/* Copyright (C) 2001-2023 Artifex Software, Inc. All Rights Reserved. This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of the license contained in the file LICENSE in this distribution. Refer to licensing information at http://www.artifex.com or contact Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, CA 94129, USA, for further information. */ /* Image scaling filters */ #include "math_.h" #include "memory_.h" #include "stdio_.h" #include "stdint_.h" #include "gdebug.h" #include "strimpl.h" #include "siscale.h" #include "gxfrac.h" /* * Image scaling code is based on public domain code from * Graphics Gems III (pp. 414-424), Academic Press, 1992. */ /* ---------------- ImageScaleEncode/Decode ---------------- */ #define CONTRIB_SHIFT 12 #define CONTRIB_SCALE (1<= 1) return 0; return 1 + (2*t -3)*t*t; } /* * The environment provides the following definitions: * double fproc(double t) * double fWidthIn * PixelTmp {min,max,unit}PixelTmp */ #define CLAMP(v, mn, mx)\ (v < mn ? mn : v > mx ? mx : v) /* ------ Auxiliary procedures ------ */ /* Calculate the support for a given scale. */ /* The value is always in the range 1..max_support (was MAX_ISCALE_SUPPORT). */ static int Interp_contrib_pixels(double scale) { if (scale == 0.0) return 1; return (int)(((float)Interp_support) / (scale >= 1.0 ? 1.0 : scale) * 2 + 1.5); } static int Mitchell_contrib_pixels(double scale) { if (scale == 0.0) return 1; return (int)(((float)Mitchell_support) / (scale >= 1.0 ? 1.0 : max(scale, Mitchell_min_scale)) * 2 + 1.5); } /* Pre-calculate filter contributions for a row or a column. */ /* Return the highest input pixel index used. */ static int calculate_contrib( /* Return weight list parameters in contrib[0 .. size-1]. */ CLIST * contrib, /* Store weights in items[0 .. contrib_pixels(scale)*size-1]. */ /* (Less space than this may actually be needed.) */ CONTRIB * items, /* The output image is scaled by 'scale' relative to the input. */ double scale, /* Start generating weights for input pixel 'starting_output_index'. */ int starting_output_index, /* Offset of input subimage (data) from the input image start. */ int src_y_offset, /* Entire output image size. */ int dst_size, /* Entire input image size. */ int src_size, /* Generate 'size' weight lists. */ int size, /* Limit pixel indices to 'limit', for clamping at the edges */ /* of the image. */ int limit, /* Wrap pixel indices modulo 'modulus'. */ int modulus, /* Successive pixel values are 'stride' distance apart -- */ /* normally, the number of color components. */ int stride, /* The unit of output is 'rescale_factor' times the unit of input. */ double rescale_factor, /* The filters width */ int fWidthIn, /* The filter to use */ double (*fproc)(double), /* minimum scale factor to use */ double min_scale ) { double WidthIn, fscale; bool squeeze; int npixels; int i, j; int last_index = -1; if_debug1('W', "[W]calculate_contrib scale=%lg\n", scale); if (scale < 1.0) { double clamped_scale = max(scale, min_scale); WidthIn = ((double)fWidthIn) / clamped_scale; fscale = 1.0 / clamped_scale; squeeze = true; } else { WidthIn = (double)fWidthIn; fscale = 1.0; squeeze = false; } npixels = (int)(WidthIn * 2 + 1); for (i = 0; i < size; ++i) { /* Here we need : double scale = (double)dst_size / src_size; float dst_offset_fraction = floor(dst_offset) - dst_offset; double center = (starting_output_index + i + dst_offset_fraction + 0.5) / scale - 0.5; int left = (int)ceil(center - WidthIn); int right = (int)floor(center + WidthIn); We can't compute 'right' in floats because float arithmetics is not associative. In older versions tt caused a 1 pixel bias of image bands due to rounding direction appears to depend on src_y_offset. So compute in rationals. Since pixel center fall to half integers, we subtract 0.5 in the image space and add 0.5 in the device space. */ int dst_y_offset_fraction_num = (int)((int64_t)src_y_offset * dst_size % src_size) * 2 <= src_size ? -(int)((int64_t)src_y_offset * dst_size % src_size) : src_size - (int)((int64_t)src_y_offset * dst_size % src_size); int center_denom = dst_size * 2; int64_t center_num = /* center * center_denom * 2 = */ (starting_output_index + i) * (int64_t)src_size * 2 + src_size + dst_y_offset_fraction_num * 2 - dst_size; int left = (int)ceil((center_num - WidthIn * center_denom) / center_denom); int right = (int)floor((center_num + WidthIn * center_denom) / center_denom); double center = (double)center_num / center_denom; #define clamp_pixel(j) (j < 0 ? 0 : j >= limit ? limit - 1 : j) int first_pixel = clamp_pixel(left); int last_pixel = clamp_pixel(right); CONTRIB *p; if_debug4('W', "[W]i=%d, i+offset=%lg scale=%lg center=%lg : ", starting_output_index + i, starting_output_index + i + (double)src_y_offset / src_size * dst_size, scale, center); if (last_pixel > last_index) last_index = last_pixel; contrib[i].first_pixel = (first_pixel % modulus) * stride; contrib[i].n = last_pixel - first_pixel + 1; contrib[i].index = i * npixels; p = items + contrib[i].index; for (j = 0; j < npixels; ++j) p[j].weight = 0; if (squeeze) { double sum = 0; double e = 0; for (j = left; j <= right; ++j) sum += fproc((center - j) / fscale) / fscale; for (j = left; j <= right; ++j) { double weight = fproc((center - j) / fscale) / fscale / sum; int n = clamp_pixel(j); int k = n - first_pixel; int ie; e += (weight * rescale_factor) * CONTRIB_SCALE; ie = (int)(e + 0.5); p[k].weight += ie; e -= ie; if_debug2('W', " %d %f", k, (float)p[k].weight); } } else { double sum = 0; double e = 0; for (j = left; j <= right; ++j) sum += fproc(center - j); for (j = left; j <= right; ++j) { double weight = fproc(center - j) / sum; int n = clamp_pixel(j); int k = n - first_pixel; int ie; e += (weight * rescale_factor) * CONTRIB_SCALE; ie = (int)(e + 0.5); p[k].weight += ie; e -= ie; if_debug2('W', " %d %f", k, (float)p[k].weight); } } if_debug0('W', "\n"); } return last_index; } /* Apply filter to zoom horizontally from src to tmp. */ static void zoom_x1(byte * gs_restrict tmp, const void /*PixelIn */ * gs_restrict src, int skip, int tmp_width, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { int c, i; contrib += skip; tmp += Colors * skip; for (c = 0; c < Colors; ++c) { byte *gs_restrict tp = tmp + c; const CLIST *gs_restrict clp = contrib; const byte *gs_restrict raster = (const byte *)src + c; if_debug1('W', "[W]zoom_x color %d:", c); for ( i = 0; i < tmp_width; tp += Colors, ++clp, ++i ) { int weight = 0; int j = clp->n; const byte *gs_restrict pp = raster + clp->first_pixel; const CONTRIB *gs_restrict cp = items + clp->index; for ( ; j > 0; pp += Colors, ++cp, --j ) weight += *pp * cp->weight; weight = (weight + CONTRIB_ROUND)>>CONTRIB_SHIFT; if_debug1('W', " %x", weight); *tp = (byte)CLAMP(weight, 0, 255); } if_debug0('W', "\n"); } } static void zoom_x1_1(byte * gs_restrict tmp, const void /*PixelIn */ * gs_restrict src, int skip, int tmp_width, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { contrib += skip; tmp += Colors * skip; if_debug0('W', "[W]zoom_x:"); for ( ; tmp_width != 0; --tmp_width ) { int j = contrib->n; const byte *gs_restrict pp = ((const byte *)src) + contrib->first_pixel; const CONTRIB *gs_restrict cp = items + (contrib++)->index; int weight0 = 0; for ( ; j > 0; --j ) { weight0 += *pp++ * (cp++)->weight; } if_debug1('W', " %x", weight0); weight0 = (weight0 + CONTRIB_ROUND)>>CONTRIB_SHIFT; *tmp++ = (byte)CLAMP(weight0, 0, 255); } if_debug0('W', "\n"); } static void zoom_x1_3(byte * gs_restrict tmp, const void /*PixelIn */ * gs_restrict src, int skip, int tmp_width, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { contrib += skip; tmp += Colors * skip; if_debug0('W', "[W]zoom_x:"); for ( ; tmp_width != 0; --tmp_width ) { int j = contrib->n; const byte *gs_restrict pp = ((const byte *)src) + contrib->first_pixel; const CONTRIB *gs_restrict cp = items + (contrib++)->index; int weight0 = 0; int weight1 = 0; int weight2 = 0; for ( ; j > 0; --j ) { int weight = (cp++)->weight; weight0 += *pp++ * weight; weight1 += *pp++ * weight; weight2 += *pp++ * weight; } if_debug3('W', " (%x %x %x)", weight0, weight1, weight2); weight0 = (weight0 + CONTRIB_ROUND)>>CONTRIB_SHIFT; weight1 = (weight1 + CONTRIB_ROUND)>>CONTRIB_SHIFT; weight2 = (weight2 + CONTRIB_ROUND)>>CONTRIB_SHIFT; *tmp++ = (byte)CLAMP(weight0, 0, 255); *tmp++ = (byte)CLAMP(weight1, 0, 255); *tmp++ = (byte)CLAMP(weight2, 0, 255); } if_debug0('W', "\n"); } static void zoom_x1_4(byte * gs_restrict tmp, const void /*PixelIn */ * gs_restrict src, int skip, int tmp_width, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { contrib += skip; tmp += Colors * skip; if_debug0('W', "[W]zoom_x:"); for ( ; tmp_width != 0; --tmp_width ) { int j = contrib->n; const byte *gs_restrict pp = ((const byte *)src) + contrib->first_pixel; const CONTRIB *gs_restrict cp = items + (contrib++)->index; int weight0 = 0; int weight1 = 0; int weight2 = 0; int weight3 = 0; for ( ; j > 0; --j ) { int weight = (cp++)->weight; weight0 += *pp++ * weight; weight1 += *pp++ * weight; weight2 += *pp++ * weight; weight3 += *pp++ * weight; } if_debug4('W', " (%x %x %x %x)", weight0, weight1, weight2, weight3); weight0 = (weight0 + CONTRIB_ROUND)>>CONTRIB_SHIFT; weight1 = (weight1 + CONTRIB_ROUND)>>CONTRIB_SHIFT; weight2 = (weight2 + CONTRIB_ROUND)>>CONTRIB_SHIFT; weight3 = (weight3 + CONTRIB_ROUND)>>CONTRIB_SHIFT; *tmp++ = (byte)CLAMP(weight0, 0, 255); *tmp++ = (byte)CLAMP(weight1, 0, 255); *tmp++ = (byte)CLAMP(weight2, 0, 255); *tmp++ = (byte)CLAMP(weight3, 0, 255); } if_debug0('W', "\n"); } static void zoom_x2(byte * gs_restrict tmp, const void /*PixelIn */ * gs_restrict src, int skip, int tmp_width, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { int c, i; contrib += skip; tmp += Colors * skip; for (c = 0; c < Colors; ++c) { byte *gs_restrict tp = tmp + c; const CLIST *gs_restrict clp = contrib; const bits16 *gs_restrict raster = (const bits16 *)src + c; if_debug1('W', "[W]zoom_x color %d:", c); for ( i = 0; i < tmp_width; tp += Colors, ++clp, ++i ) { int weight = 0; int j = clp->n; const bits16 *gs_restrict pp = raster + clp->first_pixel; const CONTRIB *gs_restrict cp = items + clp->index; switch ( Colors ) { case 1: for ( ; j > 0; pp += 1, ++cp, --j ) weight += *pp * cp->weight; break; case 3: for ( ; j > 0; pp += 3, ++cp, --j ) weight += *pp * cp->weight; break; default: for ( ; j > 0; pp += Colors, ++cp, --j ) weight += *pp * cp->weight; } weight = (weight + CONTRIB_ROUND)>>CONTRIB_SHIFT; if_debug1('W', " %x", weight); *tp = (byte)CLAMP(weight, 0, 255); } if_debug0('W', "\n"); } } /* * Apply filter to zoom vertically from tmp to dst. * This is simpler because we can treat all columns identically * without regard to the number of samples per pixel. */ static inline void zoom_y1_4(void /*PixelOut */ * gs_restrict dst, const byte * gs_restrict tmp, int skip, int WidthOut, int Stride, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { int kn = Stride * Colors; int width = WidthOut * Colors; int first_pixel = contrib->first_pixel; const CONTRIB *gs_restrict cbp = items + contrib->index; int w0 = cbp[0].weight; int w1 = cbp[1].weight; int w2 = cbp[2].weight; int w3 = cbp[3].weight; byte *gs_restrict d; if_debug0('W', "[W]zoom_y: "); skip *= Colors; tmp += first_pixel + skip; d = ((byte *)dst)+skip; for (; width > 0; width--) { int weight; weight = tmp[ 0] * w0; weight += tmp[ kn] * w1; weight += tmp[2*kn] * w2; weight += tmp[3*kn] * w3; tmp++; weight = (weight + CONTRIB_ROUND)>>CONTRIB_SHIFT; if_debug1('W', " %x", weight); *d++ = (byte)CLAMP(weight, 0, 0xff); } if_debug0('W', "\n"); } static inline void zoom_y1_5(void /*PixelOut */ * gs_restrict dst, const byte * gs_restrict tmp, int skip, int WidthOut, int Stride, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { int kn = Stride * Colors; int width = WidthOut * Colors; int first_pixel = contrib->first_pixel; const CONTRIB *gs_restrict cbp = items + contrib->index; int w0 = cbp[0].weight; int w1 = cbp[1].weight; int w2 = cbp[2].weight; int w3 = cbp[3].weight; int w4 = cbp[4].weight; byte *gs_restrict d; if_debug0('W', "[W]zoom_y: "); skip *= Colors; tmp += first_pixel + skip; d = ((byte *)dst)+skip; for (; width > 0; width--) { int weight; weight = tmp[ 0] * w0; weight += tmp[ kn] * w1; weight += tmp[2*kn] * w2; weight += tmp[3*kn] * w3; weight += tmp[4*kn] * w4; tmp++; weight = (weight + CONTRIB_ROUND)>>CONTRIB_SHIFT; if_debug1('W', " %x", weight); *d++ = (byte)CLAMP(weight, 0, 0xff); } if_debug0('W', "\n"); } static inline void template_zoom_y1(void /*PixelOut */ * gs_restrict dst, const byte * gs_restrict tmp, int skip, int WidthOut, int Stride, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items, int n) { int kn = Stride * Colors; int width = WidthOut * Colors; int cn = contrib->n; int first_pixel = contrib->first_pixel; const CONTRIB *gs_restrict cbp = items + contrib->index; byte *gs_restrict d; if_debug0('W', "[W]zoom_y: "); skip *= Colors; tmp += first_pixel + skip; d = ((byte *)dst)+skip; for (; width > 0; width--) { int weight = 0; const byte *gs_restrict pp = tmp++; int pixel, j; const CONTRIB *cp = cbp; for (j = cn; j > 0; pp += kn, ++cp, --j) weight += *pp * cp->weight; pixel = (weight + CONTRIB_ROUND)>>CONTRIB_SHIFT; if_debug1('W', " %x", pixel); *d++ = (byte)CLAMP(pixel, 0, 0xff); } if_debug0('W', "\n"); } static void zoom_y1(void /*PixelOut */ * gs_restrict dst, const byte * gs_restrict tmp, int skip, int WidthOut, int Stride, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { switch(contrib->n) { case 4: zoom_y1_4(dst, tmp, skip, WidthOut, Stride, Colors, contrib, items); break; case 5: zoom_y1_5(dst, tmp, skip, WidthOut, Stride, Colors, contrib, items); break; default: template_zoom_y1(dst, tmp, skip, WidthOut, Stride, Colors, contrib, items, contrib->n); break; } } static inline void zoom_y2_4(void /*PixelOut */ * gs_restrict dst, const byte * gs_restrict tmp, int skip, int WidthOut, int Stride, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { int kn = Stride * Colors; int width = WidthOut * Colors; int first_pixel = contrib->first_pixel; const CONTRIB *gs_restrict cbp = items + contrib->index; bits16 *gs_restrict d; int w0 = cbp[0].weight; int w1 = cbp[1].weight; int w2 = cbp[2].weight; int w3 = cbp[3].weight; if_debug0('W', "[W]zoom_y: "); skip *= Colors; tmp += first_pixel + skip; d = ((bits16 *)dst) + skip; for (; width > 0; width--) { int weight; int pixel; weight = tmp[ 0] * w0; weight += tmp[ kn] * w1; weight += tmp[2*kn] * w2; weight += tmp[3*kn] * w3; tmp++; pixel = (weight + CONTRIB_ROUND)>>CONTRIB_SHIFT; if_debug1('W', " %x", pixel); *d++ = (bits16)CLAMP(pixel, 0, 0xffff); } if_debug0('W', "\n"); } static inline void zoom_y2_5(void /*PixelOut */ * gs_restrict dst, const byte * gs_restrict tmp, int skip, int WidthOut, int Stride, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { int kn = Stride * Colors; int width = WidthOut * Colors; int first_pixel = contrib->first_pixel; const CONTRIB *gs_restrict cbp = items + contrib->index; bits16 *gs_restrict d; int w0 = cbp[0].weight; int w1 = cbp[1].weight; int w2 = cbp[2].weight; int w3 = cbp[3].weight; int w4 = cbp[4].weight; if_debug0('W', "[W]zoom_y: "); skip *= Colors; tmp += first_pixel + skip; d = ((bits16 *)dst) + skip; for (; width > 0; width--) { int weight; int pixel; weight = tmp[ 0] * w0; weight += tmp[ kn] * w1; weight += tmp[2*kn] * w2; weight += tmp[3*kn] * w3; weight += tmp[4*kn] * w4; tmp++; pixel = (weight + CONTRIB_ROUND)>>CONTRIB_SHIFT; if_debug1('W', " %x", pixel); *d++ = (bits16)CLAMP(pixel, 0, 0xffff); } if_debug0('W', "\n"); } static inline void zoom_y2_n(void /*PixelOut */ * gs_restrict dst, const byte * gs_restrict tmp, int skip, int WidthOut, int Stride, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { int kn = Stride * Colors; int width = WidthOut * Colors; int cn = contrib->n; int first_pixel = contrib->first_pixel; const CONTRIB *gs_restrict cbp = items + contrib->index; bits16 *gs_restrict d; if_debug0('W', "[W]zoom_y: "); skip *= Colors; tmp += first_pixel + skip; d = ((bits16 *)dst) + skip; for (; width > 0; width--) { int weight = 0; const byte *gs_restrict pp = tmp++; int pixel, j; const CONTRIB *gs_restrict cp = cbp; for (j = cn; j > 0; pp += kn, ++cp, --j) weight += *pp * cp->weight; pixel = (weight + CONTRIB_ROUND)>>CONTRIB_SHIFT; if_debug1('W', " %x", pixel); *d++ = (bits16)CLAMP(pixel, 0, 0xffff); } if_debug0('W', "\n"); } static void zoom_y2(void /*PixelOut */ * gs_restrict dst, const byte * gs_restrict tmp, int skip, int WidthOut, int Stride, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { switch (contrib->n) { case 4: zoom_y2_4(dst, tmp, skip, WidthOut, Stride, Colors, contrib, items); break; case 5: zoom_y2_5(dst, tmp, skip, WidthOut, Stride, Colors, contrib, items); break; default: zoom_y2_n(dst, tmp, skip, WidthOut, Stride, Colors, contrib, items); break; } } static inline void zoom_y2_frac_4(void /*PixelOut */ * gs_restrict dst, const byte * gs_restrict tmp, int skip, int WidthOut, int Stride, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { int kn = Stride * Colors; int width = WidthOut * Colors; int first_pixel = contrib->first_pixel; const CONTRIB *gs_restrict cbp = items + contrib->index; bits16 *gs_restrict d; int w0 = cbp[0].weight; int w1 = cbp[1].weight; int w2 = cbp[2].weight; int w3 = cbp[3].weight; if_debug0('W', "[W]zoom_y: "); skip *= Colors; tmp += first_pixel + skip; d = ((bits16 *)dst) + skip; for (; width > 0; width--) { int weight; int pixel; weight = tmp[ 0] * w0; weight += tmp[ kn] * w1; weight += tmp[2*kn] * w2; weight += tmp[3*kn] * w3; tmp++; pixel = (weight + CONTRIB_ROUND)>>CONTRIB_SHIFT; if_debug1('W', " %x", pixel); *d++ = (bits16)CLAMP(pixel, 0, frac_1); } if_debug0('W', "\n"); } static inline void zoom_y2_frac_5(void /*PixelOut */ * gs_restrict dst, const byte * gs_restrict tmp, int skip, int WidthOut, int Stride, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { int kn = Stride * Colors; int width = WidthOut * Colors; int first_pixel = contrib->first_pixel; const CONTRIB *gs_restrict cbp = items + contrib->index; bits16 *gs_restrict d; int w0 = cbp[0].weight; int w1 = cbp[1].weight; int w2 = cbp[2].weight; int w3 = cbp[3].weight; int w4 = cbp[4].weight; if_debug0('W', "[W]zoom_y: "); skip *= Colors; tmp += first_pixel + skip; d = ((bits16 *)dst) + skip; for (; width > 0; width--) { int weight; int pixel; weight = tmp[ 0] * w0; weight += tmp[ kn] * w1; weight += tmp[2*kn] * w2; weight += tmp[3*kn] * w3; weight += tmp[4*kn] * w4; tmp++; pixel = (weight + CONTRIB_ROUND)>>CONTRIB_SHIFT; if_debug1('W', " %x", pixel); *d++ = (bits16)CLAMP(pixel, 0, frac_1); } if_debug0('W', "\n"); } static inline void zoom_y2_frac_n(void /*PixelOut */ * gs_restrict dst, const byte * gs_restrict tmp, int skip, int WidthOut, int Stride, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { int kn = Stride * Colors; int width = WidthOut * Colors; int cn = contrib->n; int first_pixel = contrib->first_pixel; const CONTRIB *gs_restrict cbp = items + contrib->index; bits16 *gs_restrict d; if_debug0('W', "[W]zoom_y: "); skip *= Colors; tmp += first_pixel + skip; d = ((bits16 *)dst) + skip; for (; width > 0; width--) { int weight = 0; const byte *gs_restrict pp = tmp++; int pixel, j; const CONTRIB *gs_restrict cp = cbp; for (j = cn; j > 0; pp += kn, ++cp, --j) weight += *pp * cp->weight; pixel = (weight + CONTRIB_ROUND)>>CONTRIB_SHIFT; if_debug1('W', " %x", pixel); *d++ = (bits16)CLAMP(pixel, 0, frac_1); } if_debug0('W', "\n"); } static void zoom_y2_frac(void /*PixelOut */ * gs_restrict dst, const byte * gs_restrict tmp, int skip, int WidthOut, int Stride, int Colors, const CLIST * gs_restrict contrib, const CONTRIB * gs_restrict items) { switch (contrib->n) { case 4: zoom_y2_frac_4(dst, tmp, skip, WidthOut, Stride, Colors, contrib, items); break; case 5: zoom_y2_frac_5(dst, tmp, skip, WidthOut, Stride, Colors, contrib, items); break; default: zoom_y2_frac_n(dst, tmp, skip, WidthOut, Stride, Colors, contrib, items); break; } } /* ------ Stream implementation ------ */ /* Forward references */ static void s_IScale_release(stream_state * st); /* Calculate the weights for an output row. */ static void calculate_dst_contrib(stream_IScale_state * ss, int y) { int abs_interp_limit = ss->params.abs_interp_limit; int limited_WidthOut = (ss->params.WidthOut + abs_interp_limit - 1) / abs_interp_limit; int limited_EntireHeightOut = (ss->params.EntireHeightOut + abs_interp_limit - 1) / abs_interp_limit; uint row_size = limited_WidthOut * ss->params.spp_interp; int last_index, first_index_mod; if_debug2m('W', ss->memory, "[W]calculate_dst_contrib for y = %d, y+offset=%d\n", y, y + ss->src_y_offset); last_index = calculate_contrib(&ss->dst_next_list, ss->dst_items, (double)limited_EntireHeightOut / ss->params.EntireHeightIn, y, ss->src_y_offset, limited_EntireHeightOut, ss->params.EntireHeightIn, 1, ss->params.HeightIn, ss->max_support, row_size, (double)ss->params.MaxValueOut / 255, ss->filter_width, ss->filter, ss->min_scale); first_index_mod = ss->dst_next_list.first_pixel / row_size; ss->dst_last_index = last_index; last_index %= ss->max_support; if (last_index < first_index_mod) { /* Shuffle the indices to account for wraparound. */ CONTRIB *shuffle = &ss->dst_items[ss->max_support]; int i; for (i = 0; i < ss->max_support; ++i) { shuffle[i].weight = (i <= last_index ? ss->dst_items[i + ss->max_support - first_index_mod].weight : i >= first_index_mod ? ss->dst_items[i - first_index_mod].weight : 0); if_debug1m('W', ss->memory, " %d", shuffle[i].weight); } memcpy(ss->dst_items, shuffle, ss->max_support * sizeof(CONTRIB)); ss->dst_next_list.n = ss->max_support; ss->dst_next_list.first_pixel = 0; } if_debug0m('W', ss->memory, "\n"); } /* Set default parameter values (actually, just clear pointers) */ static void s_IScale_set_defaults(stream_state * st) { stream_IScale_state *const ss = (stream_IScale_state *) st; ss->src = 0; ss->dst = 0; ss->tmp = 0; ss->contrib = 0; ss->items = 0; } typedef struct filter_defn_s { double (*filter)(double); int filter_width; int (*contrib_pixels)(double scale); double min_scale; } filter_defn_s; /* Initialize the filter. */ static int do_init(stream_state *st, const filter_defn_s *horiz, const filter_defn_s *vert) { stream_IScale_state *const ss = (stream_IScale_state *) st; gs_memory_t *mem = ss->memory; int abs_interp_limit = ss->params.abs_interp_limit; int limited_WidthOut = (ss->params.WidthOut + abs_interp_limit - 1) / abs_interp_limit; int limited_HeightOut = (ss->params.HeightOut + abs_interp_limit - 1) / abs_interp_limit; int limited_EntireWidthOut = (ss->params.EntireWidthOut + abs_interp_limit - 1) / abs_interp_limit; int limited_EntireHeightOut = (ss->params.EntireHeightOut + abs_interp_limit - 1) / abs_interp_limit; ss->sizeofPixelIn = ss->params.BitsPerComponentIn / 8; ss->sizeofPixelOut = ss->params.BitsPerComponentOut / 8; ss->src_y = 0; ss->src_size = ss->params.WidthIn * ss->sizeofPixelIn * ss->params.spp_interp; ss->src_offset = 0; ss->dst_y = 0; ss->src_y_offset = ss->params.src_y_offset; ss->dst_size = limited_WidthOut * ss->sizeofPixelOut * ss->params.spp_interp; ss->dst_offset = 0; /* create intermediate image to hold horizontal zoom */ ss->max_support = vert->contrib_pixels((double)limited_EntireHeightOut / (abs_interp_limit * ss->params.EntireHeightIn)); ss->filter_width = vert->filter_width; ss->filter = vert->filter; ss->min_scale = vert->min_scale; ss->tmp = (byte *) gs_alloc_byte_array(mem, ss->max_support, (limited_WidthOut * ss->params.spp_interp), "image_scale tmp"); ss->contrib = (CLIST *) gs_alloc_byte_array(mem, max(limited_WidthOut, limited_HeightOut), sizeof(CLIST), "image_scale contrib"); ss->items = (CONTRIB *) gs_alloc_byte_array(mem, (horiz->contrib_pixels( (double)limited_EntireWidthOut / ss->params.EntireWidthIn) * limited_WidthOut), sizeof(CONTRIB), "image_scale contrib[*]"); ss->dst_items = (CONTRIB *) gs_alloc_byte_array(mem, ss->max_support*2, sizeof(CONTRIB), "image_scale contrib_dst[*]"); /* Allocate buffers for 1 row of source and destination. */ ss->dst = gs_alloc_byte_array(mem, (size_t)limited_WidthOut * ss->params.spp_interp, ss->sizeofPixelOut, "image_scale dst"); ss->src = gs_alloc_byte_array(mem, (size_t)ss->params.WidthIn * ss->params.spp_interp, ss->sizeofPixelIn, "image_scale src"); if (ss->tmp == 0 || ss->contrib == 0 || ss->items == 0 || ss->dst_items == 0 || ss->dst == 0 || ss->src == 0 ) { s_IScale_release(st); return ERRC; /****** WRONG ******/ } #ifdef PACIFY_VALGRIND /* When we are scaling a subrectangle of an image, we calculate * the subrectangle, so that it's slightly larger than it needs * to be. Some of these 'extra' pixels are calculated using * bogus values (i.e. ones we don't bother copying/scaling into * the line buffer). These cause valgrind to be upset. To avoid * this, we preset the buffer to known values. */ memset((byte *)ss->tmp, 0, ss->max_support * limited_WidthOut * ss->params.spp_interp); #endif /* Pre-calculate filter contributions for a row. */ calculate_contrib(ss->contrib, ss->items, (double)limited_EntireWidthOut / ss->params.EntireWidthIn, 0, 0, limited_WidthOut, ss->params.WidthIn, limited_WidthOut, ss->params.WidthIn, ss->params.WidthIn, ss->params.spp_interp, 255. / ss->params.MaxValueIn, horiz->filter_width, horiz->filter, horiz->min_scale); /* Prepare the weights for the first output row. */ calculate_dst_contrib(ss, 0); if (ss->sizeofPixelIn == 2) ss->zoom_x = zoom_x2; else { switch (ss->params.spp_interp) { case 1: ss->zoom_x = zoom_x1_1; break; case 3: ss->zoom_x = zoom_x1_3; break; case 4: ss->zoom_x = zoom_x1_4; break; default: ss->zoom_x = zoom_x1; break; } } if (ss->sizeofPixelOut == 1) ss->zoom_y = zoom_y1; else if (ss->params.MaxValueOut == frac_1) ss->zoom_y = zoom_y2_frac; else ss->zoom_y = zoom_y2; return 0; } static const filter_defn_s Mitchell_defn = { Mitchell_filter, Mitchell_support, Mitchell_contrib_pixels, Mitchell_min_scale }; static const filter_defn_s Interp_defn = { Interp_filter, Interp_support, Interp_contrib_pixels, Interp_min_scale }; static int s_IScale_init(stream_state * st) { stream_IScale_state *const ss = (stream_IScale_state *) st; const filter_defn_s *horiz = &Mitchell_defn; const filter_defn_s *vert = &Mitchell_defn; int abs_interp_limit = ss->params.abs_interp_limit; int limited_EntireWidthOut = (ss->params.EntireWidthOut + abs_interp_limit - 1) / abs_interp_limit; int limited_EntireHeightOut = (ss->params.EntireHeightOut + abs_interp_limit - 1) / abs_interp_limit; /* By default we use the mitchell filter, but if we are scaling down * (either on the horizontal or the vertical axis) then use the simple * interpolation filter for that axis. */ if (limited_EntireWidthOut < ss->params.EntireWidthIn) horiz = &Interp_defn; if (limited_EntireHeightOut < ss->params.EntireHeightIn) vert = &Interp_defn; return do_init(st, horiz, vert); } /* Process a buffer. Note that this handles Encode and Decode identically. */ static int s_IScale_process(stream_state * st, stream_cursor_read * pr, stream_cursor_write * pw, bool last) { stream_IScale_state *const ss = (stream_IScale_state *) st; int abs_interp_limit = ss->params.abs_interp_limit; int limited_WidthOut = (ss->params.WidthOut + abs_interp_limit - 1) / abs_interp_limit; int limited_HeightOut = (ss->params.HeightOut + abs_interp_limit - 1) / abs_interp_limit; int limited_PatchWidthOut = (ss->params.PatchWidthOut + abs_interp_limit - 1) / abs_interp_limit; int limited_LeftMarginOut = (ss->params.LeftMarginOut) / abs_interp_limit; /* Check whether we need to deliver any output. */ top: ss->params.Active = (ss->src_y >= ss->params.TopMarginIn && ss->src_y <= ss->params.TopMarginIn + ss->params.PatchHeightIn); while (ss->src_y > ss->dst_last_index) { /* We have enough horizontally scaled temporary rows */ /* to generate a vertically scaled output row. */ uint wleft = pw->limit - pw->ptr; if (ss->dst_y == limited_HeightOut) return EOFC; if (wleft == 0) return 1; if (ss->dst_offset == 0) { byte *row; if (wleft >= ss->dst_size) { /* We can scale the row directly into the output. */ row = pw->ptr + 1; pw->ptr += ss->dst_size; } else { /* We'll have to buffer the row. */ row = ss->dst; } /* Apply filter to zoom vertically from tmp to dst. */ if (ss->params.Active) { if_debug1('w', "[w]zoom_y y = %d\n", ss->dst_y); ss->zoom_y(row, /* Where to scale to */ ss->tmp, /* Line buffer */ limited_LeftMarginOut, /* Skip */ limited_PatchWidthOut, /* How many pixels to produce */ limited_WidthOut, /* Stride */ ss->params.spp_interp, /* Color count */ &ss->dst_next_list, ss->dst_items); } /* Idiotic C coercion rules allow T* and void* to be */ /* inter-assigned freely, but not compared! */ if ((void *)row != ss->dst) /* no buffering */ goto adv; } { /* We're delivering a buffered output row. */ uint wcount = ss->dst_size - ss->dst_offset; uint ncopy = min(wleft, wcount); if (ss->params.Active) memcpy(pw->ptr + 1, (byte *) ss->dst + ss->dst_offset, ncopy); pw->ptr += ncopy; ss->dst_offset += ncopy; if (ncopy != wcount) return 1; ss->dst_offset = 0; } /* Advance to the next output row. */ adv:++ss->dst_y; if (ss->dst_y != limited_HeightOut) calculate_dst_contrib(ss, ss->dst_y); } /* Read input data and scale horizontally into tmp. */ { uint rleft = pr->limit - pr->ptr; uint rcount = ss->src_size - ss->src_offset; if (rleft == 0) return 0; /* need more input */ if (ss->src_y >= ss->params.HeightIn) return ERRC; if (rleft >= rcount) { /* We're going to fill up a row. */ const byte *row; if (ss->src_offset == 0) { /* We have a complete row. Read the data */ /* directly from the input. */ row = pr->ptr + 1; } else { /* We're buffering a row in src. */ row = ss->src; if (ss->params.Active) memcpy((byte *) ss->src + ss->src_offset, pr->ptr + 1, rcount); ss->src_offset = 0; } /* Apply filter to zoom horizontally from src to tmp. */ if_debug3('w', "[w]zoom_x y = %d to tmp row %d%s\n", ss->src_y, (ss->src_y % ss->max_support), ss->params.Active ? "" : " (Inactive)"); if (ss->params.Active) ss->zoom_x(/* Where to scale to (dst line address in tmp buffer) */ ss->tmp + (ss->src_y % ss->max_support) * limited_WidthOut * ss->params.spp_interp, row, /* Where to scale from */ limited_LeftMarginOut, /* Line skip */ limited_PatchWidthOut, /* How many pixels to produce */ ss->params.spp_interp, /* Color count */ ss->contrib, ss->items); pr->ptr += rcount; ++(ss->src_y); goto top; } else { /* We don't have a complete row. Copy data to src buffer. */ if (ss->params.Active) memcpy((byte *) ss->src + ss->src_offset, pr->ptr + 1, rleft); ss->src_offset += rleft; pr->ptr += rleft; return 0; } } } /* Release the filter's storage. */ static void s_IScale_release(stream_state * st) { stream_IScale_state *const ss = (stream_IScale_state *) st; gs_memory_t *mem = ss->memory; gs_free_object(mem, (void *)ss->src, "image_scale src"); /* no longer const */ ss->src = 0; gs_free_object(mem, ss->dst, "image_scale dst"); ss->dst = 0; gs_free_object(mem, ss->items, "image_scale contrib[*]"); ss->items = 0; gs_free_object(mem, ss->dst_items, "image_scale contrib_dst[*]"); ss->dst_items = 0; gs_free_object(mem, ss->contrib, "image_scale contrib"); ss->contrib = 0; gs_free_object(mem, ss->tmp, "image_scale tmp"); ss->tmp = 0; } /* Stream template */ const stream_template s_IScale_template = { &st_IScale_state, s_IScale_init, s_IScale_process, 1, 1, s_IScale_release, s_IScale_set_defaults };