

GENIVI GNSSService

Component Specification

Release 3.0.0 Status: Released 20.01.2015

Accepted for release by:

This document is a draft of the GNSSService API 3.0.0 defined by the GENIVI expert group Location Based Services (LBS).

Abstract: This document describes the API of the GNSSService Abstract Component.

Keywords:

GNSSService, GNSS, GPS, Positioning API.

SPDX-License-Identifier: CC-BY-SA-4.0

Copyright (C) 2012, BMW Car IT GmbH, Continental Automotive GmbH, PCA Peugeot Citroën, XS Embedded GmbH

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Table of Contents

Char	nge History	. 4
1.	Introduction	. 5
2.	Terminology	. 6
3.	Requirements	. 7
1.	Requirements Diagram	. 7
	AGPS Support	. 9
	Forward a Set of Sensor Values	. 9
	Provides Data via IPC	. 9
	Support of different Global Navigation Satellite Systems (GNSS) to calculate the current	
	position.	. 9
	Accelerator Sensor	. 9
	Access to Sensor Services	10
	Car Configuration Data	10
	Data Latency for GNSS and DR Signals	10
	Enhanced Position	11
	Extended Acceleration Sensor	11
	Extended GNSS Service	11
	Extended Gyroscope Sensor Service	12
	GNSS Service	12
	PPS Signal	12
	Inclination Sensor	13
	Odometer Sensor	13
	ReverseGear Sensor	13
	Sensor Directory	13
	Sensor Meta-Data	14
	Sensor Signal Timestamp	14
	Signal Measurement Units	14
	Signal Values Type Compatibility	15
	Simple Gyroscope Sensor Service	15
	Slip Angle Sensor	15
	SteeringAngle Sensor	15
	Vehicle State Sensor	16
	VehicleSpeed Sensor	16
	Wheel Tick/Speed Sensor Service	16
4.	Architecture	17
1.	GNSSService	17
2.	GNSSService Diagram	17
3.	Traceability Diagram	18
4.	Context Diagram	19

Change History

Version	Date	Author	Change
0.1	27.08.2013	MResidori	Document Created
0.2	18.11.2013	MResidori	Document generated from the GENIVI Enterprise
			Architect model
0.3	27.03.2014	MResidori	Added copyright notes
3.0.0-alpha	24.04.2014	MResidori	Changed license version from 3.0 to 4.0
3.0.0-alpha	10.12.2014	MResidori	Updated API description
3.0.0	20.01.2015	MResidori	Changed document status to "Released" (after
			System Architecture Team approval)

1. Introduction

This document describes the API of the GNSSService component.

The GNSSService is a component that abstracts the access to GNSS devices (e.g. GPS receivers).

It hides hardware and software dependencies on specific GNSS devices and their drivers.

In systems that implements the EnhancedPositionService component, the GNSSService is typically provided as a C library that is dynamically linked by the EnhancedPositionService.

2. Terminology

Term	Description		
GNSS	Global Navigation Satellite System		

3. Requirements

1. Requirements Diagram

This diagram shows an overview of all requirements in the area of positioning.

The requirements are organized in four groups:

- 1. SW-POS: general requirements
- 2. SW-GNSS: requirements related to the GNSS receiver
- 3. SW-SNS: requirements related to the vehicle sensors
- 4. SW-ENP: requirements related to enhanced positioning

Figure: 1

AGPS Support					
${ m } { m $	Priority: Medium				
Description: The software platform provides the possibility to inject AGPS "Assisted GPS" data to the GPS device.					
Rationale:					
This allows to speed up the time to get a valid (fixed) GPS position.					

This allows to speed up the time to get a tand (mod) of 5 position.

Forward a Set of Se	ensor Values		
«GFunctionalRequirement»	Priority: Medium		
Description:			
The Enhanced Position cont	ains in addition to the l	Position and Course values as	s well a set of sensor data.
 yawRate in degrees per sec 	cond		
- filter status			
- accuracy information in for	rm of sigma values for	every direction [m] and the c	covariance between
latitude and longitude in m^	2.		
- number of used, tracked an	d visible satellites.		
Rational:			
Some clients (e.g. Map Mate	cher) needs the basic D	R filtered position specific se	ensor values as additional
input for the decision algorit	hm.		

Provides Data via IPC					
«GFunctionalRequirement»	Priority: Medium				
Description:					
TTI 1 1 1		C (1			

The enhanced position is accessible for multiple clients on the platform at the same time. An IPC is used to deliver to the clients the Enhanced Position data fields.

Rational:

Several SW components in the system are clients for the result of the filtered position and need to access the data.

Support of different Global Navigation Satellite Systems (GNSS) to calculate the current position.

«GFunctionalRequirement» Priority: Medium

The interfaces are defined in such a way that client applications don't need to know the details of the GNSS in use (e.g. GPS, Galileo, GLONASS, Compass).

Accelerator Sensor

«GFunctionalRequirement» Priority: Medium	
Description:	
The software platform provides a sensor, which delivers the vehicle acceleration i Axis, see reference system). The sensor value is delivered in m/s ² . Sensor value	in the driving direction (x of temperature near the
Configuration data about placement and orientation of the sensor can be provided	d optionally.

Rational:

Used for optimizing the dead reckoning solution.

Access t	o Sensor	Services	

«GFunctionalRequirement» Priority: Medium

Description:

The software platform delivers signals to multiple client applications concurrently by the Sensor Service.

Rational:

This allows for multiple Client Applications to share a single Sensor.

0	a m			
Car	('onfi	ourat	ion	Data
Car	Com	Sura		Data

«GFunctionalRequirement» Priority: Medium

Description:

The software platform provides car configuration data, that contains general vehicle details (e.g. physical dimensions of car, distance of axis, driven axis, etc).

Sensor related configuration data depends on the specific sensor requirements (e.g. position of sensor) and is included with the specific sensors.

- Position of center of gravity
- Position of front and rear axle
- driven axles
- seat count
- vehicle mass
- vehicle width
- track width

Rational:

DR module needs the detailed information for more accurate calculations.

Data Latency for GNSS and DR Signals		
«GNonFunctionalRequirement» Priority: Medium		
Description: The software platform provides the signals of the GNSS, Extended GNSS and enhanced position in less han 300 ms after acquisition.		
Rational: This guarantees that the tracked current position does not deviate much from the	e actual position.	

Enhanced Position

«GFunctionalRequirement» Priority: Medium

Description:

The software platform delivers the filtered (i.e. combined GNSS and vehicle sensor) position as the

Enhanced Position, which is the result of the dead reckoning calculation. The Enhanced Position contains:

- Position expressed as WGS 84 longitude and latitude (unit is tenth of microdegree (degree x 10^-7^)) - the Altitude 'above mean sea level' in meters (corrected by GeoID)
- Heading in degrees relative to the true north
- Climb
- Speed in meters per seconds, positive in the forward direction

Rational:

Other SW-components on the same platform want to access the improved GNSS position, which is calculated by a dead reckoning algorithm.

Extended Acceleration Sensor					
${ m ``} GFunctional Requirement { m ``}$	Priority: Low				
Description:					
The software platform provides a sensor, which provides the acceleration on the additional axis y					
(left-side) and z (up).					
The position of the sensor in	3D space in relation to the reference point is given	The angles of the sensor			

The position of the sensor in 3D space in relation to the reference point is given. The angles of the sensor can be specified in the car configuration data. The standard deviations for the sensors can be specified for each axis.

Rational:

Used for optimizing the dead reckoning solution.

Extended GNSS Ser	rvice		
«GFunctionalRequirement»	Priority: Medium		
Description:			
The software platform provi	des an extension to the	GNSS Service with optional	information.
Accuracy: - fixStatus - hdop, pdop, vdop - numberOfSatellites - sigmaLatitude, sigmaLong	itude, sigmaAltitude		
Satellite Details: - Information per satellite: a:	zimuth, elevation, inUs	se, SatelliteId, signalNoiseRa	tio
Course Details: - speed for 3-axis			
Antenna: - Antenna Position in 3D coo	ordinates in relation to	the reference point (see reference	ence system).
Updated at least with 1Hz fr	equency additionally to	o the Signals provided by GN	SS-Only Service.
		11/19	

The GNSS Service should provide the capability to switch between different GNSS-Devices (e.g. Galileo, GPS, etc)

Rational:

These data are used for improved positioning based on GNSS.

Extended Gyroscope Sensor Service			
«GFunctionalRequirement»	Priority: Low		
Description:	·		
The software platform includ	les the sensor that d	elivers	
- pitch rate			
- roll rate			
This concer values extend the	simple arreasons	annar.	
This sensor values extend the	simple gyloscope	SellSOL.	
Sign of is defined by rule of	right hand (thumb o	irrection: left and front, see refer	ence system).
Car configuration data need	to provide position	angles according to vehicle refer	rence system.
Rational:			
This Sensor Service is used i	n Dead Reckoning	calculations of the vehicle positi	ion.

GNSS Service «GFunctionalRequirement» Priority: High **Description:** The software platform includes a service that provides the following GNSS Signals updated at least with 1Hz frequency: Position: position expressed as WGS 84 altitude, longitude and latitude in tenth of microdegree (degree x 10^-7^) Course: speed in meters per second climb - heading relative to true north expressed in degrees Timestamp and date as UTC. Rational: These data are contained in NMEA 0183 \$GPGGA and \$GPRMC messages and provide the minimum information required for GNSS-only vehicle positioning.

PPS Signal		
«GFunctionalRequirement»	Priority: Medium	
Description:		
1) For accurate timing the 1 l	PPS (pulse per second) signal from the GPS received	er is provided within the
positioning framework.		
The PPS is a hardware signal	which is a UTC synchronized pulse.	
The duration between the pul	ses is 1s +/- 40ns and the duration of the pulse isco	onfigurable (e.g. it could be

100ms or 200ms).

The pulses occur exactly at the UTC full second timeslots.

2) One option is to provide this signal in the positioning framework as an interrupt service routine and the difference to the system time can be accessed by a getter. This provides a synchronization of the system time to UTC.

Rationale:

Used for synchronizing the timing of the ECU.

Inclination Sensor		
${ m ``} GFunctional Requirement { m ``}$	Priority: Low	
Description:		

The software platform provides the inclination of the road in longitudinal direction, i.e. in the direction of movement [°]. Estimated gradient of the road in transverse direction [°]. In unstable driving situations this value might not be available.

Rational:

This Sensor is used for optimizations in Dead Reckoning calculations of the vehicle position.

\mathbf{O}			N I
	ome	er S	encor
Uu	Unit		

«GFunctionalRequirement» Priority: Medium

Description:

The software platform includes a Sensor that delivers the traveled distance.

Distance in [cm] with at least 5Hz as a running counter with overflow to support multiple clients.

Rational:

Odometer is sometimes the only speed related Signal available to the head unit.

ReverseGear Sensor			
«GFunctionalRequirement»	Priority: Medium		
Description: The software platform includes a Sensor that delivers the information if the reverse gear is enabled or not.			
Rational: The direction of movement is	s included in the vehicle speed. This information is	s only used to detect	

Sensor Directory		
School Directory		
«GFunctionalRequirement»	<i>Priority:</i> Medium	
Description:		
Client Applications are able	to query what Sensors are currently available.	

Rational:

This allows for development of flexible applications that do not know what sensor data are available in the vehicle a priori. Client shall checks first this directory to find out which ones are available; use meta-data to choose one of interest and use provided data to connect to necessary services.

Sensor Meta-Data

«GFunctionalRequirement» Priority: High

Description:

The software platform provides the following information about the Sensor and the related output Signals: - Sensor Identifier that is unique within the system

- Sensor Identifier that is unique within the sys
- Sensor Category (Physical/Logical)
- Sensor Type (GPS, Odometer, Map Matching, etc.)
- Sensor Sub-Type (ordinary GPS, differential GPS, etc.)
- Output Signals (Longitude, Latitude, Course, Speed, etc.)
- Output Signal Sampling Frequency (1 Hz, 10 Hz, irregular, etc.)
- Output Signal Measurement Units (kilometers per hour; meters per second; etc.)

Rational:

Sensor clients need that information in order to correctly handle data provided by sensor service and to adapt to the variation in the signal data delivery.

Sensor Signal Timestamp

«GFunctionalRequirement» Priority: High

Description:

The software platform provides for each sample returned by the Sensor Service the timestamp, when it is accompanied. The timestamp corresponds to the time point of the sample acquisition or calculation. Timestamps are derived from the same clock that is accessible to the Client Applications. Timestamp is delivered with a accuracy of milliseconds.

Rational:

Measurement timestamps are important for proper functioning of most processing algorithms. For instance, algorithms for sensor calibration and dead reckoning typically use data from multiple sensors in conjunction, e.g. logical sensor.

Signal Measurement Units «GFunctionalRequirement» Priority: High Description: The software platform delivers signal values in universal, implementation independent units. It's preferred

to use SI-units.

For example, a gyroscope signal should be measured in millidegrees per second instead of A/D converter counts.

Rational:

This decouples the client applications from the implementation details of individual sensor devices.

Signal Values Type Compatibility				
${}_{\!$	Priority: Medium			
Description:				
All Sensor Services that provide Signals referring to the same physical quantity deliver their data in the				
same format (including API signatures, data type and measurement units). However, sampling frequency,				
accuracy etc. can differ.				

Rational:

Sensor service clients are able to use multiple Sensor Services without changes in the interfaces.

Simple Gyroscope Sensor Service			
«GFunctionalRequirement»	Priority: Medium		
Description:			
The software platform inclue	des the Sensor that delivers		
- yaw rate: the rate of the ve	hicle heading change		
-temperature			
- status:(temperature comper	nsated or not, etc)		
at the frequency of at least 5	Hz. Unit of yaw rate is "degrees per second".		
Sign of yaw rate is defined b (see reference system)	by rule of right hand (thumb direction: up)		
Rational:			
This Sensor Service is used	in Dead Reckoning calculations of the vehicle position	n.	

Slip Angle Sensor		
«GFunctionalRequirement»	Priority: Low	
Description:		

Platform provides a sensor, which delivers the value slip angle in degrees [°]. It is defined as the angle between the fixed car axis (direction of driving) and the real direction of vehicle movement. The direction and sign is defined equal to the yaw rate (See reference system).

Rational:

This Sensor is used for optimizations in Dead Reckoning calculations of the vehicle position.

SteeringAngle Sensor			
«GFunctionalRequirement»	Priority: Low		
Description: This sensor provides the angles of the front and rear wheels and the steering wheel in degrees. Configuration values can be provided for sigmas and steering ratio.			
Rational: Is used as additional elemen	t for plausibilisation of the yaw rate in the dead re	eckoning module.	

Vehicle State Sensor				
«GFunctionalRequirement»	Priority: Low			
Description:				
The software platform provid	les a sensor, giving t	he state of certain vehicle syste	ems:	
ABS: on/off				
ESP: on/off				
ASC: on/off (stability contro	l)			
breaks: on/off				
Rational:				
This Sensor is used for optim	izations in Dead Re	ckoning calculations of the veh	icle position.	

VehicleSpeed Sensor				
«GFunctionalRequirement»	Priority: Medium			
Description: The software platform includes a Sensor that delivers the vehicle speed. Filtered vehicle speed in [m/s] with a frequency of at least 5Hz. Direction is given by the sign of this value.				
Rational:				

Vehicle speed is sometimes the only speed related signal available to the head unit.

Wheel Tick/Speed	Sensor Service		
«GFunctionalRequirement»	Priority: Medium		
Description:			
The software platform prove the frequency of at least 5H	ides a Sensor that deliv z or the already calcula	ers the running counter of particle wheelspeed (speed in [m/	rtial wheel revolutions at s] or angular speed).
The resolution of a single w Sensor Service meta-data.	heel revolution (i.e. the	e number of ticks per revoluti	on) is included with the
This identifiers specify the	wheel of measurement:		
0: Average of non driven ax	le		
1: Left front wheel			
2: Right front wheel			
3: Left rear wheel			
4: Right rear wheel			
Unit: [ticks].			
Rational:			
This Sensor typically registed	ers 'ticks' from a whee	l, adds them up and sends to t	he vehicle bus with a
certain interval. The number	r of 'ticks' per complet	e wheel revolution is known	in advance. In some cases,
the data from multiple whee	els are averaged. Other	implementations send the already	eady precalculated speed
per wheel or axle, which is	a valid replacement for	most use cases.	

4. Architecture

1. GNSSService

The GNSSService is a component that abstracts the access to GNSS devices (e.g. GPS receivers).

It hides hardware and software dependencies on specific GNSS devices and their drivers.

2. GNSSService Diagram

This diagram shows the GNSSService and its interfaces.

Figure: 2

3. Traceability Diagram

This diagram shows the software platform requirements and the use case realizations associated to the GNSSService.

Figure: 3

4. Context Diagram

This diagram shows how the GNSSService component interacts with the SensorsService and the EnhancedPositionService.

Figure: 4