GF-Complete: A Comprehensive Open Source Library for Galois Field Arithmetic

Version 1.0

James S. Plank^{*} Ethan L. Miller Kevin M. Greenan Benjamin A. Arnold John A. Burnum Adam W. Disney Allen C. McBride

October 8, 2013

Technical Report UT-CS-13-716 Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville, TN 37996 http://www.cs.utk.edu/~plank/plank/papers/CS-13-716.html

This is a user's manual for GF-Complete, version 1.0. This release supersedes version 0.1 and represents the first major release of GF-Complete. To our knowledge, this library implements every Galois Field multiplication technique applicable to erasure coding for storage, which is why we named it GF-Complete. The primary goal of this library is to allow storage system researchers and implementors to utilize very fast Galois Field arithmetic for Reed-Solomon coding and the like in their storage installations. The secondary goal is to allow those who want to explore different ways to perform Galois Field arithmetic to be able to do so effectively.

If You Use This Library or Document

Please send me an email to let me know how it goes. Or send me an email just to let me know you are using the library. One of the ways in which we are evaluated both internally and externally is by the impact of our work, and if you have found this library and/or this document useful, we would like to be able to document it. Please send mail to *plank@cs.utk.edu*. Please send bug reports to that address as well.

The library itself is protected by the New BSD License. It is free to use and modify within the bounds of this license. To the authors' knowledge, none of the techniques implemented in this library have been patented, and the authors are not pursing patents.

^{*}plank@cs.utk.edu (University of Tennessee), elm@cs.ucsc.edu (UC Santa Cruz), kmgreen2@gmail.com (Box). This material is based upon work supported by the National Science Foundation under grants CNS-0917396, IIP-0934401 and CSR-1016636, plus REU supplements CNS-1034216, CSR-1128847 and CSR-1246277. Thanks to Jens Gregor for helping us wade through compilation issues, and for Will Houston for his initial work on this library.

Finding the Code

Please see http://www.cs.utk.edu/~plank/plank/papers/CS-13-716.html to get the **tar** file for this code. This code is actively maintained on bitbucket at https://bitbucket.org/jimplank/gf-complete.

Two Related Papers

This software acccompanies a large paper that describes these implementation techniques in detail [PGM13a]. We will refer to this as *"The Paper."* You do not have to read The Paper to use the software. However, if you want to start exploring the various implementations, then The Paper is where you'll want to go to learn about the techniques in detail.

This library implements the techniques described in the paper "Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions," [PGM13b]. The Paper describes all of those techniques as well.

If You Would Like Help With the Software

Please contact the first author of this manual.

CONTENTS

Contents

1	Introduction	5
2	Files in the Library	6
3	Compilation, especially with regard to the SSE instructions	7
4	4.4 Quick Starting Example #3: Using $w = 64$	8 9 10 11
5	Important Information on Alignment when Multiplying Regions	12
6	 6.1.1 Changing the Components of a Galois Field with create_gf_from_argv() 6.1.2 Changing the Polynomial 6.1.3 Changing the Multiplication Technique 6.1.4 Changing the Division Technique 6.1.5 Changing the Region Technique 6.2 Determining Supported Techniques with gf_methods 6.3 Testing with gf_unit and gf_time 	13 15 15 16 17 19 20 21 22
7	7.2 Using different techniques for single and region multiplication 7.3 General w 7.4 Arguments to "SPLIT" 7.5 Arguments to "GROUP" 7.6 Considerations with "COMPOSITE" 7.6 Considerations with "COMPOSITE" 7.7 "CARRY_FREE" and the Primitive Polynomial 7.8 More on Primitive Polynomials . 7.8.1 Primitive Polynomials that are not Primitive 7.8.2 Default Polynomials for Composite Fields . 7.8.3 The Program gf_poly for Verifying Irreducibility of Polynomials . 7.9 "ALTMAP" considerations and extract_word() 7.9.1 Alternate mappings with "COMPOSITE"	24 25 25 27 28 29 29 30 30 31 32 33 34

8 Thread Safety

3

CONTENTS

9	Listing of Procedures	35
10	Troubleshooting	38
11	Timings	40
	11.1 Multiply()	40
	11.2 Divide()	40
	11.3 Multiply_Region()	41

4

1 INTRODUCTION

1 Introduction

Galois Field arithmetic forms the backbone of erasure-coded storage systems, most famously the Reed-Solomon erasure code. A Galois Field is defined over w-bit words and is termed $GF(2^w)$. As such, the elements of a Galois Field are the integers 0, 1, ..., $2^w - 1$. Galois Field arithmetic defines addition and multiplication over these closed sets of integers in such a way that they work as you would hope they would work. Specifically, every number has a unique multiplicative inverse. Moreover, there is a value, typically the value 2, which has the property that you can enumerate all of the non-zero elements of the field by taking that value to successively higher powers.

Addition in a Galois Field is equal to the bitwise exclusive-or operation. That's nice and convenient. Multiplication is a little more complex, and there are many, many ways to implement it. The Paper describes them all, and the following references provide more supporting material: [Anv09, GMS08, LHy08, LD00, LBOX12, Pla97]. The intent of this library is to implement *all* of the techniques. That way, their performance may be compared, and their tradeoffs may be analyzed.

When used for erasure codes, there are typically five important operations:

- 1. Adding two numbers in $GF(2^w)$. That's bitwise exclusive-or.
- 2. Multiplying two numbers in $GF(2^w)$. Erasure codes are usually based on matrices in $GF(2^w)$, and constructing these matrices requires both addition and multiplication.
- 3. Dividing two numbers in $GF(2^w)$. Sometimes you need to divide to construct matrices (for example, Cauchy Reed-Solomon codes [BKK⁺95, Rab89]). More often, though, you use division to invert matrices for decoding. Sometimes it is easier to find a number's inverse than it is to divide. In that case, you can divide by multiplying by an inverse.
- 4. Adding two regions of numbers in $GF(2^w)$, which will be explained along with...
- 5. Mutiplying a region of numbers in $GF(2^w)$ by a constant in $GF(2^w)$. Erasure coding typically boils down to performing dot products in $GF(2^w)$. For example, you may define a coding disk using the equation:

$$c_0 = d_0 + 2d_1 + 4d_2 + 8d_3.$$

That looks like three multiplications and three additions However, the way that's implemented in a disk system looks as in Figure 1. Large regions of disks are partitioned into w-bit words in $GF(2^w)$. In the example, let us suppose that w = 8, and therefore that words are bytes. Then the regions pictured are 1 KB from each disk. The bytes on disk D_i are labeled $d_{i,0}, d_{i,1}, \ldots, d_{i,1023}$, and the equation above is replicated 1024 times. For $0 \le j < 1024$:

$$c_{0,j} = d_{0,j} + 2d_{1,j} + 4d_{2,j} + 8d_{3,j}.$$

While it's possible to implement each of these 1024 equations independently, using the single multiplication and addition operations above, it is often much more efficient to aggregate. For example, most computer architectures support bitwise exclusive-or of 64 and 128 bit words. Thus, it makes much more sense to add regions of numbers in 64 or 128 bit chunks rather than as words in $GF(2^w)$. Multiplying a region by a constant can leverage similar optimizations.

GF-Complete supports multiplication and division of single values for all values of $w \le 32$, plus w = 64 and w = 128. It also supports adding two regions of memory (for any value of w, since addition equals XOR), and multiplying a region by a constant in $GF(2^4)$, $GF(2^8)$, $GF(2^{16})$, $GF(2^{32})$, $GF(2^{64})$ and $GF(2^{128})$. These values are chosen because words in $GF(2^w)$ fit into machine words with these values of w. Other values of w don't lend themselves to efficient multiplication of regions by constants (although see the "CAUCHY" option in section 6.1.5 for a way to multiply regions for other values of w).

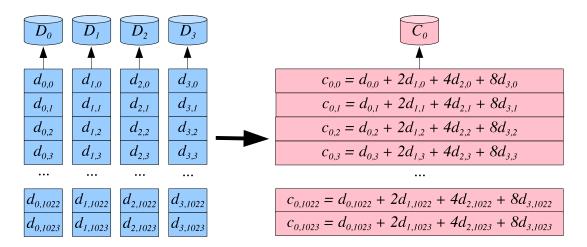


Figure 1: An example of adding two regions of numbers, and multiplying a region of numbers by a constant in $GF(2^w)$. In this example, w = 8, and each disk is holding a 1KB region. The same coding equation — $c_{0,j} = d_{0,j} + ad_{1,j} + a^2d_{2,j} + a^3d_{3,j}$ is applied 1024 times. However, rather than executing this equation 1024 times, it is more efficient to implement this with three region-constant multiplications and three region-region additions.

2 Files in the Library

The following files compose GF-Complete. First, the header files:

- **gf_complete.h**: This is the header file that applications should include. It defines the **gf_t** type, which holds all of the data that you need to perform the various operations in $GF(2^w)$. It also defines all of the arithmetic operations. For an application to use this library, you should compile the library **gf_complete.a** and then applications include **gf_complete.h** and compile with the library.
- **gf_method.h**: If you are wanting to modify the implementation techniques from the defaults, this file provides a "helper" function so that you can do it from the Unix command line.
- **gf_general.h**: This file has helper routines for doing basic Galois Field operations with any legal value of w. The problem is that $w \le 32$, w = 64 and w = 128 all have different data types, which is a pain. The procedures in this file try to alleviate that pain. They are used in **gf_unit** and **gf_time**. I'm guessing that most applications won't use them, as most applications use $w \le 32$.
- **gf_rand.h**: I've learned that **srand48**() and its kin are not supported in all C installations. Therefore, this file defines some random number generators to help test the programs. The random number generator is the "Mother of All" random number generator [Mar94] which we've selected because it has no patent issues. **gf_unit** and **gf_time** use these random number generators.
- **gf_int.h**: This is an internal header file that the various source files use. This is *not* intended for applications to include.

3 COMPILATION, ESPECIALLY WITH REGARD TO THE SSE INSTRUCTIONS

The following C files compose **gf_complete.a**. You shouldn't have to mess with these files, but we include them in case you have to:

- gf.c: This implements all of the procedures in both gf_complete.h and gf_int.h.
- **gf_w4.c**: Procedures specific to w = 4.
- **gf_w8.c**: Procedures specific to w = 8.
- **gf_w16.c**: Procedures specific to w = 16.
- **gf_w32.c**: Procedures specific to w = 32.
- **gf_w64.c**: Procedures specific to w = 64.
- gf_w128.c: Procedures specific to w = 128.
- gf_wgen.c: Procedures specific to other values of w between 1 and 31.
- gf_general.c: Procedures that let you manipulate general values, regardless of whether $w \le 32$, w = 64 or w = 128. (I.e. the procedures defined in gf_general.h).
- **gf_method.c**: Procedures to help you switch between the various implementation techniques. (I.e. the procedures defined in **gf_method.h**).
- gf_rand.c: The "Mother of all" random number generator. (I.e. the procedures defined in gf_rand.h).

Finally, the following C files are example applications that use the library:

- **gf_mult.c**, **gf_div.c** and **gf_add**: Command line tools to do multiplication, division and addition by single numbers.
- gf_example_x.c: Example programs to help you use the library.
- **gf_unit.c**: A unit tester to verify that all of the procedures work for given values of w and implementation options.
- gf_time.c: A program that times the procedures for given values of w and implementation options.
- gf_methods.c: A program that enumerates most of the implementation methods supported by GF-Complete.
- gf_poly.c: A program to identify irreducible polynomials in regular and composite Galois Fields.

3 Compilation, especially with regard to the SSE instructions

This is not a complex library, so simply using **make** should be sufficient. This will compile the library and the example programs. By default this does *not* utilize SSE optimizations, so that it can compile on as many machines as possible. However, to do truly fast operations, if your CPU supports SSE instructions, it is best to compile GF-Complete so that it may leverage them.

4 SOME TOOLS AND EXAMPLES TO GET YOU STARTED

The directory **flag_tester** contains supporting programs for figuring out which SSE instructions GF-Complete can use on your machine. The shell script **which_compile_flags.sh** performs a battery of tests on your machine, with your compiler, and emits the proper flags for you to put into the **GNUmakefile**.

By default, **which_compile_flags.sh** uses **cc** to build its test programs, because it is fairly standard for **cc** to be symlinked to the machine's default compiler. If you would like to specify which compiler to use, simply pass its name as a command line argument when running the script. If you do this, don't forget to specify the CC variable to the same compiler in **GNUmakefile**.

In which_compile_flags.sh, we first test whether your CPU supports SSE2, SSSE3, SSE4.2, and PCLMUL. We then test your compilation environment by trying to compile some programs that use those instructions. If it succeeds we will run the programs and compare the output to the known correct output. Based on the support it discovers, it will then print out two lines of compilation flags that you should use to replace the defaults in your GNUmakefile. For example, this is the output on a machine that supports SSE4.2 and PCLMUL (which is needed to use ALL of the SSE optimizations) using clang for the compiler:

```
UNIX> ./which_compile_flags.sh clang
CFLAGS = -03 -msse4 -DINTEL_SSE4 -maes -mpclmul -DINTEL_PCLMUL
LDFLAGS = -03 -msse4 -maes -mpclmul
UNIX>
```

You should put those lines into **GNUmakefile** in place of the **CFLAGS** and **LDFLAGS** lines that are currently there (and you should make sure that **GNUmakefile** uses **clang** as its compiler).

Here's another machine's output that only supports up to SSE3 (not the SSSE3 we are looking for):

```
UNIX> grep model /proc/cpuinfo
model : 4
model name : Intel(R) Pentium(R) 4 CPU 3.40GHz
model : 4
model name : Intel(R) Pentium(R) 4 CPU 3.40GHz
UNIX> ./which_compile_flags.sh
CFLAGS = -O3 -msse2 -DINTEL_SSE2
LDFLAGS = -O3 -msse2
UNIX>
```

After you **make**, the library will be in **gf_complete.a**. To use the library, include **gf_complete.h** in your C programs and create your executable with **gf_complete.a**.

Keep in mind that even though a given machine may have processor support for certain SSE instructions, a compilation environment may not be able to produce code with the needed machine instructions. For example, the default compiler in Mac OS 10.8.4 (as of this writing) failed to compile PCLMUL instructions even on Core i-series CPUs which support the instructions. Using the latest version of **clang** (3.3) via MacPorts solved this issue. For that reason, **which_compile_flags.sh** tests both the CPU and and compilation environment.

4 Some Tools and Examples to Get You Started

4.1 Three Simple Command Line Tools: gf_mult, gf_div and gf_add

Before delving into the library, it may be helpful to explore Galois Field arithmetic with the command line tools: **gf_mult**, **gf_div** and **gf_add**. These perform multiplication, division and addition on elements in $GF(2^w)$. The syntax is:

4 SOME TOOLS AND EXAMPLES TO GET YOU STARTED

- **gf_mult** a b w Multiplies a and b in $GF(2^w)$.
- **gf_div** $a \ b \ w$ Divides $a \ by \ b \ in \ GF(2^w)$.
- **gf_add** a b w Adds a and b in $GF(2^w)$.

You may use any value of w from 1 to 32, plus 64 and 128. By default, the values are read and printed in decimal; however, if you append an 'h' to w, then a, b and the result will be printed in hexadecimal. For w = 128, the 'h' is mandatory, and all values will be printed in hexadecimal.

Try them out on some examples like the ones below. You of course don't need to know that, for example, 5 * 4 = 7 in $GF(2^4)$; however, once you know that, you know that $\frac{7}{5} = 4$ and $\frac{7}{4} = 5$. You should be able to verify the **gf_add** statements below in your head. As for the other **gf_mult**'s, you can simply verify that division and multiplication work with each other as you hope they would.

```
UNIX> gf_mult 5 4 4
7
UNIX> gf_div 7 5 4
4
UNIX> gf_div 7 4 4
5
UNIX> gf_mult 8000 2 16h
100b
UNIX> gf_add f0f0f0f0f0f0f0f0 1313131313131313 64h
e3e3e3e3e3e3e3e3
UNIX> gf_mult f0f0f0f0f0f0f0f0 1313131313131313 64h
8da08da08da08da0
UNIX> gf_div 8da08da08da08da0 13131313131313 64h
f0f0f0f0f0f0f0f0f0
e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3
786278627862784982d782d782d7816e
UNIX> gf_div 786278627862784982d782d782d7816e f0f0f0f0f0f0f0f0131313131313131313131
1313131313131313f0f0f0f0f0f0f0f0f0
UNIX>
```

Don't bother trying to read the source code of these programs yet. Start with some simpler examples like the ones below.

4.2 Quick Starting Example #1: Simple multiplication and division

The next two examples are intended for those who just want to use the library without getting too complex. The first example is **gf_example_1**, and it takes one command line argument – w, which must be between 1 and 32. It generates two random non-zero numbers in $GF(2^w)$ and multiplies them. After doing that, it divides the product by each number.

To perform multiplication and division in $GF(2^w)$, you must declare an instance of the **gf_t** type, and then initialize it for $GF(2^w)$ by calling **gf_init_easy**(). This is done in **gf_example_1.c** with the following lines:

```
gf_t gf;
...
if (!gf_init_easy(&gf, w)) {
  fprintf(stderr, "Couldn't initialize GF structure.\n");
  exit(0);
}
```

Once **gf** is initialized, you may use it for multiplication and division with the function pointers **multiply.w32** and **divide.w32**. These work for any element of $GF(2^w)$ so long as $w \le 32$.

```
c = gf.multiply.w32(&gf, a, b);
printf("%u * %u = %u\n", a, b, c);
printf("%u / %u = %u\n", c, a, gf.divide.w32(&gf, c, a));
printf("%u / %u = %u\n", c, b, gf.divide.w32(&gf, c, b));
```

Go ahead and test this program out. You can use **gf_mult** and **gf_div** to verify the results:

```
UNIX> gf_example_1 4

12 * 4 = 5

5 / 12 = 4

5 / 4 = 12

UNIX> gf_mult 12 4 4

5

UNIX> gf_example_1 16

14411 * 60911 = 44568

44568 / 14411 = 60911

44568 / 60911 = 14411

UNIX> gf_mult 14411 60911 16

44568

UNIX>
```

gf_init_easy() (and later **gf_init_hard**()) do call **malloc**() to implement internal structures. To release memory, call **gf_free**(). Please see section 6.4 to see how to call **gf_init_hard**() in such a way that it doesn't call **malloc**().

4.3 Quick Starting Example #2: Multiplying a region by a constant

The program **gf_example_2** expands on **gf_example_1**. If w is equal to 4, 8, 16 or 32, it performs a region multiply operation. It allocates two sixteen byte regions, **r1** and **r2**, and then multiples **r1** by **a** and puts the result in **r2** using the **multiply_region.w32** function pointer:

gf.multiply_region.w32(&gf, r1, r2, a, 16, 0);

That last argument specifies whether to simply place the product into **r2** or to XOR it with the contents that are already in **r2**. Zero means to place the product there. When we run it, it prints the results of the **multiply_region.w32** in hexadecimal. Again, you can verify it using **gf_mult**:

```
UNIX> gf_example_2 4
12 * 2 = 11
11 / 12 = 2
11 / 2 = 12
multiply_region by 0xc (12)
R1 (the source): 02d9d68a8db35c188eb0615a2c4b3936
R2 (the product): 0 b 3 6 3 e a 1 a 3 d 7 9 f c a a 4 d 0 e c 9 1 b f 5 d 7 6 7 e
UNIX> gf_example_2 16
49598 * 35999 = 19867
19867 / 49598 = 35999
19867 / 35999 = 49598
multiply_region by 0xc1be (49598)
R1 (the source): 8c9f b30e 5bf3 7cbb 16a9 105d 9368 4bbe
R2 (the product): 4d9b 992d 02f2 c95c 228e ec82 324e 35e4
UNIX> gf_mult clbe 8c9f 16h
4d9b
UNIX> gf_mult clbe b30e 16h
992d
UNIX>
```

4.4 Quick Starting Example #3: Using w = 64

The program in **gf_example_3.c** is identical to the previous program, except it uses $GF(2^{64})$. Now **a**, **b** and **c** are **uint64_t**'s, and you have to use the function pointers that have w64 extensions so that the larger types may be employed.

```
UNIX> gf_example_3
a9af3adef0d23242 * 61fd8433b25fe7cd = bf5acdde4c4lee0c
bf5acdde4c4lee0c / a9af3adef0d23242 = 61fd8433b25fe7cd
bf5acdde4c4lee0c / 61fd8433b25fe7cd = a9af3adef0d23242
multiply_region by a9af3adef0d23242
R1 (the source): 61fd8433b25fe7cd 272d5d4b19ca44b7 3870bf7e63c3451a 08992149b3e2f8b7
R2 (the product): bf5acdde4c4lee0c ad2d786c6e4d66b7 43a7d857503fd261 d3d29c7be46b1f7c
UNIX> gf_mult a9af3adef0d23242 61fd8433b25fe7cd 64h
bf5acdde4c4lee0c
UNIX>
```

4.5 Quick Starting Example #4: Using w = 128

Finally, the program in **gf_example_4.c** uses $GF(2^{128})$. Since there is not universal support for **uint128_t**, the library represents 128-bit numbers as arrays of two **uint64_t**'s. The function pointers for multiplication, division and region multiplication now accept the return values as arguments:

5 IMPORTANT INFORMATION ON ALIGNMENT WHEN MULTIPLYING REGIONS

```
gf.multiply.w128(&gf, a, b, c);
```

Again, we can use **gf_mult** and **gf_div** to verify the results:

```
UNIX> gf_example_4
e252d9c145c0bf29b85b21a1ae2921fa * b23044e7f45daf4d70695fb7bf249432 =
7883669ef3001d7fabf83784d52eb414
multiply_region by e252d9c145c0bf29b85b21a1ae2921fa
R1 (the source): f4f56f08fa92494c5faa57ddcd874149 b4c06a61adbbec2f4b0ffc68e43008cb
R2 (the product): b1e34d34b031660676965b868b892043 382f12719ffe3978385f5d97540a13a1
UNIX> gf_mult e252d9c145c0bf29b85b21a1ae2921fa f4f56f08fa92494c5faa57ddcd874149 128h
b1e34d34b031660676965b868b892043
UNIX> gf_div 382f12719ffe3978385f5d97540a13a1 b4c06a61adbbec2f4b0ffc68e43008cb 128h
e252d9c145c0bf29b85b21a1ae2921fa
UNIX>
```

5 Important Information on Alignment when Multiplying Regions

In order to make multiplication of regions fast, we often employ 64 and 128 bit instructions. This has ramifications for pointer alignment, because we want to avoid bus errors, and because on many machines, loading and manipulating aligned quantities is much faster than unalinged quantities.

When you perform **multiply_region.wxx**(*gf*, source, dest, value, size, add), there are three requirements:

- 1. The pointers *source* and *dest* must be aligned for *w*-bit words. For w = 4 and w = 8, there is no restriction; however for w = 16, the pointers must be multiples of 2, for w = 32, they must be multiples of 4, and for $w \in \{64, 128\}$, they must be multiples of 8.
- 2. The *size* must be a multiple of $\lceil \frac{w}{8} \rceil$. With w = 4 and w = 8, $\lceil \frac{w}{8} \rceil = 1$ and there is no restriction. The other sizes must be multiples of $\lceil \frac{w}{8} \rceil$ because you have to be multiplying whole elements of $GF(2^w)$.
- 3. The *source* and *dest* pointers must be aligned identically with respect to each other for the implementation chosen. This is subtle, and we explain it in detail in the next few paragraphs. However, if you'd rather not figure it out, the following recommendation will *always* work in GF-Complete:

If you want to be safe, make sure that *source* and *dest* are both multiples of 16. That is not a strict requirement, but it will always work!

If you want to relax the above recommendation, please read further.

When performing **multiply_region.wxx**(), the implementation is typically optimized for a region of bytes whose size must be a multiple of a variable s, and which must be aligned to a multiple of another variable t. For example, when doing **multiply_region.w32**() in $GF(2^{16})$ with SSE enabled, the implementation is optimized for regions of 32 bytes, which must be aligned on a 16-byte quantity. Thus, s = 32 and t = 16. However, we don't want **multiply_region.w32**() to be too restrictive, so instead of requiring *source* and *dest* to be aligned to 16-byte regions, we require that (*source* mod 16) equal (*dest* mod 16). Or, in general, that (*source* mod t) equal (*dest* mod t).

Then, **multiply_region.wxx**() proceeds in three phases. In the first phase, **multiply.wxx**() is called on successive words until (*source* mod t) equals zero. The second phase then performs the optimized region multiplication on

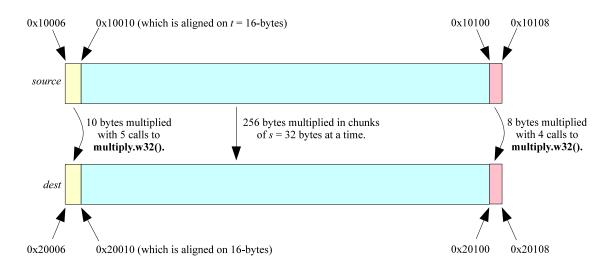


Figure 2: Example of multiplying a region of 274 bytes in $GF(2^{16})$ when $(source \mod 16) = (dest \mod 16) = 6$. The alignment parameters are s = 32 and t = 16. The multiplication is in three phases, which correspond to the initial unaligned region (10 bytes), the aligned region of s-byte chunks (256 bytes), and the final leftover region (8 bytes).

chunks of s bytes, until the remaining part of the region is less than s bytes. At that point, the third phase calls **multiply.wxx**() on the last part of the region.

A detailed example helps to illustrate. Suppose we make the following call in $GF(2^{16})$ with SSE enabled:

multiply_region.w32(gf, 0x10006, 0x20006, a, 274, 0)

First, note that *source* and *dest* are aligned on two-byte quantities, which they must be in $GF(2^{16})$. Second, note that *size* is a multiple of $\lceil \frac{16}{8} \rceil = 2$. And last, note that (*source* mod 16) equals (*dest* mod 16). We illustrate the three phases of region multiplication in Figure 2. Because (*source* mod 16) = 6, there are 10 bytes of unaligned words that are multiplied with five calls to **multiply.w32**() in the first phase. The second phase multiplies 256 bytes (eight chunks of s = 32 bytes) using the SSE instructions. That leaves 8 bytes remaining for the third phase.

When we describe the defaults and the various implementation options, we specify s and t as "alignment parameters."

One of the advanced region options is using an alternate mapping of words to memory ("ALTMAP"). These interact in a more subtle manner with alignment. Please see Section 7.9 for details.

6 The Defaults

GF-Complete implements a wide variety of techniques for multiplication, division and region multiplication. We have set the defaults with three considerations in mind:

1. **Speed:** Obviously, we want the implementations to be fast. Therefore, we choose the fastest implementations that don't violate the other considerations. The compilation environment is considered. For example, if SSE is

enabled, region multiplication in $GF(2^4)$ employs a single multiplication table. If SSE is not enabled, then a "double" table is employed that performs table lookup two bytes at a time.

- 2. Memory Consumption: We try to keep the memory footprint of GF-Complete low. For example, the fastest way to perform multiply.w32() in $GF(2^{32})$ is to employ 1.75 MB of multiplication tables (see Section 7.4 below). We do not include this as a default, however, because we want to keep the default memory consumption of GF-Complete low.
- 3. **Compatibility with "standard" implementations:** While there is no *de facto* standard of Galois Field arithmetic, most libraries implement the same fields. For that reason, we have not selected composite fields, alternate polynomials or memory layouts for the defaults, even though these would be faster. Again, see section 7.7 for more information.

Table 1 shows the default methods used for each power-of-two word size, their alignment parameters s and t, their memory consumption and their rough performance. The performance tests are on an Intel Core i7-3770 running at 3.40 GHz, and are included solely to give a flavor of performance on a standard microprocessor. Some processors will be faster with some techniques and others will be slower, so we only put numbers in so that you can ballpark it. For other values of w between 1 and 31, we use table lookup when $w \le 8$, discrete logarithms when $w \le 16$ and "Bytwo_p" for $w \le 32$.

w	Memory	multiply()	Performance	multiply_region()	s	t	Performance
	Usage	Implementation	(Mega Ops / s)	Implementation			(MB/s)
4	< 1K	Table	501	Table	16	16	11,659
8	136K	Table	501	Split Table (8,4)	16	16	11,824
16	896K	Log	260	Split Table (16,4)	32	16	7,749
32	$< 1 \mathrm{K}$	Carry-Free	48	Split Table (32,4)	64	16	5,011
64	2K	Carry-Free	84	Split Table (64,4)	128	16	2,402
128	64K	Carry-Free	48	Split Table (128,8)	16	16	833
			Without	SSE			
w	Memory	multiply()	Performance	multiply_region()	s	t	Performance
	Usage	Implementation	(Mega Ops / s)	Implementation			(MB/s)
4	4K	Table	501	Double Table	1	1	1,982
8	128K	Table	501	Table	1	1	1,397
16	896K	Log	266	Split Table (16,8)	2	2	2,135
32	4K	$Bytwo_p$	19	Split Table (32,8)	4	4	1,149
64	16K	Bytwo _p	9	Split Table (64,8)	8	8	987
128	64K	Bytwo _p	1.4	Split Table (128,8)	16	8	833

With SSE

Table 1: The default implementations, memory consumption and rough performance when w is a power of two. The variables s and t are alignment variables described in Section 5.

A few comments on Table 1 are in order. First, with SSE, the performance of **multiply**() is faster when w = 64 than when w = 32. That is because the primitive polynomial for w = 32, that has historically been used in Galois Field implementations, is sub-ideal for using carry-free multiplication (PCLMUL). You can change this polynomial (see section 7.7) so that the performance matches w = 64.

The region operations for w = 4 and w = 8 without SSE have been selected to have a low memory footprint. There are better options that consume more memory, or that only work on large memory regions (see section 6.1.5).

6.1 Changing the Defaults

There are times that you may want to stray from the defaults. For example:

- You may want better performance.
- You may want a lower memory footprint.
- You may want to use a different Galois Field or even a ring.
- You only care about multiplying a region by the value two.

Our command line tools allow you to deviate from the defaults, and we have two C functions — **gf_init_hard**() and **create_gf_from_argv**() — that can be called from application code to override the default methods. There are six command-line tools that can be used to explore the many techniques implemented in GF-Complete:

- **gf_methods** is a tool that enumerates most of the possible command-line arguments that can be sent to the other tools.
- **gf_mult** and **gf_div** are explained above. You may change the multiplication and division technique in these tools if you desire.
- gf_unit performs unit tests on a set of techniques to verify correctness.
- gf_time measures the performance of a particular set of techniques.
- **gf_poly** tests the irreducibility of polynomials in a Galois Field.

To change the default behavior in application code, you need to call **gf_init_hard(**) rather than **gf_init_easy(**). Alternatively, you can use **create_gf_from_argv(**), included from **gf_method.h**, which uses an **argv**-style array of strings to specify the options that you want. The procedure in **gf_method.c** parses the array and makes the proper **gf_init_hard(**) procedure call. This is the technique used to parse the command line in **gf_mult**, **gf_div**, **gf_unit** *et al*.

6.1.1 Changing the Components of a Galois Field with create_gf_from_argv()

There are five main components to every Galois Field instance:

- w
- Multiplication technique
- Division technique
- Region technique(s)
- Polynomial

The procedures **gf_init_hard()** and **create_gf_from_argv()** allow you to specify these parameters when you create your Galois Field instance. We focus first on **create_gf_from_argv()**, because that is how the tools allow you to specify the components. The prototype of **create_gf_from_argv()** is as follows:

int create_gf_from_argv(gf_t *gf, int w, int argc, char **argv, int starting);

You pass it a pointer to a gf_t , which it will initialize. You specify the word size with the parameter **w**, and then you pass it an **argc/argv** pair as in any C or C++ program. You also specify a **starting** argument, which is where in **argv** the specifications begin. If it successfully parses **argc** and **argv**, then it creates the gf_t using $gf_init_hard()$ (described below in section 6.4). It returns one past the last index of **argv** that it considered when creating the gf_t . If it fails, then it returns zero, and the gf_t is unmodified.

For example, **gf_mult.c** calls **create_gf_from_argv**() by simply passing **argc** and **argv** from its **main**() declaration, and setting **starting** to 4.

To choose defaults, **argv[starting]** should equal "-". Otherwise, you specify the component that you are changing with "-m" for multiplication technique, "-d" for division technique, "-r" for region technique, and "-p" for the polynomial. You may change multiple components. You end your specification with a single dash. For example, the following call multiplies 6 and 5 in $GF(2^4)$ with polynomial 0x19 using the "SHIFT" technique for multiplication (we'll explain these parameters later):

UNIX> ./gf_mult 6 5 4 -p 0x19 -m SHIFT -7

UNIX>

If **create_gf_from_argv**() fails, then you can call the procedure **gf_error**(), which prints out the reason why **cre-ate_gf_from_argv**() failed.

6.1.2 Changing the Polynomial

Galois Fields are typically implemented by representing numbers as polynomials with binary coefficients, and then using the properties of polynomials to define addition and multiplication. You do not need to understand any of that to use this library. However, if you want to learn more about polynomial representations and how they construct fields, please refer to The Paper.

Multiplication is based on a special polynomial that we will refer to here as the "defining polynomial." This polynomial has binary coefficients and is of degree w. You may change the polynomial with "-p" and then a number in hexadecimal (the leading "0x" is optional). It is assumed that the w-th bit of the polynomial is set – you may include it or omit it. For example, if you wish to set the polynomial for $GF(2^{16})$ to $x^{16} + x^5 + x^3 + x^2 + 1$, rather than its default of $x^{16} + x^{12} + x^3 + x + 1$, you may say "-p 0x1002d," "-p 1002d," "-p 0x2d" or "-p 2d."

We discuss changing the polynomial for three reasons in other sections:

- Leveraging carry-free multiplication (section 7.7).
- Defining composite fields (section 7.6).
- Implementing rings (section 7.8.1).

Some words about nomenclature with respect to the polynomial. A Galois Field requires the polynomial to be *irreducible*. That means that it cannot be factored. For example, when the coefficients are binary, the polynomial $x^5 + x^4 + x + 1$ may be factored as $(x^4 + 1)(x+1)$. Therefore it is not irreducible and cannot be used to define a Galois Field. It may, however, be used to define a ring. Please see section 7.8.1 for a discussion of ring support in GF-Complete.

There is a subset of irreducible polynomials called *primitive*. These have an important property that one may enumerate all of the elements of the field by raising 2 to successive posers. All of the default polynomials in GF-Complete are primitive. However, so long as a polynomial is irreducible, it defines a Galois Field. Please see section 7.7 for a further discussion of the polynomial.

One thing that we want to stress here is that changing the polynomial changes the field, so fields with different polynomials may not be used interchangeably. So long as the polynomial is irreducible, it generates a Galois Field that

is isomorphic to all other Galois Fields; however the multiplication and division of elements will differ. For example, the polynomials 0x13 (the default) and 0x19 in $GF(2^4)$ are both irreducible, so both generate valid Galois Fields. However, their multiplication differs:

UNIX> gf_mult 8 2 4 -p 0x13 -3 UNIX> gf_mult 8 2 4 -p 0x19 -9 UNIX> gf_div 3 8 4 -p 0x13 -2 UNIX> gf_div 9 8 4 -p 0x19 -2 UNIX>

6.1.3 Changing the Multiplication Technique

The following list describes the multiplication techinques that may be changed with "-m". We keep the description here brief. Please refer to The Paper for detailed descriptions of these techniques.

- "TABLE:" Multiplication and division are implemented with tables. The tables consume quite a bit of memory $(2^w \times 2^w \times \lceil \frac{w}{8} \rceil$ bytes), so they are most useful when w is small. Please see "SSE," "LAZY," "DOUBLE" and "QUAD" under region techniques below for further modifications to "TABLE" to perform multiply_region().
- "LOG:" This employs discrete (or "Zeph") logarithm tables to implement multiplication and division. The memory usage is roughly (3 × 2^w × [^w/₈] bytes), so they are most useful when w is small, but they tolerate larger w than "TABLE." If the polynomial is not primitive (see section 6.1.2), then you cannot use "LOG" as an implementation. In that case, gf_init_hard() or create_gf_from_argv() will fail.
- "LOG_ZERO:" Discrete logarithm tables which include extra room for zero entries. This more than doubles the memory consumption to remove an **if** statement (please see [GMS08] or The Paper for more description). It doesn't really make a huge deal of difference in performance.
- "LOG_ZERO_EXT:" This expends even more memory to remove another if statement. Again, please see The Paper for an explanation. As with "LOG_ZERO," the performance difference is negligible.
- "SHIFT:" Implementation straight from the definition of Galois Field multiplication, by shifting and XOR-ing, then reducing the product using the polynomial. This is *sloooooooow*, so we don't recommend you use it.
- "CARRY_FREE:" This is identical to "SHIFT," however it leverages the SSE instruction PCLMUL to perform carry-free multiplications in single instructions. As such, it is the fastest way to perform multiplication for large values of w when that instruction is available. Its performance depends on the polynomial used. See The Paper for details, and see section 7.7 below for the speedups available when w = 16 and w = 32 if you use a different polynomial than the default one.
- "BYTWO_p:" This implements multiplication by successively multiplying the product by two and selectively XOR-ing the multiplicand. See The Paper for more detail. It can leverage Anvin's optimization that multiplies 64 and 128 bits of numbers in $GF(2^w)$ by two with just a few instructions. The SSE version requires SSE2.

- "BYTWO_b:" This implements multiplication by successively multiplying the multiplicand by two and selectively XOR-ing it into the product. It can also leverage Anvin's optimization, and it has the feature that when you're multiplying a region by a very small constant (like 2), it can terminate the multiplication early. As such, if you are multiplying regions of bytes by two (as in the Linux RAID-6 Reed-Solomon code [Anv09]), this is the fastest of the techniques, regardless of the value of w. The SSE version requires SSE2.
- "SPLIT:" Split multiplication tables (like the LR tables in [GMS08], or the SIMD tables for $w \ge 8$ in [LHy08, Anv09, PGM13b]). This argument must be followed by two more arguments, w_a and w_b , which are the index sizes of the sub-tables. This implementation reduces the size of the table from "TABLE," but requires multiple table lookups. For example, the following multiplies 100 and 200 in $GF(2^8)$ using two 4K tables, as opposed to one 64K table when you use "TABLE:"

```
UNIX> ./gf_mult 100 200 8 -m SPLIT 8 4 -
79
UNIX>
```

See section 7.4 for additional information on the arguments to "SPLIT." The SSE version typically requires SSSE3.

- "GROUP:" This implements the "left-to-right comb" technique [LBOX12]. I'm afraid we don't like that name, so we call it "GROUP," because it performs table lookup on groups of bits for shifting (left) and reducing (right). It takes two additional arguments $-g_s$, which is the number of bits you use while shifting (left) and g_r , which is the number of bits you use while shifting (left) and g_r , which is the number of bits you use while reducing (right). Increasing these arguments can you higher computational speed, but requires more memory. SSE version exists only for w = 128 and it requires SSE4. For more description on the arguments g_s and g_r , see section 7.5. For a full description of "GROUP" algorithm, please see The Paper.
- "COMPOSITE:" This allows you to perform operations on a composite Galois Field, $GF((2^l)^k)$ as described in [GMS08], [LBOX12] and The Paper. The field size w is equal to lk. It takes one argument, which is k, and then a specification of the base field. Currently, the only value of k that is supported is two. However, that may change in a future revision of the library.

In order to specify the base field, put appropriate flags after specifying k. The single dash ends the base field, and after that, you may continue making specifications for the composite field. This process can be continued for multiple layers of "**COMPOSITE**." As an example, the following multiplies 1000000 and 2000000 in $GF((2^{16})^2)$, where the base field uses **BYTWO**-**p** for multiplication:

./gf_mult 1000000 2000000 32 -m COMPOSITE 2 -m BYTWO_p - -

In the above example, the red text applies to the base field, and the black text applies to the composite field.

Composite fields have two defining polynomials – one for the composite field, and one for the base field. Thus, if you want to change polynomials, you should change both. The polynomial for the composite field must be of the form $x^2 + sx + 1$, where s is an element of $GF(2^k)$. To change it, you specify s (in hexadecimal) with "-p." In the example below, we multiply 20000 and 30000 in $GF((2^8)^2)$, setting s to three, and using $x^8 + x^4 + x^3 + x^2 + 1$ as the polynomial for the base field:

./gf_mult 20000 30000 16 -m COMPOSITE 2 -p 0x11d - -p 0x3 -

If you use composite fields, you should consider using "**ALTMAP**" as well. The reason is that the region operations will go much faster. Please see section 7.6.

As with changing the polynomial, when you use a composite field, $GF((2^l)^k)$, you are using a different field than the "standard" field for $GF(2^{lk})$. All Galois Fields are isomorphic to each other, so they all have the desired properties; however, the fields themselves change when you use composite fields.

With the exception of "**COMPOSITE**", only one multiplication technique can be provided for a given Galois Field instance. Composite fields may use composite fields as their base fields, in which case the specification will be recursive.

6.1.4 Changing the Division Technique

There are two techniques for division that may be set with "-d". If "-d" is not specified, then appropriate defaults are employed. For example, when the multiplication technique is "**TABLE**," a table is created for division as well as multiplication. When "**LOG**" is specified, the logarithm tables are used for division. With "**COMPOSITE**," a special variant of Euclid's algorithm is employed that performs division using multiplication and division in the base field. Otherwise, Euclid's algorithm is used. Please see The Paper for a description of Euclid's algorithm applied to Galois Fields.

If you use "-d", you must also specify the multiplication technique with "-m."

To force Euclid's algorithm instead of the defaults, you may specify it with "-d EUCLID." If instead, you would rather convert elements of a Galois Field to a binary matrix and find an element's inverse by inverting the matrix, then specify "-d MATRIX." In all of our tests, "MATRIX" is slower than "EUCLID." "MATRIX" is also not defined for w > 32.

6.1.5 Changing the Region Technique

The following are the region multiplication options ("-r"):

• "SSE:" Use SSE instructions. Initialization will fail if the instructions aren't supported. Table 2 details the multiplication techniques which can leverage SSE instructions and which versions of SSE are required.

Multiplication	multiply()	multiply_region()	SSE	Comments
Technique			Version	
"TABLE"	-	Yes	SSSE3	Only for $GF(2^4)$.
"SPLIT"	-	Yes	SSSE3	Only when the second argument equals 4.
"SPLIT"	-	Yes	SSE4	When $w = 64$ and not using "ALTMAP".
"BYTWO_p"	-	Yes	SSE2	
"BYTWO_b"	-	Yes	SSE2	
"GROUP"	Yes	Yes	SSE4	Only for $GF(2^{128})$.

Table 2: Multiplication techniques which can leverage SSE instructions when they are available.

- "NOSSE:" Force non-SSE version.
- "DOUBLE:" Use a table that is indexed on two words rather than one. This applies only to w = 4, where the table is indexed on bytes rather than 4-bit quantities, and to w = 8, where the table is indexed on shorts

rather than bytes. In each case, the table lookup performs two multiplications at a time, which makes region multiplication faster. It doubles the size of the lookup table.

- "QUAD:" Use a table that is indexed on four words rather than two or one. This only applies to w = 4, where the table is indexed on shorts. The "Quad" table may be lazily created or created ahead of time (the default). If the latter, then it consumes $2^4 \times 2^{16} \times 2 = 2$ MB of memory.
- "LAZY:" Typically it's clear whether tables are constructed upon initialization or lazily when a region operation is performed. There are two times where it is ambiguous: "QUAD" when w = 4 and "DOUBLE" when w = 8. If you don't specify anything, these tables are created upon initialization, consuming a lot of memory. If you specify "LAZY," then the necessary row of the table is created lazily when you call "multiply_region().
- "ALTMAP:" Use an alternate mapping, where words are split across different subregions of memory. There are two places where this matters. The first is when implementing "SPLIT w 4" using SSE when w > 8. In these cases, each byte of the word is stored in a different 128-bit vector, which allows the implementation to better leverage 16-byte table lookups. See section 7.4 for examples, and The Paper or [PGM13b] for detailed explanations.

The second place where it matters is when using "**COMPOSITE**." In this case, it is advantageous to split each memory region into two chunks, and to store half of each word in a different chunk. This allows us to call **region_multiply**() recursively on the base field, which is *much* faster than the alternative. See Section 7.6 for examples, and The Paper for an explanation.

It is important to note that with "**ALTMAP**," the words are not "converted" from a standard mapping to an alternate mapping and back again. They are assumed to always be in the alternate mapping. This typically doesn't matter, so long as you always use the same "**ALTMAP**" calls. Please see section 7.9 for further details on "**ALTMAP**," especially with respect to alignment.

• "CAUCHY:" Break memory into w subregions and perform only XOR's as in Cauchy Reed-Solomon coding [BKK⁺95] (also described in The Paper). This works for *any* value of $w \le 32$, even those that are not powers of two. If SSE2 is available, then XOR's work 128 bits at a time. For "CAUCHY" to work correctly, *size* must be a multiple of w.

It is possible to combine region multiplication options. This is fully supported as long as **gf_methods** has the combination listed. If multiple region options are required, they should be specified independently (as flags for **gf_init_hard**() and independent options for command-line tools and **create_gf_from_argv**()).

6.2 Determining Supported Techniques with gf_methods

The program **gf_methods** prints a list of supported methods on standard output. It simply enumerates flag combinations and tests to see if they initialize without error. **gf_methods** does not test whether a method is working correctly (although it should be correct – we simply haven't tested every combination of flags on every machine/compiler that exists in the world); it only prints out the method if it is supported by the machine and compiler flags. Some method combinations are not printed, such as multi-layer composite methods. **gf_methods** does not take any command line arguments.

gf_methods prints a line for each supported combination of flags, using the following format:

w=<w-value>: -m <mult> -r <region-1> -r <region-2> ... -r <region-n> -d <division> -

gf_methods prints the format of the string argv in create_gf_from_argv().

6.3 Testing with gf_unit and gf_time

gf_unit and **gf_time** may be used to verify that a combination of arguments works correctly and efficiently on your platform. If you plan to stray from the defaults, it is probably best to run both tools to ensure there are no issues with your environment. **gf_unit** will run a set of unit tests based on the arguments provided to the tool, and **gf_time** will time Galois Field methods based on the provided arguments.

The usage of gf_unit is:

```
gf_unit w tests seed [method]
```

The usage of **gf_time** is:

```
gf_time w tests seed buffer-size iterations [method [params]]
```

The **seed** is an integer — negative one uses the current time. The tests are specified by a listing of characters. The following tests are supported (all are supported by **gf_time** and 'A', 'S' and 'R' are supported by **gf_unit**):

- 'M': Single multiplications.
- 'D': Single divisions.
- 'I': Single inverses.
- 'G': Region multiplication of a buffer by a random constant.
- **'0'**: Region multiplication of a buffer by zero (does nothing and **bzero**()).
- '1': Region multiplication of a buffer by one (does memcpy() and XOR).
- '2': Region multiplication of a buffer by two sometimes this is faster than general multiplication.
- 'S': All three single tests.
- 'R': All four region tests.
- **'A'**: All seven tests.

For example, suppose you want to explore using the "SPLIT" technique in $GF(2^{32})$. You run **gf_methods** and grep for "w=32 .* SPLIT." It prints quite a few lines, and from them, you decide that you'll try the following:

```
w=32: -m SPLIT 32 4 -r NOSSE -d EUCLID -
```

You should first run gf_unit to ensure this set of options works on your environment:

```
UNIX> gf_unit 32 A -1 -m SPLIT 32 4 -r NOSSE -d EUCLID -
```

gf_unit first reports on the memory consumption of the **gf_t**. If the field is a composite field, this includes the memory consumption of the base field(s). Then **_unit** runs all tests for the specified parameters. If **gf_unit** does not return an error, then you can be confident that there are no environmental correctness issues.

Next, to get an idea of how the methods perform, you should run **gf_time**:

```
UNIX> gf_time 32 A -1 1024 1024 -m SPLIT 32 4 -r NOSSE -d EUCLID -
Seed: 1375822062
                              0.013587 s Mops:
                                                        0.250
      Multiply:
                                                                     18.400 Mega-ops/s
                                                       0.250
0.250
        Divide:
                             0.293074 s Mops:
                                                                      0.853 Mega-ops/s
       Inverse:
                             0.280164 s Mops:
                                                                      0.892 Mega-ops/s
Region-Random: XOR: 00.002397 sRegion-Random: XOR: 10.002379 sRegion-By-Zero: XOR: 00.000053 s
                                                       1.000
1.000
1.000
                                          MB:
                                                                    417.178 MB/s
                                              MB:
                                                                    420.271 MB/s
                             0.000053 s
                                              MB:
                                                                  18978.751 MB/s
```

Region-By-Zero:	XOR:	1	0.000032	S	MB:	1.000	31536.120	MB/s
Region-By-One:	XOR:	0	0.000068	S	MB:	1.000	14614.300	MB/s
Region-By-One:	XOR:	1	0.000094	S	MB:	1.000	10591.677	MB/s
Region-By-Two:	XOR:	0	0.002124	S	MB:	1.000	470.741	MB/s
Region-By-Two:	XOR:	1	0.002148	S	MB:	1.000	465.517	MB/s
UNIX>								

The first column of output displays the name of the test performed. Region tests will test with and without the XOR flag being set (see Section 4.3 for an example). The second column displays the total time the test took to complete measured in seconds (s). The third column displays the size of the test measured in millions of operations (Mops) for single tests and in Megabytes (MB) for the region tests. The final column displays the speed of the tests calculated from the second and third columns, and is where you should look to get an idea of a method's performance.

If the output of **gf_unit** and **gf_time** are to your satisfaction, you can incorporate the method into application code using **create_gf_from_argv()** or **gf_init_hard()**.

The performance of "Region-By-Zero" and "Region-By-One" will not change from test to test, as all methods make the same calls for these. "Region-By-Zero" with "XOR: 1" does nothing except set up the tests. Therefore, you may use it as a control.

Because this implementation creates the tables lazily, one would expect the performance of **region_multiply**() to be faster for larger regions, because the cost of creating the tables is amortized. Indeed, that is the case:

```
UNIX> gf_time 32 G -1 10240 1024 -m SPLIT 32 4 -r NOSSE -d EUCLID -
Seed: 1375822694
Region-Random: XOR: 0 0.021350 s MB: 10.000 468.381 MB/s
Region-Random: XOR: 1 0.021171 s MB: 10.000 472.353 MB/s
UNIX>
```

6.4 Calling gf_init_hard()

We recommend that you use **create_gf_from_argv()** instead of **gf_init_hard()**. However, there are extra things that you can do with **gf_init_hard()**. Here's the prototype:

The arguments **mult_type**, **region_type** and **divide_type** allow for the same specifications as above, except the types are integer constants defined in **gf_complete.h**:

```
typedef enum {GF_MULT_DEFAULT,
GF_MULT_SHIFT,
GF_MULT_CARRY_FREE,
GF_MULT_GROUP,
```

GF_MULT_BYTWO_p, GF_MULT_BYTWO_b, GF_MULT_TABLE, GF_MULT_LOG_TABLE, GF_MULT_LOG_ZERO, GF_MULT_LOG_ZERO_EXT, GF_MULT_SPLIT_TABLE, GF_MULT_COMPOSITE } gf_mult_type_t;

```
#define GF_REGION_DEFAULT
                               (0 \times 0)
#define GF_REGION_DOUBLE_TABLE (0x1)
#define GF_REGION_QUAD_TABLE (0x2)
#define GF_REGION_LAZY
                                (0x4)
#define GF_REGION_SSE
                                (0x8)
#define GF_REGION_NOSSE
                                (0x10)
#define GF_REGION_ALTMAP
                                (0x20)
#define GF_REGION_CAUCHY
                                (0x40)
typedef enum { GF_DIVIDE_DEFAULT,
               GF_DIVIDE_MATRIX,
```

```
GF_DIVIDE_EUCLID } gf_division_type_t;
```

You can mix the region types with bitwise or. The arguments to **GF_MULT_GROUP**, **GF_MULT_SPLIT_TABLE** and **GF_MULT_COMPOSITE** are specified in **arg1** and **arg2**. **GF_MULT_COMPOSITE** also takes a base field in **base_gf**. The base field is itself a **gf_t**, which should have been created previously with **create_gf_from_argv**(), **gf_init_easy**() or **gf_init_hard**(). Note that this **base_gf** has its own **base_gf** member and can be a composite field itself.

You can specify an alternate polynomial in **prim_poly**. For $w \le 32$, the leftmost one (the one in bit position w) is optional. If you omit it, it will be added for you. For w = 64, there's no room for that one, so you have to leave it off. For w = 128, your polynomial can only use the bottom-most 64 bits. Fortunately, the standard polynomial only uses those bits. If you set **prim_poly** to zero, the library selects the "standard" polynomial.

Finally, scratch_memory is there in case you don't want gf_init_hard() to call malloc(). You may call gf_scratch_size() to find out how much extra memory each technique uses, and then you may pass it a pointer for it to use in scratch_memory. If you set scratch_memory to NULL, then the extra memory is allocated for you with malloc(). If you use gf_init_easy() or create_gf_from_argv(), or you use gf_init_hard() and set scratch_memory to NULL, then you should call gf_free() to free memory. If you use gf_init_hard() and use your own scratch_memory you can still call gf_free(), and it will not do anything.

Both **gf_init_hard()** and **bf_scratch_size()** return zero if the arguments don't specify a valid **gf_t**. When that happens, you can call **gf_error()** to print why the call failed.

We'll give you one example of calling **gf_init_hard**(). Suppose you want to make a **gf_init_hard**() call to be equivalent to "-m SPLIT 16 4 -r SSE -r ALTMAP -" and you want to allocate the scratch space yourself. Then you'd do the following:

```
gf_t gf;
void *scratch;
int size;
size = gf_scratch_size(16, GF_MULT_SPLIT_TABLE,
```

```
GF_REGION_SSE | GF_REGION_ALTMAP,
GF_DIVIDE_DEFAULT,
16, 4);
if (size == 0) { gf_error(); exit(1); } /* It failed. That shouldn't happen */
scratch = (void *) malloc(size);
if (scratch == NULL) { perror("malloc"); exit(1); }
if (!gf_init_hard(&gf, 16, GF_MULT_SPLIT_TABLE,
GF_REGION_SSE | GF_REGION_ALTMAP,
GF_DIVIDE_DEFAULT,
0, 16, 4, NULL, scratch)) {
gf_error();
exit(1);
}
```

7 Further Information on Options and Algorithms

7.1 Inlining Single Multiplication and Division for Speed

Obviously, procedure calls are more expensive than single instructions, and the mechanics of multiplication in "TA-BLE" and "LOG" are pretty simple. For that reason, we support inlining for "TABLE" when w = 4 and w = 8, and for "LOG" when w = 16. We elaborate below.

When w = 4, you may inline multiplication and division as follows. The following procedures return pointers to the multiplication and division tables respectively:

```
uint8_t *gf_w4_get_mult_table(gf_t * gf);
uint8_t *gf_w4_get_div_table(gf_t * gf);
```

The macro **GF_W4_INLINE_MULTDIV**(*table*, *a*, *b*) then multiplies or divides *a* by *b* using the given *table*. This of course only works if the multiplication technique is "**TABLE**," which is the default for w = 4. If the multiplication technique is not "**TABLE**," then **gf_w4_get_mult_table**() will return **NULL**.

When w = 8, the procedures **gf_w8_get_mult_table**() and **gf_w8_get_div_table**(), and the macro

GF_W8_INLINE_MULTDIV(table, a, b) work identically to the w = 4 case.

When w = 16, the following procedures return pointers to the logarithm table, and the two inverse logarithm tables respectively:

```
uint16_t *gf_w16_get_log_table(gf_t * gf);
uint16_t *gf_w16_get_mult_alog_table(gf_t * gf);
uint16_t *gf_w16_get_div_alog_table(gf_t * gf);
```

The first inverse logarithm table works for multiplication, and the second works for division. They actually point to the same table, but to different places in the table. You may then use the macro **GF_W16_INLINE_MULT**(*log*, *alog*, *a*, *b*) to multiply *a* and *b*, and the macro **GF_W16_INLINE_DIV**(*log*, *alog*, *a*, *b*) to divide *a* and *b*. Make sure you use the *alog* table returned by **gf_w16_get_mult_alog_table**() for multiplication and the one returned by **gf_w16_get_div_alog_table**() for division. Here are some timings:

```
UNIX> gf_time 4 M 0 10240 10240 -
Seed: 0
Multiply: 0.228860 s Mops: 100.000 436.949 Mega-ops/s
```

```
UNIX> gf_inline_time 4 0 10240 10240
Seed: 0
               0.096859 s
                                      100.000
                                                   1032.424 Mega-ops/s
Inline mult:
                            Mops:
UNIX> gf_time 8 M 0 10240 10240 -
Seed: 0
     Multiply:
                           0.228931 s
                                        Mops:
                                                 100.000
                                                               436.812 Mega-ops/s
UNIX> gf_inline_time 8 0 10240 10240
Seed: 0
Inline mult: 0.114300 s
                                      100.000
                                                    874.889 Mega-ops/s
                             Mops:
UNIX> gf_time 16 M 0 10240 10240 -
Seed: 0
                                                  50.000
     Multiply:
                           0.193626 s
                                        Mops:
                                                               258.229 Mega-ops/s
UNIX> gf_inline_time 16 0 10240 10240
Seed: 0
Inline mult: 0.310229 s
                                      100.000
                                                    322.342 Mega-ops/s
                            Mops:
UNIX>
```

7.2 Using different techniques for single and region multiplication

You may want to "mix and match" the techniques. For example, suppose you'd like to use "-m SPLIT 8 8" for **multiply**() in $GF(2^{32})$, because it's fast, and you don't mind consuming all of that space for tables. However, for **multiply_region**(), you'd like to use "-m SPLIT 32 4 -r ALTMAP," because that's the fastest way to implement **multiply_region**(). Unfortunately, There is no way to create a **gf_t** that does this combination. In this case, you should simply create two **gf_t**'s, and use one for **multiply**() and the other for **multiply_region**(). All of the implementations may be used interchangably with the following exceptions:

- "COMPOSITE" implements a different Galois Field.
- If you change a field's polynomial, then the resulting Galois Field will be different.
- If you are using "ALTMAP" to multiply regions, then the contents of the resulting regions of memory will depend on the multiplication technique, the size of the region and its alignment. Please see section 7.9 for a detailed explanation of this.
- If you are using "CAUCHY" to multiply regions, then like "ALTMAP," the contents of the result regions of memory the multiplication technique and the size of the region. You don't have to worry about alignment.

7.3 General w

The library supports Galois Field arithmetic with $2 < w \le 32$. Values of w which are not whole number powers of 2 are handled by the functions in **gf_wgen.c**. For these values of w, the available multiplication types are "SHIFT," "BYTWO_p," "BYTWO_b," "GROUP," "TABLE" and "LOG." "LOG" is only valid for w < 28 and "TABLE" is only valid for w < 15. The defaults for these values of w are "TABLE" for w < 8, "LOG" for w < 16, and "BYTWO_p" for w < 32.

7.4 Arguments to "SPLIT"

The "SPLIT" technique is based on the distributive property of multiplication and addition:

$$a * (b + c) = (a * b) + (a * c).$$

This property allows us to, for example, split an eight bit word into two four-bit components and calculate the product by performing two table lookups in 16-element tables on each of the components, and adding the result. There is much more information on "**SPLIT**" in The Paper. Here we describe the version of "**SPLIT**" implemented in GF-Complete.

"SPLIT" takes two arguments, which are the number of bits in each component of a, which we call w_a , and the number of bits in each component of b, which we call w_b . If the two differ, it does not matter which is bigger – the library recognizes this and performs the correct implementation. The legal values of w_a and w_b fall into five categories:

1. w_a is equal to w and w_b is equal to four. In this case, b is broken up into $\frac{w}{4}$ four-bit words which are used in 16-element lookup tables. The tables are created on demand in **multiply_region**() and the SSSE3 instruction **mm_shuffle_epi8**() is leveraged to perform 16 lookups in parallel. Thus, these are very fast implementations. When $w \ge 16$, you should combine this with "ALTMAP" to get the best performance (see The Paper or [PGM13b] for explanation). If you do this please see section 7.9 for information about "ALTMAP" and alignment.

If you don't use "ALTMAP," the implementations for $w \in \{16, 32, 64\}$ convert the standard representation into "ALTMAP," perform the multiplication with "ALTMAP" and then convert back to the standard representation. When w equals 128, "ALTMAP" is the only option. The performance difference using "ALTMAP" can be significant:

gf_time 1	16	G	0	1048576	100	-m	SPLIT	16	4	-		Speed = 8,389 MB/s
gf_time 1	16	G	0	1048576	100	-m	SPLIT	16	4	-r	ALTMAP -	Speed = 9,212 MB/s
gf_time 3	32	G	0	1048576	100	-m	SPLIT	32	4	-		Speed = $5,304 \text{ MB/s}$
gf_time 3	32	G	0	1048576	100	-m	SPLIT	32	4	-r	ALTMAP -	Speed = $7,146 \text{ MB/s}$
gf_time 0	64	G	0	1048576	100	-m	SPLIT	64	4	-		Speed = $2,595 \text{ MB/s}$
gf_time 0	64	G	0	1048576	100	-m	SPLIT	64	4	-r	ALTMAP -	Speed = $3,436 \text{ MB/s}$

2. w_a is equal to w and w_b is equal to eight. Now, b is broken into bytes, each of these is used in its own 256-element lookup table. This is typically the best way to perform **multiply_region**() without SSE.

Because this is a region optimization, when you specify these options, you get a default **multiply**() — see Table 1 for a listing of the defaults. See section 7.2 for using a different **multiply**() than the defaults.

- 3. w_a is equal to w and w_b is equal to 16. This is only valid for w = 32 and w = 64. Now, b is broken into shorts, each of these is used in its own 64K-element lookup table. This is typically slower than when w_b equals 8, and requires more amortization (larger buffer sizes) to be effective.
- 4. w_a and w_b are both equal to eight. Now both a and b are broken into bytes, and the products of the various bytes are looked up in multiple 256×256 tables. In $GF(2^{16})$, there are three of these tables. In $GF(2^{32})$, there are seven, and in $GF(2^{64})$ there are fifteen. Thus, this implementation can be a space hog. However, for w = 32, this is the fastest way to perform **multiply**() on some machines.

When this option is employed, **multiply_region()** is implemented in an identical fashion to when $w_a = w$ and $w_b = 8$.

5. $w_a = 32$ and $w_b = 2$. (w = 32 only). I was playing with a different way to use **mm_shuffle_epi8**(). It works, but it's slower than when $w_b = 4$.

7.5 Arguments to "GROUP"

The "**GROUP**" multiplication option takes two arguments, g_s and g_r . It implements multiplication in the same manner as "**SHIFT**," except it uses a table of size 2^{g_s} to perform g_s shifts at a time, and a table of size 2^{g_r} to perform g_r reductions at at time. The program **gf_methods** only prints the options 4 4 and 4 8 as arguments for "**GROUP**." However, other values of g_s and g_r are legal and sometimes desirable:

- For w ≤ 32 and w = 64, any values of g_s and g_r may be used, so long as they are less than or equal to w and so long as the tables fit into memory. There are four exceptions to this, listed below.
- For w = 4, "GROUP" is not supported.
- For w = 8, "GROUP" is not supported.
- For w = 16, "GROUP" is only supported for $g_s = g_r = 4$.
- For w = 128 "GROUP" requires SSE, and only supports $g_s = 4$ and $g_r \in \{4, 8, 16\}$.

The way that g_s and g_r impact performance is as follows. The "**SHIFT**" implementation works by performing a carry-free multiplication in w steps, and then performing reduction in w steps. In "**GROUP**," the carry-free multiplication is reduced to $\lceil \frac{w}{g_s} \rceil$ steps, and the reduction is reduced to $\lceil \frac{w}{g_r} \rceil$. Both require tables. The table for the carry-free multiplication must be created at the beginning of each **multiply**() or **multiply_region**(), while the table for reduction is created when the **gf_t** is initialized. For that reason, it makes sense for g_r to be bigger than g_s .

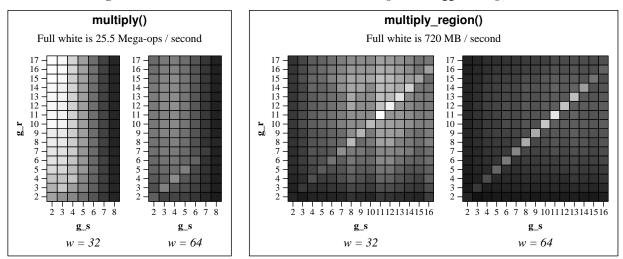


Figure 3: The performance of **multiply**() and **multiply_region**() using "**GROUP**," and varying the arguments g_s and g_r . All graphs are heat maps with black equaling zero. The region size is 100KB.

To give a flavor for the impact of these arguments, Figure 3 shows the performance of varying g_s and g_r for single multiplication and region multiplication respectively, in $GF(2^{32})$ and $GF(2^{64})$. As the graphs demonstrate, **multiply**() performs better with smaller values of g_s , while **multiply_region**() amortizes the creation of the shifting table, and can tolerate larger values of g_s . When g_s equals g_r , there are some optimizations that we hand-encode. These can be seen clearly in the **multiply_region**() graphs.

7.6 Considerations with "COMPOSITE"

As mentioned above, using "**ALTMAP**" with "**COMPOSITE**" allows **multiply_region**() to recursively call **multiply_region**(), rather than simply calling **multiply**() on every word in the region. The difference can be pronounced:

gf_time 32 G 0 10240 10240 -m COMPOSITE 2					
Speed = 322 MB/s					
gf_time 32 G 0 10240 10240 -m COMPOSITE 2r ALTMAP -					
Speed = $3,368 \text{ MB/s}$					
gf_time 32 G 0 10240 10240 -m COMPOSITE 2 -m SPLIT 16 4 -r ALTMAPr ALTMAP -					
Speed = $3,925 \text{ MB/s}$					

There is support for performing **multiply**() inline for the "**TABLE**" implementations for $w \in \{4, 8\}$ and for the "**LOG**" implementation for w = 16 (see section 7.1). These are leveraged by **multiply**() in "**COMPOSITE**," and by **multiply_region**() if you are not using "**ALTMAP**." To demonstrate this, in the table below, you can see that the performance of **multiply**() with "**SPLIT 8 4**" is 88 percent as fast than the default in w = 8 (which is "**TABLE**"). When you use each as a base field for "**COMPOSITE**" with w = 16, the one with "**SPLIT 8 4**" is now just 37 percent as fast. The difference is the inlining of multiplication in the base field when "**TABLE**" is employed:

gf_time 8 M 0 1048576 100 -	Speed = 501 Mega-ops/s
gf_time 8 M 0 1048576 100 -m SPLIT 8 4 -	Speed = 439 Mega-ops/s
gf_time 8 M 0 1048576 100 -m COMPOSITE 2	Speed = 207 Mega-ops/s
gf_time 8 M 0 1048576 100 -m COMPOSITE 2 -m SPLIT 8 4	Speed = 77 Mega-ops/s

You can keep making recursive definitions of composites field if you want. For example, this one's not too slow for region operations (641 MB/s):

gf.time 128 G 0 1048576 100 -m COMPOSITE 2 -m COMPOSITE 2 -m COMPOSITE 2 -m SPLIT 16 4 -r ALTMAP - -r ALTMAP - -r ALTMAP - -r ALTMAP -

Please see section 7.8.1 for a discussion of polynomials in composite fields.

7.7 "CARRY_FREE" and the Primitive Polynomial

If your machine supports the PCLMUL instruction, then we leverage that in "CARRY_FREE." This implementation first performs a carry free multiplication of two w-bit numbers, which yields a 2w-bit number. It does this with one PCLMUL instruction. To reduce the 2w-bit number back to a w-bit number requires some manipulation of the polynomial. As it turns out, if the polynomial has a lot of contiguous zeroes following its leftmost one, the number of reduction steps may be minimized. For example, with w = 32, we employ the polynomial 0x100400007, because that is what other libraries employ. This only has 9 contiguous zeros following the one, which means that the reduction takes four steps. If we instead use 0x1000000c5, which has 24 contiguous zeros, the reduction takes just two steps. You can see the difference in performance:

gf_time 32	M 0	1048576 1	00 -m	CARRY_FREE	-		Speed = 48 Mega-ops/s
gf_time 32	M 0	1048576 1	00 -m	CARRY_FREE	-p 0xc	5 -	Speed = 81 Mega-ops/s

This is relevant for w = 16 and w = 32, where the "standard" polynomials are sub-optimal with respect to "**CARRY_FREE**." For w = 16, the polynomial 0x1002d has the desired property. It's less important, of course, with w = 16, because "**LOG**" is so much faster than "**CARRY_FREE**."

7.8 More on Primitive Polynomials

7.8.1 Primitive Polynomials that are not Primitive

The library is willing to work with most polynomials, even if they are not primitive or irreducible. For example, the polynomial $x^4 + x^3 + x^2 + x + 1$ is irreducible, and therefore generates a valid Galois Field for $GF(2^4)$. However, it is not primitive, because $2^5 = 1$. For that reason, if you use this polynomial, you cannot use the "LOG" method. The other methods will work fine:

```
UNIX> gf_mult 2 2 4 -p 0xf -
4
UNIX> gf_mult 4 2 4 -p 0xf -
8
UNIX> gf_mult 8 2 4 -p 0xf -
15
UNIX> gf_mult 15 2 4 -p 0xf -
1
UNIX> gf_div 1 15 4 -p 0xf -
2
UNIX> gf_div 1 15 4 -p 0xf -m LOG -
usage: gf_div a b w [method] - does division of a and b in GF(2^w)
Bad Method Specification: Cannot use Log tables because the polynomial is not primitive.
UNIX>
```

If a polynomial is reducible, then it does not define a Galois Field, but instead a ring. GF-Complete attempts to work here where it can; however certain parts of the library will not work:

1. Division is a best effort service. The problem is that often quotients are not unique. If **divide**() returns a non-zero number, then that number will be a valid quotient, but it may be one of many. If the multiplication technique is "**TABLE**," then if a quotient exists, one is returned. Otherwise, zero is returned. Here are some examples – the polynomial $x^4 + 1$ is reducible, and therefore produces a ring. Below, we see that with this polynomal, 1*6 = 6 and 14*6 = 6. Therefore, $\frac{6}{6}$ has two valid quotients: 1 and 14. GF-Complete returns 14 as the quotient:

```
UNIX> gf_mult 1 6 4 -p 0x1 -
6
UNIX> gf_mult 14 6 4 -p 0x1 -
6
UNIX> gf_div 6 6 4 -p 0x1 -
14
UNIX>
```

2. When "**EUCLID**" is employed for division, it uses the extended Euclidean algorithm for GCD to find a number's inverse, and then it multiplies by the inverse. The problem is that not all numbers in a ring have inverses. For example, in the above ring, there is no number a such that 6a = 1. Thus, 6 has no inverse. This means that even though $\frac{6}{6}$ has quotients in this ring, "**EUCLID**" will fail on it because it is unable to find the inverse of 6. It will return 0:

```
UNIX> gf_div 6 6 4 -p 0x1 -m TABLE -d EUCLID - 0
UNIX>
```

- 3. Inverses only work if a number has an inverse. Inverses may not be unique.
- 4. "LOG" will not work. In cases where the default would be "LOG," "SHIFT" is used instead.

Due to problems with division, **gf_unit** may fail on a reducible polynomial. If you are determined to use such a polynomial, don't let this error discourage you.

7.8.2 Default Polynomials for Composite Fields

GF-Complete will successfully select a default polynomial in the following composite fields:

- w = 8 and the default polynomial (0x13) is employed for $GF(2^4)$.
- w = 16 and the default polynomial (0x11d) is employed for $GF(2^8)$.
- w = 32 and the default polynomial (0x1100b) is employed for $GF(2^{16})$.
- w = 32 and 0x1002d is employed for $GF(2^{16})$.
- w = 32 and the base field for $GF(w^{16})$ is a composite field that uses a default polynomial.
- w = 64 and the default polynomial (0x100400007) is employed for $GF(2^{32})$.
- w = 64 and 0x1000000c5 is employed for $GF(2^{32})$.
- w = 64 and the base field for $GF(w^{32})$ is a composite field that uses a default polynomial.
- w = 128 and the default polynomial (0x1b) is employed for $GF(2^{64})$.
- w = 128 and the base field for $GF(w^{64})$ is a composite field that uses a default polynomial.

7.8.3 The Program gf_poly for Verifying Irreducibility of Polynomials

The program **gf_poly** uses the Ben-Or algorithm [GP97] to determine whether a polynomial with coefficients in $GF(2^w)$ is reducible. Its syntax is:

gf_poly w method power:coef power:coef ...

You can use it to test for irreducible polynomials with binary coefficients by specifying w = 1. For example, from the discussion above, we know that $x^4 + x + 1$ and $x^4 + x^3 + x^2 + x + 1$ are both irreducible, but $x^4 + 1$ is reducible. **gf_poly** confirms:

```
UNIX> gf_poly 1 - 4:1 1:1 0:1

Poly: x^4 + x + 1

Irreducible.

UNIX> gf_poly 1 - 4:1 3:1 2:1 1:1 0:1

Poly: x^4 + x^3 + x^2 + x + 1

Irreducible.

UNIX> gf_poly 1 - 4:1 0:1

Poly: x^4 + 1

Reducible.

UNIX>
```

For composite fields $GF((2^l)^2)$, we are looking for a value s such that $x^2 + sx + 1$ is irreducible. That value depends on the base field. For example, for the default field $GF(2^{32})$, a value of s = 2 makes the polynomial irreducible. However, if the polynomial 0xc5 is used (so that PCLMUL is fast – see section 7.7), then s = 2 yields a reducible polynomial, but s = 3 yields an irreducible one. You can use **gf_poly** to help verify these things, and to help define s if you need to stray from the defaults:

```
UNIX> gf_poly 32 - 2:1 1:2 0:1
Poly: x^2 + (0x2)x + 1
Irreducible.
UNIX> gf_poly 32 -p 0xc5 - 2:1 1:2 0:1
Poly: x^2 + (0x2)x + 1
Reducible.
UNIX> gf_poly 32 -p 0xc5 - 2:1 1:3 0:1
Poly: x^2 + (0x3)x + 1
Irreducible.
UNIX>
```

gf_unit does random sampling to test for problems. In particular, it chooses a random a and a random b, multiplies them, and then tests the result by dividing it by a and b. When w is large, this sampling does not come close to providing complete coverage to check for problems. In particular, if the polynomial is reducible, there is a good chance that **gf_unit** won't discover any problems. For example, the following **gf_unit** call does not flag any problems, even though the polynomial is reducible.

```
UNIX> gf_unit 64 A 0 -m COMPOSITE 2 -p 0xc5 - -p 2 -
UNIX>
```

How can we demonstrate that this particular field has a problem? Well, when the polynomial is 0xc5, we can factor $x^2 + 2x + 1$ as (x + 0x7f6f95f9)(x + 0x7f6f95fb). Thus, in the composite field, when we multiply 0x17f6f95f9 by 0x17f6f95fb, we get zero. That's the problem:

```
UNIX> gf_mult 7f6f95f9 7f6f95fb 32h -p 0xc5 -
1
UNIX> gf_mult 17f6f95f9 17f6f95fb 64h -m COMPOSITE 2 -p 0xc5 - -p 2 -
0
UNIX>
```

7.9 "ALTMAP" considerations and extract_word()

There are two times when you may employ alternate memory mappings:

- 1. When using "SPLIT" and $w_b = 4$.
- 2. When using "COMPOSITE."

Additionally, by default, the "CAUCHY" region option also employs an alternate memory mapping.

When you use alternate memory mappings, the exact mapping of words in $GF(2^w)$ to memory depends on the situation, the size of the region, and the alignment of the pointers. To help you figure things out, we have included the procedures **extract_word.wxx()** as part of the **gf_t** struct. This procedure takes four parameters:

• A pointer to the **gf_t**.

- The beginning of the memory region.
- The number of bytes in the memory region.
- The desired word number: n.

It then returns the *n*-th word in memory. When the standard mapping is employed, this simply returns the *n*-th contiguous word in memory. With alternate mappings, each word may be split over several memory regions, so **extract_word()** grabs the relevant parts of each memory region to extract the word. Below, we go over each of the above situations in detail. Please refer to Figure 2 in Section 5 for reference.

7.9.1 Alternate mappings with "SPLIT"

The alternate mapping with "**SPLIT**" is employed so that we can best leverage **mm_shuffle_epi8**(). Please read [PGM13b] for details as to why. Consider an example when w = 16. In the main region of memory (the middle region in Figure 2), multiplication proceeds in units of 32 bytes, which are each broken into two 16-byte regions. The first region holds the high bytes of each word in $GF(2^{16})$, and the second region holds the low bytes.

Let's look at a very detailed example, from **gf_example_5.c**. This program makes the following call, where **gf** has been initialized for w = 16, using "**SPLIT**" and "**ALTMAP**:"

gf.multiply_region.w32(&gf, a, b, 0x1234, 30*2, 0);

In other words, it is multiplying a region a of 60 bytes (30 words) by the constant 0x1234 in $GF(2^{16})$, and placing the result into b. The pointers a and b have been set up so that they are not multiples of 16. The first line of output prints a and b:

```
a: 0x10010008c b: 0x10010015c
```

As described in Section 5, the regions of memory are split into three parts:

- 1. 4 bytes starting at 0x1001008c / 0x10010015c.
- 2. 32 bytes starting at 0x10010090 / 0x100100160.
- 3. 24 bytes starting at 0x100100b0 / 0x100100180.

In the first and third parts, the bytes are laid out according to the standard mapping. However, the second part is split into two 16-byte regions — one that holds the high bytes of each word and one that holds the low bytes. To help illustrate, the remainder of the output prints the 30 words of a and b as they appear in memory, and then the 30 return values of **extract_word.w32**():

```
Ο
                2
                     3
                                5
                                           7
           1
                           4
                                     6
                                                8
                                                     9
a: 640b 07e5 2fba ce5d f1f9 3ab8 c518 1d97 45a7 0160
b: 1ba3 644e 84f8 be3c 4318 4905 b2fb 46eb ef01 a503
     10
          11
               12
                    13
                          14
                               15
                                    16
                                         17
                                               18
                                                    19
a: 3759 b107 9660 3fde b3ea 8a53 75ff 46dc c504 72c2
b: da27 e166 a0d2 b3a2 1699 3a3e 47fb 39af 1314 8e76
```

20212223242526272829a:b4691b97e91d1dbc131e47e0c11a7f0776e0fe86b:937ca5db01b77f5f897405e1cff3a09cde3c4ac0

```
Word 0: 0x640b * 0x1234 = 0x1ba3
                                     Word 15: 0x4575 * 0x1234 = 0xef47
Word 1: 0x07e5 * 0x1234 = 0x644e
                                     Word 16: 0x60dc * 0x1234 = 0x03af
Word 2: 0xba59 * 0x1234 = 0xf827
                                     Word 17: 0x0146 * 0x1234 = 0xa539
Word 3: 0x2f37 * 0x1234 = 0x84da
                                     Word 18: 0xc504 * 0x1234 = 0x1314
Word 4: 0 \times 5d07 \times 0 \times 1234 = 0 \times 3c66
                                     Word 19: 0x72c2 * 0x1234 = 0x8e76
Word 5: 0xceb1 * 0x1234 = 0xbee1
                                     Word 20: 0xb469 * 0x1234 = 0x937c
Word 6: 0xf960 * 0x1234 = 0x18d2
                                     Word 21: 0x1b97 * 0x1234 = 0xa5db
     7: 0xf196 * 0x1234 = 0x43a0
                                     Word 22: 0xe91d * 0x1234 = 0x01b7
Word
Word 8: 0xb8de * 0x1234 = 0x05a2
                                     Word 23: 0x1dbc * 0x1234 = 0x7f5f
Word 9: 0x3a3f * 0x1234 = 0x49b3
                                     Word 24: 0x131e * 0x1234 = 0x8974
Word 10: 0x18ea * 0x1234 = 0xfb99
                                     Word 25: 0x47e0 * 0x1234 = 0x05e1
Word 11: 0xc5b3 * 0x1234 = 0xb216
                                     Word 26: 0xc11a * 0x1234 = 0xcff3
Word 12: 0x9753 * 0x1234 = 0xeb3e
                                     Word 27: 0x7f07 * 0x1234 = 0xa09c
Word 13: 0x1d8a * 0x1234 = 0x463a
                                     Word 28: 0x76e0 * 0x1234 = 0xde3c
Word 14: 0xa7ff * 0x1234 = 0x01fb
                                     Word 29: 0xfe86 * 0x1234 = 0x4ac0
```

In the first region are words 0 and 1, which are identical to how they appear in memory: 0x640b and 0x07e5. In the second region are words 2 through 17. These words are split among the two sixteen-byte regions. For example, word 2, which **extract_word()** reports is 0xba59, is constructed from the low byte in word 2 (0xba) and the low byte in word 10 (0x59). Since 0xba59 * 0x1234 = 0xf827, we see that the low byte in word 2 of *b* is 0xf8, and the low byte in word 10 is 0x27.

When we reach word 22, we are in the third region of memory, and words are once again identical to how they appear in memory.

While this is confusing, we stress that that so long as you call **multiply_region**() with pointers of the same alignment and regions of the same size, your results with **ALTMAP** will be consistent. If you call it with pointers of different alignments, or with different region sizes, then the results will not be consistent. To reiterate, if you don't use **ALTMAP**, you don't have to worry about any of this – words will always be laid out contiguously in memory.

When w = 32, the middle region is a multiple of 64, and each word in the middle region is broken into bytes, each of which is in a different 16-byte region. When w = 64, the middle region is a multiple of 128, and each word is stored in eight 16-byte regions. And finally, when w = 128, the middle region is a multiple of 128, and each word is stored in 16 16-byte regions.

7.9.2 Alternate mappings with "COMPOSITE"

With "**COMPOSITE**," the alternate mapping divides the middle region in half. The lower half of each word is stored in the first half of the middle region, and the higher half is stored in the second half. To illustrate, **gf_example_6** performs the same example as **gf_example_5**, except it is using "**COMPOSITE**" in $GF((2^{16})^2)$, and it is multiplying a region of 120 bytes rather than 60. As before, the pointers are not aligned on 16-bit quantities, so the region is broken into three regions of 4 bytes, 96 bytes, and 20 bytes. In the first and third region, each consecutive four byte word is a word in $GF(2^{32})$. For example, word 0 is 0x562c640b, and word 25 is 0x46bc47e0. In the middle region, the low two bytes of each word come from the first half, and the high two bytes come from the second half. For example, word 1 as reported by **extract_word**() is composed of the lower two bytes of word 1 of memory (0x07e5), and the lower two bytes of word 13 (0x3fde). The product of 0x3fde07e5 and 0x12345678 is 0x211c880d, which is stored in the lower two bytes of words 1 and 13 of b.

a: 0x10010011c b:	: 0x1001001ec
0 1	L 2 3 4 5 6 7 8 9
a: 562c640b 959407e5	5 56592fba cbadce5d ldlcf1f9 35d73ab8 6493c518 b37c1d97 8e4545a7 c0d80160
b: f589f36c f146880d	d 74f7b349 7ea7c5c6 34827c1a 93cc3746 bfd9288b 763941d1 bcd33a5d da695e64
10 11	L 12 13 14 15 16 17 18 19
a: 965b3759 cb3eb107	7 1b129660 95a33fde 95a7b3ea d16c8a53 153375ff f74646dc 35aac504 98f972c2
b: fd70f125 3274fa8f	d9dd34ee c01a211c d4402403 8b55c08b da45f0ad 90992e18 b65e0902 d91069b5
20 21	L 22 23 24 25 26 27 28 29
	7 3472e91d 9ee71dbc de4e131e 46bc47e0 5bc9c11a 931d7f07 d40676e0 c85cfe86
	34726910 96671006 06461316 40064760 5069611a 93107107 04067860 66361686 3 b4bc0d90 a679e4ce 1a98f7d0 6038765f b2ff333f e7937e49 fa5a5867 79c00ea2
D: 10920815 Edd59008	S DEDCOUPO ADTREE LAPOLINO OUSOTOSI DZIISSSI ETPSTEEP LAJASOOT TREODEAZ
Word 0: 0x562c640b	* 0x12345678 = 0xf589f36c Word 15: 0xb46945a7 * 0x12345678 = 0xb8f53a5d
Word 1: 0x3fde07e5	* 0x12345678 = 0x211c880d Word 16: 0x55098e45 * 0x12345678 = 0xfc92bcd3
Word 2: 0x95a39594	* 0x12345678 = 0xc01af146 Word 17: 0x1b970160 * 0x12345678 = 0x96685e64
Word 3: 0xb3ea2fba	* 0x12345678 = 0x2403b349 Word 18: 0x7f8ac0d8 * 0x12345678 = 0xedd5da69
Word 4: 0x95a75659	* 0x12345678 = 0xd44074f7 Word 19: 0xe91d3759 * 0x12345678 = 0x0d90f125
Word 5: 0x8a53ce5d	* 0x12345678 = 0xc08bc5c6 Word 20: 0x3472965b * 0x12345678 = 0xb4bcfd70
Word 6: 0xd16ccbad	* 0x12345678 = 0x8b557ea7 Word 21: 0x1dbcb107 * 0x12345678 = 0xe4cefa8f
Word 7: 0x75fff1f9	* 0x12345678 = 0xf0ad7c1a Word 22: 0x9ee7cb3e * 0x12345678 = 0xa6793274
Word 8: 0x15331d1c	* 0x12345678 = 0xda453482 Word 23: 0x131e9660 * 0x12345678 = 0xf7d034ee
Word 9: 0x46dc3ab8	* 0x12345678 = 0x2e183746 Word 24: 0xde4e1b12 * 0x12345678 = 0x1a98d9dd
Word 10: 0xf74635d7	* 0x12345678 = 0x909993cc Word 25: 0x46bc47e0 * 0x12345678 = 0x6038765f
	* 0x12345678 = 0x0902288b Word 26: 0x5bc9c11a * 0x12345678 = 0xb2ff333f
	* 0x12345678 = 0xb65ebfd9 Word 27: 0x931d7f07 * 0x12345678 = 0xe7937e49
	* 0x12345678 = 0x69b541d1 Word 28: 0xd40676e0 * 0x12345678 = 0xfa5a5867
Word 14: 0x98f9b37c	* 0x12345678 = 0xd9107639 Word 29: 0xc85cfe86 * 0x12345678 = 0x79c00ea2

As with "SPLIT," using multiply_region() with "COMPOSITE" and "ALTMAP" will be consistent only if the alignment of pointers and region sizes are identical.

7.9.3 The mapping of "CAUCHY"

With "CAUCHY," the region is partitioned into w subregions, and each word in the region is broken into w bits, each of which is stored in a different subregion. To illustrate, **gf_example_7** multiplies a region of three bytes by 5 in $GF(2^3)$ using "CAUCHY:"

UNIX> gf_example_7 a: 0x100100190 b: 0x1001001a0 a: 0x0b 0xe5 0xba b: 0xee 0xba 0x0b

8 THREAD SAFETY

```
a bits: 00001011 11100101 10111010
b bits: 11101110 10111010 00001011
Word 0: 3 * 5 = 4
Word 1: 5 * 5 = 7
Word 2: 2 * 5 = 1
Word 3: 5 * 5 = 7
Word 4: 4 * 5 = 2
Word 4: 4 * 5 = 2
Word 5: 6 * 5 = 3
Word 6: 2 * 5 = 1
Word 7: 6 * 5 = 3
UNIX>
```

The program prints the three bytes of *a* and *b* in hexadecimal and in binary. To see how words are broken up, consider word 0, which is the lowest bit of each of the three bytes of *a* (and *b*). These are the bits 1, 1 and 0 in *a*, and 0, 0, and 1 in *b*. Accordingly, the word is 3 in *a*, and 3*5 = 4 in *b*. Similarly, word 7 is the high bit in each byte: 0, 1, 1 (6) in *a*, and 1, 1, 0 (3) in *b*.

With "CAUCHY," multiply_region() may be implemented exclusively with XOR operations. Please see [BKK+95] for more information on the motivation behind "CAUCHY."

8 Thread Safety

Once you initialize a **gf_t**, you may use it wontonly in multiple threads for all operations except for the ones below. With the implementations listed below, the scratch space in the **gf_t** is used for temporary tables, and therefore you cannot call **region_multiply**, and in some cases **multiply** from multiple threads because they will overwrite each others' tables. In these cases, if you want to call the procedures from multiple threads, you should allocate a separate **gf_t** for each thread:

- All "GROUP" implementations are not thread safe for either region_multiply() or multiply(). Other than "GROUP," multiply() is always thread-safe.
- For w = 4, region_multiply.w32() is unsafe in in "-m TABLE -r QUAD -r LAZY."
- For w = 8, region_multiply.w32() is unsafe in in "-m TABLE -r DOUBLE -r LAZY."
- For w = 16, region_multiply.w32() is unsafe in in "-m TABLE."
- For w ∈ {32, 64, 128}, all "SPLIT" implementations are unsafe for region_multiply(). This means that if the default uses "SPLIT" (see Table 1 for when that occurs), then region_multiply() is not thread safe.
- The "COMPOSITE" operations are only safe if the implementations of the underlying fields are safe.

9 Listing of Procedures

The following is an alphabetical listing of the procedures, data types and global variables for users to employ in GF-complete.

• **GF_W16_INLINE_DIV()** in **gf_complete.h**: This is a macro for inline division when w = 16. See section 7.1.

9 LISTING OF PROCEDURES

- **GF_W16_INLINE_MULT()** in **gf_complete.h**: This is a macro for inline multiplication when w = 16. See section 7.1.
- **GF_W4_INLINE_MULTDIV()** in **gf_complete.h**: This is a macro for inline multiplication/division when w = 4. See section 7.1.
- **GF_W8_INLINE_MULTDIV()** in **gf_complete.h**: This is a macro for inline multiplication/division when w = 8. See section 7.1.
- MOA_Fill_Random_Region() in gf_rand.h: Fills a region with random numbers.
- MOA_Random_128() in gf_rand.h: Creates a random 128-bit number.
- MOA_Random_32() in gf_rand.h: Creates a random 32-bit number.
- MOA_Random_64() in gf_rand.h: Creates a random 64-bit number.
- MOA_Random_W() in gf_rand.h: Creates a random w-bit number, where $w \leq 32$.
- MOA_Seed() in gf_rand.h: Sets the seed for the random number generator.
- _gf_errno in gf_complete.h: This is to help figure out why an initialization call failed. See section 6.1.
- gf_create_gf_from_argv() in gf_method.h: Creates a gf_t using C style argc/argv. See section 6.1.1.
- **gf_division_type_t** in **gf_complete.h**: the different ways to specify division when using **gf_init_hard**(). See section 6.4.
- gf_error() in gf_complete.h: This prints out why an initialization call failed. See section 6.1.
- **gf_extract** in **gf_complete.h**: This is the data type of **extract_word()** in a **gf_t**. See section 7.9 for an example of how to use **extract_word()**.
- gf_free() in gf_complete.h: If gf_init_easy(), gf_init_hard() or create_gf_from_argv() allocated memory, this frees it. See section 6.4.
- **gf_func_a_b** in **gf_complete.h**: This is the data type of **multiply**() and **divide**() in a **gf_t**. See section 4.2 for examples of how to use **multiply**() and **divide**().
- **gf_func_a_b** in **gf_complete.h**: This is the data type of **multiply**() and **divide**() in a **gf_t**. See section 4.2 for examples of how to use **multiply**() and **divide**().
- gf_func_a in gf_complete.h: This is the data type of inverse() in a gf_t.
- gf_general_add() in gf_general.h: This adds two gf_general_t's.
- gf_general_divide() in gf_general.h: This divides two gf_general_t's.
- gf_general_do_region_check() in gf_general.h: This checks a region multiply of gf_general_t's.
- gf_general_do_region_multiply() in gf_general.h: This does a region multiply of gf_general_t's.
- gf_general_do_single_timing_test() in gf_general.h: Used in gf_time.c.

9 LISTING OF PROCEDURES

- gf_general_inverse() in gf_general.h: This takes the inverse of a gf_general_t.
- gf_general_is_one() in gf_general.h: This tests whether a gf_general_t is one.
- gf_general_is_two() in gf_general.h: This tests whether a gf_general_t is two.
- gf_general_is_zero() in gf_general.h: This tests whether a gf_general_t is zero.
- **gf_general_multiply**() in **gf_general.h**: This multiplies two **gf_general_t**'s. See the implementation of **gf_mult.c** for an example.
- gf_general_s_to_val() in gf_general.h: This converts a string to a gf_general_t. See the implementation of gf_mult.c for an example.
- gf_general_set_one() in gf_general.h: This sets a gf_general_t to one.
- gf_general_set_random() in gf_general.h: This sets a gf_general_t to a random number.
- gf_general_set_two() in gf_general.h: This sets a gf_general_t to two.
- gf_general_set_up_single_timing_test() in gf_general.h: Used in gf_time.c.
- gf_general_set_zero() in gf_general.h: This sets a gf_general_t to zero.
- **gf_general_t** in **gf_general.h**: This is a general data type for all values of w. See the implementation of **gf_mult.c** for examples of using these.
- gf_general_val_to_s() in gf_general.h: This converts a gf_general_t to a string. See the implementation of gf_mult.c for an example.
- **gf_init_easy()** in **gf_complete.h**: This is how you initialize a default **gf_t**. See 4.2 through 4.5 for examples of calling **gf_init_easy()**.
- **gf_init_hard**() in **gf_complete.h**: This allows you to initialize a **gf_t** without using the defaults. See 6.4. We recommend calling **create_gf_from_argv**() when you can, instead of **gf_init_hard**().
- **gf_mult_type_t** in **gf_complete.h**: the different ways to specify multiplication when using **gf_init_hard**(). See section 6.4.
- **gf_region_type_t** in **gf_complete.h**: the different ways to specify region multiplication when using **gf_init_hard**(). See section 6.4.
- **gf_region** in **gf_complete.h**: This is the data type of **multiply_region**() in a **gf_t**. See section 4.3 for an example of how to use **multiply_region**().
- gf_scratch_size() in gf_complete.h: This is how you calculate how much memory a gf_t needs. See section 6.4.
- gf_val_128_t in gf_complete.h: This is how you store a value where $w \le 128$. It is a pointer to two 64-bit unsigned integers. See section 4.4.
- gf_val_32_t in gf_complete.h: This is how you store a value where w ≤ 32. It is equivalent to a 32-bit unsigned integer. See section 4.2.

10 TROUBLESHOOTING

- gf_val_64_t in gf_complete.h: This is how you store a value where w ≤ 64. It is equivalent to a 64-bit unsigned integer. See section 4.5.
- **gf_w16_get_div_alog_table**() in **gf_complete.h**: This returns a pointer to an inverse logarithm table that can be used for inlining division when w = 16. See section 7.1.
- gf_w16_get_log_table() in gf_complete.h: This returns a pointer to a logarithm table that can be used for inlining when w = 16. See section 7.1.
- **gf_w16_get_mult_alog_table()** in **gf_complete.h**: This returns a pointer to an inverse logarithm table that can be used for inlining multiplication when w = 16. See section 7.1.
- gf_w4_get_div_table() in gf_complete.h: This returns a pointer to a division table that can be used for inlining when w = 4. See section 7.1.
- **gf_w4_get_mult_table**() in **gf_complete.h**: This returns a pointer to a multiplication table that can be used for inlining when w = 4. See section 7.1.
- **gf_w8_get_div_table**() in **gf_complete.h**: This returns a pointer to a division table that can be used for inlining when w = 8. See section 7.1.
- gf_w8_get_mult_table() in gf_complete.h: This returns a pointer to a multiplication table that can be used for inlining when w = 8. See section 7.1.

10 Troubleshooting

- **SSE support.** Leveraging SSE instructions requires processor support as well as compiler support. For example, the Mac OS 10.8.4 (and possibly earlier versions) default compile environment fails to properly compile PCLMUL instructions. This issue can be fixed by installing an alternative compiler; see Section 3 for details.
- Initialization segfaults. You have to already have allocated your gf_t before you pass a pointer to it in gf_init_easy(), create_gf_from_argv(), or gf_init_hard().
- **GF-Complete is slower than it should be.** Perhaps your machine has SSE, but you haven't specified the SSE compilation flags. See section 3 for how to compile using the proper flags.
- Bad alignment. If you get alignment errors, see Section 5.
- Mutually exclusive region types. Some combinations of region types are invalid. All valid and implemented combinations are printed by gf_methods.c.
- Incompatible division types. Some choices of multiplication type constrain choice of divide type. For example, "COMPOSITE" methods only allow the default division type, which divides by finding inverses (*i.e.*, neither "EUCLID" nor "MATRIX" are allowed). For each multiplication method printed by gf_methods.c, the corresponding valid division types are also printed.
- Arbitrary "GROUP" arguments. The legal arguments to "GROUP" are specified in section 7.5.
- Arbitrary "SPLIT" arguments. The legal arguments to "SPLIT" are specified in section 7.4.

10 TROUBLESHOOTING

- Threading problems. For threading questions, see Section 8.
- No default polynomial. If you change the polynomial in a base field using "COMPOSITE," then unless it is a special case for which GF-Complete finds a default polynomial, you'll need to specify the polynomial of the composite field too. See 7.8.2 for the fields where GF-Complete will support default polynomials.
- Encoding/decoding with different fields. Certain fields are not compatible. Please see section 7.2 for an explanation.
- "ALTMAP" is confusing. We agree. Please see section 7.9 for more explanation.
- I used "ALTMAP" and it doesn't appear to be functioning correctly. With 7.9, the size of the region and its alignment both matter in terms of how "ALTMAP" performs multiply_region(). Please see section 7.9 for detailed explanation.
- Where are the erasure codes?. This library only implements Galois Field arithmetic, which is an underlying component for erasure coding. Jerasure will eventually be ported to this library, so that you can have fast erasure coding.

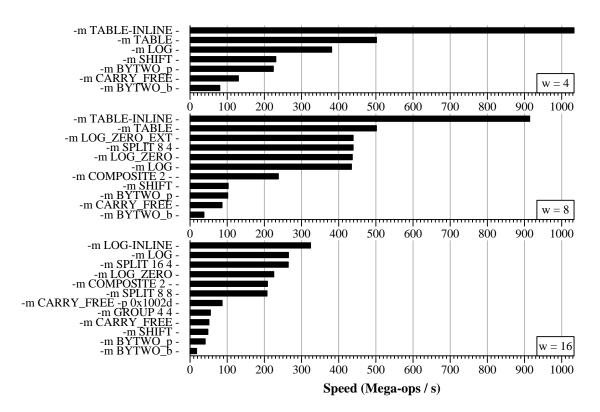


Figure 4: Speed of doing single multiplications for $w \in \{4, 8, 16\}$.

11 TIMINGS

11 Timings

We don't want to get too detailed with timing, because it is quite machine specific. However, here are the timings on an Intel Core i7-3770 CPU running at 3.40 GHz, with 4×256 KB L2 caches and an 8MB L3 cache. All timings are obtained with **gf_time** or **gf_inline_time**, in user mode with the machine dedicated solely to running these jobs.

11.1 Multiply()

The performance of **multiply**() is displayed in Figures 4 for $w \in \{4, 8, 16\}$ and 5 for $w \in \{32, 64, 128\}$. These numbers were obtained by calling **gf_time** with the size and iterations both set to 10240. We plot the speed in mega-ops per second.

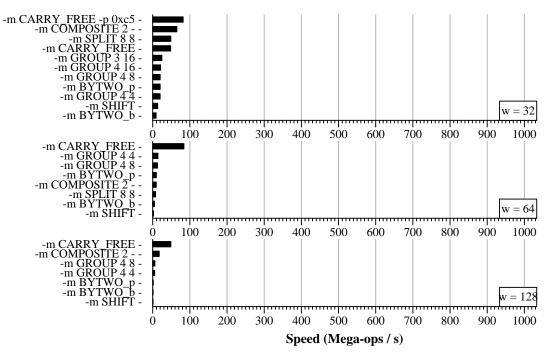


Figure 5: Speed of doing single multiplications for $w \in \{32, 64, 128\}$.

As would be anticipated, the inlined operations (see section 7.1) outperform the others. Additionally, in all cases with the exception of w = 32, the defaults are the fastest performing implementations. With w = 32, "CARRY_FREE" is the fastest with an alternate polynomial (see section 7.7). Because we require the defaults to use a "standard" polynomial, we cannot use this implementation as the default.

11.2 Divide()

For the "TABLE" and "LOG" implementations, the performance of division is the same as multiplication. This means that for $w \in \{4, 8, 16\}$, it is very fast indeed. For the other implementations, division is implemented with Euclid's method, and is several factors slower than multiplication.

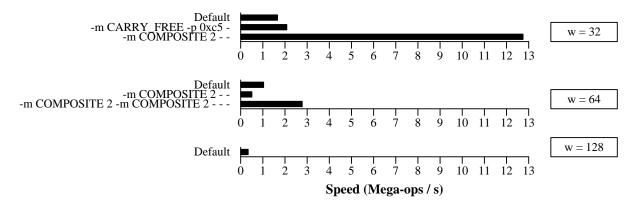


Figure 6: Speed of doing single divisions for $w \in \{32, 64, 128\}$.

In Figure 6, we plot the speed of a few implementations of the larger word sizes. Compared to the "**TABLE**" and "**LOG**" implementations for the smaller word sizes, where the speeds are in the hundreds of mega-ops per second, these are very slow. Of note is the "**COMPOSITE**" implementation for w = 32, which is much faster than the others because it uses a special application of Euclid's method, which relies on division in $GF(2^{16})$, which is very fast.

11.3 Multiply_Region()

Tables 3 through 8 show the performance of the various region operations. It should be noted that for $GF(2^{16})$ through $GF(2^{128})$, the default is *not* the fastest implementation of **multiply_region**(). The reasons for this are outlined in section 6.

For these tables, we performed 1GB worth of **multiply_region**() calls for all regions of size 2^i bytes for $10 \le i \le 30$. In the table, we plot the fastest speed obtained.

We note that the performance of "CAUCHY" can be improved with techniques from [LSXP13] and [PSR12].

Method	Speed (MB/s)
-m TABLE (Default) -	11879.909
-m TABLE -r CAUCHY -	9079.712
-m BYTWO_b -	5242.400
-m BYTWO_p -	4078.431
-m BYTWO_b -r NOSSE -	3799.699
-m TABLE -r QUAD -	3014.315
-m TABLE -r DOUBLE -	2253.627
-m BYTWO_p -r NOSSE -	2021.237
-m TABLE -r NOSSE -	1061.497
-m LOG -	503.310
-m SHIFT -	157.749
-m CARRY_FREE -	86.202

Table 3: Speed of various calls to **multiply_region**() for w = 4.

11 TIMINGS

Method	Speed (MB/s)
-m SPLIT 8 4 (Default) -	13279.146
-m COMPOSITE 2r ALTMAP -	5516.588
-m TABLE -r CAUCHY -	4968.721
-m BYTWO_b -	2656.463
-m TABLE -r DOUBLE -	2561.225
-m TABLE -	1408.577
-m BYTWO_b -r NOSSE -	1382.409
-m BYTWO_p -	1376.661
-m LOG_ZERO_EXT -	1175.739
-m LOG_ZERO -	1174.694
-m LOG -	997.838
-m SPLIT 8 4 -r NOSSE -	885.897
-m BYTWO_p -r NOSSE -	589.520
-m COMPOSITE 2	327.039
-m SHIFT -	106.115
-m CARRY_FREE -	104.299

Table 4: Speed of various calls to **multiply_region()** for w = 8.

REFERENCES

Method	Speed (MB/s)
-m SPLIT 16 4 -r ALTMAP -	10460.834
-m SPLIT 16 4 -r SSE (Default) -	8473.793
-m COMPOSITE 2r ALTMAP -	5215.073
-m LOG -r CAUCHY -	2428.824
-m TABLE -	2319.129
-m SPLIT 16 8 -	2164.111
-m SPLIT 8 8 -	2163.993
-m SPLIT 16 4 -r NOSSE -	1148.810
-m LOG -	1019.896
-m LOG_ZERO -	1016.814
-m BYTWO_b -	738.879
-m COMPOSITE 2	596.819
-m BYTWO_p -	560.972
-m GROUP 4 4 -	450.815
-m BYTWO_b -r NOSSE -	332.967
-m BYTWO_p -r NOSSE -	249.849
-m CARRY_FREE -	111.582
-m SHIFT -	95.813

Table 5: Speed of various calls to **multiply_region**() for w = 16.

References

- [Anv09] H. P. Anvin. The mathematics of RAID-6. http://kernel.org/pub/linux/kernel/people/hpa/ raid6.pdf, 2009.
- [BKK⁺95] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and D. Zuckerman. An XOR-based erasureresilient coding scheme. Technical Report TR-95-048, International Computer Science Institute, August 1995.
- [GMS08] K. Greenan, E. Miller, and T. J. Schwartz. Optimizing Galois Field arithmetic for diverse processor architectures and applications. In MASCOTS 2008: 16th IEEE Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, Baltimore, MD, September 2008.
- [GP97] S. Gao and D. Panario. Tests and constructions of irreducible polynomials over finite fields. In *Foundations of Computational Mathematics*, pages 346–361. Springer Verlag, 1997.
- [LBOX12] J. Luo, K. D. Bowers, A. Oprea, and L. Xu. Efficient software implementations of large finite fields $GF(2^n)$ for secure storage applications. *ACM Transactions on Storage*, 8(2), February 2012.
- [LD00] J. Lopez and R. Dahab. High-speed software multiplication in f_{2^m} . In Annual International Conference on Cryptology in India, 2000.
- [LHy08] H. Li and Q. Huan-yan. Parallelized network coding with SIMD instruction sets. In *International Symposium on Computer Science and Computational Technology*, pages 364–369. IEEE, December 2008.

REFERENCES

Method	Speed (MB/s)
-m SPLIT 32 4 -r SSE -r ALTMAP -	7185.440
-m SPLIT 32 4 (Default)	5063.966
-m COMPOSITE 2 -m SPLIT 16 4 -r ALTMAPr ALTMAP -	4176.440
-m COMPOSITE 2r ALTMAP -	3360.860
-m SPLIT 8 8 -	1345.678
-m SPLIT 32 8 -	1340.656
-m SPLIT 32 16 -	1262.676
-m SPLIT 8 8 -r CAUCHY -	1143.263
-m SPLIT 32 4 -r NOSSE -	480.859
-m CARRY_FREE -p 0xc5 -	393.185
-m COMPOSITE 2	332.964
-m BYTWO_b -	309.971
-m BYTWO_p -	258.623
-m GROUP 4 8 -	242.076
-m GROUP 4 4 -	227.399
-m CARRY_FREE -	226.785
-m BYTWO_b -r NOSSE -	143.403
-m BYTWO_p -r NOSSE -	111.956
-m SHIFT -	52.295

Table 6: Speed of various calls to **multiply_region**() for w = 32.

- [LSXP13] J. Luo, M. Shrestha, L. Xu, and J. S. Plank. Efficient encoding schedules for XOR-based erasure codes. IEEE Transactions on Computing, May 2013.
- [Mar94] G. Marsaglia. The mother of all random generators. ftp://ftp.taygeta.com/pub/c/mother. c, October 1994.
- [PGM13a] J. S. Plank, K. M. Greenan, and E. L. Miller. A complete treatment of software implementations of finite field arithmetic for erasure coding applications. Technical Report UT-CS-13-717, University of Tennessee, September 2013.
- [PGM13b] J. S. Plank, K. M. Greenan, and E. L. Miller. Screaming fast Galois Field arithmetic using Intel SIMD instructions. In FAST-2013: 11th Usenix Conference on File and Storage Technologies, San Jose, February 2013.
- [Pla97] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems. Software Practice & Experience, 27(9):995–1012, September 1997.
- [PSR12] J. S. Plank, C. D. Schuman, and B. D. Robison. Heuristics for optimizing matrix-based erasure codes for fault-tolerant storage systems. In DSN-2012: The International Conference on Dependable Systems and Networks, Boston, MA, June 2012. IEEE.
- [Rab89] M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance. *Journal of the Association for Computing Machinery*, 36(2):335–348, April 1989.

Method	Speed (MB/s)
-m SPLIT 64 4 -r ALTMAP -	3522.798
-m SPLIT 64 4 -r SSE (Default) -	2647.862
-m COMPOSITE 2 -m SPLIT 32 4 -r ALTMAPr ALTMAP -	2461.572
-m COMPOSITE 2r ALTMAP -	1860.921
-m SPLIT 64 16 -	1066.490
-m SPLIT 64 8 -	998.461
-m CARRY_FREE -	975.290
-m SPLIT 64 4 -r NOSSE -	545.479
-m GROUP 4 4 -	230.137
-m GROUP 4 8 -	153.947
-m BYTWO_b -	144.052
-m BYTWO_p -	124.538
-m SPLIT 8 8 -	98.892
-m BYTWO_p -r NOSSE -	77.912
-m COMPOSITE 2	77.522
-m BYTWO_b -r NOSSE -	36.391
-m SHIFT -	25.282

Table 7: Speed of various calls to **multiply_region**() for w = 64.

Method	Speed (MB/s)
-m SPLIT 128 4 -r ALTMAP -	1727.683
-m COMPOSITE 2 -m SPLIT 64 4 -r ALTMAPr ALTMAP -	1385.693
-m COMPOSITE 2r ALTMAP -	1041.456
-m SPLIT 128 8 (Default)	872.619
-m CARRY_FREE -	814.030
-m SPLIT 128 4 -	500.133
-m COMPOSITE 2	289.207
-m GROUP 4 8 -	133.583
-m GROUP 4 4 -	116.187
-m BYTWO_p -	25.162
-m BYTWO_b -	25.157
-m SHIFT -	14.183

Table 8: Speed of various calls to **multiply_region()** for w = 128.