method SetTimeFormat

timeFormat = enum(INVALID,12H,24H, ...)
in q timeFormat

GetTimeFormat = This method retrieves the time format
method GetTimeFormat

timeFormat = enum(INVALID,12H,24H, ...)
out q timeFormat

GetSupportedTimeFormats = This method retrieves the supported time formats
method GetSupportedTimeFormats

timeFormatList = array[timeFormat]
timeFormat = enum(INVALID,12H,24H, ...)
out aq timeFormatList

SetCoordinatesFormat = This method sets the coordinates format
method SetCoordinatesFormat

coordinatesFormat = enum(INVALID,DEGREES,MINUTES,SECONDS, ...)
DEGREES format = d.dº
MINUTES format = dºm.m'
SECONDS format = dºm's"
in q coordinatesFormat

GetCoordinatesFormat = This method retrieves the coordinates format
method GetCoordinatesFormat

coordinatesFormat = enum(INVALID,DEGREES,MINUTES,SECONDS, ...)
DEGREES format = d.dº
MINUTES format = dºm.m'
SECONDS format = dºm's"
out q coordinatesFormat

GetSupportedCoordinatesFormats = This method retrieves the supported coordinates formats
method GetSupportedCoordinatesFormats

coordinatesFormatList = array[coordinatesFormat]

coordinatesFormat = enum(INVALID,DEGREES,MINUTES,SECONDS, ...)
DEGREES format = d.dº
MINUTES format = dºm.m'
SECONDS format = dºm's"
out aq coordinatesFormatList

SetLocale = This method sets the current language and country
method SetLocale

language = ISO 639‐3 language code (lower case)
in s language

country = ISO 3166‐1 alpha 3 country code (upper case)
in s country

GetLocale = This method retrieves the current language and country
method GetLocale

language = ISO 639‐3 language code (lower case)
out s language

country = ISO 3166‐1 alpha 3 country code (upper case)
out s country

GetSupportedLocales = This method retrieves the supported languages and countries
method GetSupportedLocales

localeList = array[struct(language,country)]
language = ISO 639-3 language code (lower case)
country = ISO 3166-1 alpha 3 country code (upper case)
out a(ss) localeList

ConfigurationChanged = This signal is sent to the clients when one or more configuration settings changes
signal ConfigurationChanged

changedSettings = array[setting]
setting = enum(INVALID,UNITS_OF_MEASUREMENT,LOCALE,TIME_FORMAT,COORDINATES_FORMAT, ...)
out aq changedSettings

constants MapViewer version 3.0.0 (21-01-
2014)

This document defines the constants used in the MapViewer APIs

INVALID = 0x0000

ALL = 0xffff

AVAILABLE = 0x0001

NOT_AVAILABLE = 0x0002

TIME_FORMAT = 0x0003

12H = 0x0004

24H = 0x0005

COORDINATES_FORMAT = 0x0006

DEGREES = 0x0007

MINUTES = 0x0008

SECONDS = 0x0009

MAIN_MAP = 0x0010

SPLIT_SCREEN = 0x0011

2D = 0x0020

3D = 0x0021

LOCALE = 0x0025

UNITS_OF_MEASUREMENT = 0x0030

LENGTH = 0x0031

METER = 0x0032

MILE = 0x0033

KM = 0x0034

YARD = 0x0035

FOOT = 0x0036

MIN = 0x0040

MAX = 0x0041

MID = 0x0042

VISIBLE = 0x0043

INVISIBLE = 0x0044

FROZEN = 0x0045

LEVEL1 = 0x0050

LEVEL2 = 0x0051

LEVEL3 = 0x0052

LEVEL4 = 0x0053

LEVEL5 = 0x0054

THEME_1 = 0x0060

THEME_2 = 0x0061

THEME_3 = 0x0062

CONSTANT_ANGLE = 0x0070

TRACK_UP = 0x0071

TOWARDS_TARGET = 0x0072

PAN_START = 0x0100

PAN_TO = 0x0101

PAN_END = 0x0102

BUILDINGS = 0x0080

TERRAIN = 0x0081

AUTOMATIC = 0x0110

MANUAL = 0x0111

HYBRID = 0x0112

CUSTOM_ELEMENT = 0x0120

CURRENT_POSITION = 0x0121

WAYPOINT = 0x0122

POI = 0x0123

TRAFFIC_INCIDENT = 0x0124

ROUTE = 0x0125

GEOCOORDINATES = 0x0126

