/* Copyright (C) 2001-2023 Artifex Software, Inc. All Rights Reserved. This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of the license contained in the file LICENSE in this distribution. Refer to licensing information at http://www.artifex.com or contact Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, CA 94129, USA, for further information. */ /* 24-bit-per-pixel "memory" (stored bitmap) device */ #include "memory_.h" #include "gx.h" #include "gxdevice.h" #include "gxdevmem.h" /* semi-public definitions */ #include "gdevmem.h" /* private definitions */ #define mem_true24_strip_copy_rop2 mem_gray8_rgb24_strip_copy_rop2 /* * Define whether to use the library's memset. */ #define USE_MEMSET /* * Define whether to use memcpy for very wide fills. */ /*#define USE_MEMCPY*/ /* Define debugging statistics. */ /* #define COLLECT_STATS_MEM24 */ #ifdef COLLECT_STATS_MEM24 struct stats_mem24_s { long fill, fwide, fgray[101], fsetc, fcolor[101], fnarrow[5], fprevc[257]; double ftotal; } stats_mem24; static int prev_count = 0; static uint prev_colors[256]; # define INCR(v) (++(stats_mem24.v)) #else # define INCR(v) DO_NOTHING #endif /* ================ Standard (byte-oriented) device ================ */ #undef chunk #define chunk byte /* Procedures */ declare_mem_procs(mem_true24_copy_mono, mem_true24_copy_color, mem_true24_fill_rectangle); static dev_proc_copy_alpha(mem_true24_copy_alpha); /* The device descriptor. */ const gx_device_memory mem_true24_device = mem_device("image24", 24, 0, mem_dev_initialize_device_procs); const gdev_mem_functions gdev_mem_fns_24 = { gx_default_rgb_map_rgb_color, gx_default_rgb_map_color_rgb, mem_true24_fill_rectangle, mem_true24_copy_mono, mem_true24_copy_color, mem_true24_copy_alpha, gx_default_strip_tile_rectangle, mem_true24_strip_copy_rop2, mem_get_bits_rectangle }; /* Convert x coordinate to byte offset in scan line. */ #undef x_to_byte #define x_to_byte(x) ((x) * 3) /* Unpack a color into its bytes. */ #define declare_unpack_color(r, g, b, color)\ byte r = (byte)(color >> 16);\ byte g = (byte)((uint)color >> 8);\ byte b = (byte)color /* Put a 24-bit color into the bitmap. */ #define put3(ptr, r, g, b)\ (ptr)[0] = r, (ptr)[1] = g, (ptr)[2] = b /* Put 4 bytes of color into the bitmap. */ #define putw(ptr, wxyz)\ *(bits32 *)(ptr) = (wxyz) /* Load the 3-word 24-bit-color cache. */ /* Free variables: [m]dev, rgbr, gbrg, brgb. */ #if ARCH_IS_BIG_ENDIAN # define set_color24_cache(crgb, r, g, b)\ mdev->color24.rgbr = rgbr = ((bits32)(crgb) << 8) | (r),\ mdev->color24.gbrg = gbrg = (rgbr << 8) | (g),\ mdev->color24.brgb = brgb = (gbrg << 8) | (b),\ mdev->color24.rgb = (crgb) #else # define set_color24_cache(crgb, r, g, b)\ mdev->color24.rgbr = rgbr =\ ((bits32)(r) << 24) | ((bits32)(b) << 16) |\ ((bits16)(g) << 8) | (r),\ mdev->color24.brgb = brgb = (rgbr << 8) | (b),\ mdev->color24.gbrg = gbrg = (brgb << 8) | (g),\ mdev->color24.rgb = (crgb) #endif /* Fill a rectangle with a color. */ static int mem_true24_fill_rectangle(gx_device * dev, int x, int y, int w, int h, gx_color_index color) { gx_device_memory * const mdev = (gx_device_memory *)dev; declare_unpack_color(r, g, b, color); declare_scan_ptr(dest); if_debug4m('b', dev->memory, "[b]device y=%d h=%d x=%d w=%d\n", y + mdev->band_y, h, x, w); /* * In order to avoid testing w > 0 and h > 0 twice, we defer * executing setup_rect, and use fit_fill_xywh instead of * fit_fill. */ fit_fill_xywh(dev, x, y, w, h); INCR(fill); #ifdef COLLECT_STATS_MEM24 stats_mem24.ftotal += w; #endif if (w >= 5) { if (h <= 0) return 0; INCR(fwide); setup_rect(dest); if (r == g && r == b) { #ifndef USE_MEMSET /* We think we can do better than the library's memset.... */ int bcntm7 = w * 3 - 7; register bits32 cword = color | (color << 24); INCR(fgray[min(w, 100)]); while (h-- > 0) { register byte *pptr = dest; byte *limit = pptr + bcntm7; /* We want to store full words, but we have to */ /* guarantee that they are word-aligned. */ switch (x & 3) { case 3: *pptr++ = (byte) cword; case 2: *pptr++ = (byte) cword; case 1: *pptr++ = (byte) cword; case 0:; } /* Even with w = 5, we always store at least */ /* 3 full words, regardless of the starting x. */ *(bits32 *) pptr = ((bits32 *) pptr)[1] = ((bits32 *) pptr)[2] = cword; pptr += 12; while (pptr < limit) { *(bits32 *) pptr = ((bits32 *) pptr)[1] = cword; pptr += 8; } switch ((int)(pptr - limit)) { case 0: pptr[6] = (byte) cword; case 1: pptr[5] = (byte) cword; case 2: pptr[4] = (byte) cword; case 3: *(bits32 *) pptr = cword; break; case 4: pptr[2] = (byte) cword; case 5: pptr[1] = (byte) cword; case 6: pptr[0] = (byte) cword; case 7:; } inc_ptr(dest, draster); } #else int bcnt = w * 3; INCR(fgray[min(w, 100)]); while (h-- > 0) { memset(dest, r, bcnt); inc_ptr(dest, draster); } #endif } else { int x3 = -x & 3, ww = w - x3; /* we know ww >= 2 */ bits32 rgbr, gbrg, brgb; if (mdev->color24.rgb == color) { rgbr = mdev->color24.rgbr; gbrg = mdev->color24.gbrg; brgb = mdev->color24.brgb; } else { INCR(fsetc); set_color24_cache(color, r, g, b); } #ifdef COLLECT_STATS_MEM24 { int ci; for (ci = 0; ci < prev_count; ++ci) if (prev_colors[ci] == color) break; INCR(fprevc[ci]); if (ci == prev_count) { if (ci < countof(prev_colors)) ++prev_count; else --ci; } if (ci) memmove(&prev_colors[1], &prev_colors[0], ci * sizeof(prev_colors[0])); prev_colors[0] = color; } #endif INCR(fcolor[min(w, 100)]); while (h-- > 0) { register byte *pptr = dest; int w1 = ww; switch (x3) { case 1: put3(pptr, r, g, b); pptr += 3; break; case 2: pptr[0] = r; pptr[1] = g; putw(pptr + 2, brgb); pptr += 6; break; case 3: pptr[0] = r; putw(pptr + 1, gbrg); putw(pptr + 5, brgb); pptr += 9; break; case 0: ; } #ifdef USE_MEMCPY /* * For very wide fills, it's most efficient to fill a few * pixels and then use memcpy to fill the rest. */ if (w1 > 16) { #define PUTW4(ptr, w)\ BEGIN\ putw(ptr, w); putw((ptr)+12, w); putw((ptr)+24, w); putw((ptr)+36, w);\ END PUTW4(pptr, rgbr); PUTW4(pptr + 4, gbrg); PUTW4(pptr + 8, brgb); #undef PUTW4 if (w1 > 64) { memcpy(pptr + 48, pptr, 48); memcpy(pptr + 96, pptr, 96); for (pptr += 192; (w1 -= 64) >= 64; pptr += 192) memcpy(pptr, pptr - 192, 192); } else pptr += 48; for (; (w1 -= 16) >= 16; pptr += 48) memcpy(pptr, pptr - 48, 48); } #endif while (w1 >= 4) { putw(pptr, rgbr); putw(pptr + 4, gbrg); putw(pptr + 8, brgb); pptr += 12; w1 -= 4; } switch (w1) { case 1: put3(pptr, r, g, b); break; case 2: putw(pptr, rgbr); pptr[4] = g; pptr[5] = b; break; case 3: putw(pptr, rgbr); putw(pptr + 4, gbrg); pptr[8] = b; break; case 0: ; } inc_ptr(dest, draster); } } } else if (h > 0) { /* w < 5 */ INCR(fnarrow[max(w, 0)]); setup_rect(dest); switch (w) { case 4: do { dest[9] = dest[6] = dest[3] = dest[0] = r; dest[10] = dest[7] = dest[4] = dest[1] = g; dest[11] = dest[8] = dest[5] = dest[2] = b; inc_ptr(dest, draster); } while (--h); break; case 3: do { dest[6] = dest[3] = dest[0] = r; dest[7] = dest[4] = dest[1] = g; dest[8] = dest[5] = dest[2] = b; inc_ptr(dest, draster); } while (--h); break; case 2: do { dest[3] = dest[0] = r; dest[4] = dest[1] = g; dest[5] = dest[2] = b; inc_ptr(dest, draster); } while (--h); break; case 1: do { dest[0] = r, dest[1] = g, dest[2] = b; inc_ptr(dest, draster); } while (--h); break; case 0: default: ; } } return 0; } /* Copy a monochrome bitmap. */ static int mem_true24_copy_mono(gx_device * dev, const byte * base, int sourcex, int sraster, gx_bitmap_id id, int x, int y, int w, int h, gx_color_index zero, gx_color_index one) { gx_device_memory * const mdev = (gx_device_memory *)dev; const byte *line; int sbit; int first_bit; declare_scan_ptr(dest); fit_copy(dev, base, sourcex, sraster, id, x, y, w, h); setup_rect(dest); line = base + (sourcex >> 3); sbit = sourcex & 7; first_bit = 0x80 >> sbit; if (zero != gx_no_color_index) { /* Loop for halftones or inverted masks */ /* (never used). */ declare_unpack_color(r0, g0, b0, zero); declare_unpack_color(r1, g1, b1, one); while (h-- > 0) { register byte *pptr = dest; const byte *sptr = line; register int sbyte = *sptr++; register int bit = first_bit; int count = w; do { if (sbyte & bit) { if (one != gx_no_color_index) { put3(pptr, r1, g1, b1); } } else { put3(pptr, r0, g0, b0); } pptr += 3; count--; if (count == 0) break; if ((bit >>= 1) == 0) { bit = 0x80; sbyte = *sptr++; } } while (true); line += sraster; inc_ptr(dest, draster); } } else if (one != gx_no_color_index) { /* Loop for character and pattern masks. */ /* This is used heavily. */ declare_unpack_color(r1, g1, b1, one); int first_mask = first_bit << 1; int first_count, first_skip; if (sbit + w > 8) first_mask -= 1, first_count = 8 - sbit; else first_mask -= first_mask >> w, first_count = w; first_skip = first_count * 3; while (h-- > 0) { register byte *pptr = dest; const byte *sptr = line; register int sbyte = *sptr++ & first_mask; int count = w - first_count; if (sbyte) { register int bit = first_bit; do { if (sbyte & bit) put3(pptr, r1, g1, b1); pptr += 3; } while ((bit >>= 1) & first_mask); } else pptr += first_skip; while (count >= 8) { sbyte = *sptr++; if (sbyte & 0xf0) { if (sbyte & 0x80) put3(pptr, r1, g1, b1); if (sbyte & 0x40) put3(pptr + 3, r1, g1, b1); if (sbyte & 0x20) put3(pptr + 6, r1, g1, b1); if (sbyte & 0x10) put3(pptr + 9, r1, g1, b1); } if (sbyte & 0xf) { if (sbyte & 8) put3(pptr + 12, r1, g1, b1); if (sbyte & 4) put3(pptr + 15, r1, g1, b1); if (sbyte & 2) put3(pptr + 18, r1, g1, b1); if (sbyte & 1) put3(pptr + 21, r1, g1, b1); } pptr += 24; count -= 8; } if (count > 0) { register int bit = 0x80; sbyte = *sptr++; do { if (sbyte & bit) put3(pptr, r1, g1, b1); pptr += 3; bit >>= 1; } while (--count > 0); } line += sraster; inc_ptr(dest, draster); } } return 0; } /* Copy a color bitmap. */ static int mem_true24_copy_color(gx_device * dev, const byte * base, int sourcex, int sraster, gx_bitmap_id id, int x, int y, int w, int h) { gx_device_memory * const mdev = (gx_device_memory *)dev; if_debug1m('w', dev->memory, "[w]device y=%d:\n", y + mdev->band_y); /* See siscale.c about 'w'. */ fit_copy(dev, base, sourcex, sraster, id, x, y, w, h); mem_copy_byte_rect(mdev, base, sourcex, sraster, x, y, w, h); return 0; } /* Copy an alpha map. */ static int mem_true24_copy_alpha(gx_device * dev, const byte * base, int sourcex, int sraster, gx_bitmap_id id, int x, int y, int w, int h, gx_color_index color, int depth) { gx_device_memory * const mdev = (gx_device_memory *)dev; const byte *line; declare_scan_ptr(dest); declare_unpack_color(r, g, b, color); fit_copy(dev, base, sourcex, sraster, id, x, y, w, h); setup_rect(dest); line = base; while (h-- > 0) { register byte *pptr = dest; int sx; for (sx = sourcex; sx < sourcex + w; ++sx, pptr += 3) { int alpha2, alpha; switch(depth) { case 2: /* map 0 - 3 to 0 - 255 */ alpha = ((line[sx >> 2] >> ((3 - (sx & 3)) << 1)) & 3) * 85; break; case 4: alpha2 = line[sx >> 1]; alpha = (sx & 1 ? alpha2 & 0xf : alpha2 >> 4) * 17; break; case 8: alpha = line[sx]; break; default: return_error(gs_error_rangecheck); } if (alpha == 255) { /* Just write the new color. */ put3(pptr, r, g, b); } else if (alpha != 0) { /* Blend RGB values. */ alpha += alpha>>7; #define make_shade(old, clr, alpha) \ ((((old)<<8) + ((int)(clr) - (int)(old)) * (alpha))>>8) pptr[0] = make_shade(pptr[0], r, alpha); pptr[1] = make_shade(pptr[1], g, alpha); pptr[2] = make_shade(pptr[2], b, alpha); #undef make_shade } } line += sraster; inc_ptr(dest, draster); } return 0; } /* ================ "Word"-oriented device ================ */ /* Note that on a big-endian machine, this is the same as the */ /* standard byte-oriented-device. */ #if !ARCH_IS_BIG_ENDIAN /* Procedures */ declare_mem_procs(mem24_word_copy_mono, mem24_word_copy_color, mem24_word_fill_rectangle); /* Here is the device descriptor. */ const gx_device_memory mem_true24_word_device = mem_device("image24w", 24, 0, mem_word_dev_initialize_device_procs); const gdev_mem_functions gdev_mem_fns_24w = { gx_default_rgb_map_rgb_color, gx_default_rgb_map_color_rgb, mem24_word_fill_rectangle, mem24_word_copy_mono, mem24_word_copy_color, gx_default_copy_alpha, gx_default_strip_tile_rectangle, gx_no_strip_copy_rop2, mem_word_get_bits_rectangle }; /* Fill a rectangle with a color. */ static int mem24_word_fill_rectangle(gx_device * dev, int x, int y, int w, int h, gx_color_index color) { gx_device_memory * const mdev = (gx_device_memory *)dev; byte *base; uint raster; fit_fill(dev, x, y, w, h); base = scan_line_base(mdev, y); raster = mdev->raster; mem_swap_byte_rect(base, raster, x * 24, w * 24, h, true); mem_true24_fill_rectangle(dev, x, y, w, h, color); mem_swap_byte_rect(base, raster, x * 24, w * 24, h, false); return 0; } /* Copy a bitmap. */ static int mem24_word_copy_mono(gx_device * dev, const byte * base, int sourcex, int sraster, gx_bitmap_id id, int x, int y, int w, int h, gx_color_index zero, gx_color_index one) { gx_device_memory * const mdev = (gx_device_memory *)dev; byte *row; uint raster; bool store; fit_copy(dev, base, sourcex, sraster, id, x, y, w, h); row = scan_line_base(mdev, y); raster = mdev->raster; store = (zero != gx_no_color_index && one != gx_no_color_index); mem_swap_byte_rect(row, raster, x * 24, w * 24, h, store); mem_true24_copy_mono(dev, base, sourcex, sraster, id, x, y, w, h, zero, one); mem_swap_byte_rect(row, raster, x * 24, w * 24, h, false); return 0; } /* Copy a color bitmap. */ static int mem24_word_copy_color(gx_device * dev, const byte * base, int sourcex, int sraster, gx_bitmap_id id, int x, int y, int w, int h) { gx_device_memory * const mdev = (gx_device_memory *)dev; byte *row; uint raster; fit_copy(dev, base, sourcex, sraster, id, x, y, w, h); row = scan_line_base(mdev, y); raster = mdev->raster; mem_swap_byte_rect(row, raster, x * 24, w * 24, h, true); bytes_copy_rectangle(row + x * 3, raster, base + sourcex * 3, sraster, w * 3, h); mem_swap_byte_rect(row, raster, x * 24, w * 24, h, false); return 0; } #endif /* !ARCH_IS_BIG_ENDIAN */