

GENIVI NavigationCore API

Release 3.0.2

Status: Approved

30 June 2014

Accepted for release by:
This document has been accepted for the GENIVI Gemini Release by the Expert Group Location Based
Services (EG-LBS)

Abstract:
This document describes the API of the NavigationCore Abstract Component.

Keywords:
NavigationAPIs, NavigationCore.

© 2014 GENIVI Alliance

SPDX-License-Identifier: CC-BY-SA-4.0

Copyright (C) 2014, BMW Car IT GmbH, Continental Automotive GmbH,

Elektrobit Automotive GmbH, Neusoft Technology Solutions GmbH, PCA

Peugeot Citroën, TomTom International B.V., XS Embedded GmbH

This work is licensed under a Creative Commons Attribution-ShareAlike

4.0 International License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/

or send a letter to Creative Commons, 444 Castro Street, Suite 900,

Mountain View, California, 94041, USA.

http://creativecommons.org/licenses/by-sa/4.0/

© 2014 GENIVI Alliance

Table of contents

1 Change History ... 4
2 Introduction ... 5
3 Terminology .. 6

4 Requirements .. 7
5 Architecture ... 8

5.1 Interfaces ... 8
5.2 Interaction with other Components ... 9

6 API .. 10

6.1 D-Bus .. 10

6.2 Git Repository ... 10

6.3 Naming Conventions .. 10
6.4 Data Types Convention .. 11
6.5 Errors .. 12
6.6 Sessions ... 13

6.7 Sequence Diagrams ... 15
6.7.1 navigation application creates route ... 15

6.7.2 navigation application starts route calculation ... 16
6.7.3 navigation application gets list of segments ... 17
6.7.4 navigation application enters destination ... 18

6.7.5 two clients try to change route preferences of the same route 19

6.7.6 navigation application sets route preferences ... 20

6.7.7 navigation application sets starting point ... 21
6.7.8 navigation application sets transportation means ... 22

6.7.9 navigation application changes waypoints order .. 23
6.7.10 navigation application enables voice guidance .. 24
6.7.11 navigation application starts a simulation .. 25

6.7.12 navigation application starts guidance.. 26
6.7.13 navigation application stops guidance .. 27

6.7.14 HMI requests voice instruction .. 28
6.7.15 navigation application creates location input session ... 29

6.7.16 navigation application enters location .. 30
6.7.17 navigation application enters location using speller ... 31
6.7.18 navigation application enters full address .. 32

6.8 Interfaces ... 33

© 2014 GENIVI Alliance

1 Change History

Version Date Author Change

0.1 27 Feb 2012 Marco Residori

(XS Embedded)

Document Created.

0.2 19 Mar 2012 Marco Residori

(XS Embedded)

Updated sequence diagrams.

Updated Interfaces chapter.

0.3 21 Mar 2012 Marco Residori

(XS Embedded)

Updated Interfaces chapter.

1.0 22 Mar 2012 Marco Residori

(XS Embedded)

System Architecture Team (SAT) approval.

2.0 (beta) 07 Jun 2013 Marco Residori

(XS Embedded)

Updated API description. API Version 2.0.

2.0 17 Jun 2013 Marco Residori

(XS Embedded)

Updated API description.

API fixes: GT-2691, GT-2689, GT-2651.

API Version 2.0 (gemini-final tag)

3.0.0 21 Jan 2014 Marco Residori

(XS Embedded)

Updated API description.

API Version 3.0.0

3.0.1 22 May 2014 Marco Residori

(XS Embedded)

Updated copyright notes.

3.0.2 30 June 2014 Marco Residori

(XS Embedded)

Updated contributors list.

© 2014 GENIVI Alliance

2 Introduction

This document describes the NavigationCore API.

© 2014 GENIVI Alliance

3 Terminology

Term Description

Link-ID Identifier of a route segment in a database

© 2014 GENIVI Alliance

4 Requirements

 Ease of Development

 Extensibility

 Multi-client Behavior

 Simplicity

© 2014 GENIVI Alliance

5 Architecture

5.1 Interfaces

cmp Nav igationCore

«GAbstractComponent»

Nav igationCore

MapMatchedPositionRoutingLocationInput Guidance Session Configuration

© 2014 GENIVI Alliance

5.2 Interaction with other Components

cmp Context

«GAbstractComponent»

Nav igationCore::Nav igationCore

RoutingGuidanceLocationInput MapMatchedPositionSession Configuration

Configuration ConfigurationGuidanceLocationInput MapMatchedPosition RoutingSession SessionMapViewerControl

«GNamedPlaceholder»

Nav igationApplication::Nav igationApplication

Configuration ConfigurationGuidanceLocationInput MapMatchedPosition RoutingSession SessionMapViewerControl

«GAbstractComponent»

MapViewer::MapViewer

MapViewerControl Session Configuration

«GAbstractComponent»

EnhancedPositionServ ice::

EnhancedPositionServ ice

EnhancedPositionPositionFeedback

«GNamedPlaceholder»

MapDataServ ice::

MapDataServ ice

MapDataAccess

© 2014 GENIVI Alliance

6 API

6.1 D-Bus

The NavigationCore interfaces are D-Bus interfaces. They are defined using the D-Bus introspection

data format, which is nothing but an IDL expressed in XML format.

For more information about the D-Bus data types please refer to the following website:

http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-signatures

For more information about the D-Bus introspection data format, please refer to the following website:

http://dbus.freedesktop.org/doc/dbus-specification.html#introspection-format

6.2 Git Repository

The NavigationCore interfaces can be found in the GENIVI Git repository at:

https://git.genivi.org/git/gitweb.cgi?p=navigation;a=tree;f=NavigationCore/api

6.3 Naming Conventions

Element Description Example

Interface File genivi.<component name in

lowercase character>.<interface

name in lowercase characters>

genivi.navigationcore.routing.xml

Methods/Signal/Properties Camel case naming convention

First letter uppercase

CalculateRoute

Arguments Camel case naming convention

First letter lowercase

routeHandle

http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-signatures
http://dbus.freedesktop.org/doc/dbus-specification.html#introspection-format
https://git.genivi.org/git/gitweb.cgi?p=navigation;a=tree;f=NavigationCore/api

© 2014 GENIVI Alliance

6.4 Data Types Convention

D-bus types code are used. Please refer to the following webpage for more information:

http://dbus.freedesktop.org/doc/dbus-specification.html

Element D-Bus Data Type Code Example

Enumerators q (uint16)

Handles y (uint8)

Maps a{qv} Dictionary of tuples (key, value)

The key is expressed as an

enumerator

http://dbus.freedesktop.org/doc/dbus-specification.html

© 2014 GENIVI Alliance

6.5 Errors

Error Type Description Example Error

Documentation

Note

User Error Error caused by

user actions

The user tries to start

route guidance,

although guidance is

already running

Application

specific error

string

documented in

the XML file

Can occur in final

product

Hardware Error Error related to

hardware/database

related problems

No map data Application

specific error

string

documented in

the XML file

Can occur in final

product

Protocol Error Error caused by

wrong sequence

of commands

Wrong sequence of

commands to enter

destination

Standard D-Bus

error string

Should not occur

in final product

Bus Error D-Bus

communication

error

Bus busy Standard D-Bus

error string

Can occur in final

product

Programming

Error

Programming

Error

Invalid parameters Standard D-Bus

error string and

debug messages

Should not occur

in production

code

Only application-specific errors are documented directly in the interfaces (XML files). For all other

errors, standard D-Bus strings are used. These kinds of strings are not documented in the interfaces. It

is implicitly assumed that every method may return a standard D-Bus error string.

© 2014 GENIVI Alliance

6.6 Sessions

A session-id identifies a requester. In a multi-client context only the requester that created an instance

may be allowed to execute operations on that instance.

Other requesters may operate on the same handle (e.g. route handle, location input handle) with limited

rights. For example, only the creator of a route handle can start/stop a route calculation on that handle.

Other clients may simply be allowed to retrieve the total distance to the destination.

The following diagram shows an example of how session handles can be used:

© 2014 GENIVI Alliance

sd two clients try to change route preferences of the same route

«GNamedPlac...

NavigationApplication

«GAbstractComponent»

NavigationCore

Other Application

Routing

(from NavigationCore)

Session

(from NavigationCore)

get a list of all available

routes. In this example

only one route is

present, the one with

routeHandle=12

Let´s assume that the

returned handle has a

value = 12

The second client

retrieves information

about the route with

routeHandle 12 (e.g.

destination)

A D-Bus error is

generated. Only the

creator of an

routeHandle canset the

preferences (waypoints,

cost modles, etc.).

CreateSession(client,

sessionHandle)

:sessionHandle

CreateRoute(sessionHandle,

routeHandle=12)

:routeHandle

SetWaypoints(sessionHandle, routeHandle , startFromCurrentPosition=TRUE, waypointsList)

CalculateRoute(sessionHandle, routeHandle)

CreateSession(client,

sessionHandle)

:sessionHandle

GetAllRoutes(sessionHandle,

routes)

:

routes=[12]

GetWaypoints(sessionHandle , routeHandle , startFromCurrentPosition , waypointsList)

:startFromCurrentPosition , waypointsList

GetRouteOverview(sessionHandle, routeHandle, totalDistance, totalTime)

:totalDistance, totalTime

SetRoutePreferences(sessionHandle, routeHandle, country, routePreferencesList)

:"org.freedesktop.DBus.Error.AccessDenied"

SetRoutePreferences(sessionHandle, routeHandle, country, routePreferencesList)

© 2014 GENIVI Alliance

6.7 Sequence Diagrams

6.7.1 navigation application creates route

sd nav igation application creates route

«GNamedPlacehold...

NavigationApplication

«GAbstractComponent»

NavigationCore

Session

(from NavigationCore)

Routing

(from NavigationCore)

CreateSession(client,

sessionHandle)

:sessionHandle

CreateRoute(sessionHandle, routeHandle)

:routeHandle

© 2014 GENIVI Alliance

6.7.2 navigation application starts route calculation

sd nav igation application starts route calculation

«GNamedPlaceholder»

NavigationApplication

«GAbstractComponent»

NavigationCore

Routing

(from NavigationCore)

Routing

(from NavigationApplication)

ref

create route

ref

set routing preferences

ref

set transportation means

alt Route Calculation

[calculation successful]

[calculation failed]

This signal is sent repeatedly as the

calculation progresses

ref

enter destination

opt

opt

CalculateRoute(sessionHandle, routeHandle)

RouteCalculationProgressUpdate (routeHandle, status, percentage=10)

«signal»

RouteCalculationProgressUpdate (routeHandle, status, percentage=50)

«signal»

RouteCalculationProgressUpdate (routeHandle, status, percentage=100)

«signal»

RouteCalculationSuccessful(routeHandle, unfullfi l ledPreferences=[])

«signal»

RouteCalculationFailed(routeHandle, errorCode)

«signal»

© 2014 GENIVI Alliance

6.7.3 navigation application gets list of segments

sd nav igation application gets list of segments

«GAbstractComponent»

NavigationCore

«GNamedPlaceh...

NavigationApplication

Routing

(from NavigationCore)

ref

calculate route

GetRouteSegments(sessionHandle ,routeHandle, detailLevel , fieldsToReturn, numberOfSegments, offset,

totalNumberOfSegments, routeSegments)

:totalNumberOfSegments, routeSegments

© 2014 GENIVI Alliance

6.7.4 navigation application enters destination

sd 01 nav igation application enters destination

«GNamedPlaceh...

NavigationApplication

«GAbstractComponent»

NavigationCore

Routing

(from NavigationCore)

Preconditions:

1) The current location is taken as starting point

2) No additional waypoint is specified

SetWaypoints(sessionHandle , routeHandle , startFromCurrentPosition=TRUE,

waypointsList=[(LATITUDE,value),(LONGITUDE,value)])

© 2014 GENIVI Alliance

6.7.5 two clients try to change route preferences of the same route

sd two clients try to change route preferences of the same route

«GNamedPlac...

NavigationApplication

«GAbstractComponent»

NavigationCore

Other Application

Routing

(from NavigationCore)

Session

(from NavigationCore)

get a list of all available

routes. In this example

only one route is

present, the one with

routeHandle=12

Let´s assume that the

returned handle has a

value = 12

The second client

retrieves information

about the route with

routeHandle 12 (e.g.

destination)

A D-Bus error is

generated. Only the

creator of an

routeHandle canset the

preferences (waypoints,

cost modles, etc.).

CreateSession(client,

sessionHandle)

:sessionHandle

CreateRoute(sessionHandle,

routeHandle=12)

:routeHandle

SetWaypoints(sessionHandle, routeHandle , startFromCurrentPosition=TRUE, waypointsList)

CalculateRoute(sessionHandle, routeHandle)

CreateSession(client,

sessionHandle)

:sessionHandle

GetAllRoutes(sessionHandle,

routes)

:

routes=[12]

GetWaypoints(sessionHandle , routeHandle , startFromCurrentPosition , waypointsList)

:startFromCurrentPosition , waypointsList

GetRouteOverview(sessionHandle, routeHandle, totalDistance, totalTime)

:totalDistance, totalTime

SetRoutePreferences(sessionHandle, routeHandle, country, routePreferencesList)

:"org.freedesktop.DBus.Error.AccessDenied"

SetRoutePreferences(sessionHandle, routeHandle, country, routePreferencesList)

© 2014 GENIVI Alliance

6.7.6 navigation application sets route preferences

sd nav igation application sets route preferences

«GNamedPlaceh...

NavigationApplication

«GAbstractComponent»

NavigationCore

Routing

(from NavigationCore)

In this example the user instructs the navigation to avoid toll roads and tunnels

SetRoutePreferences(sessionHandle, routeHandle, country, routePreferencesList=[AVOID_TOLL_ROADS, AVOID_TUNNELS])

© 2014 GENIVI Alliance

6.7.7 navigation application sets starting point

sd nav igation application sets starting point

«GNamedPlaceh...

NavigationApplication

«GAbstractComponent»

NavigationCore

Routing

(from NavigationCore)

Preconditions:

1) The current location is not taken as starting point

Note:

At least 2 waypoints must be specified, the starting point and the destination.

SetWaypoints(sessionHandle, routeHandle, startFromCurrentPosition=FALSE,

waypointsList,=[(LATITUDE,value),(LONGITUDE,value),(LATITUDE,value),(LONGITUDE,value)])

:Result

© 2014 GENIVI Alliance

6.7.8 navigation application sets transportation means

sd nav igation application sets transportation means

«GNamedPlaceh...

NavigationApplication

«GAbstractComponent»

NavigationCore

Routing

(from NavigationCore)

SetTransportationMeans (sessionHandle, routeHandle, transportationMeans=BY_CAR)

:Result

© 2014 GENIVI Alliance

6.7.9 navigation application changes waypoints order

sd nav igation application changes waypoints order

«GAbstractComponent»

NavigationCore

«GNamedPlaceh...

NavigationApplication

Routing

(from NavigationCore)

The order of the two waypoints is now reversed

GetWaypoints(sessionHandle, routeHandle, startFromCurrentPosition=FALSE,

waypointsList=[(LATITUDE,latPoint1),(LONGITUDE,lonPoint1),(LATITUDE,latPoint2),(LONGITUDE,lonPoint2),(LATITUDE,latPoint3),(LONGITUDE,lonPoint3)])

:waypoints

SetWaypoints(sessionHandle, routeHandle, startFromCurrentPosition=FALSE,

waypointsList=[(LATITUDE,latPoint2),(LONGITUDE,lonPoint2),(LATITUDE,latPoint1),(LONGITUDE,lonPoint1),(LATITUDE,latPoint3),(LONGITUDE,lonPoint3)])

© 2014 GENIVI Alliance

6.7.10 navigation application enables voice guidance

sd nav igation application enables v oice guidance

«GNamedPlaceh...

NavigationApplication

«GAbstractComponent»

NavigationCore

Guidance

(from NavigationCore)

SetVoiceGuidance(activate=TRUE, voice)

© 2014 GENIVI Alliance

6.7.11 navigation application starts a simulation

sd nav igation application starts a simulation

«GNamedPlaceh...

NavigationApplication

«GAbstractComponent»

NavigationCore

Guidance

(from NavigationCore)

ref

create route

For each session, the route guidance

can only work on one single route

handle.

For this reason PauseGuidance only

takes one parameter indicating the

session handle.

SetSimulationMode(sessionHandle, activate=TRUE)

StartGuidance(sessionHandle,

routeHandle)

PauseGuidance(sessionHandle)

ResumeGuidance(sessionHandle)

© 2014 GENIVI Alliance

6.7.12 navigation application starts guidance

sd nav igation application starts guidance

«GNamedPlaceholder»

NavigationApplication

«GAbstractComponent»

NavigationCore

Guidance

(from NavigationCore)

Guidance

(from NavigationApplication)

ref

create route

loop for each maneuv er

SetRouteCalculationMode(sessionHandle, routeCalculationMode=ALL_MANUAL)

StartGuidance(sessionHandle, routeHandle)

GuidanceStatusChanged (sessionHandle, guidanceStatus=ACTIVATED)

«signal»

ManeuverChanged (sessionHandle, maneuver=MANEUVER_APPEARED)

«signal»

GetManeuverDetails(distanceToManeuver, distanceToNextManeuver, maneuver, roadAfterManeuver,

maneuverDirection)

:distanceToManeuver, distanceToNextManeuver, maneuver, roadAfterManeuver,

maneuverDirection

ManeuverChanged (sessionHandle, maneuver=PRE_ADVICE)

«signal»

ManeuverChanged (sessionHandle, maneuver=ADVICE)

«signal»

ManeuverChanged (sessionHandle, maneuver=PASSED)

«signal»

DistanceToManeuverChanged (sessionHandle)

«signal»

GetManeuverDetails(distanceToManeuver, distanceToNextManeuver, maneuver, roadAfterManeuver,

maneuverDirection)

:distanceToManeuver, distanceToNextManeuver, maneuver, roadAfterManeuver,

maneuverDirection

WaypointReached(sessionHandle, isDestination=TRUE)

«signal»

© 2014 GENIVI Alliance

6.7.13 navigation application stops guidance

sd nav igation application stops guidance

«GNamedPlaceholder»

NavigationApplication

«GAbstractComponent»

NavigationCore

Guidance

(from NavigationCore)

Guidance

(from NavigationApplication)

ref

start guidance

StopGuidance(sessionHandle)

:Result

GuidanceStatusChanged (sessionHandle, guidanceStatus=CANCELLED)

© 2014 GENIVI Alliance

6.7.14 HMI requests voice instruction

sd HMI requests v oice instruction

«GNamedPlaceholder»

NavigationApplication

«GAbstractComponent»

NavigationCore

«GNamedPlaceholder»

SpeechEngine

TextToSpeech

(from SpeechEngine)

Guidance

(from NavigationCore)

Guidance

(from NavigationApplication)

ref

create route

ref

start route calculation

ref

enable v oice guidance

loop for each maneuv er

StartGuidance(sessionHandle, routeHandle)

ManeuverChanged (sessionHandle, maneuver=MANEUVER_APPEARED)

«signal»

GetManeuverDetails(distanceToManeuver, distanceToNextManeuver, maneuver, roadAfterManeuver, maneuverDirection)

:distanceToManeuver, distanceToNextManeuver, maneuver, roadAfterManeuver,

maneuverDirection

ManeuverChanged (sessionHandle,

maneuver=PRE_ADVICE)

«signal»

GetManeuverDetails(distanceToManeuver, distanceToNextManeuver, maneuver, roadAfterManeuver, maneuverDirection)

:distanceToManeuver, distanceToNextManeuver, maneuver, roadAfterManeuver,

maneuverDirection

© 2014 GENIVI Alliance

6.7.15 navigation application creates location input session

sd nav igation application creates location input session

«GAbstractComponent»

NavigationCore

«GNamedPlaceh...

NavigationApplication

LocationInput

(from NavigationCore)

Session

(from NavigationCore)

CreateSession(client, sessionHandle)

:sessionHandle

CreateLocationInput(sessionHandle, locationInputHandle)

:locationInputHandle

© 2014 GENIVI Alliance

6.7.16 navigation application enters location

sd nav igation application enters location

«GAbstractComponent»

NavigationCore

«GNamedPlaceholder»

NavigationApplication

LocationInput

(from NavigationCore)

LocationInput

(from NavigationApplication)

ref

create location input session

SetSelectionCriterion(sessionHandle,locationInputHandle,selectionCriterion=[COUNTRY])

CurrentSelectionCriterion(sessionHandle, locationInputHandle, selectionCriterion=[COUNTRY])

«signal»

Search(sessionHandle,locationInputHandle,inputString=´Germany´,maxWindowSize=10)

SearchStatus(sessionHandle, locationInputHandle,

statusValue=SEARCHING)

«signal»

SearchResultList(sessionHandle,locationInputHandle,totalSize, =1,windowOffset,

=0,resultListWindow=1,resultListWindow=(key=COUNTRY,value=GERMANY))

«signal»

SearchStatus(sessionHandle, locationInputHandle,

statusValue=FINISHED)

«signal»

SelectEntry(sessionHandle, locationInputHandle, index=0)

ContentUpdated

(sessionHandle,locationInputHandle,guidable=FALSE,availableSelectionCriteria=[COUNTRY,CITY],address=[(key=COUNTRY,value=GERMANY)])

«signal»

SetSelectionCriterion(sessionHandle,locationInputHandle,selectionCriterion=CITY)

CurrentSelectionCriterion(sessionHandle,locationInputHandle,selectionCriterion=CITY)

«signal»

Search(sessionHandle,locationInputHandle,inputString=´Munich´,maxWindowSize=10)

SearchStatus(sessionHandle, locationInputHandle,

statusValue=SEARCHING)

«signal»

SearchResultList(sessionHandle, locationInputHandle, totalSize=2, windowOffset=0, windowSize=1,

resultListWindow=[(key=CITY,value=MÜNCHEN),(key=CITY,value=MÜNCHEN,HIRSCHBACH)])

«signal»

SearchStatus(sessionHandle, locationInputHandle,

statusValue=FINISHED)

«signal»

SelectEntry(sessionHandle, locationInputHandle, index=0)

ContentUpdated

(sessionHandle,locationInputHandle,guidable=TRUE,availableSelectionCriteria=[COUNTRY,CITY,STREET,DISTRICT],address=[(key=COUNTRY,value=GERMANY),(key=CITY,value=MÜNCHEN),(key=

LATITUDE,value=48.8), (key= LONGITUDE,value=11.35)])

«signal»

© 2014 GENIVI Alliance

6.7.17 navigation application enters location using speller
sd nav igation application enters location

«GAbstractComponent»

NavigationCore

«GNamedPlaceholder»

NavigationApplication

LocationInput

(from NavigationCore)

LocationInput

(from NavigationApplication)

ref

create location input session

SetSelectionCriterion(sessionHandle,locationInputHandle,selectionCriterion=[COUNTRY])

CurrentSelectionCriterion(sessionHandle, locationInputHandle, selectionCriterion=[COUNTRY])

«signal»

Search(sessionHandle,locationInputHandle,inputString=´Germany´,maxWindowSize=10)

SearchStatus(sessionHandle, locationInputHandle,

statusValue=SEARCHING)

«signal»

SearchResultList(sessionHandle,locationInputHandle,totalSize, =1,windowOffset,

=0,resultListWindow=1,resultListWindow=(key=COUNTRY,value=GERMANY))

«signal»

SearchStatus(sessionHandle, locationInputHandle,

statusValue=FINISHED)

«signal»

SelectEntry(sessionHandle, locationInputHandle, index=0)

ContentUpdated

(sessionHandle,locationInputHandle,guidable=FALSE,availableSelectionCriteria=[COUNTRY,CITY],address=[(key=COUNTRY,value=GERMANY)])

«signal»

SetSelectionCriterion(sessionHandle,locationInputHandle,selectionCriterion=CITY)

CurrentSelectionCriterion(sessionHandle,locationInputHandle,selectionCriterion=CITY)

«signal»

Search(sessionHandle,locationInputHandle,inputString=´Munich´,maxWindowSize=10)

SearchStatus(sessionHandle, locationInputHandle,

statusValue=SEARCHING)

«signal»

SearchResultList(sessionHandle, locationInputHandle, totalSize=2, windowOffset=0, windowSize=1,

resultListWindow=[(key=CITY,value=MÜNCHEN),(key=CITY,value=MÜNCHEN,HIRSCHBACH)])

«signal»

SearchStatus(sessionHandle, locationInputHandle,

statusValue=FINISHED)

«signal»

SelectEntry(sessionHandle, locationInputHandle, index=0)

ContentUpdated

(sessionHandle,locationInputHandle,guidable=TRUE,availableSelectionCriteria=[COUNTRY,CITY,STREET,DISTRICT],address=[(key=COUNTRY,value=GERMANY),(key=CITY,value=MÜNCHEN),(key=

LATITUDE,value=48.8), (key= LONGITUDE,value=11.35)])

«signal»

© 2014 GENIVI Alliance

6.7.18 navigation application enters full address

sd nav igation application enters full address

«GNamedPlaceh...

NavigationApplication

«GAbstractComponent»

NavigationCore

LocationInput

(from NavigationCore)

ref

create location input session

SetAddress (sessionHandle, locationInputHandle, address=[(key=COUNTRY,value=GERMANY),(key=CITY,value=MUNICH),(key=STREET,value=MÜLLERSTRASSE)])

:Result

© 2014 GENIVI Alliance

6.8 Interfaces

interface
org.genivi.navigationcore.Routing
version 3.0.0 (22-01-2014)

Routing = This interface offers functions that implement the routing functionality of a navigation system

GetVersion = This method returns the API version implemented by the server application
method GetVersion

version = struct(major,minor,micro,date)
major = when the major changes, then backward compatibility with previous releases is not granted
minor = when the minor changes, then backward compatibility with previous releases is granted, but something
changed in the implementation of the API (e.g. new methods may have been added)
micro = when the micro changes, then backward compatibility with previous releases is granted (bug fixes or
documentation modifications)
date = release date (e.g. 21-06-2011)
out (qqqs) version

CreateRoute = This method creates a route
method CreateRoute

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u routeHandle

This error is generated if no more routing handles are available
error org.genivi.navigationcore.Routing.Error.NoMoreRouteHandles

DeleteRoute = This method deletes a route and its associated resources
method DeleteRoute

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

This error is generated if an application tries to delete a route handle that is not available
error org.genivi.navigationcore.Routing.Error.RouteNotAvailable

This error is generated if an application tries to delete a route which is not created manually (e.g. an alternative
route calculated in the background)
error org.genivi.navigationcore.Routing.Error.OperationNotAllowed

RouteDeleted = This signal is emitted to inform clients that the current route has been deleted
signal RouteDeleted

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u routeHandle

SetCostModel = This method sets the cost model
method SetCostModel

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

costModel =
enum(INVALID,FASTEST,SHORTEST,ECOLOGICAL,SCENIC,EASY,OFF_ROAD,BALANCED,CHEAPEST, ...)
FASTEST = least time to reach the destination
SHORTEST = shortest distance to destination
ECOLOGICAL = least fuel or electric charge to destination
SCENIC = most scenic route to destination
EASY = least number of turns to reach the destination
OFF_ROAD = a distance-optimised route between points that are not covered by road mappings
BALANCED = trade-off between FASTEST and SHORTEST (e.g. 50% FASTEST and 50% SHORTEST)
CHEAPEST = least fuel or electric charge to destination taking pricing into account
in q costModel

This error is generated if an application tries to set a cost model for a route which is not created manually (e.g.
an alternative route calculated in the background)
error org.genivi.navigationcore.Routing.Error.OperationNotAllowed

GetCostModel = This method retrieves the selected cost model
method GetCostModel

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

costModel =
enum(INVALID,FASTEST,SHORTEST,ECOLOGICAL,SCENIC,EASY,OFF_ROAD,BALANCED,CHEAPEST, ...)
FASTEST = least time to reach the destination
SHORTEST = shortest distance to destination
ECOLOGICAL = least fuel or electric charge to destination
SCENIC = most scenic route to destination
EASY = least number of turns to reach the destination
OFF_ROAD = a distance-optimised route between points that are not covered by road mappings
BALANCED = trade-off between FASTEST and SHORTEST (e.g. 50% FASTEST and 50% SHORTEST)
CHEAPEST = least fuel or electric charge to destination taking pricing into account
out q costModel

GetSupportedCostModels = This method retrieves a list of supported cost models
method GetSupportedCostModels

costModelsList = array[costModel]
costModel =
enum(INVALID,FASTEST,SHORTEST,ECOLOGICAL,SCENIC,EASY,OFF_ROAD,BALANCED,CHEAPEST, ...)
FASTEST = least time to reach the destination

SHORTEST = shortest distance to destination
ECOLOGICAL = least fuel or electric charge to destination
SCENIC = most scenic route to destination
EASY = least number of turns to reach the destination
OFF_ROAD = a distance-optimised route between points that are not covered by road mappings
BALANCED = trade-off between FASTEST and SHORTEST (e.g. 50% FASTEST and 50% SHORTEST)
CHEAPEST = least fuel or electric charge to destination taking pricing into account
out aq costModelsList

SetRoutePreferences = This method sets a list of route preferences
method SetRoutePreferences

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

countryCode = ISO 3166‐1 alpha 3 country code (upper case)
If this argument is an empty string, it means that the preferences apply to all countries
in s countryCode

roadPreferenceList = array[preference]
preference = struct(preferenceMode,preferenceSource)
preferenceMode = enum(PROHIBIT,AVOID,USE,PREFER)
preferenceMode = PROHIBIT. Routing module must not calculate a planned route including sections matching
given avoidance source.
preferenceMode = AVOID. Routing module should not calculate a planned route including sections matching
given avoidance source.
preferenceMode = USE. Routing module should calculate a planned route including sections matching given
avoidance source.
preferenceMode = PREFER. Routing module should calculate a planned route including as much as possible
sections matching given avoidance source.
preferenceSource =
enum(FERRY,TOLL_ROADS,TUNNELS,HIGHWAYS_MOTORWAYS,VEHICLE_SIZE_LIMIT,CRIME_AREAS)
in a(qq) roadPreferenceList

conditionPreferenceList = array[preference]
preference = struct(preferenceMode,preferenceSource)
preferenceMode = enum(USE,IGNORE)
preferenceSource = enum(TRAFFIC_REALTIME, ...)
in a(qq) conditionPreferenceList

This error is generated if an application tries to set route preferences for a route which is not created manually
(e.g. an alternative route calculated in the background)
error org.genivi.navigationcore.Routing.Error.OperationNotAllowed

This error is generated if an application tries to set a route preference which is not supported (e.g.
(USE,CRIME_AREA)). The preferences which are not supported are product dependent.
error org.genivi.navigationcore.Routing.Error.RoutePreferenceNotSupported

GetRoutePreferences = This method retrieves a list of selected route preferences
method GetRoutePreferences

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

countryCode = ISO 3166‐1 alpha 3 country code (upper case)
If this argument is an empty string, it means that the preferences apply to all countries
in s countryCode

roadPreferenceList = array[preference]
preference = struct(preferenceMode,preferenceSource)
preferenceMode = enum(PROHIBIT,AVOID,USE,PREFER)
preferenceMode = PROHIBIT. Routing module must not calculate a planned route including sections matching
given avoidance source.
preferenceMode = AVOID. Routing module should not calculate a planned route including sections matching
given avoidance source.
preferenceMode = USE. Routing module should calculate a planned route including sections matching given
avoidance source.
preferenceMode = PREFER. Routing module should calculate a planned route including as much as possible
sections matching given avoidance source.
preferenceSource =
enum(FERRY,TOLL_ROADS,TUNNELS,HIGHWAYS_MOTORWAYS,VEHICLE_SIZE_LIMIT,CRIME_AREAS)
out a(qq) roadPreferenceList

conditionPreferenceList = array[preference]
preference = struct(preferenceMode,preferenceSource)
preferenceMode = enum(USE,IGNORE)
preferenceSource = enum(TRAFFIC_REALTIME, ...)
out a(qq) conditionPreferenceList

GetSupportedRoutePreferences = This method retrieves a list of supported route preferences
method GetSupportedRoutePreferences

routePreferencesList = array[preference]
preference = struct(preferenceMode,preferenceSource)
preferenceMode = enum(PROHIBIT,AVOID,USE,PREFER)
preferenceMode = PROHIBIT. Routing module must not calculate a planned route including sections matching
given avoidance source.
preferenceMode = AVOID. Routing module should not calculate a planned route including sections matching
given avoidance source.
preferenceMode = USE. Routing module should calculate a planned route including sections matching given
avoidance source.
preferenceMode = PREFER. Routing module should calculate a planned route including as much as possible
sections matching given avoidance source.
preferenceSource =
enum(FERRY,TOLL_ROADS,TUNNELS,HIGHWAYS_MOTORWAYS,VEHICLE_SIZE_LIMIT,CRIME_AREAS)
out a(qq) routePreferencesList

conditionPreferenceList = array[preference]
preference = struct(preferenceMode,preferenceSource)
preferenceMode = enum(USE,IGNORE)
preferenceSource = enum(TRAFFIC_REALTIME, ...)
out a(qq) conditionPreferenceList

SetRouteSchedule = This method sets the time schedule for the route to be calculated
method SetRouteSchedule

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

routeSchedule = array[detail]
detail = dictionary[key,value]
dictionary = array of tuples (key,value)
key = enum(ARRIVAL_TIME, ARRIVAL_DATE,DEPARTURE_TIME, DEPARTURE_DATE)
key = ARRIVAL_TIME, value of type 'u', that represents the arrival time is expressed in seconds since mid-night
(UTC)
key = ARRIVAL_DATE, value of type 'u', that represents the arrival date is either a calendar date (the number of
days since 1 Jan 2000) or a weekday indication. For weekday indication the values 0 till 6 are used (0 = Saturday,
1 = Sunday, 2 = Monday, ..., 6 = Friday)
key = DEPARTURE_TIME, value of type 'u', that represents the departure time is expressed in seconds since mid-
night (UTC)
key = DEPARTURE_DATE, value of type 'u', that represents the departure date is either a calendar date (the
number of days since 1 Jan 2000) or a weekday indication. For weekday indication the values 0 till 6 are used (0
= Saturday, 1 = Sunday, 2 = Monday, ..., 6 = Friday)
in a{qu} routeSchedule

GetRouteSchedule = This method gets the time schedule for the route to be calculated
method GetRouteSchedule

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

valuesToReturn= array[value]
value= enum(ARRIVAL_TIME, ARRIVAL_DATE,DEPARTURE_TIME, DEPARTURE_DATE)
in aq valuesToReturn

routeSchedule = array[detail]
detail = dictionary[key,value]
dictionary = array of tuples (key,value)
key = enum(ARRIVAL_TIME, ARRIVAL_DATE,DEPARTURE_TIME, DEPARTURE_DATE)
key = ARRIVAL_TIME, value of type 'u', that represents the arrival time is expressed in seconds since mid-night
(UTC)
key = ARRIVAL_DATE, value of type 'u', that represents the arrival date is either a calendar date (the number of
days since 1 Jan 2000) or a weekday indication. For weekday indication the values 0 till 6 are used (0 = Saturday,
1 = Sunday, 2 = Monday, ..., 6 = Friday)
key = DEPARTURE_TIME, value of type 'u', that represents the departure time is expressed in seconds since mid-
night (UTC)
key = DEPARTURE_DATE, value of type 'u', that represents the departure date is either a calendar date (the
number of days since 1 Jan 2000) or a weekday indication. For weekday indication the values 0 till 6 are used (0
= Saturday, 1 = Sunday, 2 = Monday, ..., 6 = Friday)
out a{qu} routeSchedule

SetTransportationMeans = This method sets a list of means of transportation that must be considered when calculating a
route
method SetTransportationMeans

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

transportationMeansList = array[transportationMeans]

transportationMeans =
enum(INVALID,BY_CAR,ON_FOOT,LONG_RANGE_TRAINS,PUBLIC_TRANSPORTATION,BY_BICYCLE,BY_TRUCK,
...)
in aq transportationMeansList

This error is generated if an application tries to set transportation means for a route which is not created
manually (e.g. an alternative route calculated in the background)
error org.genivi.navigationcore.Routing.Error.OperationNotAllowed

GetTransportationMeans = This method retrieves the selected means of transportation
method GetTransportationMeans

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

transportationMeansList = array[transportationMeans]
transportationMeans =
enum(INVALID,BY_CAR,ON_FOOT,LONG_RANGE_TRAINS,PUBLIC_TRANSPORTATION,BY_BICYCLE,BY_TRUCK,
...)
out aq transportationMeansList

GetSupportedTransportationMeans = This method retrieves a list of supported means of transportation
method GetSupportedTransportationMeans

transportationMeansList = array[transportationMeans]
transportationMeans =
enum(INVALID,BY_CAR,ON_FOOT,LONG_RANGE_TRAINS,PUBLIC_TRANSPORTATION,BY_BICYCLE,BY_TRUCK,
...)
out aq transportationMeansList

SetExcludedAreas = This method sets the areas to be excluded when calculating a route
method SetExcludedAreas

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

excludedAreas = array[array(lat,lon)]
excludedAreas = array[convexPolygon]
convexPolygon = array[lat,lon]
lat = latitude of a vertex of the polygon in format %3.6f. Range [-90:+90]. Example: 48.053250
lon = longitude of a vertex of the polygon in format %3.6f. Range [-180:+180]. Example: 48.053250
Note: a polygon must have at least 3 vertexes
in aa(dd) excludedAreas

This error is generated if an application tries to set excluded areas for a route which is not created manually
(e.g. an alternative route calculated in the background)
error org.genivi.navigationcore.Routing.Error.OperationNotAllowed

GetExcludedAreas = This method retrieves the areas to be excluded when calculating a route

method GetExcludedAreas

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

excludedAreas = array[array(lat,lon)]
excludedAreas = array[convexPolygon]
convexPolygon = array[lat,lon]
lat = latitude of a vertex of the polygon in format %3.6f. Range [-90:+90]. Example: 48.053250
lon = longitude of a vertex of the polygon in format %3.6f. Range [-180:+180]. Example: 48.053250
Note: pass an empty array to remove previously selected excluded areas
out aa(dd) excludedAreas

SetWaypoints = This method sets a list of waypoints
method SetWaypoints

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

startFromCurrentPosition = flag indicating if the current position is used as starting point
in b startFromCurrentPosition

waypointsList = array[waypoint]
waypoint = tuple (key,value)
key = enum(INVALID,WAYPOINT_TYPE,LOCATION_INPUT,LATITUDE,LONGITUDE,ALTITUDE, ...)
key = WAYPOINT_TYPE, value = value of type 'q', that represents an enum(INVALID,SOFT_POINT,HARD_POINT,
...)
key = LOCATION_INPUT, value = value of type 'ay'. This is a byte array whose interpretation is left to the
navigation core
key = LATITUDE, value = value of type 'd', that expresses the latitude of the starting point in format %3.6f. Range
[-90:+90]. Example: 48.053250
key = LONGITUDE, value = value of type 'd', that expresses the longitude of the starting point in format %3.6f.
Range [-180:+180]. Example: 8.324500
key = ALTITUDE, value = value of type 'i', that expresses the altitude of the starting point in meters
Note: if the flag StartFromCurrentPosition=true, then at least one waypoint must be provided (destination)
Note: if the flag StartFromCurrentPosition=false, then at least two waypoints must be provided (starting point and
destination)
in aa{qv} waypointsList

This error is sent when a client application tries to change the waypoints while the route guidance is active
error org.genivi.navigationcore.Routing.Error.WaypointCannotBeChanged

This error is sent when a client application tries to set a number of waypoints that exceeds the system
capabilities
error org.genivi.navigationcore.Routing.Error.TooManyWaypoints

This error is generated if an application tries to set waypoints for a route which is not created manually (e.g. an
alternative route calculated in the background)
error org.genivi.navigationcore.Routing.Error.OperationNotAllowed

GetWaypoints = This method retrieves a list of waypoints
method GetWaypoints

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

startFromCurrentPosition = flag indicating if the current position is used as starting point
out b startFromCurrentPosition

waypointsList = array[waypoint]
waypoint = tuple (key,value)
key = enum(INVALID,WAYPOINT_TYPE,LOCATION_INPUT,LATITUDE,LONGITUDE,ALTITUDE, ...)
key = WAYPOINT_TYPE, value = value of type 'q', that represents an enum(INVALID,SOFT_POINT,HARD_POINT,
...)
key = LOCATION_INPUT, value = value of type 'ay'. This is a byte array whose interpretation is left to the
navigation core
key = LATITUDE, value = value of type 'd', that expresses the latitude of the starting point in format %3.6f. Range
[-90:+90]. Example: 48.053250
key = LONGITUDE, value = value of type 'd', that expresses the longitude of the starting point in format %3.6f.
Range [-180:+180]. Example: 8.324500
key = ALTITUDE, value = value of type 'i', that expresses the altitude of the starting point in meters
out aa{qv} waypointsList

CalculateRoute = This method starts a route calculation
method CalculateRoute

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

This error is generated if an application tries to calculate a route which is not created manually (e.g. an
alternative route calculated in the background)
error org.genivi.navigationcore.Routing.Error.OperationNotAllowed

CancelRouteCalculation = This method cancels a route calculation
method CancelRouteCalculation

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

RouteCalculationCancelled = This signal informs a client that a route calculation was cancelled
signal RouteCalculationCancelled

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u routeHandle

RouteCalculationSuccessful = This signal informs a client that a route calculation was successful
signal RouteCalculationSuccessful

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value

out u routeHandle

unfullfilledPreferences = array[preference]
preference = tuple(preferenceMode,preferenceSource)
preferenceMode = enum(PROHIBIT,AVOID,USE,PREFER)
preferenceMode = PROHIBIT. Routing module must not calculate a planned route including sections matching
given avoidance source.
preferenceMode = AVOID. Routing module should not calculate a planned route including sections matching
given avoidance source.
preferenceMode = USE. Routing module should calculate a planned route including sections matching given
avoidance source.
preferenceMode = PREFER. Routing module should calculate a planned route including as much as possible
sections matching given avoidance source.
preferenceSource =
enum(FERRY,TOLL_ROADS,TUNNELS,HIGHWAYS_MOTORWAYS,VEHICLE_SIZE_LIMIT,CRIME_AREAS)
out a{qq} unfullfilledPreferences

RouteCalculationFailed = This signal informs a client that a route calculation failed
signal RouteCalculationFailed

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u routeHandle

errorCode =
enum(INVALID,UNMATCHED_POSITION,UNREACHABLE_DESTINATION,UNFULFILLED_PREFERENCE_MODE,
...)
errorCode = UNFULFILLED_PREFERENCE_MODE. Refer to unfullfilledPreferences to see which routing
preferences could not be met causing routing calculation to fail; for any other value the argument
unfulfilledPreferences should be ignored.
out q errorCode

unfullfilledPreferences = array[preference]
preference = tuple(preferenceMode,preferenceSource)
preferenceMode = enum(PROHIBIT,AVOID,USE,PREFER)
preferenceMode = PROHIBIT. Routing module must not calculate a planned route including sections matching
given avoidance source.
preferenceMode = AVOID. Routing module should not calculate a planned route including sections matching
given avoidance source.
preferenceMode = USE. Routing module should calculate a planned route including sections matching given
avoidance source.
preferenceMode = PREFER. Routing module should calculate a planned route including as much as possible
sections matching given avoidance source.
preferenceSource =
enum(FERRY,TOLL_ROADS,TUNNELS,HIGHWAYS_MOTORWAYS,VEHICLE_SIZE_LIMIT,CRIME_AREAS)
out a{qq} unfullfilledPreferences

RouteCalculationProgressUpdate = This signal informs a client about a route calculation progress
signal RouteCalculationProgressUpdate

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u routeHandle

status = enum(INVALID,CALCULATION_OK,NO_POSITION, ...)
out q status

percentage = progress status. Range [0:100]

out y percentage

CalculateRoutes = This method allows a client to calculate alternative routes that differs from a list of already calculated
routes
method CalculateRoutes

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

calculatedRoutesList = array[calculatedRoute]
calculatedRoute = Handle identifying an already calculated route. Range[0x0:0x7fffffff]. 0x0 is reserved as an
invalid handle value
in au calculatedRoutesList

alternativeRoutesList = array[alternativeRoute]
alternativeRoute = Handle identifying an alternative route. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid
handle value
out au alternativeRoutesList

This error is generated if an application tries to calculate an alternative to a route which is not created manually
(e.g. an alternative route calculated in the background)
error org.genivi.navigationcore.Routing.Error.OperationNotAllowed

GetRouteSegments = This method retrieves a list of segments for a given route starting from the one closest to the
current position to the one closest to the destination
method GetRouteSegments

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

detailLevel = detail level
in n detailLevel

valuesToReturn= array[key]
key = enum(INVALID,LINK-
ID,INTERMEDIATE_POINTS,START_LATITUDE,START_LONGITUDE,START_ALTITUDE,
END_LATITUDE,END_LONGITUDE,END_ALTITUDE,ROAD_NAME,ROAD_NUMBER,DISTANCE,TIME,MANEUVER,INSTRUCTION,
BORDER_CROSSING,TIME_ZONE,DAYLIGHT_SAVING_TIME,ADDITIONAL_INFORMATION,HIGHWAY_EXIT, ...
, ALL)
in aq valuesToReturn

numberOfSegments = number of segments to be retrieved
in u numberOfSegments

offset = offset from the beginning of the list
in u offset

totalNumberOfSegments = total number of segments
out u totalNumberOfSegments

routeSegments = array[segment]
segment = tuple(key,value)
Note: a segment is the shortest navigable stretch of a route (e.g. the stretch between two adjacent junctions)
key = enum(INVALID,LINK-
ID,INTERMEDIATE_POINTS,START_LATITUDE,START_LONGITUDE,START_ALTITUDE,
END_LATITUDE,END_LONGITUDE,END_ALTITUDE,ROAD_NAME,ROAD_NUMBER,DISTANCE,TIME,MANEUVER,INSTRUCTION,

BORDER_CROSSING,TIME_ZONE,DAYLIGHT_SAVING_TIME,ADDITIONAL_INFORMATION,HIGHWAY_EXIT, ...
)
key = LINK-ID, value = value of type 'ay', that represents a link-ID in a format whose interpretation is left to the
navigationcore
key = START_LATITUDE, value = value of type 'd', that expresses the latitude of the starting point in format %3.6f.
Range [-90:+90]. Example: 48.053250
key = END_LATITUDE, value = value of type 'd', that expresses the latitude of the ending point in format %3.6f.
Range [-90:+90]. Example: 48.053250
Note: END_LATITUDE can be omitted, if it coincides with the latitude of the start point of the next segment
key = START_LONGITUDE, value = value of type 'd', that expresses the longitude of the starting point in format
%3.6f. Range [-180:+180]. Example: 8.321000
key = END_LONGITUDE, value = value of type 'd', that expresses the longitude of the ending point in format
%3.6f. Range [-180:+180]. Example: 8.321000
Note: END_LONGITUDE can be omitted, if it coincides with the longitude of the start point of the next segment
key = START_ALTITUDE, value = value of type 'i', that expresses the altitude relative to the ground of the starting
point in meters
key = END_ALTITUDE, value = value of type 'i', that expresses the altitude relative to the ground of the ending
point in meters
Note: END_ALTITUDE can be omitted, if it coincides with the altitude of the start point of the next segment
key = INTERMEDIATE_POINTS, value = value of type 'a(qddd)', that expresses an array of intermediate points
Note: an intermedate point is expressed as a struct(type,latitude,longitude,altitude), where type =
enum(INVALID,HARD_POINT,SOFT_POINT, ...)
key = ROAD_NUMBER, value = value of type 's', that expresses the road number
key = ROAD_NAME, value = value of type 's', that expresses the road name
key = DISTANCE, value = value of type 'u', that identifies distance to the next segment in meters
key = TIME, value = value of type 'u', that identifies time to travel to the next segment in seconds
key = MANEUVER, value = value of type 'a(qqaq)', that identifies a pictogram that describes the next maneuver
(OPTIONAL)
key = INSTRUCTION, value = value of type 's', that identifies the instruction to the user
key = BORDER_CROSSING, value = value of type 's', that contains information about border crossings
key = TIME_ZONE, value = value of type 'n', that indicates the time zone of the current segment. It is expressed
as the time difference from the UTC in minutes
key = DAYLIGHT_SAVING_TIME, value = value of type 'n', that indicates the daylight saving time of the current
segment. It is expressed as the time difference from the UTC in minutes
key = ADDITIONAL_INFORMATION, value = value of type 's', that contains additional information to the user (toll
cost, ...)
key = HIGHWAY_EXIT, value = value of type 's', that in case the road segment ends with a highway exit, it
expresses the highway exit number
key = START_OFFSET, value = value of type 'u', that indicates the offset of the starting point in meters from the
beginning of the route
out aa{qv} routeSegments

GetRouteOverview = This method retrieves general information about a given route
method GetRouteOverview

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

valuesToReturn = array[key]
key =
enum(ARRIVAL_TIME,ARRIVAL_DATE,DEPARTURE_TIME,DEPARTURE_DATE,TOTAL_DISTANCE,TOTAL_TIME,
... ,ALL)
in aq valuesToReturn

routeOverview = array[detail]
detail = tuple(key,value)
key =
enum(ARRIVAL_TIME,ARRIVAL_DATE,DEPARTURE_TIME,DEPARTURE_DATE,TOTAL_DISTANCE,TOTAL_TIME,
...)

key = ARRIVAL_TIME, value of type 'u', that represents the arrival time expressed in seconds since mid-night
(UTC)
key = ARRIVAL_DATE, value of type 'u', that represents the arrival date expressed either as calendar date (the
number of days since 1 Jan 2000) or as weekday. The weekday is expressed with values from 0 to 6 (0 =
Saturday, 1 = Sunday, 2 = Monday, ..., 6 = Friday)
key = DEPARTURE_TIME, value of type 'u', that represents the departure time expressed in seconds since mid-
night (UTC)
key = DEPARTURE_DATE, value of type 'u', that represents the departure date expressed either as calendar date
(the number of days since 1 Jan 2000) or as weekday. The weekday is expressed with values from 0 to 6 (0 =
Saturday, 1 = Sunday, 2 = Monday, ..., 6 = Friday)
key = TOTAL_DISTANCE, value of type 'u', that represents the total distance in m
key = TOTAL_TIME, value of type 'u', that represents the total time in seconds
out a{qv} routeOverview

GetRouteBoundingBox = This method retrieves the bounding box containing a calculated route
method GetRouteBoundingBox

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

boundingBox = struct(top-left-corner,bottom-right-corner)
geocoordinates of the top-left-corner = struct(lat,lon)
geocoordinates of the bottom-right-corner = struct(lat,lon)
lat = latitude in format %3.6f. Range[-90:+90]. Example: 48.053250
lon = longitude in format %3.6f. Range[-180:+180]. Example: 8.321000
out ((dd)(dd)) boundingBox

GetAllRoutes = This method retrieves the handles of all created routes
method GetAllRoutes

routesList = array[route]
route = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out au routesList

AlternativeRoutesAvailable = This signal is emitted when alternative routes have been computed in the background and
are available for guidance.
signal AlternativeRoutesAvailable

routeHandlesList = array[routeHandle]
routeHandle = Handle identifying a computed alternative route. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid
handle value
out au routeHandlesList

SetBlockedRouteStretches = This method sets blocked streches on a given route
method SetBlockedRouteStretches

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

blockParameters = struct(offset,length)
offset = the offset in meters from the beginning of the route where the road block starts from
length = the length of the road block in meters
Note: pass an empty array to remove previously set blocked route stretches
in a(uu) blockParameters

GetBlockedRouteStretches = This method retrieves all blocked streches on a given route
method GetBlockedRouteStretches

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

blockParameters = struct(offset,length)
offset = the offset in meters from the beginning of the route where the road block starts from
length = the length of the road block in meters
out a(uu) blockParameters

interface
org.genivi.navigationcore.Session
version 3.0.0 (22-01-2014)

Session = This interface offers functions to create and delete sessions

GetVersion = This method returns the API version implemented by the server application
method GetVersion

version = struct(major,minor,micro,date)
major = when the major changes, then backward compatibility with previous releases is not granted
minor = when the minor changes, then backward compatibility with previous releases is granted, but something
changed in the implementation of the API (e.g. new methods may have been added)
micro = when the micro changes, then backward compatibility with previous releases is granted (bug fixes or
documentation modifications)
date = release date (e.g. 21-06-2011)
out (qqqs) version

CreateSession = This method creates a new session
method CreateSession

client = name or identifier of the client application that requests a new session
The navigation core must internally associate this name to the returned session handle
This parameter can be used to identify the client application and determine if a given feature is enabled for it
in s client

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u sessionHandle

This error is generated if no more session handles are available
error org.genivi.navigationcore.Session.Error.NoMoreSessionHandles

DeleteSession = This method deletes a session and its associated resources
method DeleteSession

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

This error is generated if an application tries to delete a session handle that is not available
error org.genivi.navigationcore.Session.Error.SessionNotAvailable

GetSessionStatus = This method returns whether a given session handle is available or not (for example because it was
deleted)
method GetSessionStatus

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

sessionStatus = enum(INVALID,AVAILABLE,NOT_AVAILABLE)
out q sessionStatus

GetAllSessions = This method returns a list of all available sessions
method GetAllSessions

sessionsList = array[struct(sessionHandle,client)]
sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
client = name or identifier of the client application that requested the sessionHandle
out a(us) sessionsList

SessionDeleted = This signal is emitted when a session is deleted
signal SessionDeleted

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u sessionHandle

interface
org.genivi.navigationcore.Configuration
version 3.0.0 (21-01-2014)

Configuration = This interface offers functions to set and retrieve configuration parameters

GetVersion = This method returns the API version implemented by the server application
method GetVersion

version = struct(major,minor,micro,date)
major = when the major changes, then backward compatibility with previous releases is not granted
minor = when the minor changes, then backward compatibility with previous releases is granted, but something
changed in the implementation of the API (e.g. new methods may have been added)
micro = when the micro changes, then backward compatibility with previous releases is granted (bug fixes or
documentation modifications)
date = release date (e.g. 21-06-2011)
out (qqqs) version

SetUnitsOfMeasurement = This method sets the units of measurement
method SetUnitsOfMeasurement

unitsOfMeasurementList = array[unitsOfMeasurement]
unitsOfMeasurement = tuple (key,value)
key = enum(INVALID,LENGTH, ...)
key = LENGTH, value = value of type 'q', that represents an enum(INVALID,METER,MILE, ...)
in a{qv} unitsOfMeasurementList

GetUnitsOfMeasurement = This method retrieves the units of measurement
method GetUnitsOfMeasurement

unitsOfMeasurementList = array[unitsOfMeasurement]
unitsOfMeasurement = tuple (key,value)
key = enum(INVALID,LENGTH, ...)
key = LENGTH, value = value of type 'q', that represents an enum(INVALID,METER,MILE, ...)
out a{qv} unitsOfMeasurementList

GetSupportedUnitsOfMeasurement = This method retrieves the supported units of measurement
method GetSupportedUnitsOfMeasurement

unitsOfMeasurementList = array[unitsOfMeasurement]
unitsOfMeasurement = dictionary[key,value]
dictionary = array of tuples (key,value)
key = enum(INVALID,LENGTH, ...)
key = LENGTH, value = value of type 'aq'; 'q' is an enum(INVALID,METER,MILE, ...)

out a{qv} unitsOfMeasurementList

SetTimeFormat = This method sets the time format
method SetTimeFormat

timeFormat = enum(INVALID,12H,24H, ...)
in q timeFormat

GetTimeFormat = This method retrieves the time format
method GetTimeFormat

timeFormat = enum(INVALID,12H,24H, ...)
out q timeFormat

GetSupportedTimeFormats = This method retrieves the supported time formats
method GetSupportedTimeFormats

timeFormatList = array[timeFormat]
timeFormat = enum(INVALID,12H,24H, ...)
out aq timeFormatList

SetCoordinatesFormat = This method sets the coordinates format
method SetCoordinatesFormat

coordinatesFormat = enum(INVALID,DEGREES,MINUTES,SECONDS, ...)
DEGREES format = d.dº
MINUTES format = dºm.m'
SECONDS format = dºm's"
in q coordinatesFormat

GetCoordinatesFormat = This method retrieves the coordinates format
method GetCoordinatesFormat

coordinatesFormat = enum(INVALID,DEGREES,MINUTES,SECONDS, ...)
DEGREES format = d.dº
MINUTES format = dºm.m'
SECONDS format = dºm's"
out q coordinatesFormat

GetSupportedCoordinatesFormats = This method retrieves the supported coordinates formats
method GetSupportedCoordinatesFormats

coordinatesFormatList = array[coordinatesFormat]

coordinatesFormat = enum(INVALID,DEGREES,MINUTES,SECONDS, ...)
DEGREES format = d.dº
MINUTES format = dºm.m'
SECONDS format = dºm's"
out aq coordinatesFormatList

SetLocale = This method sets the current language and country
method SetLocale

languageCode = ISO 639‐3 language code (lower case)
in s languageCode

countryCode = ISO 3166‐1 alpha 3 country code (upper case)
in s countryCode

GetLocale = This method retrieves the current language and country
method GetLocale

languageCode = ISO 639‐3 language code (lower case)
out s languageCode

countryCode = ISO 3166‐1 alpha 3 country code (upper case)
out s countryCode

GetSupportedLocales = This method retrieves the supported languages and countries
method GetSupportedLocales

localeList = array[struct(languageCode,countryCode)]
languageCode = ISO 639-3 language code (lower case)
countryCode = ISO 3166-1 alpha 3 country code (upper case)
out a(ss) localeList

ConfigurationChanged = This signal is sent to the clients when one or more configuration settings changes
signal ConfigurationChanged

changedSettings = array[setting]
setting = enum(INVALID,UNITS_OF_MEASUREMENT,LOCALE,TIME_FORMAT,COORDINATES_FORMAT, ...)
out aq changedSettings

interface
org.genivi.navigationcore.Guidance
version 3.1.0-alpha (03-03-2014)

Guidance = This interface offers functions that implement the route-guidance functionality of a navigation system

GetVersion = This method returns the API version implemented by the server application
method GetVersion

version = struct(major,minor,micro,date)
major = when the major changes, then backward compatibility with previous releases is not granted
minor = when the minor changes, then backward compatibility with previous releases is granted, but something
changed in the implementation of the API (e.g. new methods may have been added)
micro = when the micro changes, then backward compatibility with previous releases is granted (bug fixes or
documentation modifications)
date = release date (e.g. 21-06-2011)
out (qqqs) version

StartGuidance = This method starts the guidance for a given route
The guidanceStatus will change to ACTIVE
method StartGuidance

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

routeHandle = Route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u routeHandle

StopGuidance = This method stops the guidance
The guidanceStatus will change to INACTIVE
method StopGuidance

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

SetVoiceGuidance = This method switch on/off the voice guidance
method SetVoiceGuidance

activation of the voice guidance
in b activate

kind of voice (to be defined)
in s voice

This error is generated if the voice generation is inactive
error org.genivi.navigationcore.Guidance.Error.VoiceNotAllowed

GetGuidanceDetails = This method retrieves guidance information
method GetGuidanceDetails

voiceGuidance = if TRUE voice guidance is active
out b voiceGuidance

vehicleOnTheRoad = if TRUE the vehicle is located on the road network
out b vehicleOnTheRoad

isDestinationReached = if TRUE the destination has been reached
out b isDestinationReached

maneuver = enum(INVALID,CRUISE,MANEUVER_APPEARED,PRE_ADVICE,ADVICE,PASSED, ...)
out q maneuver

PlayVoiceManeuver = This method plays or repeats the last voice guidance
method PlayVoiceManeuver

This error is generated if the voice generation is inactive
error org.genivi.navigationcore.Guidance.Error.VoiceNotAllowed

GetWaypointInformation = This method retrieves the information on the remaining way points of the route. A point can be
the final destination as well as a stage defined by the user. The returned waypoints are ordered by their 'number'.
method GetWaypointInformation

requestedNumberOfWaypoints = the number of requested waypoints. If 0, all waypoints will be returned.
in q requestedNumberOfWaypoints

numberOfWaypoints = the number of retrieved waypoints(NOTE: the number corresponds to the number of
elements in the array)
out q numberOfWaypoints

array[struct(waypointOffset,travelTime,direction,side,timeZone,daylightSavingTime,isDestination,number)]
waypointOffset = the offset of the way point in meters from the beginning of the route
travelTime = time to reach the way point in seconds
direction = direction of the way point in degree relatively to the North. Range [0:360]
side = enum(LEFT,RIGHT,NOT_AVAILABLE)
timeZone = time zone of the way point. It is expressed as the time difference from the UTC in minutes
daylightSavingTime = daylight saving time of the way point. It is expressed as the time difference from the UTC in
minutes
isDestination = if TRUE the way point is the destination
number = number of the next waypoint (related to the waypoint list, first way point index is 0)
out a(uuiqnnbq) waypointsList

This method retrieves the information on the final destination
method GetDestinationInformation

offset = offset of the destination in meter from the beginning of the route
out u offset

travelTime = time to reach the destination in second
out u travelTime

direction = direction of the destination in degree relatively to the North. Range [0:360]
out i direction

side = enum(LEFT,RIGHT,NOT_AVAILABLE)
out q side

timeZone = time zone of the destination. It is expressed as the time difference from the UTC in minutes
out n timeZone

daylightSavingTime = daylight saving time of the destination. It is expressed as the time difference from the UTC
in minutes
out n daylightSavingTime

VehicleLeftTheRoadNetwork = This signal is emitted when the vehicle exits from the road network
signal VehicleLeftTheRoadNetwork

GuidanceStatusChanged = This signal is emitted when the guidance status changes
signal GuidanceStatusChanged

guidanceStatus = enum(INVALID,ACTIVE,INACTIVE)
ACTIVE means that NavigationCore is providing guidance information
INACTIVE means that NavigationCore is not providing guidance information
out q guidanceStatus

routeHandle = Active route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value. Should be
ignored when guidanceStatus=INACTIVE.
out u routeHandle

WaypointReached = This signal is emitted when the destination is reached
signal WaypointReached

isDestination = flag. TRUE means that the way point is the destination
out b isDestination

This signal is emitted each time a maneuver event is going
signal ManeuverChanged

maneuver = enum(INVALID,CRUISE,MANEUVER_APPEARED,PRE_ADVICE,ADVICE,PASSED, ...)
out q maneuver

PositionOnRouteChanged = This signal is emitted when the position on the route changes
signal PositionOnRouteChanged

offsetOnRoute = the current offset on the route in meters from the beginning of the route
out u offsetOnRoute

GetManeuversList = This method retrieves the list of next maneuvers
method GetManeuversList

requestedNumberOfManeuvers = the number of requested maneuvers
in q requestedNumberOfManeuvers

maneuverOffset = the offset of the first maneuver to retrieve
in u maneuverOffset

numberOfManeuvers = the number of retrieved maneuvers
Note: the number corresponds to the number of elements in the array
out q numberOfManeuvers

maneuversList =
array[struct(roadNumberAfterManeuver,roadNameAfterManeuver,roadPropertyAfterManeuver,drivingSide,offsetOfNextManeuver,maneuverDetails)]
roadNumberAfterManeuver = the number of the road after the maneuver (if a road has multiple road numbers,
they will be separated by slashes ('/') and combined into one string)
roadNameAfterManeuver = the name of the road after the maneuver
roadPropertyAfterManeuver = enum(TOLL_ROADS, ... ,DEFAULT)
drivingSide = enum(LEFT,RIGHT)
offsetOfNextManeuver = the offset of the next maneuver in meters from the beginning of the route (next
maneuver is the second maneuver on the route ahead)
maneuverDetails = array[struct(offsetOfManeuver,travelTime,direction,maneuver,maneuverData)]
offsetOfManeuver = the offset of the current maneuver in meters from the beginning of the route (current
maneuver is the first maneuver on the route ahead)
travelTime = travel time to the basic maneuver in seconds
direction = direction of the maneuver in degree relatively to the North. Range [0:360]
maneuver =
enum(INVALID,STRAIGHT_ON,TURN,CROSSROAD,ROUNDABOUT,HIGHWAY_ENTER,HIGHWAY_EXIT,BIFURCATION,FOLLOW_SPECIFIC_LANE,DESTINATION,WAYPOINT,ROAD_FORM_CHANGE)
maneuverData = array[struct(key, value)]
key =
enum(LENGTH,DIRECTION,EXIT_NUMBER,ROAD_FORM,LANE_INFO,LATITUDE,LONGITUDE,ALTITUDE)
key = LENGTH, value of type 'q', when maneuver=ROUNDABOUT, expresses the length of the route segment
between the entry to and the exit from the roundabout
key = DIRECTION, value of type 'q',
enum(INVALID,STRAIGHT_ON,LEFT,SLIGHT_LEFT,HARD_LEFT,RIGHT,SLIGHT_RIGHT,HARD_RIGHT,UTURN_RIGHT,UTURN_LEFT)
key = EXIT_NUMBER, when maneuver=ROUNDABOUT, value of type 'q' that expresses the roundabout exit
number
when maneuver=HIGHWAY_EXIT, value of type 's' that expresses the highway exit number
key = ROAD_FORM, value of type 'q',
enum(INVALID,ROAD_REGULAR,ROAD_HIGHWAY_MOTORWAY,ROAD_FERRY)
key = LANE_INFO, value of type 'a(uuuq)', array[struct(laneIndex,laneDirections,directionToFollow,divider)]
laneIndex = number of the individual lane. Counting starts from zero, beginning at the left-most lane in the
direction of travel (independent of the driving side)
laneDirections = bitfield where each bit corresponds to a certain direction. A 1-bit indicates that the
corresponding part of the lane arrow is drawn in the lane information on the street (see the lane info bitmasks)
directionToFollow = bitfield where each bit corresponds to a certain direction. A 1-bit indicates that the
corresponding part of the lane arrow matches the direction of the corresponding maneuver (see the lane info
bitmasks). At most one bit of this bitmask will be set.
The bitmasks are:
LANE_INFO_BITMASK_STRAIGHT,LANE_INFO_BITMASK_SLIGHTRIGHT,LANE_INFO_BITMASK_RIGHT,LANE_INFO_BITMASK_SHARPRIGHT,LANE_INFO_BITMASK_RIGHTUTURN,LANE_INFO_BITMASK_SLIGHTLEFT,LANE_INFO_BITMASK_LEFT,LANE_INFO_BITMASK_SHARPLEFT,LANE_INFO_BITMASK_LEFTUTURN
divider = indicates the type of divider between the given lane and the next one to the right, in the direction of travel
enum(DIVIDER_UNDEFINED,DIVIDER_INTERRUPTEDLONG,DIVIDER_INTERRUPTEDSHORT,DIVIDER_SOLIDSINGLE,DIVIDER_SOLIDDOUBLE,DIVIDER_SOLIDINTERRUPTED,DIVIDER_INTERRUPTEDSOLID)
Note: To describe the divider on the left side of the left-most lane, use the following entry in LANE_INFO:
(laneIndex=0xffffffff,laneDirections=0x00000000,directionToFollow=0x00000000,divider=type)
key = LATITUDE, value = value of type 'd', that expresses the latitude of the starting point in format %3.6f. Range
[-90:+90]. Example: 48.053250
key = LONGITUDE, value = value of type 'd', that expresses the longitude of the starting point in format %3.6f.
Range [-180:+180]. Example: 8.324500
key = ALTITUDE, value = value of type 'i', that expresses the altitude of the starting point in meters
out a(ssqqua(uuiqa(qv))) maneuversList

This error is generated in case there's no maneuver until the destination
error org.genivi.navigationcore.Guidance.Error.NoManeuver

VehicleLeftTheRoute = This signal is emitted when the vehicle has left the route
signal VehicleLeftTheRoute

SetRouteCalculationMode = This method configures the way the navigation application wants the navigation core to behave
of reroute trigger
method SetRouteCalculationMode

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

routeCalculationMode =
enum(INVALID,ALL_MANUAL,ALL_AUTOMATIC,TRAFFIC_MANUAL,OFF_ROUTE_MANUAL)
in q routeCalculationMode

SkipNextManeuver = This method allows to jump behind the current maneuver
method SkipNextManeuver

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

This error is generated in case there's no maneuver until the destination
error org.genivi.navigationcore.Guidance.Error.NoManeuver

GetGuidanceStatus = This method retrieves the guidance status
method GetGuidanceStatus

guidanceStatus = enum(INVALID,ACTIVE,INACTIVE)
ACTIVE means that NavigationCore is providing guidance information
INACTIVE means that NavigationCore is not providing guidance information
out q guidanceStatus

routeHandle = Active route handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value. Should be
ignored when guidanceStatus=INACTIVE
out u routeHandle

SetVoiceGuidanceSettings = This method sets the voice guidance settings
method SetVoiceGuidanceSettings

mode = enum(INVALID,DISABLED_PROMPT,AUTOMATIC_PROMPT,MANUAL_PROMPT, ...)
MANUAL_PROMPT means that a client application can ask the NavigationCore to play the voice prompts
AUTOMATIC_PROMPT means that the voice prompts will be requested by NavigationCore automatically
DISABLED_PROMPT means that the client application will the voice generator component directly to play the
messages (bypassing the NavigationCore)
in q promptMode

GetVoiceGuidanceSettings = This method returns the used voice guidance settings
method GetVoiceGuidanceSettings

mode = enum(INVALID,DISABLED_PROMPT,AUTOMATIC_PROMPT,MANUAL_PROMPT, ...)
MANUAL_PROMPT means that a client application can ask the NavigationCore to play the voice prompts
AUTOMATIC_PROMPT means that the voice prompts will be requested by NavigationCore automatically
DISABLED_PROMPT means that the client application will the voice generator component directly to play the
messages (bypassing the NavigationCore)
out q promptMode

PositionToRouteChanged = This signal is emitted when the vehicle is off-the-road network and either the heading or the
distance (or both) to the closest point on the active route changes
signal PositionToRouteChanged

distance = distance in meters to the closest point on the active route
out u distance

direction = direction in degrees relatively to the closest point on the active route. Range [0:360]
out i direction

ActiveRouteChanged = This signal is emitted when the active route changes
signal ActiveRouteChanged

changeCause = enum(INVALID,TRAFFIC,OFF_ROUTE,MANUAL,...)
out q changeCause

interface
org.genivi.navigationcore.MapMatchedPosition
version 3.0.0 (21-01-2014)

MapMatchedPosition = This interface offers functions to retrieve the map matched position and to simulate positioning

If NavigationCore is not in Simulation Mode (Simulation Status is SIMULATION_STATUS_NO_SIMULATION), it is using
the EnhancedPosition from the Positioning component.
In Simulation Mode it is not using this position, instead it uses FixedPosition or FollowActiveRoute to determine the
position.
With FixedPosition (Simulation Status is SIMULATION_STATUS_FIXED_POSITION), the position is fixed, unless it is
changed by a call to setPosition().
This supports use cases like: setting the current car position in a demo mode, or replay a position log file (where
setPosition() is called for each logged location).
In Follow Active Route mode, NavigationCore is generating positions itself.
These positions follow the current active route. When the end of the route is reached, the position jumps back to the
starting point of the route.
There are two sub states: Running (Simulation Status is SIMULATION_STATUS_RUNNING) and Paused (Simulation
Status is SIMULATION_STATUS_PAUSED).
By default the ‘driving speed’ will be equal to the free flow speed of each road segment. However a speed factor can be
set via the method SetSimulationSpeed.

GetVersion = This method returns the API version implemented by the server application
method GetVersion

version = struct(major,minor,micro,date)
major = when the major changes, then backward compatibility with previous releases is not granted
minor = when the minor changes, then backward compatibility with previous releases is granted, but something
changed in the implementation of the API (e.g. new methods may have been added)
micro = when the micro changes, then backward compatibility with previous releases is granted (bug fixes or
documentation modifications)
date = release date (e.g. 21-06-2011)
out (qqqs) version

SetSimulationMode = This method activates or deactivates the simulation mode
method SetSimulationMode

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

activate = flag. TRUE means that the simulation mode is activated.
The simulation status will be SIMULATION_STATUS_FIXED_POSITION, with the position being the last known
position in the NavigationCore.
FALSE means that the simulation mode is de-activated. The simulation status will be
SIMULATION_STATUS_NO_SIMULATION
in b activate

GetSimulationStatus = This method retrieves the simulation status
method GetSimulationStatus

simulationStatus = enum(SIMULATION_STATUS_NO_SIMULATION, SIMULATION_STATUS_RUNNING,
SIMULATION_STATUS_PAUSED, SIMULATION_STATUS_FIXED_POSITION)
SIMULATION_STATUS_NO_SIMULATION means that NavigationCore is using the EnhancedPosition
SIMULATION_STATUS_RUNNING means that positions are generated along the active route
SIMULATION_STATUS_PAUSED means that the generation of positions along the active route is paused
SIMULATION_STATUS_FIXED_POSITION means that the position is fixed.
out q simulationStatus

AddSimulationStatusListener = Add this node as a listener to Simulation Status changes.
Upon changes a SimulationStatusChanged signal will be received. NavigationCore will only send out a
SimulationStatusChanged signal if there is at least one node listening to these changes.
method AddSimulationStatusListener

RemoveSimulationStatusListener = Remove this node as a listener to Simulation Status changes.
method RemoveSimulationStatusListener

SimulationStatusChanged = This signal is emitted when the Simulation Status has changed
signal SimulationStatusChanged

simulationStatus = enum(SIMULATION_STATUS_NO_SIMULATION, SIMULATION_STATUS_RUNNING,
SIMULATION_STATUS_PAUSED, SIMULATION_STATUS_FIXED_POSITION)
SIMULATION_STATUS_NO_SIMULATION means that NavigationCore is using the EnhancedPosition
SIMULATION_STATUS_RUNNING means that positions are generated along the active route

SIMULATION_STATUS_PAUSED means that the generation of positions along the active route is paused
SIMULATION_STATUS_FIXED_POSITION means that the position is fixed.
out q simulationStatus

SetSimulationSpeed = This method sets the speed factor for the simulation mode
method SetSimulationSpeed

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

speedFactor = speed factor
unit is x0.25. Normal speed x1 is 4
in y speedFactor

GetSimulationSpeed = returns the speed factor for the simulation mode
method GetSimulationSpeed

speedFactor = speed factor
unit is x0.25. Normal speed x1 is 4
out y speedFactor

AddSimulationSpeedListener = Add this node as a listener to simulation speed factor changes.
Upon changes a SimulationSpeedChanged signal will be received.
NavigationCore will only send out a SimulationSpeedChanged signal if there is at least one node listening to these
changes
method AddSimulationSpeedListener

RemoveSimulationSpeedListener = Remove this node as a listener to simulation speed factor changes.
method RemoveSimulationSpeedListener

SimulationSpeedChanged = This signal is emitted when the simulation speed factor has changed
NavigationCore will only send out a SimulationSpeedChanged signal if there is at least one node listening to these
changes
signal SimulationSpeedChanged

speedFactor = speed factor
unit is x0.25. Normal speed x1 is 4
out y speedFactor

StartSimulation = This method starts, or resumes, a Follow Active Route simulation
If the current Simulation Status is SIMULATION_STATUS_PAUSED, the simulation is resumed from the current location.
Otherwise the simulation is started from the starting point of the route. In both cases the new status will be
SIMULATION_STATUS_RUNNING
method StartSimulation

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

PauseSimulation = This method freezes the current location
The new status will be SIMULATION_STATUS_PAUSED
method PauseSimulation

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

GetPosition = This method returns the current position
method GetPosition

valuesToReturn= array[key]
key =
enum(INVALID,TIMESTAMP,LATITUDE,LONGITUDE,ALTITUDE,HEADING,SPEED,CLIMB,GNSS_FIX_STATUS,DR_STATUS,MM_STATUS,SIMULATION_MODE,
... ,ALL)
in aq valuesToReturn

position = dictionary[key,value]
dictionary = array of tuples (key,value)
key =
enum(INVALID,TIMESTAMP,LATITUDE,LONGITUDE,ALTITUDE,HEADING,SPEED,CLIMB,GNSS_FIX_STATUS,DR_STATUS,MM_STATUS,SIMULATION_MODE,
...)
key = TIMESTAMP, value = value of type 't', that represents a timestamp in ms
key = LATITUDE, value = value of type 'd', that expresses the latitude of the current position in format %3.6f.
Range [-90,+90]. Example: 48.053250

key = LONGITUDE, value = value of type 'd', that expresses the longitude of the current position in format %3.6f.
Range [-180,+180]. Example: 8.324500
key = ALTITUDE, value = value of type 'i', that expresses the altitude above the sea level of the current position in
meters
key = HEADING, value = value of type 'u', that expresses the course angle in degree (0 = north, 90 = east, 180 =
south, 270 = west, no negative values)
key = SPEED, value = value of type 'd', that expresses speed measured in m/s. A negative value indicates that the
vehicle is moving backwards
key = CLIMB, value = value of type 'i', that expresses the inclination measured in degrees
key = GNSS_FIX_STATUS, value = value of type 'q', that represents an
enum(INVALID,NO_FIX,TIME_FIX,2D_FIX,3D_FIX, ...)
key = DR_STATUS, value = value of type 'b', where TRUE means that a dead-reckoning algorithm has been used
to calculate the current position
key = MM_STATUS, value = value of type 'b', where TRUE means that a map-matching algorithm has been used to
calculate the current position
key = SIMULATION_MODE, value = value of type 'b', where TRUE means that the current position is simulated
out a{qv} position

This error is generated if no position is available
error org.genivi.navigationcore.MapMatchedPosition.Error.NoPosition

SetPosition = This method sets the position to a specific location
Independent of the current Simulation Status, the new status will be SIMULATION_STATUS_FIXED_POSITION.
This method can be used to replay a position log file (with positions obtained via calls to GetPosition()) by calling this
method for each position in the log file.
It is of course also possible to call this method just once with e.g. a 'current location' entered by the user (via the HMI).
method SetPosition

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

position = dictionary[key,value]
dictionary = array of tuples (key,value)
key =
enum(INVALID,TIMESTAMP,LATITUDE,LONGITUDE,ALTITUDE,HEADING,SPEED,CLIMB,GNSS_FIX_STATUS,DR_STATUS,MM_STATUS,
...)
key = TIMESTAMP, value = value of type 't', that represents a timestamp in ms
key = LATITUDE, value = value of type 'd', that expresses the latitude of the current position in format %3.6f.
Range [-90,+90]. Example: 48.053250
key = LONGITUDE, value = value of type 'd', that expresses the longitude of the current position in format %3.6f.
Range [-180,+180]. Example: 8.324500
key = ALTITUDE, value = value of type 'i', that expresses the altitude above the sea level of the current position in
meters
key = HEADING, value = value of type 'u', that expresses the course angle in degree (0 = north, 90 = east, 180 =
south, 270 = west, no negative values)
key = SPEED, value = value of type 'd', that expresses speed measured in m/s. A negative value indicates that the
vehicle is moving backwards
key = CLIMB, value = value of type 'i', that expresses the inclination measured in degrees
key = GNSS_FIX_STATUS, value = value of type 'q', that represents an
enum(INVALID,NO_FIX,TIME_FIX,2D_FIX,3D_FIX, ...)
key = DR_STATUS, value = value of type 'b', where TRUE means that a dead-reckoning algorithm has been used
to calculate the current position
key = MM_STATUS, value = value of type 'b', where TRUE means that a map-matching algorithm has been used to
calculate the current position
Note that the key SIMULATION_MODE is not allowed here, as it will be true by definition.
in a{qv} position

PositionUpdate = This signal is called to notify a client application of a position change. The update frequency is
implementation specific. The maximal allowed frequency is 10Hz
signal PositionUpdate

changedValues = array[value]
value =
enum(INVALID,TIMESTAMP,LATITUDE,LONGITUDE,ALTITUDE,HEADING,SPEED,CLIMB,GNSS_FIX_STATUS,DR_STATUS,MM_STATUS,SIMULATION_MODE,
...)
out aq changedValues

GetAddress = This method returns the current address
method GetAddress

valuesToReturn= array[fieldType]
key =
enum(INVALID,TIMESTAMP,COUNTRY,COUNTRYCODE,CITY,STREET,ROAD_NUMBER,HOUSENUMBER,HOUSENAME,CROSSING,DISTRICT,TIMEZONE_OFFSET,DAYLIGHT_OFFSET,MATCH_TYPE,
... ,ALL)
in aq valuesToReturn

address = dictionary[key,value]
dictionary = array of tuples (key,value)
key =
enum(INVALID,TIMESTAMP,COUNTRY,COUNTRYCODE,CITY,STREET,ROAD_NUMBER,HOUSENUMBER,HOUSENAME,CROSSING,DISTRICT,TIMEZONE_OFFSET,DAYLIGHT_OFFSET,MATCH_TYPE,
...)
key = TIMESTAMP, value = value of type 't', that represents a timestamp in ms
key = COUNTRY, value = value of type 's', that identifies the country name

key = COUNTRYCODE, value = value of type 's', ISO 3166‐1 alpha 3 country code (upper case)
key = CITY, value = value of type 's', that identifies the city name
key = STREET, value = value of type 's', that identifies the street name
key = ROAD_NUMBER, value = value of type ´s´, that identifies the road number
key = HOUSENUMBER, value = value of type 's', that identifies the house number
key = HOUSENAME, value = value of type ´s´, that identifies the house name
key = CROSSING, value = value of type 's', that identifies the crossing
key = DISTRICT, value = value of type 's', that identifies the district name
key = TIMEZONE_OFFSET, value = value of type 'n', that identifies the timezone offset at the current address
key = DAYLIGHT_OFFSET, value = value of type 'n', that identifies the daylight offset at the current address
key = MATCH_TYPE, value = value of type 'q', that identifies an
enum(INVALID,ON_ROAD,OFF_ROAD,ON_FERRY,IN_TUNNEL,ON_CARPARK, ...)
out a{qv} address

This error is generated if no map is available
error org.genivi.navigationcore.MapMatchedPosition.Error.NoMap

This error is generated if the vehicle is located in a position outside of the known map
error org.genivi.navigationcore.MapMatchedPosition.Error.OutOfKnownMap

AddressUpdate = This signal is called to notify a client application that the current address changed
signal AddressUpdate

changedValues = array[value]
value =
enum(INVALID,TIMESTAMP,COUNTRY,COUNTRYCODE,CITY,STREET,ROAD_NUMBER,HOUSENUMBER,HOUSENAME,CROSSING,DISTRICT,TIMEZONE_OFFSET,DAYLIGHT_OFFSET,MATCH_TYPE,
...)
out aq changedValues

positionOnSegment = This method returns the vehicle position on a route segment
method GetPositionOnSegment

valuesToReturn= array[fieldType]
key = enum(INVALID,TIMESTAMP,SEGMENT_ID,DIRECTION_ON_SEGMENT,DISTANCE_ON_SEGMENT, ...
,ALL)
in aq valuesToReturn

positionOnSegment = dictionary[key,value]
dictionary = array of tuples (key,value)
key = enum(INVALID,TIMESTAMP,SEGMENT_ID,DIRECTION_ON_SEGMENT,DISTANCE_ON_SEGMENT, ...)
key = TIMESTAMP, value = value of type 't', that represents a timestamp in ms
key = SEGMENT_ID, value = value = value of type 'ay', that represents a link-ID in a format whose interpretation is
left to the navigationcore
key = DIRECTION_ON_SEGMENT, value = value of type 'b', where TRUE means forward and FALSE means
backward
key = DISTANCE_ON_SEGMENT, value = value of type 'd', that indicates the distance in meter on the segment
out a{qv} positionOnSegment

PositionOnSegmentUpdate = This signal is called to notify the client that the vehicle position on the route segment
changed
signal PositionOnSegmentUpdate

changedValues = array[value]
value = enum(INVALID,TIMESTAMP,SEGMENT_ID,DIRECTION_ON_SEGMENT,DISTANCE_ON_SEGMENT, ...)
out aq changedValues

GetStatus = This method returns the current status
method GetStatus

valuesToReturn = array[fieldType]
key = enum(INVALID,TIMESTAMP,GNSS_FIX_STATUS,DR_STATUS,MM_STATUS,SIMULATION_MODE, ... ,ALL)
in aq valuesToReturn

status = dictionary[key,value]
dictionary = array of tuples (key,value)
key = enum(INVALID,TIMESTAMP,GNSS_FIX_STATUS,DR_STATUS,MM_STATUS,SIMULATION_MODE, ...)
key = TIMESTAMP, value = value of type 't', that represents a timestamp in ms
key = GNSS_FIX_STATUS, value = value of type 'q', that represents an
enum(INVALID,NO_FIX,TIME_FIX,2D_FIX,3D_FIX, ...)
key = DR_STATUS, value = value of type 'b', where TRUE means that a dead-reckoning algorithm has been used
to calculate the current position
key = MM_STATUS, value = value of type 'b', where TRUE means that a map-matching algorithm has been used to
calculate the current position
key = SIMULATION_MODE, value = value of type 'b', where TRUE means that the current position is simulated
out a{qv} status

StatusUpdate = This signal is emitted to notifiy a client application that the current status changed
signal StatusUpdate

changedValues = array[value]
value = enum(INVALID,TIMESTAMP,GNSS_FIX_STATUS,DR_STATUS,MM_STATUS,SIMULATION_MODE, ...)
out aq changedValues

OffroadPositionChanged = This signal is emitted when the heading and the distance to the closest point on the road
network changes
signal OffRoadPositionChanged

distance = distance in meters to the closest point on the road network
out u distance

direction = direction in degrees relatively to the closest point on the road network. Range [0:360]
out i direction

interface
org.genivi.navigationcore.LocationInput
version 3.0.0 (21-01-2014)

LocationInput = This interface offers functions that implement the location-input functionality of a navigation system

GetVersion = This method returns the API version implemented by the server application
method GetVersion

version = struct(major,minor,micro,date)
major = when the major version changes, then backward compatibility with previous releases is not granted
minor = when the minor version changes, then backward compatibility with previous releases is granted, but
something changed in the implementation of the API (e.g. new methods may have been added)
micro = when the micro version changes, then backward compatibility with previous releases is granted (bug
fixes or documentation modifications)
date = release date (e.g. 21-06-2011)
out (qqqs) version

CreateLocationInput = This method creates a new location input and retrieves a handle
method CreateLocationInput

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u locationInputHandle

This error is generated if no more location input handles are available
error org.genivi.navigationcore.LocationInput.Error.NoMoreLocationInputHandles

DeleteLocationInput = This method deletes a location input and its associated resources
method DeleteLocationInput

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u locationInputHandle

This error is generated if an application tries to delete a location input handle that is not available
error org.genivi.navigationcore.LocationInput.Error.LocationInputNotAvailable

GetSupportedAddressAttributes = This method retrieves the supported address attributes
method GetSupportedAddressAttributes

addressAttributesList = array[attribute]
attribute =
enum(INVALID,LATITUDE,LONGITUDE,ALTITUDE,FULL_ADDRESS,COUNTRY,STATE,CITY,ZIPCODE,STREET,HOUSENUMBER,CROSSING,DISTRICT,PHONENUMBER,POINAME,TOWNCENTER,
...)
out aq addressAttributesList

SetAddress = This method sets the address to start with for the LocationInput identified by the given handle
method SetAddress

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u locationInputHandle

address = array[attribute]
attribute = tuple(key,value)
key =
enum(INVALID,LATITUDE,LONGITUDE,ALTITUDE,FULL_ADDRESS,COUNTRY,COUNTRYCODE,STATE,CITY,ZIPCODE,STREET,ROAD_NUMBER,HOUSENUMBER,HOUSENAME,CROSSING,DISTRICT,PHONENUMBER,POINAME,TOWNCENTER,
...)
key = LATITUDE, value = value of type ´d´, that expresses the latitude in format %3.6f. Range[-90:+90]. Example:
48.70901
key = LONGITUDE, value = value of type ´d´, that expresses the longitude in format %3.6f. Range[-180:+180].
Example: 9.167898
key = ALTITUDE, value = value of type ´i´, that expresses the altitude in meters
key = COUNTRY, value = value of type ´s´, that identifies the country name
key = COUNTRYCODE, value = value of type ´s´, ISO 3166‐1 alpha 3 country code (upper case)
key = CITY, value = value of type ´s´, that identifies the city name
key = STREET, value = value of type ´s´, that identifies the street name
key = ROAD_NUMBER, value = value of type ´s´, that identifies the road number
key = HOUSENUMBER, value = value of type ´s´, that identifies the house number
key = HOUSENAME, value = value of type ´s´, that identifies the house name
key = CROSSING, value = value of type ´s´, that identifies the crossing
key = DISTRICT, value = value of type ´s´, that identifies the district name
key = PHONENUMBER, value = value of type ´s´, that identifies a phone number
key = POINAME, value = value of type ´s´, that identifies a POI name
in a{qv} address

SetSelectionCriterion = This method sets the selection criterion for the current speller, search input and the
corresponding result-lists for the current session
method SetSelectionCriterion

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u locationInputHandle

selectionCriterion =
enum(INVALID,LATITUDE,LONGITUDE,ALTITUDE,FULL_ADDRESS,COUNTRY,COUNTRYCODE,STATE,CITY,ZIPCODE,STREET,ROAD_NUMBER,HOUSENUMBER,HOUSENAME,CROSSING,DISTRICT,PHONENUMBER,POINAME,TOWNCENTER,
...)
in q selectionCriterion

Spell = This method sends the next spell input for the current session
Note: when a spell is started the entries of the search are removed
method Spell

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u locationInputHandle

inputString = last input character (UTF-8) (0x08(Backspace) for delete last character, 0x0D(Carriage Return) for
delete entire input)
in s inputCharacter

maxWindowSize = maximum number of elements that should be returned as result
in q maxWindowSize

Search = This method sends the search input for the current session
Note: when a search is started the entries of the spell input are removed
method Search

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u locationInputHandle

inputString = contains the String, that is searched
in s inputString

maxWindowSize = maximum number of elements that should be returned as result
in q maxWindowSize

CurrentSelectionCriterion = This signal notifies the SelectionCriterion for the current speller input or search.
Note: when no SelectionCriterion was set or an input was finished, the SelectionCriterion has the value INVALID
signal CurrentSelectionCriterion

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u locationInputHandle

selectionCriterion =
enum(INVALID,LATITUDE,LONGITUDE,ALTITUDE,FULL_ADDRESS,COUNTRY,COUNTRYCODE,STATE,CITY,ZIPCODE,STREET,ROAD_NUMBER,HOUSENUMBER,HOUSENAME,CROSSING,DISTRICT,PHONENUMBER,POINAME,TOWNCENTER,
...)
out q selectionCriterion

SearchStatus = This signal updates the search status of the specified session
signal SearchStatus

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u locationInputHandle

statusValue = enum(INVALID,NOT_STARTED,SEARCHING,FINISHED, ...)
out q statusValue

SpellResult = This signal notifies the result of the previous Spell method
signal SpellResult

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u locationInputHandle

uniqueString = unique string derived from spell input (i.e. including auto-completion if applicable)
out s uniqueString

validCharacters = set of (UTF-8 encoded) characters valid for next input (unified in a single string). A
Backspace(0x08) is returned if the input character passed to the Spell method was invalid
out s validCharacters

fullMatch = flag indicating whether the value in UniqueCharacters is already a full match for an existing list entry
out b fullMatch

RequestListUpdate = This method sends a request for more list elements for the current session
method RequestListUpdate

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u locationInputHandle

offset = starting offset of the newly requested list elements
in q offset

maxWindowSize = maximum number of elements that should be returned as result
in q maxWindowSize

SearchResultList = This signal updates the address result list (e.g. after a Search/Spell/Scroll call)
signal SearchResultList

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u locationInputHandle

totalSize = total size of the result list
out q totalSize

windowOffset = window offset within the complete list
out q windowOffset

windowSize = size of the provided window
out q windowSize

resultListWindow = array[address]
address = array[attribute]
attribute = tuple(key,value)
key =
enum(INVALID,LATITUDE,LONGITUDE,ALTITUDE,FULL_ADDRESS,COUNTRY,COUNTRYCODE,STATE,CITY,ZIPCODE,STREET,ROAD_NUMBER,HOUSENUMBER,HOUSENAME,CROSSING,DISTRICT,PHONENUMBER,POINAME,TOWNCENTER,
...)
key = LATITUDE, value = value of type ´d´, that expresses the latitude in format %3.6f. Range [-90:+90]. Example:
48.70901
key = LONGITUDE, value = value of type ´d´, that expresses the longitude in format %3.6f. Range [-180:+180].
Example: 9.167898
key = ALTITUDE, value = value of type ´i´, that expresses the altitude in meters
key = COUNTRY, value = value of type ´s´, that identifies the country name
key = COUNTRYCODE, value = value of type ´s´, ISO 3166‐1 alpha 3 country code (upper case)
key = CITY, value = value of type ´s´, that identifies the city name
key = STREET, value = value of type ´s´, that identifies the street name
key = ROAD_NUMBER, value = value of type ´s´, that identifies the road number
key = HOUSENUMBER, value = value of type ´s´, that identifies the house number
key = HOUSENAME, value = value of type ´s´, that identifies the house name
key = CROSSING, value = value of type ´s´, that identifies the crossing
key = DISTRICT, value = value of type ´s´, that identifies the district name
key = PHONENUMBER, value = value of type ´s´, that identifies a phone number
key = POINAME, value = value of type ´s´, that identifies a POI name
out aa{qv} resultListWindow

SearchResultListSizeChanged = This signal updates the size of the address result list
signal SearchResultListSizeChanged

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u locationInputHandle

totalSize = total size of the result list
out q totalSize

SelectEntry = This method triggers selection of a result list entry by index
Note: the update of the input content will be notified in signal ContentUpdated
method SelectEntry

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u locationInputHandle

index = absolute list index of the entry to be selected
in q index

GetEntry = This method synchronously gets the address for the given result list entry
method GetEntry

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u locationInputHandle

index = list index of the entry to be returned
in q index

address = array[attribute]
attribute = tuple(key,value)
key =
enum(INVALID,LATITUDE,LONGITUDE,ALTITUDE,FULL_ADDRESS,COUNTRY,COUNTRYCODE,STATE,CITY,ZIPCODE,STREET,ROAD_NUMBER,HOUSENUMBER,HOUSENAME,CROSSING,DISTRICT,PHONENUMBER,POINAME,TOWNCENTER,
...)
key = LATITUDE, value = value of type ´d´, that expresses the latitude in format %3.6f. Range[-90:+90]. Example:
48.70901
key = LONGITUDE, value = value of type ´d´, that expresses the longitude in format %3.6f. Range[-180:+180].
Example: 9.167898
key = ALTITUDE, value = value of type ´i´, that expresses the altitude in meters
key = COUNTRY, value = value of type ´s´, that identifies the country name
key = COUNTRYCODE, value = value of type ´s´, ISO 3166‐1 alpha 3 country code (upper case)
key = CITY, value = value of type ´s´, that identifies the city name
key = STREET, value = value of type ´s´, that identifies the street name
key = ROAD_NUMBER, value = value of type ´s´, that identifies the road number
key = HOUSENUMBER, value = value of type ´s´, that identifies the house number
key = HOUSENAME, value = value of type ´s´, that identifies the house name
key = CROSSING, value = value of type ´s´, that identifies the crossing
key = DISTRICT, value = value of type ´s´, that identifies the district name
key = PHONENUMBER, value = value of type ´s´, that identifies a phone number
key = POINAME, value = value of type ´s´, that identifies a POI name
out a{qv} address

ContentUpdated = This signal updates the input content data for the specified session
signal ContentUpdated

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value

out u locationInputHandle

guidable = flag indicating whether the current address is guidable
out b guidable

availableSelectionCriteria = array of
enum(INVALID,LATITUDE,LONGITUDE,ALTITUDE,FULL_ADDRESS,COUNTRY,COUNTRYCODE,STATE,CITY,ZIPCODE,STREET,ROAD_NUMBER,HOUSENUMBER,HOUSENAME,CROSSING,DISTRICT,PHONENUMBER,POINAME,TOWNCENTER,
...)
Note: availableSelectionCriteria indicates the parts of the address that can be changed
out aq availableSelectionCriteria

address = array[attribute]
attribute = tuple(key,value)
key =
enum(INVALID,LATITUDE,LONGITUDE,ALTITUDE,FULL_ADDRESS,COUNTRY,COUNTRYCODE,STATE,CITY,ZIPCODE,STREET,ROAD_NUMBER,HOUSENUMBER,HOUSENAME,CROSSING,DISTRICT,PHONENUMBER,POINAME,TOWNCENTER,
...)
key = LATITUDE, value = value of type ´d´, that expresses the latitude in format %3.6f. Range[-90:+90]. Example:
48.70901
key = LONGITUDE, value = value of type ´d´, that expresses the longitude in format %3.6f. Range[-180:+180].
Example: 9.167898
key = ALTITUDE, value = value of type ´i´, that expresses the altitude in meters
key = COUNTRY, value = value of type ´s´, that identifies the country name
key = COUNTRYCODE, value = value of type ´s´, ISO 3166‐1 alpha 3 country code (upper case)
key = CITY, value = value of type ´s´, that identifies the city name
key = STREET, value = value of type ´s´, that identifies the street name
key = ROAD_NUMBER, value = value of type ´s´, that identifies the road number
key = HOUSENUMBER, value = value of type ´s´, that identifies the house number
key = HOUSENAME, value = value of type ´s´, that identifies the house name
key = CROSSING, value = value of type ´s´, that identifies the crossing
key = DISTRICT, value = value of type ´s´, that identifies the district name
key = PHONENUMBER, value = value of type ´s´, that identifies a phone number
key = POINAME, value = value of type ´s´, that identifies a POI name
out a{qv} address

ValidateAddress = This method validates an address from different sources than Navigation
method ValidateAddress

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u locationInputHandle

inputAddress = array[attribute]
attribute = tuple(key,value)
key =
enum(INVALID,LATITUDE,LONGITUDE,ALTITUDE,FULL_ADDRESS,COUNTRY,COUNTRYCODE,STATE,CITY,ZIPCODE,STREET,ROAD_NUMBER,HOUSENUMBER,HOUSENAME,CROSSING,DISTRICT,PHONENUMBER,POINAME,TOWNCENTER,
...)
key = LATITUDE, value = value of type ´d´, that expresses the latitude in format %3.6f. Range[-90:+90]. Example:
48.70901
key = LONGITUDE, value = value of type ´d´, that expresses the longitude in format %3.6f. Range[-180,+180].
Example: 9.167898
key = ALTITUDE, value = value of type ´i´, that expresses the altitude in meters
key = COUNTRY, value = value of type ´s´, that identifies the country name
key = COUNTRYCODE, value = value of type ´s´, ISO 3166‐1 alpha 3 country code (upper case)
key = CITY, value = value of type ´s´, that identifies the city name
key = STREET, value = value of type ´s´, that identifies the street name
key = ROAD_NUMBER, value = value of type ´s´, that identifies the road number
key = HOUSENUMBER, value = value of type ´s´, that identifies the house number
key = HOUSENAME, value = value of type ´s´, that identifies the house name
key = CROSSING, value = value of type ´s´, that identifies the crossing
key = DISTRICT, value = value of type ´s´, that identifies the district name
key = PHONENUMBER, value = value of type ´s´, that identifies a phone number
key = POINAME, value = value of type ´s´, that identifies a POI name
in a{qv} inputAddress

AddressValidationResult = This signal notifies the validation result of a former ValidateAddress call
signal AddressValidationResult

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
out u locationInputHandle

validatedAddressList = array[validatedAddress]
validatedAddress = array[attribute]
attribute = tuple(key,value)
key =
enum(INVALID,LATITUDE,LONGITUDE,ALTITUDE,FULL_ADDRESS,COUNTRY,COUNTRYCODE,STATE,CITY,ZIPCODE,STREET,ROAD_NUMBER,HOUSENUMBER,HOUSENAME,CROSSING,DISTRICT,PHONENUMBER,POINAME,TOWNCENTER,
...)
key = LATITUDE, value = value of type ´d´, that expresses the latitude in format %3.6f. Range[-90:+90]. Example:
48.70901
key = LONGITUDE, value = value of type ´d´, that expresses the longitude in format %3.6f. Range[-180:+180].
Example: 9.167898
key = ALTITUDE, value = value of type ´i´, that expresses the altitude in meters
key = COUNTRY, value = value of type ´s´, that identifies the country name
key = COUNTRYCODE, value = value of type ´s´, ISO 3166‐1 alpha 3 country code (upper case)
key = CITY, value = value of type ´s´, that identifies the city name
key = STREET, value = value of type ´s´, that identifies the street name
key = ROAD_NUMBER, value = value of type ´s´, that identifies the road number
key = HOUSENUMBER, value = value of type ´s´, that identifies the house number
key = HOUSENAME, value = value of type ´s´, that identifies the house name
key = CROSSING, value = value of type ´s´, that identifies the crossing
key = DISTRICT, value = value of type ´s´, that identifies the district name
key = PHONENUMBER, value = value of type ´s´, that identifies a phone number
key = POINAME, value = value of type ´s´, that identifies a POI name
out aa{qv} validatedAddressList

validationStatusList = array[validationStatus]
validationStatus = array[item]
item = tuple(key,value)
key =
enum(INVALID,LATITUDE,LONGITUDE,ALTITUDE,FULL_ADDRESS,COUNTRY,COUNTRYCODE,STATE,CITY,ZIPCODE,STREET,ROAD_NUMBER,HOUSENUMBER,HOUSENAME,CROSSING,DISTRICT,PHONENUMBER,POINAME,TOWNCENTER,
...)
value = enum(INVALID,OK,UNKNOWN,AMBIGUOUS,INCONSISTENT)

out aa{qq} validationStatusList

ReverseGeocode = This method transforms a geocoordinate into an address
Note: the update of the input content will be notified in signal ContentUpdated
method ReverseGeocode

sessionHandle = Session handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u sessionHandle

locationInputHandle = Location input handle. Range[0x0:0x7fffffff]. 0x0 is reserved as an invalid handle value
in u locationInputHandle

coordinate = struct(lat,lon)
lat = latitude in format %3.6f. Range[-90:+90]. Example: 48.053250
lon = longitude in format %3.6f. Range[-180:+180]. Example: 8.321000
in (dd) coordinate

constants NavigationCore version 3.0.0
(21-01-2014)

This document defines the constants used in the NavigationCore APIs

INVALID = 0x0000

DEFAULT = 0xfffe

ALL = 0xffff

AVAILABLE = 0x0001

NOT_AVAILABLE = 0x0002

TIME_FORMAT = 0x0003

12H = 0x0004

24H = 0x0005

COORDINATES_FORMAT = 0x0006

DEGREES = 0x0007

MINUTES = 0x0008

SECONDS = 0x0009

TIMESTAMP = 0x0010

TIMEZONE_OFFSET = 0x0011

DAYLIGHT_OFFSET = 0x0012

LOCALE = 0x0025

UNITS_OF_MEASUREMENT = 0x0030

LENGTH = 0x0031

METER = 0x0032

MILE = 0x0033

KM = 0x0034

YARD = 0x0035

FOOT = 0x0036

DISABLED_PROMPT = 0x0041

AUTOMATIC_PROMPT = 0x0042

MANUAL_PROMPT = 0x0043

CRUISE = 0x0050

MANEUVER_APPEARED = 0x0051

PRE_ADVICE = 0x0052

ADVICE = 0x0053

PASSED = 0x0054

ACTIVE = 0x0060

INACTIVE = 0x0061

STRAIGHT_ON = 0x0070

CROSSROAD = 0x0071

ROUNDABOUT = 0x0072

HIGHWAY_ENTER = 0x0073

HIGHWAY_EXIT = 0x0074

FOLLOW_SPECIFIC_LANE = 0x0075

DESTINATION = 0x0076

WAYPOINT = 0x0077

TURN = 0x0078

BIFURCATION = 0x0079

LEFT = 0x0080

SLIGHT_LEFT = 0x0081

HARD_LEFT = 0x0082

RIGHT = 0x0083

SLIGHT_RIGHT = 0x0084

HARD_RIGHT = 0x0085

UTURN_RIGHT = 0x0086

UTURN_LEFT = 0x0087

ALL_MANUAL = 0x0090

ALL_AUTOMATIC = 0x0091

TRAFFIC_MANUAL = 0x0092

OFF_ROUTE_MANUAL = 0x0093

LATITUDE = 0x00a0

LONGITUDE = 0x00a1

ALTITUDE = 0x00a2

HEADING = 0x00a3

SPEED = 0x00a4

CLIMB = 0x00a5

COUNTRY = 0x00a6

STATE = 0x00a7

CITY = 0x00a8

ZIPCODE = 0x00a9

STREET = 0x00aa

HOUSENUMBER = 0x00ab

CROSSING = 0x00ac

DISTRICT = 0x00ad

PHONENUMBER = 0x00ae

POINAME = 0x00af

TOWNCENTER = 0x00b0

LOCATION_INPUT = 0x00b1

FULL_ADDRESS = 0x00b2

COUNTRYCODE = 0x00b3

HOUSENAME = 0x00b4

NOT_STARTED = 0x0c0

SEARCHING = 0x00c1

FINISHED = 0x00c2

OK = 0x00d0

UNKNOWN = 0x00d1

AMBIGUOUS = 0x00d2

INCONSISTENT = 0x00d3

GNSS_FIX_STATUS = 0x00e0

DR_STATUS = 0x00e1

MM_STATUS = 0x00e2

SIMULATION_MODE = 0x00e3

MATCH_TYPE = 0x00f0

ON_ROAD = 0x00f1

OFF_ROAD = 0x00f2

ON_FERRY = 0x00f3

IN_TUNNEL = 0x00f4

ON_CARPARK = 0x00f5

NO_FIX = 0x0100

TIME_FIX = 0x0101

2D_FIX = 0x0102

3D_FIX = 0x0103

SEGMENT_ID = 0x0110

DIRECTION_ON_SEGMENT = 0x0112

DISTANCE_ON_SEGMENT = 0x0113

INTERMEDIATE_POINTS = 0x0120

WAYPOINT_TYPE = 0x0121

SOFT_POINT = 0x0122

HARD_POINT = 0x0123

CALCULATION_OK = 0x0130

NO_POSITION = 0x0131

UNMATCHED_POSITION = 0x0132

UNREACHABLE_DESTINATION = 0x0133

UNFULFILLED_PREFERENCE_MODE = 0x0134

LINK-ID = 0x0140

START_LATITUDE = 0x0141

END_LATITUDE = 0x0142

START_LONGITUDE = 0x0143

END_LONGITUDE = 0x0144

START_ALTITUDE = 0x0145

END_ALTITUDE = 0x0146

ROAD_NAME = 0x0147

DISTANCE = 0x0148

TIME = 0x0149

MANEUVER = 0x014a

INSTRUCTION = 0x014b

BORDER_CROSSING = 0x014c

ADDITIONAL_INFORMATION = 0x014d

ROAD_NUMBER = 0x014e

START_OFFSET = 0x014f

FASTEST = 0x0160

SHORTEST = 0x0161

ECOLOGICAL = 0x0162

SCENIC = 0x0163

EASY = 0x0164

BALANCED = 0x0166

CHEAPEST = 0x0167

FERRY = 0x0170

TOLL_ROADS = 0x0171

TUNNELS = 0x0172

HIGHWAYS_MOTORWAYS = 0x0173

VEHICLE_SIZE_LIMIT = 0x0174

CRIME_AREAS = 0x0175

BY_CAR = 0x0180

ON_FOOT = 0x0181

LONG_RANGE_TRAINS = 0x0182

PUBLIC_TRANSPORTATION = 0x0183

BY_BICYCLE = 0x0184

BY_TRUCK = 0x0185

ARRIVAL_TIME = 0x018a

ARRIVAL_DATE = 0x018b

DEPARTURE_TIME = 0x018c

DEPARTURE_DATE = 0x018d

TOTAL_TIME = 0x018e

TOTAL_DISTANCE = 0x018f

PROHIBIT = 0x0190

AVOID = 0x0191

USE = 0x0192

PREFER = 0x0193

IGNORE = 0x0194

TRAFFIC_REALTIME = 0x0200

TRAFFIC = 0x0210

OFF_ROUTE = 0x0211

MANUAL = 0x0212

SIMULATION_STATUS_NO_SIMULATION = 0x0220

SIMULATION_STATUS_RUNNING = 0x0221

SIMULATION_STATUS_PAUSED = 0x0222

SIMULATION_STATUS_FIXED_POSITION = 0x0223

ROAD_FORM_CHANGE = 0x0230

ROAD_REGULAR = 0x0231

ROAD_HIGHWAY_MOTORWAY = 0x0232

ROAD_FERRY = 0x0233

DIRECTION = 0x0240

EXIT_NUMBER = 0x0241

ROAD_FORM = 0x0242

LANE_INFO = 0x0243

LANE_INFO_BITMASK_STRAIGHT = 0x0001

LANE_INFO_BITMASK_SLIGHTRIGHT = 0x0002

LANE_INFO_BITMASK_RIGHT = 0x0004

LANE_INFO_BITMASK_SHARPRIGHT = 0x0008

LANE_INFO_BITMASK_RIGHTUTURN = 0x0010

LANE_INFO_BITMASK_SLIGHTLEFT = 0x0020

LANE_INFO_BITMASK_LEFT = 0x0040

LANE_INFO_BITMASK_SHARPLEFT = 0x0080

LANE_INFO_BITMASK_LEFTUTURN = 0x0100

DIVIDER_UNDEFINED = 0x0250

DIVIDER_INTERRUPTEDLONG = 0x0251

DIVIDER_INTERRUPTEDSHORT = 0x0252

DIVIDER_SOLIDSINGLE = 0x0253

DIVIDER_SOLIDDOUBLE = 0x0254

DIVIDER_SOLIDINTERRUPTED = 0x0255

DIVIDER_INTERRUPTEDSOLID = 0x0256

