
Ghostscript Manual

version 10.0.0

Artifex

September 24, 2022

Contents
Table of Contents 1

Introduction 3

What is Ghostscript? 3

Ghostscript 3

GhostPDF 3

GhostPDL 3

GhostPCL 3

GhostXPS 4

URW Font Information 4

Document roadmap by theme 4

What should I read if I’m a new user? 4

GPL and commercial Ghostscript 4

Before building Ghostscript 4

What should I read if I’m not a new user? 4

What if I’m a developer? 5

What if I’m writing documentation? 5

Presence on the World Wide Web 5

Ghostscript’s home page 5

Adobe PostScript, Encapsulated PostScript, and PDF reference documentation 5

Other material on the WWW 5

How to Build Ghostscript from Source Code 7

General overview 7

Built libraries 7

How to acquire the source code 7

How to acquire the development source code 8

How to unpack the source code 8

How to unpack compressed tar files generally 8

How to unpack Ghostscript itself 9

Ghostscript Core Source subdirectories 9

Additional GhostPDL source subdirectories 9

How to check for post-release bug fixes 10

How to prepare the makefiles 10

Platform-specific makefiles 10

Changes for your environment 10

Selecting features and devices 11

Precompiled run-time data 12

Setting up “makefile” 12

Invoking “make” 13

Cross-compiling 13

How to build Ghostscript from source (PC version) 14

Microsoft Visual Studio 14

Using Microsoft Visual Studio 14

Further details 14

Using the command line 15

Microsoft Environment for 64-bit 15

Making self-extracting installers 16

Microsoft Environment for WinRT 16

Cygwin32 gcc 16

MSys/Mingw 16

How to build Ghostscript from source (MacOS version) 16

MacOS X 16

How to build Ghostscript from source (Unix version) 17

make tools 18

GNU make 18

OS-specific issues 18

MacOS or Linux / OpenBSD 18

H-P RISC workstations 18

IBM AIX 19

Silicon Graphics 19

Oracle/Sun 19

Solaris 20

Other environments 20

Environments lacking multi-threading 20

Plan 9 20

How to build Ghostscript with UFST 20

How to Install Ghostscript 23

Overview of how to install Ghostscript 23

Installing Ghostscript on Unix 23

Fonts 23

Ghostscript as a shared object 24

Additional notes on Linux 24

Installing Ghostscript on MS Windows 24

Windows 3.1 (16-bit) 24

Windows 95, 98, Me 24

Windows NT4, 2000, XP, 2003 or Vista (32-bit) 24

Windows XP x64 edition, 2003 or Vista (64-bit) 24

Installing 24

General Windows configuration 24

Uninstalling Ghostscript on Windows 25

Installing Ghostscript on OpenVMS 25

Using Ghostscript 27

Invoking Ghostscript 27

Help at the command line: gs -h 27

Selecting an output device 28

Output resolution 29

Output to files 29

One page per file 29

-o option 30

Choosing paper size 30

Changing the installed default paper size 31

Interacting with pipes 31

Using Ghostscript with PDF files 32

Switches for PDF files 32

-dNEWPDF 32

-dPDFINFO 32

-dPDFFitPage 32

-dPrinted & -dPrinted=false 32

-dUseBleedBox 32

-dUseTrimBox 32

-dUseArtBox 33

-dUseCropBox 33

-sPDFPassword=password 33

-dShowAnnots=false 33

-dShowAcroForm=false 33

-dNoUserUnit 33

-dRENDERTTNOTDEF 33

-dFirstPage=pagenumber 33

-dLastPage=pagenumber 34

-sPageList=pageranges 34

Problems interpreting a PDF file 35

PDF files from standard input 35

Using Ghostscript with EPS files 35

Using Ghostscript with overprinting and spot colors 35

How Ghostscript finds files 36

Testing a file name for an absolute path 36

Finding PostScript Level 2 resources 36

Font lookup 37

Differences between search path and font path 38

Suggested GS_FONTPATH for different systems 38

CID fonts 39

CID font substitution 40

Automatic CIDFont Substitution 40

Explicit CIDFont Substitution 40

Format 1 40

Format 2 40

Format 3 41

Examples 41

Using Unicode True Type fonts 42

Temporary files 43

Where Ghostscript puts temporary files 43

Notes on specific platforms 43

Word size (32 or 64 bits) 43

Unix 43

pv.sh 43

sysvlp.sh 43

pj-gs.sh 44

unix-lpr.sh 44

lprsetup.sh 44

VMS 44

Using X Windows on VMS 45

MS Windows 45

MS-DOS 45

X Windows 45

X Windows resources 45

X resources 46

Working around bugs in X servers 46

X device parameters 47

AlwaysUpdate <boolean> 47

MaxBitmap <integer> 47

MaxTempPixmap, MaxTempImage <integer> 47

SCO Unix 47

Command line options 47

General switches 47

Input control 47

@filename 47

– filename arg1 … 48

-+ filename arg1 … 48

-@ filename arg1 … 48

- 48

-_ 48

-c token … 48

-c string … 48

-f 48

-f filename 48

File searching 48

-I directories 48

-P 48

-P- 49

Setting parameters 49

-D name, -d name 49

-D name=token, -d name=token 49

-S name=string, -s name=string 49

-p name=string 49

-u name 50

-g number1 x number2 50

-r number (same as -r number x number) 50

-r number1 x number2 50

Suppress messages 50

-q 50

Parameter switches (-d and -s) 50

Rendering parameters 50

-dCOLORSCREEN 50

-dCOLORSCREEN=0 50

-dCOLORSCREEN=false 50

-dDITHERPPI= lpi 51

-dInterpolateControl= control_value 51

-dDOINTERPOLATE 51

-dNOINTERPOLATE 51

-dTextAlphaBits= n 51

-dGraphicsAlphaBits= n 51

-dAlignToPixels= n 52

-dGridFitTT= n 52

-dUseCIEColor 52

-dNOCIE 52

-dNOSUBSTDEVICECOLORS 52

-dNOPSICC 52

-dNOTRANSPARENCY 53

-dALLOWPSTRANSPARENCY 53

-dNO_TN5044 53

-dDOPS 53

-dBlackText 53

-dBlackVector 53

-dBlackThresholdL= float 53

-dBlackThresholdC= float 53

Page parameters 54

-dFirstPage= pagenumber 54

-dLastPage= pagenumber 54

-sPageList= pagenumber 54

-dFIXEDMEDIA 54

-dFIXEDRESOLUTION 54

-dPSFitPage 54

-dORIENT1=true 54

-dORIENT1=false 54

-dDEVICEWIDTHPOINTS= w 55

-dDEVICEHEIGHTPOINTS= h 55

-sDEFAULTPAPERSIZE= a4 55

-dFitPage 55

-sNupControl= Nup_option_string 55

Font-related parameters 55

-dLOCALFONTS 55

-dNOFONTMAP 55

-dNOFONTPATH 56

-dNOPLATFONTS 56

-dNONATIVEFONTMAP 56

-sFONTMAP= filename1;filename2;… 56

-sFONTPATH= dir1;dir2;… 56

-sSUBSTFONT= fontname 56

Resource-related parameters 56

-sGenericResourceDir= path 56

-sFontResourceDir= path 57

Interaction-related parameters 57

-dBATCH 57

-dNOPAGEPROMPT 57

-dNOPAUSE 57

-dNOPROMPT 57

-dQUIET 57

-dSHORTERRORS 57

-sstdout= filename 57

-dTTYPAUSE 57

Device and output selection parameters 58

-dNODISPLAY 58

-sDEVICE= device 58

-sOutputFile= filename 58

-d.IgnoreNumCopies= true 58

Deferred Page Rendering 58

EPS parameters 58

-dEPSCrop 58

-dEPSFitPage 58

-dNOEPS 58

ICC color parameters 59

-sDefaultGrayProfile= filename 59

-sDefaultRGBProfile= filename 59

-sDefaultCMYKProfile= filename 59

-sDeviceNProfile= filename 59

-sOutputICCProfile= filename 59

-sICCOutputColors= “Cyan, Magenta, Yellow, Black, Orange, Violet” 59

-sProofProfile= filename 60

-sDeviceLinkProfile= filename 60

-sNamedProfile= filename 60

-sBlendColorProfile= filename 60

-dColorAccuracy= 0/1/2 60

-dRenderIntent= 0/1/2/3 60

-dBlackPtComp= 0/1 60

-dKPreserve= 0/1/2 60

-sVectorICCProfile= filename 61

-dVectorIntent= 0/1/2/3 61

-dVectorBlackPt= 0/1 61

-dVectorKPreserve= 0/1/2 61

-sImageICCProfile= filename 61

-dImageIntent= 0/1/2/3 61

-dImageBlackPt= 0/1 61

-dImageKPreserve= 0/1/2 61

-sTextICCProfile= filename 61

-dTextIntent= 0/1/2/3 61

-dTextBlackPt= 0/1 61

-dTextKPreserve= 0/1/2 61

-dOverrideICC 62

-sSourceObjectICC= filename 62

-dDeviceGrayToK= true/false 62

-dUseFastColor= true/false 62

-dSimulateOverprint= true/false 62

-dOverprint= /enable | /disable | /simulate 62

-dUsePDFX3Profile= int 63

-sUseOutputIntent= string 63

-sICCProfilesDir= path 63

Other parameters 64

-dFILTERIMAGE 64

-dFILTERTEXT 64

-dFILTERVECTOR 64

-dDELAYBIND 64

-dDOPDFMARKS 64

-dJOBSERVER 64

-dNOCACHE 64

-dNOGC 65

-dNOOUTERSAVE 65

-dNOSAFER 65

-dSAFER 65

-dOLDSAFER 67

-dPreBandThreshold= true/false 67

-dWRITESYSTEMDICT 67

Improving performance 67

Summary of environment variables 68

GS, GSC (MS Windows only) 68

GS_DEVICE 68

GS_FONTPATH 68

GS_LIB 68

GS_OPTIONS 68

TEMP, TMPDIR 69

Debugging 69

Debug switches 69

Switches used in debugging 71

Visual Trace 72

Appendix: Paper sizes known to Ghostscript 72

U.S. standard 72

ISO standard 73

JIS standard 74

ISO/JIS switchable 74

Other 74

API 75

What is the Ghostscript Interpreter API? 75

Exported functions 75

gsapi_revision() 76

gsapi_new_instance() 77

gsapi_delete_instance() 77

gsapi_set_stdio_with_handle() 77

gsapi_set_stdio() 77

gsapi_set_poll_with_handle() 77

gsapi_set_poll() 77

gsapi_set_display_callback() 77

gsapi_register_callout() 77

gsapi_deregister_callout() 78

gsapi_set_arg_encoding() 78

gsapi_set_default_device_list() 78

gsapi_get_default_device_list() 78

gsapi_init_with_args() 78

gsapi_run_*() 78

gsapi_exit() 78

gsapi_set_param() 78

gsapi_get_param() 79

gsapi_enumerate_params() 80

gsapi_add_control_path() 80

gsapi_remove_control_path() 80

gsapi_purge_control_paths() 80

gsapi_activate_path_control() 80

gsapi_is_path_control_active() 80

gsapi_add_fs 80

gsapi_remove_fs 81

gsapi_fs_t 81

Callouts 84

Return codes 85

Return Codes from gsapi_*() 85

Example Usage 85

Example 1 86

Example 2 87

Example 3 88

Example 4 89

Multiple Threads 89

Standard Input and Output 89

Display Device 89

Legacy method 89

Modern method 90

display_open() 92

display_preclose() 92

display_close() 92

display_presize() 92

display_size() 92

display_sync() 92

display_page() 92

display_update() 93

display_memalloc() 93

display_memfree() 93

display_separation() 93

display_adjust_band_height() 93

display_rectangle_request() 94

Language Bindings 95

The C API 95

Licensing 95

Open Source license 95

Commercial license 95

Demo code 95

C# 95

Introduction 95

Platform & setup 96

GhostAPI 96

Structs and Enums 97

gsapi_revision_t 97

gs_set_param_type 97

gsEncoding 97

Constants 97

gsConstants 98

GSAPI 98

gsapi_revision 98

gsapi_new_instance 98

gsapi_delete_instance 99

gsapi_set_stdio_with_handle 99

gsapi_set_stdio 99

gsapi_set_poll_with_handle 99

gsapi_set_poll 100

gsapi_set_display_callback 100

gsapi_register_callout 100

gsapi_deregister_callout 100

gsapi_set_arg_encoding 100

gsapi_set_default_device_list 100

gsapi_get_default_device_list 100

gsapi_init_with_args 101

gsapi_run_* 101

gsapi_run_string_begin 101

gsapi_run_string_continue 101

gsapi_run_string_with_length 101

gsapi_run_string 101

gsapi_run_string_end 101

gsapi_run_file 101

gsapi_exit 102

gsapi_set_param 102

gsapi_get_param 102

gsapi_enumerate_params 102

gsapi_add_control_path 103

gsapi_remove_control_path 103

gsapi_purge_control_paths 103

gsapi_activate_path_control 103

gsapi_is_path_control_active 103

Callback and Callout prototypes 103

gs_stdio_handler 104

gsPollHandler 104

gsCallOut 104

GhostNET 104

Enums 105

Tasks 105

Results 106

Status 106

The Parameter Struct 106

Parameters explained 106

The Event class 107

GSNET 107

Sample code 108

Delegates 110

DLLProblemCallBack 110

StdIOCallBack 110

ProgressCallBack 110

PageRenderedCallBack 110

GetVersion 110

DisplayDeviceOpen 111

DisplayDeviceClose 111

GetPageCount 111

CreateXPS 111

DistillPS 112

DisplayDeviceRunFile 112

DisplayDeviceRenderThumbs 112

DisplayDeviceRenderPages 113

GetStatus 113

Cancel 113

GhostscriptException 113

GhostMono 113

Enums 113

Tasks 113

Results 114

Status 114

The Parameter Struct 114

Parameters explained 115

The Event class 115

GSMONO 116

Delegates 118

DLLProblemCallBack 118

StdIOCallBack 119

ProgressCallBack 119

PageRenderedCallBack 119

GetVersion 119

DisplayDeviceOpen 119

DisplayDeviceClose 119

GetPageCount 120

DistillPS 120

DisplayDeviceRenderAll 120

DisplayDeviceRenderThumbs 120

DisplayDeviceRenderPages 120

GetStatus 121

GhostscriptException 121

Java 121

Introduction 121

Platform & setup 122

jni: Building the Java Native Interface 122

Preparing your include folder 122

Building on Windows 122

Building on MacOS 122

Building on Linux 122

gsjava: Building the JAR 123

Building with the command line 123

Building with Eclipse 123

Linking the JAR 123

Demo projects 123

gstest 123

gsviewer 123

Building on Windows 124

Running on Windows 124

Building on MacOS 124

Running on MacOS 124

Building on Linux 124

Running on Linux 124

Using the Java library 125

gsjava 125

GSAPI & GSInstance 125

GSAPI 125

gsapi_revision 125

GSAPI.Revision 125

gsapi_new_instance 126

gsapi_delete_instance 126

gsapi_set_stdio_with_handle 126

gsapi_set_stdio 126

gsapi_set_poll_with_handle 127

gsapi_set_poll 127

gsapi_set_display_callback 127

gsapi_register_callout 127

gsapi_deregister_callout 127

gsapi_set_arg_encoding 127

gsapi_set_default_device_list 127

gsapi_get_default_device_list 128

gsapi_init_with_args 128

gsapi_run_* 128

gsapi_run_string_begin 128

gsapi_run_string_continue 128

gsapi_run_string_with_length 129

gsapi_run_string 129

gsapi_run_string_end 130

gsapi_run_file 130

gsapi_exit 130

gsapi_set_param 130

gsapi_get_param 131

gsapi_enumerate_params 131

gsapi_add_control_path 132

gsapi_remove_control_path 132

gsapi_purge_control_paths 132

gsapi_activate_path_control 133

gsapi_is_path_control_active 133

Callback & Callout interfaces 133

IStdInFunction 133

IStdOutFunction 133

IStdErrFunction 134

IPollFunction 134

ICalloutFunction 134

GSInstance 134

Constructors 134

delete_instance 134

set_stdio 134

set_poll 134

set_display_callback 135

register_callout 135

deregister_callout 135

set_arg_encoding 135

set_default_device_list 135

get_default_device_list 135

init_with_args 135

run_string_begin 135

run_string_continue 135

run_string 136

run_file 136

exit 136

set_param 136

get_param 136

enumerate_params 137

add_control_path 137

remove_control_path 137

purge_control_paths 137

activate_path_control 137

is_path_control_active 137

Utility classes 137

com.artifex.gsjava.util.Reference 137

Python 138

Introduction 138

Platform & setup 138

Specifying the Ghostscript shared library 138

API test 138

The gsapi Python module 139

gsapi_revision() 139

gsapi_new_instance(caller_handle) 139

gsapi_delete_instance(instance) 139

gsapi_set_stdio(instance, stdin_fn, stdout_fn, stderr_fn) 140

gsapi_set_poll(instance, poll_fn) 140

gsapi_set_display_callback(instance, callback) 140

gsapi_set_arg_encoding(instance, encoding) 141

gsapi_set_default_device_list(instance, list_) 141

gsapi_get_default_device_list(instance) 142

gsapi_init_with_args(instance, args) 142

gsapi_run_* 142

gsapi_run_string_begin(instance, user_errors) 143

gsapi_run_string_continue(instance, str_, user_errors) 143

gsapi_run_string_with_length(instance, str_, length, user_errors) 143

gsapi_run_string(instance, str_, user_errors) 144

gsapi_run_string_end(instance, user_errors) 144

gsapi_run_file(instance, filename, user_errors) 145

gsapi_exit(instance) 145

gsapi_set_param(instance, param, value, type_=None) 145

gsapi_get_param(instance, param, type_=None, encoding=None) 146

gsapi_enumerate_params(instance) 147

gsapi_add_control_path(instance, type_, path) 147

gsapi_remove_control_path(instance, type_, path) 147

gsapi_purge_control_paths(instance, type_) 148

gsapi_activate_path_control(instance, enable) 148

gsapi_is_path_control_active(instance) 148

Details of Ghostscript Output Devices 149

Notes on measurements 149

Inches 149

Centimeters and millimeters 149

Points 149

Dots per inch 149

Bits per pixel 149

Image file formats 149

PNG file format 150

Options 150

Examples 151

JPEG file format (JFIF) 151

Options 151

Examples 151

PNM 151

TIFF file formats 151

Options 154

FAX 156

BMP 156

PCX 157

PSD 157

PDF 157

Optical Character Recognition (OCR) devices 158

OCR text output 158

PDF image output (with OCR text) 159

Vector PDF output (with OCR Unicode CMaps) 159

High level devices 159

PDF writer 159

PS2 writer 160

EPS writer 160

PXL 160

Text output 160

Display devices 160

X Window System 160

Display device (MS Windows, OS/2, gtk+) 160

Options 160

IJS - Inkjet and other raster devices 161

Building IJS 162

Rinkj - Resplendent inkjet driver 162

HP Deskjet official drivers 163

Gimp-Print driver collection 164

MS Windows printers 164

Supported command-line parameters 164

Supported options (device properties) 165

Duplex printing 166

Sun SPARCprinter 166

Installation 166

Problems 167

Apple dot matrix printer 167

Special and Test devices 167

Raw ‘bit’ devices 167

Bounding box output 167

Ink coverage output 168

Permutation (DeviceN color model) 168

spotcmyk (DeviceN color model) 169

XCF (DeviceN color model) 169

High Level Devices 171

PCL-XL (PXL) 171

Options 171

Text output 171

Options 171

DOCX output 172

XPS file output 172

The family of PDF and PostScript output devices 172

Common controls and features 172

Distiller Parameters 173

Note 0 176

Note 1 176

Note 2 176

Note 3 177

Note 4 177

Note 5 177

Note 6 177

Note 7 177

Note 8 177

Note 9 177

Note 10 177

Note 11 177

Note 12 178

Note 13 178

Note 14 178

Note 15 178

Note 16 178

Color Conversion and Management 179

Setting page orientation 179

Controls and features specific to PostScript and PDF input 179

Controls and features specific to PCL and PXL input 180

Example creation of a PDF/A output file 180

Example using DISTILLERPARAMS to set the quality of JPEG compression 181

PDF file output 181

PostScript file output 185

Controlling device specific behaviour 186

Encapsulated PostScript (EPS) file output 186

Creating a PDF/X-3 document 186

Creating a PDF/A document 188

Ghostscript PDF Printer Description 188

Windows XP or 2000 188

pdfmark extensions 189

Limitations 189

The Interface between Ghostscript and Device Drivers 191

Adding a driver 191

Keeping things simple 191

Driver structure 192

Structure definition 193

For sophisticated developers only 193

Coordinates and types 194

Coordinate system 194

Color definition 194

Separable and linear fields 197

Changing color_info data 197

Types 197

Coding conventions 200

Allocating storage 200

Driver instance allocation 200

Printer drivers 201

Printer drivers (Multi-threaded) 201

Driver procedures 203

Life cycle 203

Open, close, sync, copy 203

Color and alpha mapping 204

Pixel-level drawing 206

Bitmap imaging 206

Pixmap imaging 207

Compositing 208

Polygon-level drawing 209

Linear color drawing 210

High-level drawing 212

Paths 212

The function specification f 213

Images 213

Text 217

Unicode support for high level (vector) devices 218

Reading bits back 218

Parameters 220

Default color rendering dictionary (CRD) parameters 220

Device parameters affecting interpretation 220

Page devices 221

Miscellaneous 221

Device Specific Operations 221

Tray selection 222

Tray rotation and the LeadingEdge parameter 222

Interaction between LeadingEdge and PageSize 223

Ghostscript and the PostScript Language 225

Ghostscript’s capabilities in relation to PostScript 225

Implementation limits 225

Architectural limits 226

Typical memory limits in LanguageLevel 1 226

Other differences in VM consumption 226

Additional operators in Ghostscript 227

Graphics and text operators 227

Transparency 227

Graphics state operators 227

Rendering stack operators 228

New ImageType 229

Other graphics state operators 229

Character operators 229

Other operators 230

Mathematical operators 230

Dictionary operators 230

File operators 230

Miscellaneous operators 231

Device operators 233

Filters 235

Standard filters 235

Non-standard filters 235

Unstable filters 236

Device parameters 237

User parameters 240

Miscellaneous additions 241

Extended semantics of ‘run’ 241

Decoding resources 241

CIDDecoding resources 242

GlyphNames2Unicode 242

Multiple Resource directories 242

Scripting the PDF interpreter 243

PostScript functions 243

PostScript operators interfacing to the PDF interpreter 244

The Ghostscript Library 247

PostScript operator API 247

Patterns 249

Lower-level API 249

Visual Trace instructions 249

Visual Trace instructions semantics 250

vd_trace_interface structure 252

A full example 253

Information for Ghostscript Developers 255

Introduction 255

Architecture 255

Design Goals 255

Functionality 255

Performance 255

Licensing 255

Other 255

Design principles 255

Non-preemption 256

Multi-instantiability 256

Late configuration binding 256

Large-scale structure 257

Object-oriented constructs 257

File roadmap 257

Substrate 257

Runtime Context 257

Memory manager 258

Streams 258

Platform-specific code 258

Miscellaneous 258

Graphics library 259

Support 259

Paths 259

Text 259

Images 260

Paint 260

Clipping 262

Other graphics 263

Font API support 263

Driver support 263

Visual Trace 264

Device drivers 264

Internal devices 264

PostScript and PDF writers 264

Shared support 265

PDF output driver (pdfwrite) 265

Other high-level devices 265

Other maintained drivers 265

Window system drivers 266

Raster file output drivers 266

Printer drivers 266

Contributed drivers 266

PostScript interpreter 267

Main program 267

Data structures 267

Stacks 268

Interpreter loop 268

Scanning/parsing 268

Standard operators 268

Non-standard operators 269

Interpreter support 270

PostScript code 270

PDF interpreter 271

PostScript Printer Description 272

Build process 272

Makefile structure 272

.dev files 273

Generators 273

Support 274

Utilities 274

Utilities in PostScript 275

Utility scripts 275

Memory management 275

Memory manager architecture 275

Objects vs strings 275

Structure descriptors 276

Garbage collection 276

Movability 277

Parent hierarchy 277

Allocator API 277

Freeing storage 277

Explicit freeing 277

Reference counting 278

(Real) garbage collection 278

Special implementations 278

malloc 278

Locking 278

Retrying 278

Chunk 278

Standard implementation 279

PostScript interpreter extensions 279

Refs (PostScript “objects”) 279

Stable allocators 280

Garbage collection 280

Portability 281

Structural mechanisms 281

CPU and compiler 281

Library headers 281

Cross-platform APIs 282

Makefiles 282

Coding standards 283

Explicit dependencies 283

Implicit dependencies 284

Platform-specific code 284

Troubleshooting 285

Profiling 285

Profiling with Microsoft Developer Studio 6 285

Ghostscript C Coding Guidelines 287

C language do’s and don’ts 287

Preprocessor 287

Conditionals 287

Macros 287

Other 288

Lexical elements 288

Scoping (extern, static, …) 288

Scalars 288

Arrays 289

Typedefs 289

Structures 289

Unions 289

Expressions 289

Statements 290

Procedures 290

Standard library 291

Language extensions 291

Scoping 291

Scalar types 291

Stylistic conventions 291

Formatting 292

Indentation 292

Spaces 293

Parentheses 293

Preprocessor 294

Conditionals 294

Macros 294

Comments 295

Naming 295

Types 295

Pointers 295

Procedures 296

Miscellany 296

Local variables 296

Compiler warnings 296

File structuring 296

All files 296

Makefiles 297

General C code 297

Headers (.h files) 297

Source (.c files) 298

Ghostscript conventions 298

Specific names 298

code 298

status 298

Structure type descriptors 298

“Objects” 299

Classes 299

Procedures 299

Subclassing 300

Error handling 301

Ghostscript PostScript Coding Guidelines 303

Summary of the coding guidelines 303

Use of PostScript language features 303

Restrictions 303

Protection 303

Standard constructions 303

Multi-way conditionals 303

Switches 304

File structuring 305

Commenting 305

Formatting 305

Indentation 305

Spaces 306

Naming 306

Miscellany 306

Some useful non-standard operators 306

Some useful procedures 307

Other 307

Convert PostScript to Encapsulated PostScript Interchange Format 309

Overview 309

Usage 309

MS-DOS 309

Unix 309

Limitations 309

Files 309

PostScript Files Distributed with Ghostscript 311

Generally used system files 311

gs_*_e.ps 311

PostScript Encodings 311

PDF Encodings 311

Non-standard Encodings 311

Pseudo-encodings 311

Other files 311

Configuration files 313

More obscure system files 313

PDF-specific system files 313

Display PostScript-specific system files 314

Art and examples 314

Utilities 315

Development tools 316

Odds and ends 317

Fonts and Font Facilities Supplied with Ghostscript 319

About Ghostscript fonts 319

Ghostscript’s free fonts 319

How Ghostscript gets fonts when it runs 319

Adding your own fonts 320

Converting BDF fonts 320

For developers only 320

Contents of fonts 321

Font names and unique IDs 321

Running Ghostscript with third-party font renderers 321

Setting Up a Unix lpr Filter for Ghostscript 325

What it can do 325

Setting it up 325

Editing the device list DEVICES 325

Field 1: bits per pixel 325

Field 2: colours 325

Field 3: dual queues 326

Example definition of DEVICES 326

Editing the filter list 326

Editing the printer port and type 326

Modifying printcap.insert 326

Single or dual queues 326

News 327

Guide to Ghostscript Source Code 329

Conceptual overview 329

PostScript interpreter 329

PDF interpreter 329

Graphics library 329

Device drivers 329

Platform-specific code 330

Makefiles 330

Third Party Libraries Used by Ghostscript and GhostPDL 333

Unsupported devices 335

H-P 8xx, 1100, and 1600 color inkjet printers 335

Drivers contained in gdevcd8.c 335

Further documentation 335

H-P 812, 815, 832, 880, 882, 895, and 970 color inkjet printers 336

Drivers contained in gdevcd8.c 336

Further documentation 336

H-P color inkjet printers 337

Drivers contained in gdevcdj.c 337

Default paper size 338

DeskJet physical limits 338

Printer properties (command-line parameters) 338

Bits per pixel 338

DeskJet properties 339

PaintJet XL300 / PaintJet XL properties 339

Gamma correction 340

HP’s resolution-enhanced mode for Inkjet printers 340

General tips 341

Canon BJC-8200 printer 341

Introduction 341

The uniprint control files for the BJC-8200 341

Further Optimization for the Canon BJC-8200 342

Outlook 343

Usage on RedHat Linux 343

Other Canon BubbleJet (BJC) printers 343

History 344

Configuring and building the BJC drivers 344

CMYK-to-RGB color conversion 344

Vertical centering of the printable area 344

Page margins 344

Makefile and compilation 344

Use of the drivers 344

Supported Options and Defaults 345

Device information 347

Hardware margins 348

PostScript printer description (PPD) files 348

Customizing the PPD files 348

How to report problems 348

Acknowledgements 349

Epson Stylus color printer (see also uniprint) 349

Usage 349

Options 349

Application note and FAQ 351

Support for A3 paper 351

Margins, PageSize 351

Stylus Color II / IIs and 1500 352

Recommendations 352

Color dithering experiments with gdevstc 1.21 352

Color transformation 353

ColorAdjustMatrix 353

RGB / CMYK coding and transfer, and BitsPerPixel 354

What is weaving? 355

Print mode parameters 356

Unidirectional 356

Microweave, noWeave and OutputCode=deltarow 356

Model 356

Bugs and pitfalls 356

Tests 357

Acknowledgments 357

uniprint, a flexible unified printer driver 357

The state of this driver 358

Notes on uniprint’s background 358

Godzilla’s guide to the creation of Unified Printer Parameter (.upp) files 359

All parameters in brief 361

uniprint’s Roll of Honor 361

Uniprint weaving parameters HowTo 362

Example: stc.upp from Aladdin Ghostscript 6.01 363

Extension to uniprint for the Epson Stylus Color 300 363

Example 1 - Epson Stylus Color 300 - 360 dpi colour 364

Example 2 - Epson Stylus Color 300 - 180 dpi black only 365

Example 3 - Epson Stylus Color 300 - 360 dpi black only 365

Indices and tables 367

Table of Contents

Table of Contents

1

Introduction
This document is a roadmap to the Ghostscript documentation. After looking through it, if you want to install
Ghostscript and not only use it, we recommend you read How to install Ghostscript, and How to compile Ghostscript
from source code (which is necessary before installing it on Unix and VMS systems).

What is Ghostscript?
There are various products in the Ghostscript family; this document describes what they are, and how they are
related.

Ghostscript

Ghostscript is an interpreter for PostScript® and Portable Document Format (PDF) files.

Ghostscript consists of a PostScript interpreter layer, and a graphics library. The graphics library is shared with all
the other products in the Ghostscript family, so all of these technologies are sometimes referred to as Ghostscript,
rather than the more correct GhostPDL.

Binaries for Ghostscript and (see below) GhostPDF (included in the Ghostscript binaries) for various systems can be
downloaded from here. The source can be found in both the Ghostscript and GhostPDL downloads from the same
site.

GhostPDF

Prior to release 9.55.0 GhostPDF was an interpreter for the PDF page description language built on top of
Ghostscript, and written in the PostScript programming language. From 9.55.0 onwards there is a new GhostPDF
executable, separate from Ghostscript and written in C rather than PostScript.

This new interpreter has also been integrated into Ghostscript itself, in order to preserve the PDF functionality of that
interpreter. For now, the old PostScript-based interpreter remains the default, but the new interpreter is built-in
alongside it.

The intention is that the new interpreter will replace the old one, which will be withdrawn.

It is possible to control which interpreter is used with the NEWPDF command-line switch. When this is false (the
current default) the old PostScript-based interpreter is used, when NEWPDF is true then the new C-based interpreter
is used.

GhostPDL

Historically, we’ve used GhostPDL as an umbrella term to encompass our entire line of products. We’ve now brought
all these disparate products together into a single package, called, appropriately enough, GhostPDL.

When running on a printer (or server) GhostPDL now automatically detects the type of data being fed to it and
processes it accordingly. The individual interpreters all plug into a top-level module that handles both automatic
language detection and Printer Job Language (PJL) based configuration.

The exact set of interpreters present in an installation can be tuned by the integrator for their specific product/use
cases.

In addition to our existing PDL modules (PS, PDF, PCL, PXL, and XPS) we have now added new modules to handle
a range of common image formats. With these installed, GhostPDL will handle JPEGs (both JFIF and EXIF), PWGs,
TIFFs, PNGs, JBIG2s, and JPEG2000s.

GhostPDL is available both under the GNU Affero GPL license and for commercial licensing from Artifex.

The source code for GhostPDL can be found here.

GhostPCL

GhostPCL is an interpreter for PCL™ and PXL files. This consists of an PCL/PXL interpreter hooked up to the
Ghostscript graphics library.

GhostPCL is available both under the GNU Affero GPL license and for commercial licensing from Artifex.

Introduction

3

http://www.ghostscript.com/download
http://www.gnu.org/licenses/agpl-3.0.html
https://artifex.com/licensing/commercial/
https://artifex.com
http://www.ghostscript.com/download
http://www.gnu.org/licenses/agpl-3.0.html
https://artifex.com/licensing/commercial/
https://artifex.com

Binaries for GhostPCL for various systems can be downloaded from here. The source can be found in the
GhostPCL/GhostPDL downloads from the same site.

GhostXPS

GhostXPS is an interpreter for XPS (XML Paper Specfication) files. This consists of an XPS interpreter hooked up to
the Ghostscript graphics library.

GhostXPS is available both under the GNU Affero GPL license and for commercial licensing from Artifex.

Binaries for GhostXPS for various systems can be downloaded from here. The source can be found in the
GhostXPS/GhostPDL downloads from the same site.

URW Font Information

The set of truetype fonts in the urwfonts directory are necessary for the PCL/XL interpreter to function properly but
they ARE NOT FREE SOFTWARE and are NOT distributed under the GNU GPL/AGPL. They can instead be
redistributed under the AFPL license which bars commercial use.

If your copy of GhostPDL includes these fonts, you should have received a copy of the Aladdin Free Public License,
usually in a file called COPYING.AFPL. If not, please contact Artifex Software, Inc. 1305 Grant Avenue - Suite 200,
Novato, CA 94945 USA, or visit Artifex

Document roadmap by theme

What should I read if I’m a new user?

• How to use Ghostscript. This includes both a quickstart introduction to the command line version and more
extensive reference material.

• detailed information about specific devices that Ghostscript can use for output.

• more detailed information about how to use Ghostscript under Unix with lpr as a filter for printing.

• for information about known problems or to report a new one, please visit bugs.ghostscript.com but remember
that free versions of Ghostscript come with with NO WARRANTY and NO SUPPORT.

GPL and commercial Ghostscript

GPL Ghostscript, Artifex Ghostscript and AFPL Ghostscript are different releases.

• additional information about GPL Ghostscript releases that is not relevant to commercial versions.

If you run into any questions, or if you are going to be using Ghostscript extensively, you should at least skim, and
probably eventually read:

• about the fonts distributed with Ghostscript, including how to add or replace fonts.

• a description of the Ghostscript language, and its differences from the documented PostScript language.

• about the postscript files distributed with Ghostscript (other than fonts).

Before building Ghostscript

If you are going to compile Ghostscript from source, rather than just use an executable you got from somewhere, you
may want to read:

• How to build Ghostscript and install it.

What should I read if I’m not a new user?

If you have already used Ghostscript, when you receive a new release you should begin by reading this file, then:

• News, for incompatible changes and new features in the current release.

Introduction

4

http://www.ghostscript.com/download
http://www.gnu.org/licenses/agpl-3.0.html
https://artifex.com/licensing/commercial/
https://artifex.com
http://www.ghostscript.com/download
https://en.wikipedia.org/wiki/Aladdin_Free_Public_License
https://artifex.com
https://bugs.ghostscript.com
file:///Users/jamielemon/Desktop/freelance/artifex/SDK/ghostscript/ghostpdl/doc/COPYING
https://ghostscript.com/doc/current/News.htm

What if I’m a developer?

If you are going to do any development on or with Ghostscript at all, you should at least look at:

• the roadmap documentation for Ghostscript’s source files and architecture.

If you are going to write a new driver for Ghostscript, you should read:

• the guide to the Ghostscript source code.

• the interface between Ghostscript and device drivers.

If you are considering distributing GPL Ghostscript in conjunction with a commercial product, you should read the
license carefully, and you should also read:

• additional clarification of the circumstances under which Ghostscript can be distributed with a commercial
product.

If you intend to use Ghostscript in the form of a dynamic link library (DLL) under OS/2 or Microsoft Windows or in the
form of shared object under Linux, read:

• documentation on Ghostscript Interpreter API.

If you want to use Ghostscript as part of another program, as a callable PostScript language interpreter, and not as a
DLL or as a self-contained executable application, you should begin by reading:

• the source file imain.h, the documented API for Ghostscript not as a DLL.

or if you are going to use only the Ghostscript graphics library:

• about the structure of the Ghostscript library and its interfaces.

What if I’m writing documentation?

If you are editing or adding to Ghostscript’s existing documentation you should contact us on our Discord channel or
the gs-devel mailing list for guidance, links to those are on: www.ghostscript.com.

Presence on the World Wide Web

Ghostscript’s home page

Ghostscript has a home page on the World Wide Web with helpful information such as the FAQ (Frequently Asked
Questions):

www.ghostscript.com

Adobe PostScript, Encapsulated PostScript, and PDF reference documentation

Adobe makes a wealth of technical documentation available over the Web, including the PostScript Language
Reference Manual (Third Edition) ; the Encapsulated PostScript (EPS) Format Specification version 3, including
Encapsulated PostScript Interchange (EPSI) format; the PDF Reference manuals. The Acrobat SDK contains
pdfmark and Acrobat Distiller parameters documentation.

Other material on the WWW

Much other material about Ghostscript is available on the World Wide Web, both as web pages and as archived
Usenet and mailing list discussions. Use the well-known search engines to find such material.

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

Introduction

5

file:///Users/jamielemon/Desktop/freelance/artifex/SDK/ghostscript/ghostpdl/doc/COPYING
http://www.ghostscript.com/
http://www.ghostscript.com/
http://partners.adobe.com/public/developer/en/ps/PLRM.pdf
http://partners.adobe.com/public/developer/en/ps/PLRM.pdf
http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf
http://partners.adobe.com/public/developer/pdf/index_reference.html
http://partners.adobe.com/public/developer/acrobat/sdk/index.html
http://partners.adobe.com/public/developer/acrobat/sdk/index_doc.html
https://www.artifex.com

How to Build Ghostscript from Source Code

General overview
This document describes how to build a Ghostscript executable from source code. There are four major steps to
building Ghostscript:

1. Acquire the compressed archive files of source code for Ghostscript.

2. Unpack the archive files into the Ghostscript directory.

3. Configure the build to match your system and desired configuration options.

4. Invoke “make” to build the software.

The remainder of this document describes each of these steps in detail. Note that some of this process is
platform-dependent. After building Ghostscript you must then install it; for that, see the installation instructions.

Long term users of Ghostscript may notice the instructions for a number of older systems have been removed from
this document. There is no value judgment implied in this, but recognition that the build system has changed
considerably in recent years, and several of these legacy systems are no longer easily available to the development
team. We will always consider contributions to continue support for legacy systems.

Built libraries
The following Ghostscript libraries will be built for these respective platforms:

Platform Ghostscript library files

Windows 32-bit gpdldll32.dll gsdll32.dll

Windows 64-bit gpdldll64.dll gsdll64.dll

MacOS libgpdl.dylib libgs.dylib

Linux / OpenBSD libgpdl.so libgs.so

Note

The actual filenames on MacOS will be appended with the version of Ghostscript with associated symlinks.

How to acquire the source code
Building Ghostscript requires the Ghostscript source code itself, and in some cases the source code for the
third-party libraries that Ghostscript uses.

Official releases can be found under the AGPL license at:

https://ghostscript.com/download/

Ghostscript source code is packaged in gzip-compressed tar archives (*.tar.gz), e.g.:

ghostscript-#.##.tar.gz

(“#.##” are version numbers.)

Software to decompress and extract both formats is available for almost every platform for which Ghostscript is
available – including Unix, Linux, MS Windows, and so on – but it’s up to you to locate that software. See the section
on unpacking the source code.

How to Build Ghostscript from Source Code

7

https://ghostscript.com/download/

Note

Unlike earlier versions, Ghostscript packages are now one, complete archive, including font files and third party
library dependency sources.

How to acquire the development source code
The Ghostscript team use git for version control.

If you require a snapshot of the development code, the easiest way to get it is to visit the web interface to our git
repository: ghostpdl.git and click the “snapshot” link next to the specific commit in which you are interested. After a
short delay, that will download a complete source tree for the given commit in a gzipped tar archive.

If you require access to several commits, or wish to regularly access the latest development code, you are better to
clone the entire git repository, using:

git clone git://git.ghostscript.com/ghostpdl.git

which will create a local, read-only repository.

Both the “snapshot” and the git clone methods download the Ghostscript sources as part of the GhostPDL source
tree, which includes the PCL/PXL and XPS interpreters also built on top of the Ghostscript graphics library.

The configure script discussed later in the document is created as part of the Ghostscript release process, and as the
source tree retrieved from git is “pre-release” code, it does not include a pre-made configure script. See autogen.sh.

How to unpack the source code
Unfortunately, there are no generally accepted standards for how to package source code into archives, so the
instructions for unpacking Ghostscript are longer than they should be. We begin with a brief explanation of how to
extract the two kinds of archive files.

How to unpack compressed tar files generally

Tar (.tar) files are the de facto standard for archiving files on Unix (every Unix-like system has the tar program),
and programs to extract their contents are also widely available for MS Windows, and most other environments. To
economize on space and downloading time, Ghostscript’s tar files are compressed with GNU gzip, which adds the
suffix “.gz” to the file name, giving “.tar.gz”.

To unpack a compressed tar file MyArchive.tar.gz you must both decompress it and extract the contents. You
can do this in two steps, one to decompress the file and another to unpack it:

gzip -d MyArchive.tar.gz
tar -xf MyArchive.tar

or in a pipeline:

gzip -d -c MyArchive.tar.gz | tar -xf -

or, if you have a program like GNU tar that can handle compressed tar files, with a single command:

tar -zxf MyArchive.tar.gz

The tar program automatically preserves directory structure in extracting files. The Ghostscript source archive puts
all files under a directory ghostscript-#.##, so using tar to unpack a compressed archive should always properly
create that directory, which we will call the “ghostscript directory”.

Some other programs – under MS Windows, for instance – can also unpack compressed tar files, but they may not
automatically preserve directory structure nor even extract files into the current directory. If you use one of these, you
must:

• set the program’s options to “Use folder names” (or the equivalent).

, and:

How to Build Ghostscript from Source Code

8

http://git-scm.com/
http://git.ghostscript.com/?p=ghostpdl.git;a=summary

• check that it is extracting files into the right place.

As both tar and gzip formats are now well supported by several applications on MS Windows, we only supply the
tar.gz archive.

WinZip, 7-zip & Info-ZIP are respectively a commercial and two free applications which can decompress and extract
.tar.gz archives on MS Windows.

How to unpack Ghostscript itself

At this point you have acquired the source code and are ready to unpack it according to the preceding guidelines.

2-step:

gzip -d ghostscript-#.##.tar.gz
tar -xf ghostscript-#.##.tar

Pipe:

gzip -d -c ghostscript-#.##.tar.gz | tar -xf -

GNU tar:

tar -zxf ghostscript-#.##.tar.gz

All the Ghostscript source files are now in subdirectories of the ghostscript-#.## directory.

Ghostscript Core Source subdirectories

Subdirectory Contents

arch/ Pre-defined architecture header files

base/ Graphics library C source code and makefiles

contrib/ Community contributed/supported output devices

devices/ The output devices supported by the Ghostscript
team

psi/ PS interpreter C source code and makefiles

Resource/ Postscript initialization, resource and font files

lib/ PostScript utilities and scripts used with Ghostscript

doc/ Documentation

man/ Unix man pages

examples/ Sample PostScript files

iccprofiles/ Default set of ICC profiles

windows/ Visual Studio for Windows specific project and
solution files

toolbin/ Useful (non-Postscript) tools, mostly for developer
use only

Optionally, if you downloaded the GhostPDL archive, you may also have:

Additional GhostPDL source subdirectories

Subdirectory Contents

pcl/ PCL/PXL interpreter C source code, makefiles, fonts
etc.

xps/ XPS interpreter C source code and makefiles

How to Build Ghostscript from Source Code

9

http://www.winzip.com/
http://www.7-zip.org/
http://www.info-zip.org/

Supporting third party libraries will also be in their own sub-directories (e.g. jpeg, freetype and so on).

How to check for post-release bug fixes
Bug information and fixes are tracked on Ghostscript Bugzilla.

How to prepare the makefiles
The Ghostscript makefiles are very large and complex in order to deal with the diverse requirements of all the
different systems where they may be used.

Ghostscript has an automatic configuration script. If you’re on unix or a system that supports unix shell scripts, this is
the easiest option to use. Simply type:

./configure

from the top level of the Ghostscript source directory. It should configure itself based on what’s available on your
system, warn you of any missing dependencies, and generate a Makefile. At this point you can skip to the section
invoking make below. Also, many common configuration options (like install location) can be set through options to
the configure script.

Type ./configure --help for a complete listing. Note that the configuration option is only available with the unix
.tar distributions of the source.

Note

If you’re building Ghostscript from development source out of a repository instead of from a released source
package, you should run ./autogen.sh instead of ./configure. This script takes all the same options that
configure does.

If your system doesn’t support the configure script or you don’t wish to use it, you can use the traditional
Ghostscript makefile system, editing the options by hand to match your system as described below. Fortunately,
the only makefiles you’re likely to want to change are relatively small ones containing platform-specific
information.

Platform-specific makefiles

Makefile Used for

Makefile.in Template makefile for the autoconf build.

psi/msvc.mak MS Windows with Microsoft Visual Studio 2003 and
later.

base/unix-gcc.mak Unix with gcc.

base/unixansi.mak Unix with ANSI C compilers other than gcc.

A number of platform indepdent makefiles in each of the core Ghostscript source directories. Since these files can
change from one Ghostscript version to another, sometimes substantially, and since they all include documentation
for the various options, here we don’t duplicate most of that documentation: we recommend strongly that you review
the entire makefile specific for your operating system and compiler before building Ghostscript.

Changes for your environment

Assuming you have opted not to use the configure script or the default Microsoft Visual Studio bulid, you must edit
the platform-specific makefile to change any of these:

• The name of the makefile itself (MAKEFILE macro).

• The locations to install Ghostscript files (prefix etc.).

• The default search paths for the initialization and font files (GS_LIB_DEFAULT macro).

How to Build Ghostscript from Source Code

10

http://bugs.ghostscript.com

• The debugging options (DEBUG and TDEBUG macros).

• Which optional features to include (FEATURE_DEVS).

• Which device drivers to include (DEVICE_DEVS and DEVICE_DEVS{1--20} macros).

• Default resolution parameters for some printer drivers (devs.mak or contrib.mak, whichever defines the
driver).

In general these will be set to commonly sensible values already, but may not be ideal for your specific case.

The platform-specific makefiles include comments describing all these except the DEVICE_DEVS options. These are
described in devs.mak and contrib.mak, even though the file that must be edited to select them is the
platform-specific makefile.

Some platform-specific options are described in the sections for individual platforms. See the “Options” section near
the beginning of the relevant makefile for more information.

Selecting features and devices

You may build Ghostscript with any of a variety of features and with any subset of the available device drivers. The
complete list of features is in a comment at the beginning of gs.mak, and the complete list of drivers in comments at
the beginning of devs.mak and contrib.mak. To find what devices a platform-specific makefile selects to
include in the executable, look in it for all lines of the form:

FEATURE_DEVS={list of features}
DEVICE_DEVS*={list of devices}

For example, if the makefile has:

FEATURE_DEVS=$(PSD)level2.dev

indicating that only the PostScript Level 2 facilities should be included, you might make it:

FEATURE_DEVS=$(PSD)level2.dev $(PSD)pdf.dev

to add the ability to interpret PDF files. (In fact, FEATURE_DEVS in the current Unix makefiles already includes
$(PSD)pdf.dev.).

It is extremely important that FEATURE_DEVS is set correctly. Currently, the default builds will include a complete
feature set, and as such most of those building Ghostscript will have no need to change it. Only those working in
heavily resource constrained environment will want to experiment, and it is vital that the implications of such changes
be understood, otherwise Ghostscript may behave in unexpected or apparently incorrect ways, or may even fail to
build.

The Unix makefile also defines:

DEVICE_DEVS=$(DD)x11.dev

indicating that the X Windows driver should be included, but since platform-specific makefiles as distributed
normally include many of the possible features and drivers, you will probably rather remove from the makefile the
features and drivers you don’t want. It does no harm to include unneeded features and devices, but the resulting
executable will be larger than needed.

You may edit the FEATURE_DEVS line to select or omit any of the features listed near the beginning of gs.mak, and
the DEVICE_DEVS* lines to select or omit any of the device drivers listed near the beginning of devs.mak and
contrib.mak. GS_DEV_DEFAULT is a string containing whitespace separate device names, and give the devices
Ghostscript should attempt to use (and the order) if no device is specified on the command line; see the usage
documentation for how to select an output device at run time using the -sDEVICE= switch. If you can’t fit all the
devices on a single line, you may add lines defining:

DEVICE_DEVS1=$(DD){dev11}.dev ... $(DD){dev1n}.dev
DEVICE_DEVS2=$(DD){dev21}.dev ... $(DD){dev2n}.dev

etc., up to DEVICE_DEVS15. Don’t use continuation lines – on some platforms they don’t work.

How to Build Ghostscript from Source Code

11

Note

If you want to include a driver named xxx, you must put $(DD)xxx.dev in DEVICE_DEVS*. Similarly, if you
want to include a feature related to the PostScript or PDF language interpreters (PostScript level 1 .. 3, or other
language features such as the ability to read EPSF files or TrueType font files), you must represent it as
$(PSD)xxx.dev.

Precompiled run-time data

Ghostscript normally reads a number of external data files at run time: initialization files containing PostScript code,
fonts, and other resources such as halftones. By changing options in the top-level makefile for the platform, you
can cause some of these files to be compiled into the executable: this simplifies installation, improves security, may
reduce memory requirements, and may be essential if you are planning on putting Ghostscript into ROM. Compiling
these files into the executable also means the executable is (largely) self-contained, meaning initialization files, font
files, resource files and ICC profile files are certain to be available and accessible. In general, Ghostscript should
initialize more quickly, and files (especially PDF) files making heavy use of the built-in fonts will interpret more
quickly.

For those distributing Ghostscript binaries, compiling those files into the executable has another implication, any
site-specific customizations (such as font and CIDFont substitutions) are slightly more complex to implement - see:
How Ghostscript finds files for how to influence where Ghostscript searches for files. Furthermore, if the files
Ghostscript uses are also required to be accessible by applications other than Ghostscript (the mostly case for this
would be font files and ICC profile files), having those files compiled into Ghostscript maybe suboptimal, essentially
require two copies of the file data to be distributed (one set built into Ghostscript, and the other as “normal” files
accessible outside of Ghostscript.

Compiling the initialization files (Resource/Init/gs_init.ps, etc.) into the executable is the default. To disable
this, change the 1 to a 0 in the line:

COMPILE_INITS=1

Or, if you use the configure based Unix-style build, you can disable COMPILE_INITS by adding the option
--disable-compile-inits to the invocation of configure

Files are now compiled into the executable as a %rom% file system that can be searched, opened, etc. as with the
normal (%os%) file system. The data is (mostly) compressed. Several of the initialisation files (those in
Resource/Init) are also converted to binary Postscript encoding, and “merged” into a single monolithic file - this is
done for both size and speed optimization. Files that are often customized for individual installations (such as
Fontmap and cidfmap) are not merged into the single file and thus installation specific versions can be used.

The set of files built into the %rom% file system is specified in the psi/psromfs.mak file. By default the set of files
built into the rom file system comprises all the resource files Ghostscript requires to run successfully (all the files
under Resource directory, and those under the iccprofiles directory). Refer to the file base/mkromfs.c for a
description of the parameters that control source and destination pathnames, file enumeration exclusion,
compression, etc.

Fonts normally are compiled into the executable using mkromfs (above) from the Resource/Font/ directory.

Similarly, Halftone resources can be compiled into the executable using mkromfs, but also threshold-array halftones
can be compiled into the executable. See the “Compiled halftone” section of int.mak for a sample makefile
fragment, genht.c for the syntax of halftone data files, and lib/ht_ccsto.ps for a sample data file. Note that
even though the data files use PostScript syntax, compiled halftones do not require the PostScript interpreter and
may be used with the graphics library alone.

Setting up “makefile”

After going through the steps just described to unpack the sources, configure the build and make any desired
changes to the makefiles. As the final step in preparing to build Ghostscript you must usually associate the name
“makefile” with the correct makefile for your environment so the make command can find it. See the section on
your particular platform for how to do that if necessary.

On unix systems, ./configure (or if checked out of git, ./autogen.sh) should create a Makefile which works
in most scenarios. Manual tampering and editing should rarely be needed nor recommended.

How to Build Ghostscript from Source Code

12

Invoking “make”

make

Builds Ghostscript without debugging options.

make debug

Builds Ghostscript with debugging options and additional internal error checks. The program will be somewhat
larger and slower, but it will behave no differently unless you actually turn on debugging options at execution
time with the -DDEBUG or -Z command line switches described in the usage documentation.

make pg

On Unix platforms, builds with the -pg compiler switch, creating an executable for time profiling.

make install

After building, installs the Ghostscript executables, support files, and documentation, but does not install fonts.
See the installation documentation.

make (debug)clean

Deletes all the files created by the build process (relocatables, executables, and miscellaneous temporary files).
If you’ve built an executable and want to save it, move it first to another place, because “make clean” deletes it.

make so

On some platforms (Linux, *BSD, Darwin/Mac OS X, SunOS), it is possible to build Ghostscript as a shared
object library. There is a corresponding make soclean for cleaning up.

make sanitize

Builds Ghostscript with AddressSanitizer. Output is placed in ./sanbin.

Note

• On most platforms some of these simple instructions don’t quite work in one way or another. Read the
section on your specific platform.

• If you are attempting to build a statically linked executable, you will probably need to add libraries to the
linker options (libraries that are normally pulled-in automatically by the dynamic linker). These can be added
at the make command line using the EXTRALIBS= option. Unfortunately, the set of libraries that may be
required varies greatly depending on platform and configuration, so it is not practical to offer a list here.

Cross-compiling

Cross-compiling is not fully supported by the configure script (such support is a work-in-progress).

You can either use base/unixansi.mak or unix-gcc.mak as the basis for a cross-compile makefile, or use
configure to create a basic Makefile as the basis. And modify to suit.

You can set the compiler to your cross-compiler for configure by doing:

./configure CC=<cross-compiler executable>

and configure will then run its checks (as best it can) with the cross-compiler.

If you do so, you should also give configure the option to set the target architecture endianness:
--enable-big-endian or --enable-little-endian.

It would also be wise to review the settings shown in the output of ./configure --help for any that would be
applicable to your target.

The Ghostscript build system uses several interim executables, built and run on the host, as such, even when
cross-compiling, a host native compiler is also required. You must edit your makefile to ensure that is available.
Find the line that starts:

CCAUX=

and set that to your host compiler.

If you did not use configure or did not set the CC variable for configure, you must also set the:

How to Build Ghostscript from Source Code

13

CC=

to your cross-compiler.

The Ghostscript build system uses a utility called genarch (see base/genarch.c for details) to interrogate the
environment and generate a header file describing the architecture for which Ghostscript is being built. As this is run
on the host it will generate header for the host architecture rather than that of the target.

For cross compiling, you must create (or modify) a header file (arch.h) which accurately describes the
target architecture. Then you must edit your makefile by finding the line:

TARGET_ARCH_FILE=

and set it to the path to, and file name of your custom arch.h file. With that setting, genarch will still be run, but
rather than interrogate the current environment, it will copy the contents of your custom arch.h to the build.

How to build Ghostscript from source (PC version)
All Ghostscript builds in PC (DOS and MS Windows) environments are 32- or 64-bit: 16-bit builds are not supported.
The relevant makefiles are:

Makefile Construction tools For environment

msvc.mak Microsoft Visual Studio .NET 2003 (or later) MS Windows 32/64-bit

Makefile.in Cygwin/gcc Cygwin (Use Unix configure)

Ghostscript requires at least MS Windows 95 (although we no longer actively test nor support Win95, we have not
deliberately done anything to break compatibility with it). We recommend at least MS Windows NT 4.0.

For building, Ghostscript requires at least Visual Studio .NET 2003, and we recommend at least Visual Studio 2005
(required for 64 bit Windows support).

Note

The make program supplied with Visual Studio (and earlier Visual C++ versions) is actually called nmake. We
refer to this program generically as make everywhere else in this document.

You must have cmd.exe in your path to build Ghostscript (using the Visual Studio command prompt is ideal). After
making any changes required to choose features and devices to build into the executable, you can then invoke make
to build the executable.

Microsoft Visual Studio

Using Microsoft Visual Studio

To build the required DLLs, load /windows/ghostpdl.sln into Visual Studio, and select the required architecture
from the drop down - then right click on ‘ghostpdl’ in the solution explorer and choose “Build”.

Further details

The Ghostscript source distribution ships with project and solution files for Visual Studio 2005 and later. These
can be found in the windows directory. The project(s) are nmake projects which means that rather than
Visual Studio controlling the build directly, it delegates the build process to the nmake.

Beyond lacking support for parallel builds (nmake cannot support parallel builds), there should be little visible
difference between a conventional VS project and an nmake project to the user of the VS graphical interface. The
only exception to that is if you have to make changes to build options beyond those available in the defined build
configurations. In that case, you need to find the Nmake tab in the project Property Pages and modify the
appropriate entry: Build Command Line, Rebuild All Command Line and/or Clean Command Line.

As mentioned above, nmake does not support parallel builds. If you have downloaded and are building the
GhostPDL source archive (which contains Ghostscript, GhostPCL, GhostXPS, and GhostPDL “products”), the
GhostPDL.sln contains individual projects for each product but, as a result of the limitations of nmake the products

How to Build Ghostscript from Source Code

14

cannot be built in parallel, because nmake's lack of parallel build awareness means it cannot manage the
dependencies shared between the products, and may fail as multiple builds attempt to access the same
dependencies.

To build all the products in one action, use the All “pseudo-project”. The All project uses a single nmake
invocation to build all the supported products.

Note

Changing the Output property in the Nmake properties will not change the name of the executable - to do that
requires editing of the psi/msvc.mak makefile, or you can add: GS=myname.exe to the nmake command
line.

Using the command line

Ghostscript can be made using the Windows command prompt or one of the various command line shells made for
Windows, as long as the command line syntax is compatible with the Windows CMD.exe. The Visual Studio
command prompt is ideal.

In order for the makefiles to work properly, two items may have to be changed. An attempt is made to select the
correct version of Microsoft Visual C++ based on the version of nmake. If this doesn’t work it will default to version
6.x. If the auto-detection does not work, and you are not using version 6.x then before building, in psi\msvc.mak
find the line #MSVC_VERSION=6 and change it to MSVC_VERSION=4, MSVC_VERSION=5, MSVC_VERSION=7 or
MSVC_VERSION=8 and so on.

In some cases the location of the Microsoft Developer Studio, needs to be changed. The location of Microsoft
Developer Studio is defined by the value of DEVSTUDIO. There are several different definitions of DEVSTUDIO in
psi\msvc.mak. There is one for each of the currently supported versions of Microsoft Visual C++ (4, 5, 6, 7, 7.1
and 8).

The normal installation process for Microsoft Visual C++ includes setting the location of the Microsoft Visual C++
executables (cl.exe, link.exe, nmake.exe, rc.exe) in your PATH definition and the LIB and INCLUDE
environment variables are set to point to the Microsoft Visual C++ directories. If this is true then the value for
DEVSTUDIO can be changed to empty, i.e. DEVSTUDIO=

If PATH, LIB, and INCLUDE are not correctly set then the value for DEVSTUDIO needs to be defined. For example,
for version 6.0, the default definition for the location for the Microsoft Developer Studio is:
DEVSTUDIO=C:\Program Files\Microsoft Visual Studio If the path to Microsoft Developer Studio on
your system differs from the default then change the appropriate definition of DEVSTUDIO. (Remember that there is a
separate definition of DEVSTUDIO for each version of MSVC, so be sure to change the correct definition.)

To run the make program, give the command:

nmake -f psi\msvc.mak

Rather than changing psi/msvc.mak, these values can also be specified on the make command line, i.e.

nmake -f psi\msvc.mak MSVC_VERSION=6 DEVSTUDIO="C:\Program Files\Microsoft Visual Studio"
nmake -f psi\msvc.mak MSVC_VERSION=7 DEVSTUDIO="C:\Program Files\Microsoft Visual Studio .NET"

Note that double quotes have been added around the path for DEVSTUDIO due to the spaces in the path value.

This command line can also be put into a batch file.

You may get warning messages during compilation about various undefined and/or unsupported switches - this is
because the compiler switches are set in the makefiles, and are applied when building with all versions of Visual
Studio, but not all options are supported (or required) by all versions of Visual Studio. These warnings are benign
and can be ignored.

Microsoft Environment for 64-bit

Building Ghostscript for 64-bit Windows (AMD64 processor) requires Microsoft Visual Studio .NET 2005 or Microsoft
Visual Studio 2008 or later on 64-bit Windows. Cross compiling on 32-bit Windows is possible.

How to Build Ghostscript from Source Code

15

Compiling for 64-bit is similar to the Microsoft Environment instructions above, but with the addition of a WIN64
define.

To make Ghostscript use:

nmake -f psi/msvc.mak WIN64=

Making self-extracting installers

You can build self-extracting Windows installers based on NSIS (Nullsoft Scriptable Install System). To do so, use
the nsis makefile target as well as any other options, for example:

nmake -f psi/msvc.mak WIN64= nsis

will create an nsis based installer for Ghostscript built for 64 bit Windows systems.

Microsoft Environment for WinRT

Ghostscript can be built in the form of a win32 DLL for use within a Windows Runtime application or Windows
Runtime component. Building for WinRT requires use of Microsoft Visual Studio 2012. There is a solution file that
can be loaded into VS 2012, in the directory winrt.

The WinRT application or component should include iapi.h from gs/psi and link with gsdll32metro.lib from
gs/debugbin or gs/releasebin. Also any app using Ghostscript either directly or via a component should add
gsdll32metro.dll as “content”. This inclusion of the dll is necessary so that it will be packaged with the app. If
one wishes to be able to run the debugger on Ghostscript then gsdll32metro.pdb should also be added as
content.

Cygwin32 gcc

It is possible to compile Ghostscript for MS Windows using the Cygwin32 gcc compiler, GNU make, using the
“configure” generated Makefile.

Information about this compiler and environment is at the Cygwin site.

MSys/Mingw

The configure build can be used to build Ghostscript on MSys/Mingw systems, but with a caveat. The msys-dvlpr
adds header files into the compiler’s header search paths which cause a clash, and the build will fail as a result. If
you have the msys-dvlpr package installed, and until a better solution is available you can work around this by
temporarily renaming the \mingw\msys\1.0\include directory so those headers are no longer found by the
compiler.

How to build Ghostscript from source (MacOS version)

MacOS X

The unix source distribution (.tar.gz) builds fine on Darwin/MacOS X, albeit without a display device. You can
generally just use the Makefile generated by configure as your top-level makefile and get a reasonable default
build. This will allow you to use Ghostscript from the command line as a BSD-layer tool to rasterize postscript and pdf
to image files, and convert between the high-level formats supported by Ghostscript. See the instructions for the unix
build below for details of how to customize this build.

Note

If you have MacPorts installed, it can “confuse” the configure script because it includes some librares which
duplicate the “system” ones. This can cause missing symbol link errors. In order to resolve this, you can do:
LDFLAGS="-L/usr/lib" ./configure. That will force the linker to search the default directory first, and thus
pick up the system libraries first.

How to Build Ghostscript from Source Code

16

http://www.cygwin.com/
http://www.macports.org/

It is also possible to build “universal binaries” for MacOS X, containing i386 and x86_64 binaries in one file, using the
Makefile from configure. This can be achieved by using the following invocation of configure:

./configure CC="gcc -arch i386 -arch x86_64 -arch ppc" CPP="gcc -E"

You can choose the combination of valid architectures (i386/x86_64/ppc) that you require.

The separate options for CC and CPP are required because some of the features used by configure to explore the
capabilities of the preprocessor are not compatible with having multiple -arch options.

Building a shared library on MacOS X is the same as for other Unix-like systems, the “configure” step is done
normally, and the “so” target is given to the make invocation, thus:

make so

The only difference compared to other Unix-like systems is that on OS X the resulting shared library is created with
the “.dylib” file name extension, instead of the more usual “.so”.

How to build Ghostscript from source (Unix version)
Ghostscript now ships with a build system for unix-like operating systems based on GNU Autoconf. In general the
following should work to configure and build Ghostscript:

./configure
make

or

./configure
make so

for building Ghostscript as a shared library.

Please report any problems with this method on your system as a bug.

On modern unix systems, ./configure should create a Makefile which works in most scenarios. Manual
tempering and editing should rarely be needed nor recommended.

Note

If you’re building Ghostscript from development source out of a repository instead of from a released source
package, you should run ./autogen.sh instead of ./configure. This script takes all the same options that
configure does.

(deprecated; see Autoconf-based method above) For the convenience of those already familiar with Ghostscript, the
old method based on hand-edited makefiles is still possible but no longer supported (and in many cases, simply do
not work without substantial expert manual-editing effort). It may also be helpful in getting Ghostscript to build on
very old platforms. The rest of this section deals exclusively with that older method and includes numerous pointers
regarding legacy systems.

(deprecated; see Autoconf-based method above) Before issuing the make command to build Ghostscript, you have
to make some choices, for instance:

• Which compiler to use.

• What features and devices to include.

• Whether to use system libraries for PNG and zlib.

• How to handle issues for your particular platform.

Be sure to check the sections on tool-, OS-, and hardware-specific issues for notes on your particular platform and
compiler. In fact, that is the first place to check if you build Ghostscript and it crashes or produces obviously incorrect
results.

How to Build Ghostscript from Source Code

17

make tools

You require a make tool which supports separate directories for the derived objects (such as object files, executables
and dynamically created header files) and the source files.

In general, GNU make is the recommended choice, and some features (such as the building of the Linux/Unix
shared library build (“make so”) are only available with GNU make.

Other make implementations are known to work, but are not guaranteed to do so.

GNU make

Current versions of GNU make have no problems building Ghostscript.

OS-specific issues

MacOS or Linux / OpenBSD

Running the autogen.sh script from the command line depends on having both autoconf and automake
installed on your system.

If this software is not already on your system (usually this can be found in the following location: usr/local/bin,
but it could be located elsewhere depending on your setup) then it can be installed from your OS’s package system.

Alternatively, it can be installed from GNU Software

Or, it can be installed via Brew by running:

brew install autoconf automake

Once built, these libraries can be found in your ghostpdl/sobin/ or ghostpdl/sodebugbin location depending
on your build command.

H-P RISC workstations

(see Autoconf-based method above)

• HP-UX versions before 11.0 do not support POSIX threads. Set SYNC=nosync in the makefile before
building.

• Ghostscript builds on H-P machines with either GNU gcc or H-P’s ANSI-capable cc. The minimal,
non-ANSI-capable cc that shiped with some basic HPUX system does not work. If cc on your system doesn’t
accept the -Aa switch, then you need to get the full cc or gcc.

• If you use H-P’s compiler, be sure you have upgraded to a recent release. Many bizarre symptoms have been
reported trying to build Ghostscript with older, buggier compilers, for example:

• The link step fails with a message about “max” not being defined.

• The build succeeds, but the resulting executable fails to start up, with an error message like
“Initializing… Unrecoverable error: typecheck in .registerencoding”.

• The build succeeds, but the resulting executable produces a black background on the first page of
output.

• It is reported that On HPUX 9.* you need at least compiler patch PHSS_5723 and dld.sl patch PHSS_5734
to build Ghostscript. (As of late 1997, those patches are long obsolete; the current patches are compiler
PHSS_10357 and dld.sl PHSS_11246. It is unknown whether current Ghostscript releases work with
compiler/dld.sl versions older than these).

• On HPUX 10.*, we don’t know what combinations of compiler version and switches work. It is reported that On
HPUX 10.20, setting CC=c89 and CFLAGS=+O3 $(XCFLAGS) works, contradicting the information in the next
paragraph, but this may be dependent on the specific compiler version.

• In either HPUX version, you need to set CC=cc -Aa (or use -Ae if you prefer), and set
CFLAGS=-D_HPUX_SOURCE -O $(XCFLAGS). Higher levels of optimization than -O may work depending on
your compiler revision; some users have reported success with +O3, some have not.

How to Build Ghostscript from Source Code

18

https://www.gnu.org/software/

• Some users have reported needing -DNOSYSTIME and -D_POSIX_SOURCE in CFLAGS, but recent tests do not
show these to be necessary.

• If you use gcc, it’s a good idea to have a recent release – at the very least 2.7.2.1 or later. You may be able to
get a working executable with an older gcc by removing -O from CFLAGS.

IBM AIX

We recommend installing gcc and GNU make, and using the Autoconf-based method.

Other combinations are known to work, but are less well supported.

Recent veresions of Ghostscript can trigger a ‘TOC overflow’ error with some compilers on AIX. If this occurs, use
the linker flag -bbigtoc, which can either be added to your configure options:

configure LDFLAGS="-Wl,-bbigtoc"

Or on the make command line:

make XLDFLAGS="-Wl,-bbigtoc"

Silicon Graphics

(see Autoconf-based method above)

Users have had a lot of problems with the MIPSpro compilers on SGI systems. We recommend using gcc. If you do
choose to use the MIPSpro compiler, please read the following carefully.

• To make the optimizer allocate enough table space, set:

CFLAGS="-Olimit 2500" (for older compilers) CFLAGS="-OPT:Olimit=2500" (for newer compilers)

• MIPSpro compiler version 3.19 is “older”, and 7.1 is “newer”; we aren’t sure at what point in between the latter
syntax was introduced.

• With the compiler shipped with Irix 5.2, use the -ansi option.

• The SGI C compiler may produce warnings about “Undefined the ANSI standard library defined macro
stdin/stdout/stderr”. To suppress these warnings, add -woff 608 to the definition of CFLAGS.

• The SGI C compiler shipped with Irix 6.1 and 6.2 will not compile zlib/deflate.c properly with optimization.
Compile this file separately without -O.

• With IRIX 6.5.x and the MIPSpro 7.x compilers there have been reports about incorrect output and binaries that
cause segmentation faults. Various solutions have been suggested and you may want to try them in this order,
until you get a working binary:

• Compile idict.c and isave.c separately without optimization after doing a normal compile; then
relink.e.g.:

cc -OPT:Olimit=2500 -I. -I./obj -o ./obj/idict.o -c ./idict.c
cc -OPT:Olimit=2500 -I. -I./obj -o ./obj/isave.o -c ./isave.c

• Set CFLAGS= (no optimization).

• Use only -O2. Compiler produces incorrect output with -O3 or -Ofast=ip32 -show.

• Irix 6.5.1m with MIPSpro compiler 7.2.1.1m, Irix 6.5.3m with MIPSpro compiler 7.2.1, and probably
other 6.5x / 7.2x combinations require compiling with the -o32 option. Compiling with the (default)
-n32 option produces non-working executables. -O2 is OK (possibly except for idict.c), but not
-O3.

Oracle/Sun

(see Autoconf-based method above)

• The Sun unbundled C compiler (SC1.0) doesn’t compile Ghostscript properly with the -fast option:
Ghostscript core-dumps in build_gs_font. With that compiler use -g, or use gcc instead.

How to Build Ghostscript from Source Code

19

• The Sun version of dbx often gives up with an error message when trying to load Ghostscript. If this happens,
use GNU gdb instead. (gdb is more reliable than dbx in other ways as well).

• A bug in some versions of zlib results in an undefined symbol zmemcmp when compiling with Sun cc. Use
gcc instead.

Solaris

• Solaris 2.2 may require setting EXTRALIBS=-lsocket. Solaris 2.3 and later seem to require
EXTRALIBS=-lnsl -lsocket -lposix4.

• For Solaris 2.6 (and possibly some other versions), if you set SHARE_LIBPNG=1, SHARE_ZLIB=1, or
SHARE_JPEG=1, you may need to set XLDFLAGS=-R /usr/local/xxx/lib:/usr/local/lib using the
full path names of the relevant directories.

• Solaris 2.n uses /usr/openwin/share/include for the X11 libraries rather than
/usr/local/X/include.

• Solaris 2.n typically has Type 1 fonts in /usr/openwin/lib/X11/fonts/Type1/outline.

• For Solaris 2.n in the makefile you must change the definition of INSTALL from install -c to
/usr/ucb/install -c.

• You may need to set XLIBDIR to the directory that holds the X11 libraries, as for other SVR4 systems. Set
-DSVR4 in CFLAGS.

• If you are using the SunPRO C compiler, don’t use optimization level -xO3. On SPARC platforms the compiler
hangs; on Intel platforms the generated code is incorrect. With this compiler on Intel, do not use the -native
flag: floating point computations become unacceptably inaccurate. You can use -xcg92 (SPARC V8) and
-dalign for better performance.

• One user reported compiling from source on a Linux NFS mounted volume failed. Compiling from a local
volume was the workaround.

Other environments

Environments lacking multi-threading

All environments mentioned here by name have multi-threading capability. However, if your environment doesn’t,
you can remove all need for multi-threading by setting SYNC=nosync in the top-level makefile. Note that you will
not be able to use any so-called “async” drivers (drivers that overlap interpretation and rasterization) if you do this.
No such drivers are in the DEVICE_DEVS* lists of any makefile that we distribute.

Plan 9

Use unix-gcc.mak, editing it to define:

CC=cc GCFLAGS=-D_BSD_EXTENSION -DPlan9

You will also probably have to edit many path names.

How to build Ghostscript with UFST

Note

This section is only for customers who have a Monotype Imaging UFST license. Other users please skip this
section.

Ghostscript sources do not include UFST sources. You need to obtain them separately. The Ghostscript distributed
source include only some source modules that provide a bridge to UFST. You will also need an additional, UFST
specific makefile: contact Ghostscript support for more information.

How to Build Ghostscript from Source Code

20

If optioned in, the Ghostscript build system will build the UFST as part of the normal bulid process (previously, the
UFST was required to be built separately).

To build Ghostscript with UFST, specify additional options for “make”:

UFST_BRIDGE=1

Forces the UFST bridge to build.

UFST_ROOT=path

Specifies the path to UFST root directory or folder.

UFST_CFLAGS=options

Specifies C compiler options for UFST library. Refer to UFST manual for information about them.

UFST_LIB_EXT=extension

Sets the file name extension for object libraries. You must use the appropriate one for your platform and linker.

An example for Unix/GCC :

UFST_BRIDGE=1 UFST_ROOT=../ufst UFST_CFLAGS=-DGCCx86 UFST_LIB_EXT=.a

Starting with Ghostscript 9.x (Summer 2010), the above options are conveniently inserted in the Makefile with (this
also automatically disable the freetype bridge):

./configure --with-ufst=../ufst

For Windows/MSVC you need only specify UFST_ROOT. msvc.mak sets the other options automatically.

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

How to Build Ghostscript from Source Code

21

https://www.artifex.com

How to Install Ghostscript

Overview of how to install Ghostscript
You must have four things to run Ghostscript:

1. The Ghostscript executable file; on some operating systems, more than one file is required. These are entirely
platform-specific. See below for details.

2. Initialization files that Ghostscript reads in when it starts up; these are the same on all platforms.

3.
• gs_*.ps unless Ghostscript was compiled using the “compiled initialization files” option. See the

documentation of PostScript files distributed with Ghostscript.

• pdf_*.ps if Ghostscript was compiled with the ability to interpret Adobe Portable Document Format
(PDF) files, that is, pdf.dev was included in FEATURE_DEVS when Ghostscript was built.

• Fontmap and Fontmap.GS (or the appropriate Fontmap.xxx for your platform), unless you plan always
to invoke Ghostscript with the -dNOFONTMAP switch.

4. Fonts, for rendering text. These are platform-independent, but if you already have fonts of the right kind on your
platform, you may be able to use those. See below for details. Also see the documentation on fonts.

The usage documentation describes the search algorithms used to find initialization files and font files. The
per-platform descriptions that follow tell you where to install these files.

Installing Ghostscript on Unix
Ghostscript uses the common configure, build and install method common to many modern software
packages. In general the following with suffice to build Ghostscript:

./configure
make

and then it may be installed in the default location with:

make install

This last command may need to be performed with super user privileges.

You can set the installation directory by adding --prefix=path to the configure invocation in the first step. The
default prefix is /usr/local, which is to say the gs executable is installed as /usr/local/bin/gs.

A list of similar configuration options is available via ./configure --help.

For more detailed information on building Ghostscript see how to build Ghostscript on Unix in the documentation on
building Ghostscript, especially regarding information on using the older hand edited makefile approach. Whatever
configuration method you use, execute make install to install the executable and all the required and ancillary
files after the build is complete.

Fonts

The makefile installs all the files except fonts under the directory defined in the makefile as prefix. Fonts need to
be installed separately. The fonts should be installed in {prefix}/share/ghostscript/fonts. (That is,
/usr/local/share/ghostscript/fonts/ if you used the default configuration above.)

If you have Adobe Acrobat installed, you can use the Acrobat fonts in place of the ones distributed with with
Ghostscript by adding the Acrobat fonts directory to GS_FONTPATH and removing these fonts from
Fontmap.GS:

Courier, Courier-Bold, Courier-BoldOblique, Courier-Oblique, Helvetica, Helvetica-Bold,
Helvetica-BoldOblique, Helvetica-Oblique, Symbol, Times-Bold, Times-BoldItalic,
Times-Italic, Times-Roman, ZapfDingbats

Similarly, you can have Ghostscript use other fonts on your system by adding entries to the fontmap or adding the
directories to the GS_FONTMAP environment variable. See the usage documentation for more information.

For example, many linux distributions place fonts under /usr/share/fonts.

How to Install Ghostscript

23

Ghostscript as a shared object

If you’ve built Ghostscript as a shared object, instead of make install, you must use make soinstall. See how
to build Ghostscript as a shared object for more details.

Additional notes on Linux

For Linux, you may be able to install or upgrade Ghostscript from precompiled RPM files using:

rpm -U ghostscript-N.NN-1.i386.rpm
rpm -U ghostscript-fonts-N.NN-1.noarch.rpm

However, please note that we do not create RPMs for Ghostscript, and we take no responsibility for RPMs created
by others.

Installing Ghostscript on MS Windows
We usually distribute Ghostscript releases for Windows as a binary installer, for the convenience of most users.

Windows 3.1 (16-bit)

The last version to run on 16-bit Windows 3.1 was Ghostscript 4.03.

Windows 95, 98, Me

The last version to be available as a binary for Windows 95/98/Me was 8.60. Although building from source with
Visual Studio 2003 should produce a working binary for those versions.

Windows NT4, 2000, XP, 2003 or Vista (32-bit)

The installer is normally named gs###w32.exe, where ### is the release number (e.g., 871 for Ghostscript 8.71,
910 for Ghostscript 9.10).

Windows XP x64 edition, 2003 or Vista (64-bit)

The x64 installer is normally named gs###w64.exe This is for 64-bit Windows operating systems based on the x64
instruction set. Do not use this on 64-bit processors running 32-bit Windows.

Installing

To install Ghostscript on Windows, you should run the installer executable.

The installer is NSIS-based and supports a few standard NSIS options: /NCRC disables the CRC check, /S runs the
installer or uninstaller silently, /D sets the default installation directory (It must be the last parameter used in the
command line and must not contain any quotes, even if the path contains spaces. Only absolute paths are
supported).

General Windows configuration

The installer includes files in these subdirectories:

• gs#.##\bin

• gs#.##\examples

• gs#.##\lib

• gs#.##\doc

• gs#.##\Resource

• fonts

The actual executable files for the 32-bit Windows install, in the gs#.##\bin subdirectory, are:

How to Install Ghostscript

24

http://www.rpm.org/

GSWIN32C.EXE Ghostscript as a 32-bit Windows command line program. This is usually the preferred
executable.

GSWIN32.EXE 32-bit Ghostscript using its own window for commands.

GSDLL32.DLL 32-bit dynamic link library containing most of Ghostscript’s functionality.

For the 64-bit Windows install, also in the gs#.##\bin subdirectory, they are:

GSWIN64C.EXE Ghostscript as a 64-bit Windows command line program. This is usually the preferred
executable.

GSWIN64.EXE 64-bit Ghostscript using its own window for commands.

GSDLL64.DLL 64-bit dynamic link library containing most of Ghostscript’s functionality.

For printer devices, the default output is the default printer. This can be modified as follows:

-sOutputFile="%printer%printer name"

If your printer is named “HP DeskJet 500” then you would use -sOutputFile="%printer%HP DeskJet 500".

If Ghostscript fails to find an environment variable, it looks for a registry value of the same name under the key

HKEY_CURRENT_USER\Software\GPL Ghostscript\#.##

or if that fails, under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\GPL Ghostscript\#.##

where #.## is the Ghostscript version number.

Ghostscript will attempt to load the Ghostscript dynamic link library GSDLL32.DLL in the following order:

• In the same directory as the Ghostscript executable.

• If the environment variable GS_DLL is defined, Ghostscript tries to load the Ghostscript dynamic link library
(DLL) with the name given.

• Using the standard Windows library search method: the directory from which the application loaded, the current
directory, the Windows system directory, the Windows directory and the directories listed in the PATH
environment variable.

The Ghostscript installer will create registry values for the environment variables GS_LIB and GS_DLL.

Uninstalling Ghostscript on Windows

To uninstall Ghostscript, use the Control Panel, Add/Remove Programs and remove “Ghostscript #.##” and
“Ghostscript Fonts”. (The entries may be called “GPL Ghostscript” or “AFPL Ghostscript”, rather than just
“Ghostscript”, depending on what version of Ghostscript was installed).

Alternatively, an uninstall shortcut is also available in the Start Menu group.

Installing Ghostscript on OpenVMS
Support for OpenVMS has stagnated (and almost certainly bit-rotted), and as the core development team has no
access to an OpenVMS environment, we are unable to bring it up to date. We will consider patches from contributors
if any wish to take on the task of getting it working again. Given the very limited appeal of OpenVMS these days,
however, we are unlikely to consider patches with invasive code changes.

You need the file GS.EXE to run Ghostscript on OpenVMS, and installing Ghostscript on an OpenVMS system
requires building it first.

The following installation steps assume that the Ghostscript directory is DISK1:[DIR.GHOSTSCRIPT]. Yours will
almost certainly be in a different location so adjust the following commands accordingly.

• Download the fonts and unpack them into DISK1:[DIR.GHOSTSCRIPT.LIB].

• Enable access to the program and support files for all users with:

How to Install Ghostscript

25

$ set file/prot=w:re DISK1:[DIR]GHOSTSCRIPT.dir
$ set file/prot=w:re DISK1:[DIR.GHOSTSCRIPT...]*.*

• Optionally, add the Ghostscript help instructions to your system wide help file:

$ lib/help sys$help:HELPLIB.HLB DISK1:[DIR.GHOSTSCRIPT.DOC]GS-VMS.HLP

• Lastly, add the following lines to the appropriate system wide or user specific login script.

$ define gs_exe DISK1:[DIR.GHOSTSCRIPT.BIN]
$ define gs_lib DISK1:[DIR.GHOSTSCRIPT.EXE]
$ gs :== $gs_exe:gs.exe

If you have DECWindows/Motif installed, you may wish to replace the FONTMAP.GS file with FONTMAP.VMS. Read
the comment at the beginning of the latter file for more information.

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

How to Install Ghostscript

26

https://www.artifex.com

Using Ghostscript
This document describes how to use the command line Ghostscript client. Ghostscript is also used as a general
engine inside other applications (for viewing files for example). Please refer to the documentation for those
applications for using Ghostscript in other contexts.

Invoking Ghostscript
The command line to invoke Ghostscript is essentially the same on all systems, although the name of the executable
program itself may differ among systems. For instance, to invoke Ghostscript on unix-like systems type:

gs [options] {filename 1} ... [options] {filename N} ...

Here are some basic examples. The details of how these work are described below.

To view a file:

gs -dSAFER -dBATCH document.pdf

You’ll be prompted to press return between pages.

To convert a figure to an image file:

gs -dSAFER -dBATCH -dNOPAUSE -sDEVICE=png16m -dGraphicsAlphaBits=4 \
 -sOutputFile=tiger.png tiger.eps

To render the same image at 300 dpi:

gs -dSAFER -dBATCH -dNOPAUSE -sDEVICE=png16m -r300 \
 -sOutputFile=tiger_300.png tiger.eps

To render a figure in grayscale:

gs -dSAFER -dBATCH -dNOPAUSE -sDEVICE=pnggray -sOutputFile=figure.png figure.pdf

To rasterize a whole document:

gs -dSAFER -dBATCH -dNOPAUSE -sDEVICE=pgmraw -r150 \
 -dTextAlphaBits=4 -sOutputFile='paper-%00d.pgm' paper.ps

There are also a number of utility scripts for common to convert a PostScript document to PDF:

ps2pdf file.ps

The output is saved as file.pdf.

There are other utility scripts besides ps2pdf, including pdf2ps, ps2epsi, pdf2dsc, ps2ascii, ps2ps and
ps2ps2. These just call Ghostscript with the appropriate (if complicated) set of options. You can use the ‘ps2’ set
with eps files.

Ghostscript is capable of interpreting PostScript, encapsulated PostScript (EPS), DOS EPS (EPSF), and Adobe
Portable Document Format (PDF). The interpreter reads and executes the files in sequence, using the method
described under “File searching” to find them.

The interpreter runs in interactive mode by default. After processing the files given on the command line (if any) it
reads further lines of PostScript language commands from the primary input stream, normally the keyboard,
interpreting each line separately. To quit the interpreter, type “quit”. The -dBATCH -dNOPAUSE options in the
examples above disable the interactive prompting. The interpreter also quits gracefully if it encounters end-of-file or
control-C.

The interpreter recognizes many options. An option may appear anywhere in the command line, and applies to all
files named after it on the line. Many of them include “=” followed by a parameter. The most important are described
in detail here. Please see the reference sections on Command line options and Devices for a more complete listing.

Help at the command line: gs -h

You can get a brief help message by invoking Ghostscript with the -h or -? switch, like this:

Using Ghostscript

27

file:///Users/jamielemon/Desktop/freelance/artifex/SDK/ghostscript/ghostpdl/doc/Devices.htm

gs -h
gs -?

The message shows for that version of the Ghostscript executable:

• the version and release information.

• the general format of the command line.

• a few of the most useful options.

• the formats it can interpret.

• the available output devices.

• the search path.

• the bug report address.

On other systems the executable may have a different name:

System Invocation Name

Unix gs

VMS gs

MS Windows 95 and later gswin32.exe
gswin32c.exe
gswin64.exe
gswin64c.exe

OS/2 gsos2

On Windows, the two digit number indicates the word length of the system for which the binary was built (so
gswin32.exe is for x86 Windows systems, whilst gswin64.exe is for x86_64 Windows systems). And the “c”
suffix indicates a Windows console based binary (note that the “display device” window will still appear).

Selecting an output device
Ghostscript has a notion of ‘output devices’ which handle saving or displaying the results in a particular format.
Ghostscript comes with a diverse variety of such devices supporting vector and raster file output, screen display,
driving various printers and communicating with other applications.

The command line option '-sDEVICE=device' selects which output device Ghostscript should use. If this option
isn’t given the default device (usually a display device) is used. Ghostscript’s built-in help message (gs -h) lists the
available output devices. For complete description of the devices distributed with Ghostscript and their options,
please see the Devices section of the documentation.

Note that this switch must precede the name of the first input file, and only its first use has any effect. For example,
for printer output in a configuration that includes an Epson printer driver, instead of just 'gs myfile.ps' you might
use:

gs -sDEVICE=epson myfile.ps

The output device can also be set through the GS_DEVICE environment variable.

Once you invoke Ghostscript you can also find out what devices are available by typing 'devicenames ==' at the
interactive prompt. You can set the output device and process a file from the interactive prompt as well:

(epson) selectdevice
(myfile.ps) run

All output then goes to the Epson printer instead of the display until you do something to change devices. You can
switch devices at any time by using the selectdevice procedure, for instance like one of these:

(x11alpha) selectdevice
(epson) selectdevice

Using Ghostscript

28

file:///Users/jamielemon/Desktop/freelance/artifex/SDK/ghostscript/ghostpdl/doc/Devices.htm

Output resolution

Some printers can print at several different resolutions, letting you balance resolution against printing speed. To
select the resolution on such a printer, use the -r switch:

gs -sDEVICE=printer -rXRESxYRES

where XRES and YRES are the requested number of dots (or pixels) per inch. Where the two resolutions are same, as
is the common case, you can simply use -rres.

The -r option is also useful for controlling the density of pixels when rasterizing to an image file. It is used this way in
the examples at the beginning of this document.

Output to files

Ghostscript also allows you to control where it sends its output. With a display device this isn’t necessary as the
device handles presenting the output on screen internally. Some specialized printer drivers operate this way as well,
but most devices are general and need to be directed to a particular file or printer.

To send the output to a file, use the -sOutputFile= switch or the -o switch (below). For instance, to direct all
output into the file ABC.xyz, use:

gs -sOutputFile=ABC.xyz

When printing on MS Windows systems, output normally goes directly to the printer, PRN. On Unix and VMS systems
it normally goes to a temporary file which is sent to the printer in a separate step. When using Ghostscript as a file
rasterizer (converting PostScript or PDF to a raster image format) you will of course want to specify an appropriately
named file for the output.

Ghostscript also accepts the special filename ‘-’ which indicates the output should be written to standard output (the
command shell).

Be aware that filenames beginning with the character % have a special meaning in PostScript. If you need to specify
a file name that actually begins with %, you must prepend the %os% filedevice explicitly. For example to output to a
file named %abc, you need to specify:

gs -sOutputFile=%os%%abc

Please see Ghostscript and the PostScript Language and the PostScript Language Reference Manual for more
details on % and filedevices.

Note

On MS Windows systems, the % character also has a special meaning for the command processor (shell), so you
will have to double it, e.g.:

gs -sOutputFile=%%os%%%%abc

Note, some devices (e.g. pdfwrite, ps2write) only write the output file upon exit, but changing the OutputFile device
parameter will cause these devices to emit the pages received up to that point and then open the new file name
given by OutputFile.

For example, in order to create two PDF files from a single invocation of Ghostscript the following can be used:

gs -sDEVICE=pdfwrite -o tiger.pdf examples/tiger.eps -c "<< /OutputFile (colorcir.pdf) >> setpagedevice" -f examples/colorcir.ps

One page per file

Specifying a single output file works fine for printing and rasterizing figures, but sometimes you want images of each
page of a multi-page document. You can tell Ghostscript to put each page of output in a series of similarly named
files. To do this place a template '%d' in the filename which Ghostscript will replace with the page number.

Note: Since the % character is used to precede the page number format specification, in order to represent a file
name that contains a %, double % characters must be used. For example for the file my%foo the OutputFile string
needs to be my%%foo.

Using Ghostscript

29

file:///Users/jamielemon/Desktop/freelance/artifex/SDK/ghostscript/ghostpdl/doc/Language.htm

The format can in fact be more involved than a simple '%d'. The format specifier is of a form similar to the C
printf format. The general form supported is:

%[flags][width][.precision][l]type

 where: flags is one of: #+-
 type is one of: diuoxX

For more information, please refer to documentation on the C printf format specifications. Some examples are:

-sOutputFile=ABC-%d.png
 produces 'ABC-1.png', ... , 'ABC-10.png', ..
-sOutputFile=ABC-%03d.pgm
 produces 'ABC-001.pgm', ... , 'ABC-010.pgm', ...
-sOutputFile=ABC_p%04d.tiff
 produces 'ABC_p0001.tiff', ... , 'ABC_p0510.tiff', ... , 'ABC_p5238.tiff'

Note, however that the one page per file feature may not supported by all devices. Also, since some devices write
output files when opened, there may be an extra blank page written (pdfwrite, ps2write, eps2write, pxlmono,
pxlcolor).

As noted above, when using MS Windows console (command.com or cmd.exe), you will have to double the %
character since the % is used by that shell to prefix variables for substitution, e.g.,

gswin32c -sOutputFile=ABC%%03d.xyz

-o option

As a convenient shorthand you can use the -o option followed by the output file specification as discussed above.
The -o option also sets the -dBATCH and -dNOPAUSE options. This is intended to be a quick way to invoke
Ghostscript to convert one or more input files.

For instance, to convert somefile.ps to JPEG image files, one per page, use:

gs -sDEVICE=jpeg -o out-%d.jpg somefile.ps

is equivalent to:

gs -sDEVICE=jpeg -sOutputFile=out-%d.jpg -dBATCH -dNOPAUSE somefile.ps

Choosing paper size

Ghostscript is distributed configured to use U.S. letter paper as its default page size. There are two ways to select
other paper sizes from the command line:

If the desired paper size is listed in the section on paper sizes known to Ghostscript below, you can select it as the
default paper size for a single invocation of Ghostscript by using the -sPAPERSIZE= switch, for instance:

-sPAPERSIZE=a4
-sPAPERSIZE=legal

Otherwise you can set the page size using the pair of switches:

-dDEVICEWIDTHPOINTS=w -dDEVICEHEIGHTPOINTS=h

Where w be the desired paper width and h be the desired paper height in points (units of 1/72 of an inch).

Individual documents can (and often do) specify a paper size, which takes precedence over the default size. To force
a specific paper size and ignore the paper size specified in the document, select a paper size as just described, and
also include the -dFIXEDMEDIA switch on the command line.

The default set of paper sizes will be included in the currentpagedevice in the InputAttributes dictionary
with each paper size as one of the entries. The last entry in the dictionary (which has numeric keys) is a
non-standard (Ghostscript extension) type of PageSize where the array has four elements rather than the standard
two elements. This four element array represents a page size range where the first two elements are the lower
bound of the range and the second two are the upper bound. By default these are [0, 0] for the lower bound and
[16#fffff, 16#fffff] for the upper bound.

Using Ghostscript

30

The range type of PageSize is intended to allow flexible page size sepcification for non-printer file formats such as
JPEG, PNG, TIFF, EPS, …

For actual printers, either the entire InputAttributes dictionary should be replaced or the range type entry should
not be included. To simplify using the default page sizes in the InputAttributes dictionary, the command line
option -dNORANGEPAGESIZE can be used. Using this option will result in automatic rotation of the document page if
the requested page size matches one of the default page sizes.

When the -dFIXEDMEDIA switch is given on the command line, the InputAttributes dictionary will only be
populated with the single page size. This allows the -dPSFitPage option to fit the page size requested in a
PostScript file to be rotated, scaled and centered for the best fit on the specified page.

Changing the installed default paper size

You can change the installed default paper size on an installed version of Ghostscript, by editing the initialization file
gs_init.ps. This file is usually in the Resource/Init directory somewhere in the search path. See the section
on finding files for details.

Find the line:

% /DEFAULTPAPERSIZE (a4) def

Then to make A4 the default paper size, uncomment the line to change this to:

/DEFAULTPAPERSIZE (a4) def

For a4 you can substitute any paper size Ghostscript knows.

This supecedes the previous method of uncommenting the line % (a4)

Sometimes the initialization files are compiled into Ghostscript and cannot be changed.

On Windows and some Linux builds, the default paper size will be selected to be a4 or letter depending on the locale.

Interacting with pipes
As noted above, input files are normally specified on the command line. However, one can also “pipe” input into
Ghostscript from another program by using the special file name ‘-’ which is interpreted as standard input.
Examples:

{some program producing ps} | gs [options] -
zcat paper.ps.gz | gs -

When Ghostscript finishes reading from the pipe, it quits rather than going into interactive mode. Because of this,
options and files after the ‘-’ in the command line will be ignored.

On Unix and MS Windows systems you can send output to a pipe in the same way. For example, to pipe the output
to lpr, use the command:

gs -q -sOutputFile=- | lpr

In this case you must also use the -q switch to prevent Ghostscript from writing messages to standard output which
become mixed with the intended output stream.

Also, using the -sstdout=%stderr option is useful, particularly with input from PostScript files that may print to
stdout.

Similar results can be obtained with the %stdout and %pipe% filedevices. The example above would become:

gs -sOutputFile=%stdout -q | lpr

or:

gs -sOutputFile=%pipe%lpr

(again, doubling the % character on MS Windows systems.)

In the last case, -q isn’t necessary since Ghostscript handles the pipe itself and messages sent to stdout will be
printed as normal.

Using Ghostscript

31

Using Ghostscript with PDF files
Ghostscript is normally built to interpret both PostScript and PDF files, examining each file to determine automatically
whether its contents are PDF or PostScript. All the normal switches and procedures for interpreting PostScript files
also apply to PDF files, with a few exceptions. In addition, the pdf2ps utility uses Ghostscript to convert PDF to
(Level 2) PostScript.

Switches for PDF files

Here are some command line options specific to PDF:

-dNEWPDF

From release 9.55.0 Ghostscript incorporates two complete PDF interpreters; the original long-standing interpreter is
written in PostScript but there is now a new interpreter written in C. At present the old PostScript-based interpreter
remains the default, in future releases the new C-based interpreter will become the default, though we would
encourage people to experiment with the new interpreter and send us feedback. While there are two interpreters the
command-line switch NEWPDF will allow selection of the existing interpreter when false and the new interpreter
when true.

-dPDFINFO

Starting with release 9.56.0 this new switch will work with the PDF interpreter (GhostPDF) and with the PDF
interpreter integrated into Ghostscript. When this switch is set the interpreter will emit information regarding the file,
similar to that produced by the old pdf_info.ps program in the ‘lib’ folder. The format is not entirely the same, and the
search for fonts and spot colours is ‘deeper’ than the old program; pdf_info.ps stops at the page level whereas the
PDFINFO switch will descend into objects such as Forms, Images, type 3 fonts and Patterns. In addition different
instances of fonts with the same name are now enumerated.

Unlike the pdf_info.ps program there is no need to add the input file to the list of permitted files for reading (using
–permit-file-read).

-dPDFFitPage

Rather than selecting a PageSize given by the PDF MediaBox, BleedBox (see -dUseBleedBox), TrimBox (see
-dUseTrimBox), ArtBox (see -dUseArtBox), or CropBox (see -dUseCropBox), the PDF file will be scaled to fit
the current device page size (usually the default page size). This is useful for creating fixed size images of PDF files
that may have a variety of page sizes, for example thumbnail images.

This option is also set by the -dFitPage option.

-dPrinted & -dPrinted=false

Determines whether the file should be displayed or printed using the “screen” or “printer” options for annotations and
images. With -dPrinted, the output will use the file’s “print” options; with -dPrinted=false, the output will use
the file’s “screen” options. If neither of these is specified, the output will use the screen options for any output device
that doesn’t have an OutputFile parameter, and the printer options for devices that do have this parameter.

-dUseBleedBox

Sets the page size to the BleedBox rather than the MediaBox. defines the region to which the contents of the page
should be clipped when output in a production environment. This may include any extra bleed area needed to
accommodate the physical limitations of cutting, folding, and trimming equipment. The actual printed page may
include printing marks that fall outside the bleed box.

-dUseTrimBox

Sets the page size to the TrimBox rather than the MediaBox. The trim box defines the intended dimensions of the
finished page after trimming. Some files have a TrimBox that is smaller than the MediaBox and may include white
space, registration or cutting marks outside the CropBox. Using this option simulates appearance of the finished
printed page.

Using Ghostscript

32

-dUseArtBox

Sets the page size to the ArtBox rather than the MediaBox. The art box defines the extent of the page’s meaningful
content (including potential white space) as intended by the page’s creator. The art box is likely to be the smallest
box. It can be useful when one wants to crop the page as much as possible without losing the content.

-dUseCropBox

Sets the page size to the CropBox rather than the MediaBox. Unlike the other “page boundary” boxes, CropBox does
not have a defined meaning, it simply provides a rectangle to which the page contents will be clipped (cropped). By
convention, it is often, but not exclusively, used to aid the positioning of content on the (usually larger, in these
cases) media.

-sPDFPassword=password

Sets the user or owner password to be used in decoding encrypted PDF files. For files created with encryption
method 4 or earlier, the password is an arbitrary string of bytes; with encryption method 5 or later, it should be text in
either UTF-8 or your locale’s character set (Ghostscript tries both).

-dShowAnnots=false

Don’t enumerate annotations associated with the page Annots key. Annotations are shown by default.

In addition, finer control is available by defining an array /ShowAnnotTypes. Annotation types listed in this array will
be drawn, whilst those not listed will not be drawn.

To use this feature: -c "/ShowAnnotTypes [....] def" -f <input file>

Where the array can contain one or more of the following names: /Stamp, /Squiggly, /Underline, /Link,
/Text, /Highlight, /Ink, /FreeText, /StrikeOut and /stamp_dict.

For example, adding the follow to the command line:
-c "/ShowAnnotTypes [/Text /UnderLine] def" -f <input file> would draw only annotations with
the subtypes “Text” and “UnderLine”.

-dShowAcroForm=false

Don’t show annotations from the Interactive Form Dictionary (AcroForm dictionary). By default, AcroForm processing
is now enabled because Adobe Acrobat does this. This option is provided to restore the previous behavior which
corresponded to older Acrobat.

-dNoUserUnit

Ignore UserUnit parameter. This may be useful for backward compatibility with old versions of Ghostscript and
Adobe Acrobat, or for processing files with large values of UserUnit that otherwise exceed implementation limits.

-dRENDERTTNOTDEF

If a glyph is not present in a font the normal behaviour is to use the /.notdef glyph instead. On TrueType fonts, this is
often a hollow sqaure. Under some conditions Acrobat does not do this, instead leaving a gap equivalent to the width
of the missing glyph, or the width of the /.notdef glyph if no /Widths array is present. Ghostscript now attempts to
mimic this undocumented feature using a user parameter RenderTTNotdef. The PDF interpreter sets this user
parameter to the value of RENDERTTNOTDEF in systemdict, when rendering PDF files. To restore rendering of
/.notdef glyphs from TrueType fonts in PDF files, set this parameter to true.

These command line options are no longer specific to PDF, but have some specific differences with PDF files:

-dFirstPage=pagenumber

Begin on the designated page of the document. Pages of all documents in PDF collections are numbered
sequentionally.

Using Ghostscript

33

-dLastPage=pagenumber

Stop after the designated page of the document. Pages of all documents in PDF collections are numbered
sequentionally.

Note

The PDF and XPS interpreters allow the use of a -dLastPage less than -dFirstPage. In this case the pages
will be processed backwards from LastPage to FirstPage.

-sPageList=pageranges

Page ranges are separated by a comma ‘,’. Each range of pages can consist of:

•
a. a single page number.

•
b. a range with a starting page number, followed by a dash ‘-’ followed by an ending page number.

•
c. a range with a starting page number, followed by a dash ‘-’ which ends at the last page.

•
d. the keyword “even” or “odd”, which optionally can be followed by a colon ‘:’ and a page range. If there is no

page range then all even or odd pages are processed in forward order.

•
e. a range with an initial dash ‘-’ followed by and ending page number which starts at the last page and ends

at the specified page (PDF and XPS only).
For example:

-sPageList=1,3,5 indicates that pages 1, 3 and 5 should be processed.
-sPageList=5-10 indicates that pages 5, 6, 7, 8, 9 and 10 should be processed.
-sPageList=1,5-10,12- indicates that pages 1, 5, 6, 7, 8, 9, 10 and 12 onwards should be processed.
-sPageList=odd:3-7,9-,-1,8 processes pages 3, 5, 7, 9, 10, 11, ..., last, last, last-1, ..., 1, 8

Note

Use of PageList overrides FirstPage and/or LastPage, if you set these as well as PageList they will be
ignored.

Be aware that using the %d syntax for -sOutputFile=... does not reflect the page number in the original
document. If you chose (for example) to process even pages by using -sPageList=even, then the output of
-sOutputFile=out%d.png would still be out1.png, out2.png, out3.png etc.

For PostScript or PCL input files, the list of pages must be given in increasing order, you cannot process pages out of
order or repeat pages and this will generate an error. PCL and PostScript require that all the pages must be
interpreted, however since only the requested pages are rendered, this can still lead to savings in time.

The PDF and XPS interpreters handle this in a slightly different way. Because these file types provide for random
access to individual pages in the document these inerpreters only need to process the required pages, and can do
so in any order.

Because the PostScript and PCL interpreters cannot determine when a document terminates, sending multple files
as input on the command line does not reset the PageList between each document, each page in the second and
subsequent documents is treated as following on directly from the last page in the first document. The PDF
interpreter, however, does not work this way. Since it knows about individual PDF files the PageList is applied to
each PDF file separately. So if you were to set -sPageList=1,2 and then send two PDF files, the result would be
pages 1 and 2 from the first file, and then pages 1 and 2 from the second file. The PostScript interpreter, by contrast,
would only render pages 1 and 2 from the first file. This means you must exercise caution when using this switch,
and probably should not use it at all when processing a mixture of PostScript and PDF files on the same command
line.

Using Ghostscript

34

Problems interpreting a PDF file

Occasionally you may try to read or print a ‘PDF’ file that Ghostscript doesn’t recognize as PDF, even though the
same file can be opened and interpreted by an Adobe Acrobat viewer. In many cases, this is because of incorrectly
generated PDF. Acrobat tends to be very forgiving of invalid PDF files. Ghostscript tends to expect files to conform to
the standard. For example, even though valid PDF files must begin with %PDF, Acrobat will scan the first 1000 bytes
or so for this string, and ignore any preceding garbage.

In the past, Ghostscript’s policy has been to simply fail with an error message when confronted with these files. This
policy has, no doubt, encouraged PDF generators to be more careful. However, we now recognize that this behavior
is not very friendly for people who just want to use Ghostscript to view or print PDF files. Our new policy is to try to
render broken PDF’s, and also to print a warning, so that Ghostscript is still useful as a sanity-check for invalid files.

PDF files from standard input

The PDF language, unlike the PostScript language, inherently requires random access to the file. If you provide PDF
to standard input using the special filename ‘-’, Ghostscript will copy it to a temporary file before interpreting the PDF.

Using Ghostscript with EPS files
Encapsulated PostScript (EPS) files are intended to be incorporated in other PostScript documents and may not
display or print on their own. An EPS file must conform to the Document Structuring Conventions, must include a
%%BoundingBox line to indicate the rectangle in which it will draw, must not use PostScript commands which will
interfere with the document importing the EPS, and can have either zero pages or one page. Ghostscript has support
for handling EPS files, but requires that the %%BoundingBox be in the header, not the trailer. To customize EPS
handling, see EPS parameters.

For the official description of the EPS file format, please refer to the Adobe documentation.

Using Ghostscript with overprinting and spot colors
In general with PostScript and PDF interpreters, the handling of overprinting and spot colors depends upon the
process color model of the output device. Devices that produce gray or RGB output have an additive process color
model. Devices which produce CMYK output have a subtractive process color model. Devices may, or may not, have
support for spot colors.

Note

The differences in appearance of files with overprinting and spot colors caused by the differences in the color
model of the output device are part of the PostScript and PDF specifications. They are not due to a limitation in
the implementation of Ghostscript or its output devices.

With devices which use a subtractive process color model, both PostScript and PDF allow the drawing of objects
using colorants (inks) for one or more planes without affecting the data for the remaining colorants. Thus the inks for
one object may overprint the inks for another object. In some cases this produces a transparency like effect. (The
effects of overprinting should not be confused with the PDF 1.4 blending operations which are supported for all
output devices.) Overprinting is not allowed for devices with an additive process color model. With files that use
overprinting, the appearance of the resulting image can differ between devices which produce RGB output versus
devices which produce CMYK output. Ghostscript automatically overprints (if needed) when the output device uses a
subtractive process color model. For example, if the file is using overprinting, differences can be seen in the
appearance of the output from the tiff24nc and tiff32nc devices which use an RGB and a CMYK process color
models.

Most of the Ghostscript output devices do not have file formats which support spot colors. Instead spot colors are
converted using the tint transform function contained within the color space definition.. However there are several
devices which have support for spot colors. The PSD format (Adobe Photoshop) produced by the psdcmyk device
contains both the raster data plus an equivalent CMYK color for each spot color. This allows Photoshop to simulate
the appearance of the spot colors. The display device (MS Windows, OS/2, gtk+) can be used with different color
models: Gray, RGB, CMYK only, or CMYK plus spot colors (separation). The display device, when using its CMYK
plus spot color (separation) mode, also uses an equivalent CMYK color to simulate the appearance of the spot color.

Using Ghostscript

35

The tiffsep device creates output files for each separation (CMYK and any spot colors present). It also creates a
composite CMYK file using an equivalent CMYK color to simulate the appearance of spot colors. The xcfcmyk device
creates output files with spot colors placed in separate alpha channels. (The XCF file format does not currently
directly support spot colors.)

Overprinting with spot colors is not allowed if the tint transform function is being used to convert spot colors. Thus if
spot colors are used with overprinting, then the appearance of the result can differ between output devices. One
result would be obtained with a CMYK only device and another would be obtained with a CMYK plus spot color
device. In a worst case situation where a file has overprinting with both process (CMYK) and spot colors, it is
possible to get three different appearances for the same input file using the tiff24nc (RGB), tiff32nc (CMYK), and
tiffsep (CMYK plus spot colors) devices.

Note

In Adobe Acrobat, viewing of the effects of overprinting is enabled by the ‘Overprint Preview’ item in the
‘Advanced’ menu. This feature is not available in the free Acrobat Reader. The free Acrobat Reader also uses the
tint transform functions to convert spot colors to the appropriate alternate color space.

How Ghostscript finds files
When looking for initialization files (gs_*.ps, pdf_*.ps), font files, the Fontmap file, files named on the command
line, and resource files, Ghostscript first tests whether the file name specifies an absolute path.

Testing a file name for an absolute path

System Does the name …

Unix Begin with / ?

MS Windows Have : as its second character, or begin with /, \, or
//servername/share/ ?

VMS Contain a node, device, or root specification?

If the test succeeds, Ghostscript tries to open the file using the name given. Otherwise it tries directories in this order:

1. The current directory if enabled by the -P switch.

2. The directories specified by -I switches in the command line, if any.

3. The directories specified by the GS_LIB environment variable, if any.

4. If built with COMPILE_INITS=1 (currently the default build) the files in the %rom%Resource/ and
%rom%iccprofiles/ directories are built into the executable.

5. The directories specified by the GS_LIB_DEFAULT macro (if any) in the makefile when this executable was
built.

GS_LIB_DEFAULT, GS_LIB, and the -I parameter may specify either a single directory or a list of directories
separated by a character appropriate for the operating system (”:” on Unix systems, “,” on VMS systems, and “;” on
MS Windows systems). By default, Ghostscript no longer searches the current directory first but provides -P switch
for a degree of backward compatibility.

Note that Ghostscript does not use this file searching algorithm for the run or file operators: for these operators, it
simply opens the file with the name given. To run a file using the searching algorithm, use runlibfile instead of
run.

Finding PostScript Level 2 resources

Adobe specifies that resources are installed in a single directory. Ghostscript instead maintains a list of resource
directories, and uses an extended method for finding resource files.

The search for a resource file depends on whether the value of the system parameter GenericResourceDir
specifies an absolute path. The user may set it as explained in resource related parameters.

Using Ghostscript

36

If the user doesn’t set the system parameter GenericResourceDir, or use the -sGenericResourceDir=
command line option, Ghostscript creates a default value for it by looking on the directory paths explained in How
Ghostscript finds files, excluding the current directory. The first path with Resource in it is used, including any prefix
up to the path separator character following the string Resource. For example, when COMPILE_INITS=1 (the
current default build), if the first path is %rom%Resource/Init/, then the GenericResourceDir systemparam
will be set to %rom%Resource/ by default.

If the value of the system parameter GenericResourceDir is an absolute path (the default), Ghostscript assumes
a single resource directory. It concatenates:

1. The value of the system parameter GenericResourceDir.

2. The name of the resource category (for instance, CMap).

3. The name of the resource instance (for instance, Identity-H).

If the value of the system parameter GenericResourceDir is not an absolute path, Ghostscript assumes multiple
resource directories. In this case it concatenates:

1. A directory listed in the section How Ghostscript finds files, except the current directory.

2. The value of the system parameter GenericResourceDir.

3. The name of the resource category (for instance, CMap).

4. The name of the resource instance (for instance, Identity-H).

Due to possible variety of the part 1, the first successful combination is used. For example, if the value of the system
parameter GenericResourceDir is the string ../Resource/ (or its equivalent in the file path syntax of the
underlying platform), Ghostscript searches for ../Resource/CMap/Identity-H from all directories listed in How
Ghostscript finds files. So in this example, if the user on a Windows platform specifies the command line option
-I.;../gs/lib;c:/gs8.50/lib, Ghostscript searches for ../gs/Resource/CMap/Identity-H and then for
c:/gs8.50/Resource/CMap/Identity-H.

To get a proper platform dependent syntax Ghostscript inserts the value of the system parameter
GenericResourcePathSep (initially “/” on Unix and Windows, “:” on MacOS, “.” or “]” on OpenVMS). The string
../Resource is replaced with a platform dependent equivalent.

In the case of multiple resource directories, the default ResourceFileName procedure retrieves either a path to the
first avaliable resource, or if the resource is not available it returns a path starting with GenericResourceDir.
Consequently Postscript installers of Postscript resources will overwrite an existing resource or add a new one to the
first resource directory.

To look up fonts, after exhausting the search method described in the next section, it concatenates together:

1. the value of the system parameter FontResourceDir (initially /Resource/Font/).

2. the name of the resource font (for instance, Times-Roman).

Note

Even although the system parameters are named “somethingDir”, they are not just plain directory names: they
have “/” on the end, so that they can be concatenated with the category name or font name.

Font lookup

Ghostscript has a slightly different way to find the file containing a font with a given name. This rule uses not only the
search path defined by -I, GS_LIB, and GS_LIB_DEFAULT as described above, but also the directory that is the
value of the FontResourceDir system parameter, and an additional list of directories that is the value of the
GS_FONTPATH environment variable (or the value provided with the -sFONTPATH= switch, if present).

At startup time, Ghostscript reads in the Fontmap files in every directory on the search path (or in the list provided
with the -sFONTMAP= switch, if present): these files are catalogs of fonts and the files that contain them. (See the
documentation of fonts for details.) Then, when Ghostscript needs to find a font that isn’t already loaded into
memory, it goes through a series of steps.

Using Ghostscript

37

1. First, it looks up the font name in the combined Fontmaps. If there is an entry for the desired font name, and the
file named in the entry can be found in some directory on the general search path (defined by -I, GS_LIB, and
GS_LIB_DEFAULT), and the file is loaded successfully, and loading it defines a font of the desired name, that is
the end of the process.

2. If this process fails at any step, Ghostscript looks for a file whose name is the concatenation of the value of the
FontResourceDir system parameter and the font name, with no extension. If such a file exists, can be
loaded, and defines a font of the desired name, that again is the end. The value of FontResourceDir is
normally the string /Resource/Font/, but it can be changed with the setsystemparams operator: see the
PostScript Language Reference Manual for details.

3. If that fails, Ghostscript then looks for a file on the general search path whose name is the desired font name,
with no extension. If such a file exists, can be loaded, and defines a font of the desired name, that again is the
end.

4. If that too fails, Ghostscript looks at the GS_FONTPATH environment variable (or the value provided with the
-sFONTPATH= switch, if present), which is also a list of directories. It goes to the first directory on the list, and
it’s descendants, looking for all files that appear to contain PostScript fonts (also Truetype fonts); it then adds all
those files and fonts to the combined Fontmaps, and starts over.

5. If scanning the first FONTPATH directory doesn’t produce a file that provides the desired font, it adds the next
directory on the FONTPATH list, and so on until either the font is defined successfully or the list is exhausted.

6. Finally, if all else fails, it will try to find a substitute for the font from among the standard 35 fonts.

Note

CID fonts (e.g. Chinese, Japanese and Korean) are found using a different method.

Differences between search path and font path

Search path Font path

-I switch -sFONTPATH= switch

GS_LIB and GS_LIB_DEFAULT environment variables GS_FONTPATH environment variable

Consulted first Consulted only if search path and FontResourceDir
don’t provide the file.

Font-name-to-file-name mapping given in Fontmap
files;
aliases are possible, and there need not be any relation
between the font name in the Fontmap and the
FontName in the file.

Font-name-to-file-name mapping is implicit – the
FontName in the file is used.
Aliases are not possible.

Only fonts and files named in Fontmap are used. Every Type 1 font file in each directory is available;
if TrueType fonts are supported (the ttfont.dev
feature was included
when the executable was built), they are also available.

If you are using one of the following types of computer, you may wish to set the environment variable GS_FONTPATH
to the value indicated so that Ghostscript will automatically acquire all the installed Type 1 (and, if supported,
TrueType) fonts (but see below for notes on systems marked with “*”):

Suggested GS_FONTPATH for different systems

System type GS_FONTPATH

Digital Unix /usr/lib/X11/fonts/Type1Adobe

Ultrix /usr/lib/DPS/outline/decwin

HP-UX 9 /usr/lib/X11/fonts/type1.st/typefaces

Using Ghostscript

38

IBM AIX /usr/lpp/DPS/fonts/outlines
/usr/lpp/X11/lib/X11/fonts/Type1
/usr/lpp/X11/lib/X11/fonts/Type1/DPS

NeXT /NextLibrary/Fonts/outline

SGI IRIX * /usr/lib/DPS/outline/base
/usr/lib/X11/fonts/Type1

SunOS 4.x (NeWSprint only) newsprint_2.5/SUNWsteNP/reloc/$BASEDIR/NeWSpri
nt/
small_openwin/lib/fonts

SunOS 4.x ** /usr/openwin/lib/X11/fonts/Type1/outline

Solaris 2.x ** /usr/openwin/lib/X11/fonts/Type1/outline

VMS SYS$COMMON:[SYSFONT.XDPS.OUTLINE]

** On SGI IRIX systems, you must use Fontmap.SGI in place of Fontmap or Fontmap.GS, because otherwise the
entries in Fontmap will take precedence over the fonts in the FONTPATH directories.

** On Solaris systems simply setting GS_FONTPATH or using -sFONTPATH= may not work, because for some reason
some versions of Ghostscript can’t seem to find any of the Type1 fonts in
/usr/openwin/lib/X11/fonts/Type1/outline. (It says: “15 files, 15 scanned, 0 new fonts”. We think this
problem has been fixed in Ghostscript version 6.0, but we aren’t sure because we’ve never been able to reproduce
it.) See Fontmap.Sol instead. Also, on Solaris 2.x it’s probably not worth your while to add Sun’s fonts to your font
path and Fontmap. The fonts Sun distributes on Solaris 2.x in the directories:
/usr/openwin/lib/X11/fonts/Type1 & /usr/openwin/lib/X11/fonts/Type1/outline are already
represented among the ones distributed as part of Ghostscript; and on some test files, Sun’s fonts have been shown
to cause incorrect displays with Ghostscript.

These paths may not be exactly right for your installation; if the indicated directory doesn’t contain files whose names
are familiar font names like Courier and Helvetica, you may wish to ask your system administrator where to find
these fonts.

Adobe Acrobat comes with a set of fourteen Type 1 fonts, on Unix typically in a directory called /Acrobat3/Fonts.
There is no particular reason to use these instead of the corresponding fonts in the Ghostscript distribution (which
are of just as good quality), except to save about a megabyte of disk space, but the installation documentation
explains how to do it on Unix.

CID fonts

CID fonts are PostScript resources containing a large number of glyphs (e.g. glyphs for Far East languages,
Chinese, Japanese and Korean). Please refer to the PostScript Language Reference, third edition, for details.

CID font resources are a different kind of PostScript resource from fonts. In particular, they cannot be used as
regular fonts. CID font resources must first be combined with a CMap resource, which defines specific codes for
glyphs, before it can be used as a font. This allows the reuse of a collection of glyphs with different encodings.

The simplest method to request a font composed of a CID font resource and a CMap resource in a PostScript
document is:

/CIDFont-CMap findfont

where CIDFont is a name of any CID font resource, and CMap is a name of a CMap resource designed for the same
character collection. The interpreter will compose the font automatically from the specified CID font and CMap
resources. Another method is possible using the composefont operator.

CID fonts must be placed in the /Resource/CIDFont/ directory. They are not found using Font lookup on the
search path or font path.

Using Ghostscript

39

CID font substitution

Automatic CIDFont Substitution

In general, it is highly recommended that CIDFonts used in the creation of PDF jobs should be embedded or
available to Ghostscript as CIDFont resources, this ensures that the character set, and typeface style are as
intended by the author.

In cases where the original CIDFont is not available, the next best option is to provide Ghostscript with a mapping to
a suitable alternative CIDFont - see below for details on how this is achieved. However, Ghostscript does provide the
ability to use a “fall back” CIDFont substitute. As shipped, this uses the DroidSansFallback.ttf font. This font contains
a large number of glyphs covering several languages, but it is not comprehensive. There is, therefore, a chance that
glyphs may be wrong, or missing in the output when this fallback is used.

Internally, the font is referenced as CIDFont resource called CIDFallBack, thus a different fallback from
DroidSansFallback.ttf can be specified adding a mapping to your cidfmap file (see below for details) to map
the name “CIDFallBack” as you prefer. For CIDFallBack the mapping must be a TrueType font or TrueType
collection, it cannot be a Postscript CIDFont file.

As with any font containing large numbers of glyphs, DroidSansFallback.ttf is quite large (~3.5Mb at the of
writing). If this is space you cannot afford in your use of Ghostscript, you can simply delete the file from:
Resource/CIDFSubst/DroidSansFallback.ttf. The build system will cope with the file being removed, and
the initialization code will avoid adding the internal fall back mapping if the file is missing.

If DroidSansFallback.ttf is removed, and no other CIDFallBack mapping is supplied, the final “fall back” is to
use a “dumb” bullet CIDFont, called ArtifexBullet. As the name suggests, this will result in all the glyphs from a
missing CIDFont being replaced with a simple bullet point.

This type of generic fall back CIDFont substitution can be very useful for viewing and proofing jobs, but may not be
appropriate for a “production” workflow, where it is expected that only the original font should be used. For this
situation, you can supply Ghostscript with the command line option: -dPDFNOCIDFALLBACK. By combining
-dPDFNOCIDFALLBACK with -dPDFSTOPONERROR a production workflow can force a PDF with missing CIDFonts to
error, and avoid realising a CIDFont was missing only after printing.

The directory in which the fallback TrueType font or collection can be specified by the command line parameter
-sCIDFSubstPath="path/to/TTF", or with the environment variable CIDFSUBSTPATH. The file name of the
substitute TrueType font can be specified using the command line parameter
-sCIDFSubstFont="TTF file name" or the environment variable CIDFSUBSTFONT.

Explicit CIDFont Substitution

Substitution of CID font resources is controlled, by default, by the Ghostscript configuration file
Resource/Init/cidfmap, which defines a CID font resource map.

The file forms a table of records, each of which should use one of three formats, explained below. Users may modify
Resource/Init/cidfmap to configure Ghostscript for a specific need. Note that the default Ghostscript build
includes such configuration and resource files in a rom file system built into the executable. So, to ensure your
changes have an effect, you should do one of the following: rebuild the executable; use the “-I” command line
option to add the directory containing your modified file to Ghostscript’s search path; or, finally, build Ghostscript to
use disk based resources.

Format 1

To substitute a CID font resource with another CID font resource, add a record like this:

/Substituted /Original ;

where Substituted is a name of CID font resource being used by a document, and Original is a name of an
available CID font resource. Please pay attention that both them must be designed for same character collection. In
other words, you cannot substitute a Japanese CID font resource with a Korean CID font resource, etc. CMap
resource names must not appear in lib/cidfmap. The trailing semicolon and the space before it are both required.

Format 2

To substitute (emulate) a CID font resource with a TrueType font file, add a record like this:

Using Ghostscript

40

/Substituted << keys&values >> ;

Where keys&values are explained in the table below.

Key Type Description

/Path string A path to a TrueType font file.
This must be an absolute path. If using -dSAFER, the directory containing the
font file must be on one of the permitted paths.

/FileType name Must be /TrueType.

/SubfontID integer (optional) Index of the font in font collection, such as TTC.
This is ignored if Path doesn’t specify a collection. The first font in a collection
is 0. Default value is 0.

/CSI array of 2 or 3
elements

(required) Information for building CIDSystemInfo.
If the array consists of 2 elements, the first element is a string,
which specifies Ordering; the second element is a number, which specifies
Supplement.

If the array consists of 3 elements, the first element is a string,
which specifies Registry; the second element is a string,
which specifies Ordering; the third element is a number,
which specifies Supplement.

Currently only CIDFontType 2 can be emulated with a TrueType font. The TrueType font must contain enough
characters to cover an Adobe character collection, which is specified in Ordering and used in documents.

Format 3

To point Ghostscript at a specific CIDFont file outside it’s “normal” resource search path :

/CIDName (path/to/cid/font/file) ;

where CIDName is a name of CID font resource being used by a document, and path/to/cid/font/file is the
path to the Postscript CIDFont file, including the file name. NOTE: the CIDFont file, when executed by the Postscript
interpreter, must result in a CIDFont resource being defined whose CIDFontName matches the “CIDName” key for
the current record. I.E. an entry with the key /PingHei-Bold must reference a file which creates a CIDFont resource
called “PingHei-Bold”. To substitute a file based CIDFont for a differently named CIDFont, use formats 1 and 3 in
combination (the order of the entries is not important).

The trailing semicolon and the space before it are both required.

Examples

Format 1

/Ryumin-Medium /ShinGo-Bold ;
/Ryumin-Light /MS-Mincho ;
Format 2:
/Batang << /FileType /TrueType /Path (C:/WINDOWS/fonts/batang.ttc) /SubfontID 0 /CSI [(Korea1) 3] >> ;
/Gulim << /FileType /TrueType /Path (C:/WINDOWS/fonts/gulim.ttc) /SubfontID 0 /CSI [(Korea1) 3] >> ;
/Dotum << /FileType /TrueType /Path (C:/WINDOWS/fonts/gulim.ttc) /SubfontID 2 /CSI [(Korea1) 3] >> ;

Format 1 & 2

/SimSun << /FileType /TrueType /Path (C:/WINDOWS/fonts/simsun.ttc) /SubfontID 0 /CSI [(GB1) 2] >> ;
/SimHei << /FileType /TrueType /Path (C:/WINDOWS/fonts/simhei.ttf) /SubfontID 0 /CSI [(GB1) 2] >> ;
/STSong-Light /SimSun ;
/STHeiti-Regular /SimHei ;
Format 3:
/PMingLiU (/usr/local/share/font/cidfont/PMingLiU.cid) ;

Format 1 & 3

Using Ghostscript

41

/Ryumin-Light /PMingLiU ;
/PMingLiU (/usr/local/share/font/cidfont/PMingLiU.cid) ;

The win32 installer of recent version of Ghostscript has a checkbox for “Use Windows TrueType fonts for Chinese,
Japanese and Korean” to optionally update lib/cidfmap with the common CJK fonts provided by Microsoft
products. The script can also be run separately (e.g. against a network drive with windows CJK fonts):

gswin32c -q -dBATCH -sFONTDIR=c:/windows/fonts -sCIDFMAP=lib/cidfmap lib/mkcidfm.ps

Note that the font file path uses Postscript syntax. Because of this, backslashes in the paths must be represented as
a double backslash.

This can complicate substitutions for fonts with non-Roman names. For example, if a PDF file asks for a font with the
name /#82l#82r#83S#83V#83b#83N. This cannot be used directly in a cidfmap file because the #xx notation in
names is a PDF-only encoding. Instead, try something like:

<82C68272835383568362834E>cvn << /Path (C:/WINDOWS/Fonts/msmincho.ttc) /FileType /TrueType /SubfontID 0 /CSI [(Japan1) 3] >> ;

Where <82C68272835383568362834E> is the same byte sequence converted to a hex string. This lets you
specify a name using any sequence of bytes through the encodings available for Postscript strings.

Note that loading truetype fonts directly from /Resources/CIDFont is no longer supported. There is no reliable
way to generate a character ordering for truetype fonts. The 7.0x versions of Ghostscript supported this by assuming
a Japanese character ordering. This is replaced in the 8.0x and later releases with the more general cidfmap
mechanism.

The PDF specification requires CID font files to be embedded, however some documents omit them. As a
workaround the PDF interpreter applies an additional substitution method when a requested CID font resource is not
embedded and it is not available. It takes values of the keys Registry and Ordering from the CIDFontSystem
dictionary, and concatenates them with a dash inserted. For example, if a PDF CID font resource specifies:

/CIDSystemInfo << /Registry (Adobe) /Ordering (CNS1) /Supplement 1 >>

the generated subsitituite name is Adobe-CNS1. The latter may look some confusing for a font name, but we keep it
for compatibility with older Ghostscript versions, which do so due to a historical reason. Add a proper record to
lib/cidfmap to provide it.

Please note that when a PDF font resource specifies:

/Registry (Adobe) /Ordering (Identity)

there is no way to determine the language properly. If the CID font file is not embedded, the Adobe-Identity
record depends on the document and a correct record isn’t possible when a document refers to multiple Far East
languages. In the latter case add individual records for specific CID font names used in the document.

Consequently, if you want to handle any PDF document with non-embedded CID fonts (which isn’t a correct PDF),
you need to create a suitable lib/cidfmap by hand, possibly a specific one for each document.

Using Unicode True Type fonts

Ghostscript can make use of Truetype fonts with a Unicode character set. To do so, you should generate a (NOTE:
non-standard!) Postscript or PDF job where the relevant text is encoded as UTF-16. Ghostscript may be used for
converting such jobs to other formats (Postscript, PDF, PXL etc). The resulting output will be compliant with the spec
(unlike the input).

To render an UTF-16 encoded text, one must do the following:

• Provide a True Type font with Unicode Encoding. It must have a cmap table with platformID equals to 3
(Windows), and SpecificID eqials to 1 (Unicode).

• Describe the font in Resource/Init/cidfmap with special values for the CSI key :
[(Artifex) (Unicode) 0].

• In the PS or PDF job combine the font with one of CMap Identity-UTF16-H (for the horizontal writing mode)
or Identity-UTF16-V (for the vertical writing mode). Those CMaps are distributed with Ghostscript in
Resource/CMap.

Using Ghostscript

42

Please note that /Registry (Adobe) /Ordering (Identity) won’t properly work for Unicode documents,
especially for the searchability feature (see CID font substitution).

Temporary files

Where Ghostscript puts temporary files

Platform Filename Location

MS Windows and OpenVMS _temp_XX.XXX Current directory

OS/2 gsXXXXXX Current directory

Unix gs_XXXXX /tmp

You can change in which directory Ghostscript creates temporary files by setting the TMPDIR or TEMP environment
variable to the name of the directory you want used. Ghostscript currently doesn’t do a very good job of deleting
temporary files if it exits because of an error; you may have to delete them manually from time to time.

Notes on specific platforms

Word size (32 or 64 bits)

The original PostScript language specification, while not stating a specific word size, defines ‘typical’ limits which
make it clear that it was intended to run as a 32-bit environment. Ghostscript was originally coded that way, and the
heritage remains within the code base.

Because the Ghostscript PDF interpreter is currently written in PostScript, it proved necessary to add support for
64-bit integers so that we could process PDF files which exceed 2GB in size. This is the only real purpose in adding
support for large integers, however since that time, we have made some efforts to allow for the use of 64-bit words;
in particular the use of integers, but also lifting the 64K limit on strings and arrays, among other areas.

However this is, obviously, dependent on the operating system and compiler support available. Not all builds of
Ghostscript will support 64-bit integers, though some 32-bit builds (eg Windows) will.

Even when the build supports 64-bit words, you should be aware that there are areas of Ghostscript which do not
support 64-bit values. Sometimes these are dependent on the build and other times they are inherent in the
architecture of Ghostscript (the graphics library does not support 64-bit co-ordinates in device space for example,
and most likely never will).

Note

The extended support for 64-bit word size can be disabled by executing ‘true .setcpsimode’, This is important for
checking the output of the Quality Logic test suite (and possibly other test suites) as the tests make assumptions
about the sizes of integers (amongst other things). You can run /ghostpdl/Resource/Init/gs_cet.ps to
change Ghostscript’s behaviour so that it matches the observed behaviour of Adobe CPSI interpreters.

Unix

The Ghostscript distribution includes some Unix shell scripts to use with Ghostscript in different environments. These
are all user-contributed code, so if you have questions, please contact the user identified in the file, not Artifex
Software.

pv.sh

Preview a specified page of a dvi file in an X window

sysvlp.sh

Using Ghostscript

43

System V 3.2 lp interface for parallel printer

pj-gs.sh

Printing on an H-P PaintJet under HP-UX

unix-lpr.sh

Queue filter for lpr under Unix; its documentation is intended for system administrators

lprsetup.sh

Setup for unix-lpr.sh

VMS

To be able to specify switches and file names when invoking the interpreter, define gs as a foreign command:

$ gs == "$disk:[directory]gs.exe"

where the “disk” and “directory” specify where the Ghostscript executable is located. For instance:

$ gs == "$dua1:[ghostscript]gs.exe"

On VMS systems, the last character of each “directory” name indicates what sort of entity the “directory” refers to. If
the “directory” name ends with a colon “:”, it is taken to refer to a logical device, for instance:

$ define ghostscript_device dua1:[ghostscript_510]

$ define gs_lib ghostscript_device:

If the “directory” name ends with a closing square bracket “]”, it is taken to refer to a real directory, for instance

$ define gs_lib dua1:[ghostscript]

Defining the logical GS_LIB:

$ define gs_lib disk:[directory]

allows Ghostscript to find its initialization files in the Ghostscript directory even if that’s not where the executable
resides.

Although VMS DCL itself converts unquoted parameters to upper case, C programs such as Ghostscript receive their
parameters through the C runtime library, which forces all unquoted command-line parameters to lower case. That is,
with the command:

$ gs -Isys$login:

Ghostscript sees the switch as -isys$login, which doesn’t work. To preserve the case of switches, quote them
like this:

$ gs "-Isys$login:"

If you write printer output to a file with -sOutputFile= and then want to print the file later, use "PRINT/PASSALL".

PDF files (or PostScript files that use the setfileposition operator) must be “stream LF” type files to work
properly on VMS systems. (Note: This definitely matters if Ghostscript was compiled with DEC C; we are not sure of
the situation if you use gcc.) Because of this, if you transfer files by FTP, you probably need to do one of these two
things after the transfer:

• If the FTP transfer was in text (ASCII) mode:

$ convert/fdl=streamlf.fdl input-file output-file

where the contents of the file STREAMLF.FDL are:

FILE

Using Ghostscript

44

ORGANIZATION sequential

RECORD

BLOCK_SPAN yes

CARRIAGE_CONTROL carriage_return

FORMAT stream_lf

• If the FTP transfer was in binary mode:

$ set file/attribute=(rfm:stmlf)

Using X Windows on VMS

If you are using on an X Windows display, you can set it up with the node name and network transport, for instance:

$ set display/create/node="doof.city.com"/transport=tcpip

and then run Ghostscript by typing gs at the command line.

MS Windows

The name of the Ghostscript command line executable on MS Windows is gswin32c/gswin64c so use this
instead of the plain ‘gs’ in the quickstart examples.

To run the batch files in the Ghostscript lib directory, you must add gs\bin and gs\lib to the PATH, where gs is
the top-level Ghostscript directory.

When passing options to Ghostscript through a batch file wrapper such as ps2pdf.bat you need to substitute ‘#’ for
‘=’ as the separator between options and their arguments. For example:

ps2pdf -sPAPERSIZE#a4 file.ps file.pdf

Ghostscript treats ‘#’ the same internally, and the ‘=’ is mangled by the command shell.

There is also an older version for MS Windows called just gswin32 that provides its own window for the interactive
postscript prompt. The executable gswin32c/gswin64c is usually the better option since it uses the native
command prompt window.

For printer devices, the default output is the default printer. This can be modified as follows:

-sOutputFile="%printer%printer name"

Output to the named printer. If your printer is named “HP DeskJet 500” then you would use
-sOutputFile="%printer%HP DeskJet 500".

MS-DOS

Note

Ghostscript is no longer supported on MS-DOS.

Invoking Ghostscript from the command prompt in Windows is supported by the Windows executable described
above.

X Windows

Ghostscript looks for the following resources under the program name ghostscript and class name
Ghostscript; the ones marked “**” are calculated from display metrics:

X Windows resources

Name Class Default

Using Ghostscript

45

background Background white

foreground Foreground black

borderColor BorderColor black

borderWidth BorderWidth 1

geometry Geometry NULL

xResolution Resolution **

yResolution Resolution **

useExternalFonts UseExternalFonts true

useScalableFonts UseScalableFonts true

logExternalFonts LogExternalFonts false

externalFontTolerance ExternalFontTolerance 10.0

palette Palette Color

maxGrayRamp MaxGrayRamp 128

maxRGBRamp MaxRGBRamp 5

maxDynamicColors MaxDynamicColors 256

useBackingPixmap UseBackingPixmap true

useXPutImage UseXPutImage true

useXSetTile UseXSetTile true

X resources

To set X resources, put them in a file (such as ~/.Xdefaults on Unix) in a form like this:

Ghostscript*geometry: 595x842-0+0

Ghostscript*xResolution: 72

Ghostscript*yResolution: 72

Then merge these resources into the X server’s resource database:

xrdb -merge ~/.Xdefaults

• Ghostscript doesn’t look at the default system background and foreground colors; if you want to change the
background or foreground color, you must set them explicitly for Ghostscript. This is a deliberate choice, so that
PostScript documents will display correctly by default – with white as white and black as black – even if text
windows use other colors.

• The geometry resource affects only window placement.

• Resolution is expressed in pixels per inch (1 inch = 25.4mm).

• The font tolerance gives the largest acceptable difference in height of the screen font, expressed as a
percentage of the height of the desired font.

• The palette resource can be used to restrict Ghostscript to using a grayscale or monochrome palette.

maxRGBRamp and maxGrayRamp control the maximum number of colors that Ghostscript allocates ahead of time for
the dither cube (ramp). Ghostscript never preallocates more than half the cells in a colormap. maxDynamicColors
controls the maximum number of colors that Ghostscript will allocate dynamically in the colormap.

Working around bugs in X servers

The “use...” resources exist primarily to work around bugs in X servers.

Using Ghostscript

46

• Old versions of DEC’s X server (DECwindows) have bugs that require setting useXPutImage or
useXSetTile to false.

• Some servers do not implement backing pixmaps properly, or do not have enough memory for them. If you get
strange behavior or “out of memory” messages, try setting useBackingPixmap to false.

• Some servers do not implement tiling properly. This appears as broad bands of color where dither patterns
should appear. If this happens, try setting useXSetTile to false.

• Some servers do not implement bitmap or pixmap displaying properly. This may appear as white or black
rectangles where characters should appear; or characters may appear in “inverse video” (for instance, white on
a black rectangle rather than black on white). If this happens, try setting useXPutImage to false.

X device parameters

In addition to the device parameters recognized by all devices, Ghostscript’s X driver provides parameters to
adjust its performance. Users will rarely need to modify these. Note that these are parameters to be set with the
-d switch in the command line (e.g., -dMaxBitmap=10000000), not resources to be defined in the
~/.Xdefaults file.

AlwaysUpdate <boolean>

If true, the driver updates the screen after each primitive drawing operation; if false (the default), the driver
uses an intelligent buffered updating algorithm.

MaxBitmap <integer>

If the amount of memory required to hold the pixmap for the window is no more than the value of MaxBitmap,
the driver will draw to a pixmap in Ghostscript’s address space (called a “client-side pixmap”) and will copy it to
the screen from time to time; if the amount of memory required for the pixmap exceeds the value of MaxBitmap,
the driver will draw to a server pixmap. Using a client-side pixmap usually provides better performance – for
bitmap images, possibly much better performance – but since it may require quite a lot of RAM (e.g., about 2.2
Mb for a 24-bit 1024x768 window), the default value of MaxBitmap is 0.

MaxTempPixmap, MaxTempImage <integer>

These control various aspects of the driver’s buffering behavior. For details, please consult the source file
gdevx.h.

SCO Unix

Because of bugs in the SCO Unix kernel, Ghostscript will not work if you select direct screen output and also allow it
to write messages on the console. If you are using direct screen output, redirect Ghostscript’s terminal output to a
file.

Command line options
Unless otherwise noted, these switches can be used on all platforms.

General switches

Input control

@filename

Causes Ghostscript to read filename and treat its contents the same as the command line. (This was intended
primarily for getting around DOS’s 128-character limit on the length of a command line.) Switches or file names
in the file may be separated by any amount of white space (space, tab, line break); there is no limit on the size of
the file.

Using Ghostscript

47

– filename arg1 …

-+ filename arg1 …

Takes the next argument as a file name as usual, but takes all remaining arguments (even if they have the
syntactic form of switches) and defines the name ARGUMENTS in userdict (not systemdict) as an array of those
strings, before running the file. When Ghostscript finishes executing the file, it exits back to the shell.

-@ filename arg1 …

Does the same thing as – and -+, but expands @filename arguments.

-

-_

These are not really switches: they tell Ghostscript to read from standard input, which is coming from a file or a
pipe, with or without buffering. On some systems, Ghostscript may read the input one character at a time, which
is useful for programs such as ghostview that generate input for Ghostscript dynamically and watch for some
response, but can slow processing. If performance is significantly slower than with a named file, try ‘-_’ which
always reads the input in blocks. However, ‘-’ is equivalent on most systems.

-c token …

-c string …

Interprets arguments as PostScript code up to the next argument that begins with “-” followed by a non-digit, or
with “@”. For example, if the file quit.ps contains just the word “quit”, then -c quit on the command line is
equivalent to quit.ps there. Each argument must be valid PostScript, either individual tokens as defined by the
token operator, or a string containing valid PostScript.

Because Ghostscript must initialize the PostScript environment before executing the commands specified by this
option it should be specified after other setup options. Specifically this option ‘bind’s all operations and sets the
systemdict to readonly.

-f

Interprets following non-switch arguments as file names to be executed using the normal run command. Since
this is the default behavior, -f is useful only for terminating the list of tokens for the -c switch.

-f filename

Execute the given file, even if its name begins with a “-” or “@”.

File searching

Note that by “library files” here we mean all the files identified using the search rule under “How Ghostscript finds
files” above: Ghostscript’s own initialization files, fonts, and files named on the command line.

-I directories

Adds the designated list of directories at the head of the search path for library files.

-P

Makes Ghostscript look first in the current directory for library files.

Using Ghostscript

48

-P-

Makes Ghostscript not look first in the current directory for library files (unless, of course, the first explicitly
supplied directory is “.”). This is now the default.

Setting parameters

-D name, -d name

Define a name in systemdict with value=true.

-D name=token, -d name=token

Define a name in systemdict with the given value. The value must be a valid PostScript token (as defined by the
token operator). If the token is a non-literal name, it must be true, false, or null. It is recommeded that this is
used only for simple values – use -c (above) for complex values such as procedures, arrays or dictionaries.

Note that these values are defined before other names in systemdict, so any name that that conflicts with one
usually in systemdict will be replaced by the normal definition during the interpreter initialization.

-S name=string, -s name=string

Define a name in systemdict with a given string as value. This is different from -d. For example, -dXYZ=35 on
the command line is equivalent to the program fragment:

/XYZ 35 def

whereas -sXYZ=35 is equivalent to:

/XYZ (35) def

-p name=string

Define a name in systemdict with the parsed version of the given string as value. The string takes a parameter
definition in (something very close to) postscript format. This allows more complex structures to be passed in
than is possible with -d or -s. For example:

-pFoo="<< /Bar[1 2 3]/Baz 0.1 /Whizz (string) /Bang <0123> >>"

This means that ``-p`` can do the job of both ``-d`` and ``-s``. For example:

-dDownScaleFactor=3

can be equivalently performed by:

-pDownScaleFactor=3

and:

-sPAPERSIZE=letter

can be equivalently performed by:

-pPAPERSIZE="(letter)"

.. note ::

 There are some 'special' values that should be set using ``-s``, not ``-p``, such as ``DEVICE`` and ``DefaultGrayProfile``. Broadly, only use ``-p`` if you cannot set what you want using ``-s`` or ``-d``.

Using Ghostscript

49

Also, internally, after setting an parameter with ``-p`` we perform an ``initgraphics`` operation. This is required to allow changes in parameters such as ``HWResolution`` to take effect. This means that attempting to use ``-p`` other than at the start of a page is liable to give unexpected results.

-u name

Un-define a name, cancelling -d or -s.

Note that the initialization file gs_init.ps makes systemdict read-only, so the values of names defined with -D,
-d, -S, and -s cannot be changed – although, of course, they can be superseded by definitions in userdict or
other dictionaries. However, device parameters set this way (PageSize, Margins, etc.) are not read-only, and
can be changed by code in PostScript files.

-g number1 x number2

Equivalent to -dDEVICEWIDTH=number1 and -dDEVICEHEIGHT=number2, specifying the device width and
height in pixels for the benefit of devices such as X11 windows and VESA displays that require (or allow) you to
specify width and height. Note that this causes documents of other sizes to be clipped, not scaled: see
-dFIXEDMEDIA below.

-r number (same as -r number x number)

-r number1 x number2

Equivalent to -dDEVICEXRESOLUTION=number1 and -dDEVICEYRESOLUTION=number2, specifying the
device horizontal and vertical resolution in pixels per inch for the benefit of devices such as printers that support
multiple X and Y resolutions.

Suppress messages

-q

Quiet startup: suppress normal startup messages, and also do the equivalent of -dQUIET.

Parameter switches (-d and -s)

As noted above, -d and -s define initial values for PostScript names. Some of these names are parameters that
control the interpreter or the graphics engine. You can also use -d or -s to define a value for any device
parameter of the initial device (the one defined with -sDEVICE=, or the default device if this switch is not used).
For example, since the ppmraw device has a numeric GrayValues parameter that controls the number of bits
per component, -sDEVICE=ppmraw -dGrayValues=16 will make this the default device and set the number
of bits per component to 4 (log2(16)).

Rendering parameters

-dCOLORSCREEN

-dCOLORSCREEN=0

-dCOLORSCREEN=false

On high-resolution devices (at least 150 dpi resolution, or -dDITHERPPI specified), -dCOLORSCREEN forces
the use of separate halftone screens with different angles for CMYK or RGB if halftones are needed (this
produces the best-quality output); -dCOLORSCREEN=0 uses separate screens with the same frequency and
angle; -dCOLORSCREEN=false forces the use of a single binary screen. The default if COLORSCREEN is not
specified is to use separate screens with different angles if the device has fewer than 5 bits per color, and a
single binary screen (which is never actually used under normal circumstances) on all other devices.

Using Ghostscript

50

-dDITHERPPI= lpi

Forces all devices to be considered high-resolution, and forces use of a halftone screen or screens with lpi lines
per inch, disregarding the actual device resolution. Reasonable values for lpi are N/5 to N/20, where N is the
resolution in dots per inch.

-dInterpolateControl= control_value

This allows control of the image interpolation.

By default InterpolateControl is 1 and the image rendering for images that have /Interpolate true
are interpolated to the full device resolution. Otherwise, images are rendered using the nearest neighbour
scaling (Bresenham’s line algorithm through the image, plotting the closest texture coord at each pixel). When
downscaling this results in some source pixels not appearing at all in the destination. When upscaling, each
source pixels will cover at least one destination pixel.

When the control_value is 0 no interpolation is performed, whether or not the file has images with
/Interpolate true.

When the control_value is greater than 1 interpolation is performed for images with /Interpolate true as
long as the image scaling factor on either axis is larger than the control_value. Also, the interpolation only
produces images that have (device resolution / control_value) maximum resolution rather than full device
resolution. This allows for a performance vs. quality tradeoff since the number of pixels produced by the
interpolation will be a fraction of the interpolated pixels at full device resolution. Every source pixel will contribute
partially to the destination pixels.

When the InterpolateControl control_value is less than 0 interpolation is forced as if all images have
/Interpolate true, and the interpolation is controlled by the absolute value of the control_value as
described above. Thus, -dInterpolateControl=-1 forces all images to be interpolated at full device
resolution.

Computationally, image interpolation is much more demanding than without interpolation (lots of floating point
muliplies and adds for every output pixel vs simple integer additions, subtractions, and shifts).

In all but special cases image interpolation uses a Mitchell filter function to scale the contributions for each
output pixel. When upscaling, every output pixel ends up being the weighted sum of 16 input pixels, When
downscaling more source pixels will contribute to the interpolated pixels. Every source pixel has some effect on
the output pixels.

-dDOINTERPOLATE

This option still works, but is deprecated, and is the equivalent of -dInterpolateControl=-1.

-dNOINTERPOLATE

This option still works, but is deprecated and is the equivalent of -dInterpolateControl=0.

Turns off image interpolation, improving performance on interpolated images at the expense of image quality.
-dNOINTERPOLATE overrides -dDOINTERPOLATE.

-dTextAlphaBits= n

-dGraphicsAlphaBits= n

These options control the use of subsample antialiasing. Their use is highly recommended for producing high
quality rasterizations. The subsampling box size n should be 4 for optimum output, but smaller values can be
used for faster rendering. Antialiasing is enabled separately for text and graphics content. Allowed values are 1,
2 or 4.

Using Ghostscript

51

Note

Because of the way antialiasing blends the edges of shapes into the background when they are drawn some files
that rely on joining separate filled polygons together to cover an area may not render as expected with
GraphicsAlphaBits at 2 or 4. If you encounter strange lines within solid areas, try rendering that file again
with -dGraphicsAlphaBits=1.

Further note: because this feature relies upon rendering the input it is incompatible, and will generate an error on
attempted use, with any of the vector output devices.

-dAlignToPixels= n

Chooses glyph alignent to integral pixel boundaries (if set to the value 1) or to subpixels (value 0). Subpixels are
a smaller raster grid which is used internally for text antialiasing. The number of subpixels in a pixel usually is
2^TextAlphaBits, but this may be automatically reduced for big characters to save space in character cache.

The parameter has no effect if -dTextAlphaBits=1. Default value is 0.

Setting -dAlignToPixels=0 can improve rendering of poorly hinted fonts, but may impair the appearance of
well-hinted fonts.

-dGridFitTT= n

This specifies the initial value for the implementation specific user parameter GridFitTT. It controls grid fitting of
True Type fonts (Sometimes referred to as “hinting”, but strictly speaking the latter is a feature of Type 1 fonts).
Setting this to 2 enables automatic grid fitting for True Type glyphs. The value 0 disables grid fitting. The default
value is 2. For more information see the description of the user parameter GridFitTT.

-dUseCIEColor

Set UseCIEColor in the page device dictionary, remapping device-dependent color values through a Postscript
defined CIE color space. Document DeviceGray, DeviceRGB and DeviceCMYK source colors will be
substituted respectively by Postscript CIEA, CIEABC and CIEDEFG color spaces. See the document GS9 Color
Management for details on how this option will interact with Ghostscript’s ICC-based color workflow. If accurate
colors are desired, it is recommended that an ICC workflow be used.

-dNOCIE

Substitutes DeviceGray for CIEBasedA, DeviceRGB for CIEBasedABC and CIEBasedDEF spaces and
DeviceCMYK for CIEBasedDEFG color spaces. Useful only on very slow systems where color accuracy is less
important.

-dNOSUBSTDEVICECOLORS

This switch prevents the substitution of the ColorSpace resources (DefaultGray, DefaultRGB, and
DefaultCMYK) for the DeviceGray, DeviceRGB, and DeviceCMYK color spaces. This switch is primarily
useful for PDF creation using the pdfwrite device when retaining the color spaces from the original document is
important.

-dNOPSICC

Disables the automatic loading and use of an input color space that is contained in a PostScript file as DSC
comments starting with the %%BeginICCProfile: comment. ICC profiles are sometimes embedded by
applications to convey the exact input color space allowing better color fidelity. Since the embedded ICC profiles
often use multidimensional RenderTables, color conversion may be slower than using the Default color
conversion invoked when the -dUseCIEColor option is specified, therefore the -dNOPSICC option may result
in improved performance at slightly reduced color fidelity.

Using Ghostscript

52

https://ghostscript.com/doc/current/GS9_Color_Management.pdf
https://ghostscript.com/doc/current/GS9_Color_Management.pdf

-dNOTRANSPARENCY

Turns off PDF 1.4 transparency, resulting in faster (but possibly incorrect) rendering of pages containing PDF
1.4 transparency and blending.

-dALLOWPSTRANSPARENCY

Enables the use of the Ghostscript custom transparency operators (Transparency) from Postscript input.
Normally, these operators are not accessible from Postscript jobs, being primarily intended to be called by the
PDF interpreter. Using -dALLOWPSTRANSPARENCY leaves them available. It is important that these operators
are used correctly, especially the order in which they are called, otherwise unintended, even undefined behavior
may result.

-dNO_TN5044

Turns off the TN 5044 psuedo operators. These psuedo operators are not a part of the official Postscript
specification. However they are defined in Technical Note #5044 Color Separation Conventions for PostScript
Language Programs. These psuedo operators are required for some files from QuarkXPress. However some
files from Corel 9 and Illustrator 88 do not operate properly if these operators are present.

-dDOPS

Enables processing of Subtype /PS streams in PDF files and the DoPS operator. DoPS has in fact been
deprecated for some time. Also the “PS” operator that was removed from the 1.3 2nd edition specification is also
disabled by default, and enabled by -dDOPS. Use of this option is NOT recommended in security-conscious
applications, as it increases the scope for malicious code. -dDOPS has no effect on processing of PostScript
source files. Note: in releases 7.30 and earlier, processing of DoPS was always enabled.

-dBlackText

Forces text to be drawn with black. This occurs for text fill and text stroke operations. PDF output created with
this setting will be updated to be drawn with gray values of 0. Type 3 fonts, which are sometimes used for
graphics, are not affected by this parameter. Note, works only for fills with gray, rgb, and cmyk. Pattern,
separation, and deviceN fills will not be affected.

-dBlackVector

Forces vector stroke and fills to be drawn with black. PDF output created with this setting will be updated to be
drawn with gray values of 0. Note, works only for fills with gray, rgb, and cmyk. Pattern, separation, and deviceN
fills will not be affected.

-dBlackThresholdL= float

Sets the threshold for the luminance value (L*) at which that value and above will be mapped to white when
using the BlackText and BlackVector option. Default is 90. Pure white has a value of 100. Pure black has a
value of 0. This means that if you set BlackThresholdL=101, all colors will be mapped to black. If you set
BlackThresholdL=75, colors that are below an L* value of 75 will be mapped to black. Colors at or above an
L* of 75 will be mapped to white, depending upon the setting of BlackThresholdC (see below).

-dBlackThresholdC= float

For colors that are at or above the value set by BlackThresholdL (or the default setting of 90), map colors to
white that are within a distance of BlackThresholdC from the CIELAB neutral axis in terms of the L1 norm on
the a* and b* value. All others are mapped to black. This has the effect of forcing colors with high luminance and
high chrominance to black (e.g. pure yellow) while those with a lower luminance and less chrominance to white
(e.g. a light gray). Default value is 3. You can visualize the region that is mapped to white as a cuboid that is
centered on the CIELAB neutral axis with one end tied to the L*=100 value. The cuboid cross sections

Using Ghostscript

53

across the neutral axis are squares whose size is set by BlackThresholdC. The cuboid length is set by
BlackThresholdL and is effectively 100-BlackThresholdL.

Page parameters

-dFirstPage= pagenumber

Begin on the designated page of the document. Pages of all documents in PDF collections are numbered
sequentionally.

-dLastPage= pagenumber

Stop after the designated page of the document. Pages of all documents in PDF collections are numbered
sequentionally.

-sPageList= pagenumber

There are three possible values for this; even, odd or a list of pages to be processed. A list can include single
pages or ranges of pages. Ranges of pages use the minus sign ‘-’, individual pages and ranges of pages are
separated by commas ‘,’. A trailing minus ‘-’ means process all remaining pages. For example:

-sPageList=1,3,5 indicates that pages 1, 3 and 5 should be processed.
-sPageList=5-10 indicates that pages 5, 6, 7, 8, 9 and 10 should be processed.
-sPageList=1, 5-10, 12- indicates that pages 1, 5, 6, 7, 8, 9, 10 and 12 onwards should be processed.

The PDF interpreter and the other language interpreters handle these in slightly different ways. Because PDF files enable random access to pages in the document the PDF inerpreter only interprets and renders the required pages. PCL and PostScript cannot be handled in ths way, and so all the pages must be interpreted. However only the requested pages are rendered, which can still lead to savings in time. Be aware that using the '``%d``' syntax for ``OutputFile`` does not reflect the page number in the original document. If you chose (for example) to process even pages by using ``-sPageList=even``, then the output of ``-sOutputFile=out%d.png`` would still be ``out0.png``, ``out1.png``, ``out2.png`` etc.

Because the PostScript and PCL interpreters cannot determine when a document terminates, sending multple files as input on the command line does not reset the ``PageList`` between each document, each page in the second and subsequent documents is treated as following on directly from the last page in the first document. The PDF interpreter, however, does not work this way. Since it knows about individual PDF files the ``PageList`` is applied to each PDF file separately. So if you were to set ``-sPageList=1,2`` and then send two PDF files, the result would be pages 1 and 2 from the first file, and then pages 1 and 2 from the second file. The PostScript interpreter, by contrast, would only render pages 1 and 2 from the first file. This means you must exercise caution when using this switch, and probably should not use it at all when processing a mixture of PostScript and PDF files on the same command line.

-dFIXEDMEDIA

Causes the media size to be fixed after initialization, forcing pages of other sizes or orientations to be clipped.
This may be useful when printing documents on a printer that can handle their requested paper size but whose
default is some other size. Note that -g automatically sets -dFIXEDMEDIA, but -sPAPERSIZE= does not.

-dFIXEDRESOLUTION

Causes the media resolution to be fixed similarly. -r automatically sets -dFIXEDRESOLUTION.

-dPSFitPage

The page size from the PostScript file setpagedevice operator, or one of the older statusdict page size
operators (such as letter or a4) will be rotated, scaled and centered on the “best fit” page size from those
availiable in the InputAttributes list. The -dPSFitPage is most easily used to fit pages when used with the
-dFIXEDMEDIA option.

This option is also set by the -dFitPage option.

-dORIENT1=true

-dORIENT1=false

Defines the meaning of the 0 and 1 orientation values for the setpage[params] compatibility operators. The
default value of ORIENT1 is true (set in gs_init.ps), which is the correct value for most files that use
setpage[params] at all, namely, files produced by badly designed applications that “know” that the output will
be printed on certain roll-media printers: these applications use 0 to mean landscape and 1 to mean

Using Ghostscript

54

portrait. -dORIENT1=false declares that 0 means portrait and 1 means landscape, which is the convention
used by a smaller number of files produced by properly written applications.

-dDEVICEWIDTHPOINTS= w

-dDEVICEHEIGHTPOINTS= h

Sets the initial page width to w or initial page height to h respectively, specified in 1/72” units.

-sDEFAULTPAPERSIZE= a4

This value will be used to replace the device default papersize ONLY if the default papersize for the device is
‘letter’ or ‘a4’ serving to insulate users of A4 or 8.5x11 from particular device defaults (the collection of
contributed drivers in Ghostscript vary as to the default size).

-dFitPage

This is a “convenience” operator that sets the various options to perform page fitting for specific file types. This
option sets the -dEPSFitPage, -dPDFFitPage, and the -dFitPage options.

-sNupControl= Nup_option_string

This option specifies the N-up nesting to be performed. The pages are scaled and arranged on the current
PageSize “master” page according the the option.

The only option strings are as follows:

-sNupControl=number1xnumber2

Will fit number1 nested pages across the master page, and number2 down the master page, from the upper
left, then to the right to fill the row, moving down to the leftmost place on the next row until the nest is
complete. A partially filled nest will be output when the -sNupControl= string is changed, when
Ghostscript exits, or when the page size changes.

Pages are scaled to fit the requested number horizontally and vertically, maintaining the aspect ratio. If the
scaling selected for fitting the nested pages leaves space horizontally on the master page, the blank area will be
added to the left and right of the entire row of nested pages. If the fit results in vertical space, the blank area will
be added above and below all of the rows.

-sNupControl=

An empty string will turn off nesting. If there are any nested pages on the master page, the partially filled
master page will be output. Printer devices typically reallocate their memory whenever the transparency use
of a page changes (from one page having transparency, to the next page not having transparency, or vice
versa). This would cause problems with Nup, possibly leading to lost or corrupt pages in the output. To
avoid this, the Nup device changes the parameters of the page to always set the
PageUsesTransparency flag. While this should be entirely transparent for the user and not cause extra
transparency blending operations during the standard rendering processes for most devices, it may cause
devices to use the clist rather than PageMode.

Font-related parameters

-dLOCALFONTS

Causes Type 1 fonts to be loaded into the current VM – normally local VM – instead of always being loaded into
global VM. Useful only for compatibility with Adobe printers for loading some obsolete fonts.

-dNOFONTMAP

Suppresses the normal loading of the Fontmap file. This may be useful in environments without a file system.

Using Ghostscript

55

-dNOFONTPATH

Suppresses consultation of GS_FONTPATH. This may be useful for debugging.

-dNOPLATFONTS

Disables the use of fonts supplied by the underlying platform (X Windows or Microsoft Windows). This may be
needed if the platform fonts look undesirably different from the scalable fonts.

-dNONATIVEFONTMAP

Disables the use of font map and corresponding fonts supplied by the underlying platform. This may be needed
to ensure consistent rendering on the platforms with different fonts, for instance, during regression testing.

-sFONTMAP= filename1;filename2;…

Specifies alternate name or names for the Fontmap file. Note that the names are separated by “:” on Unix
systems, by “;” on MS Windows systems, and by “,” on VMS systems, just as for search paths.

-sFONTPATH= dir1;dir2;…

Specifies a list of directories that will be scanned when looking for fonts not found on the search path, overriding
the environment variable GS_FONTPATH.

By implication, any paths specified by FONTPATH or GS_FONTPATH are automatically added to the permit file
read list (see “-dSAFER”).

-sSUBSTFONT= fontname

Causes the given font to be substituted for all unknown fonts, instead of using the normal intelligent substitution
algorithm. Also, in this case, the font returned by findfont is the actual font named fontname, not a copy of the
font with its FontName changed to the requested one.

Note

THIS OPTION SHOULD NOT BE USED WITH HIGH LEVEL (VECTOR) DEVICES, such as pdfwrite, because it
prevents such devices from providing the original font names in the output document. The font specified
(fontname) will be embedded instead, limiting all future users of the document to the same approximate
rendering.

Resource-related parameters

-sGenericResourceDir= path

Specifies a path to resource files. The value is platform dependent. It must end with a directory separator. A note
for Windows users, Artifex recommends the use of the forward slash delimiter due to the special interpretation of
" by the Microsoft C startup code. See Parsing C Command-Line Arguments for more information.

Adobe specifies GenericResourceDir to be an absolute path to a single resource directory. Ghostscript
instead maintains multiple resource directories and uses an extended method for finding resources, which is
explained in “Finding PostScript Level 2 resources”.

Due to the extended search method, Ghostscript uses GenericResourceDir only as a default directory for
resources being not installed. Therefore GenericResourceDir may be considered as a place where new
resources to be installed. The default implementation of the function ResourceFileName uses
GenericResourceDir when it is an absolute path, or when the resource file is absent.
The extended search method does not call ResourceFileName.

Using Ghostscript

56

http://msdn.microsoft.com/en-us/library/a1y7w461.aspx

Default value is (./Resource/) for Unix, and an equivalent one on other platforms.

-sFontResourceDir= path

Specifies a path where font files are installed. It’s meaning is similar to GenericResourceDir.

Default value is (./Font/) for Unix, and an equivalent one on other platforms.

Interaction-related parameters

-dBATCH

Causes Ghostscript to exit after processing all files named on the command line, rather than going into an
interactive loop reading PostScript commands. Equivalent to putting -c quit at the end of the command line.

-dNOPAGEPROMPT

Disables only the prompt, but not the pause, at the end of each page. This may be useful on PC displays that
get confused if a program attempts to write text to the console while the display is in a graphics mode.

-dNOPAUSE

Disables the prompt and pause at the end of each page. Normally one should use this (along with -dBATCH)
when producing output on a printer or to a file; it also may be desirable for applications where another program
is “driving” Ghostscript.

-dNOPROMPT

Disables the prompt printed by Ghostscript when it expects interactive input, as well as the end-of-page prompt
(-dNOPAGEPROMPT). This allows piping input directly into Ghostscript, as long as the data doesn’t refer to
currentfile.

-dQUIET

Suppresses routine information comments on standard output. This is currently necessary when redirecting
device output to standard output.

-dSHORTERRORS

Makes certain error and information messages more Adobe-compatible.

-sstdout= filename

Redirect PostScript %stdout to a file or stderr, to avoid it being mixed with device stdout. To redirect
stdout to stderr use -sstdout=%stderr. To cancel redirection of stdout use -sstdout=%stdout or
-sstdout=-.

Note

This redirects PostScript output to %stdout but does not change the destination FILE of device output as with
-sOutputFile=- or even -sOutputFile=%stdout since devices write directly using the stdout FILE *
pointer with C function calls such as fwrite or fputs.

-dTTYPAUSE

Using Ghostscript

57

Causes Ghostscript to read a character from /dev/tty, rather than standard input, at the end of each page.
This may be useful if input is coming from a pipe.

Note

-dTTYPAUSE overrides -dNOPAUSE.

Device and output selection parameters

-dNODISPLAY

Initializes Ghostscript with a null device (a device that discards the output image) rather than the default device
or the device selected with -sDEVICE=. This is usually useful only when running PostScript code whose purpose
is to compute something rather than to produce an output image.

-sDEVICE= device

Selects an alternate initial output device.

-sOutputFile= filename

Selects an alternate output file (or pipe) for the initial output device, as described above.

-d.IgnoreNumCopies= true

Some devices implement support for “printing” multiple copies of the input document and some do not, usually
based on whether it makes sense for a particular output format. This switch instructs all devices to ignore a
request to print multiple copies, giving more consistent behaviour.

Deferred Page Rendering

Raster printers and image formats that can use the “command list” (clist) to store a representation of the page prior to
rendering can use the --saved-pages= string on the command line for deferred rendering of pages.

Pages that are saved instead of printed are retained until the list of saved pages is emptied by the flush command of
the saved-pages= command string.

Pages can be printed in reverse or normal order, or selected pages, including all even or all odd, and multiple
collated copies can be produced. Since pages are saved until the flush command, pages can be printed multiple
times, in any order.

Refer to the Using Saved Pages document for details.

EPS parameters

-dEPSCrop

Crop an EPS file to the bounding box. This is useful when converting an EPS file to a bitmap.

-dEPSFitPage

Resize an EPS file to fit the page. This is useful for shrinking or enlarging an EPS file to fit the paper size when
printing. This option is also set by the -dFitPage option.

-dNOEPS

Using Ghostscript

58

Prevent special processing of EPS files. This is useful when EPS files have incorrect Document Structuring
Convention comments.

ICC color parameters

For details about the ICC controls see the document GS9 Color Management.

-sDefaultGrayProfile= filename

Set the ICC profile that will be associated with undefined device gray color spaces. If this is not set, the profile
file name “default_gray.icc” will be used as the default.

-sDefaultRGBProfile= filename

Set the ICC profile that will be associated with undefined device RGB color spaces. If this is not set, the profile
file name “default_rgb.icc” will be used as the default.

-sDefaultCMYKProfile= filename

Set the ICC profile that will be associated with undefined device CMYK color spaces. If this is not set, the profile
file name “default_cmyk.icc” will be used as the default.

-sDeviceNProfile= filename

Associate a devicen color space contained in a PS or PDF document with an ICC profile. Note that neither PS
nor PDF provide in-document ICC profile definitions for DeviceN color spaces. With this interface it is possible to
provide this definition. The colorants tag order in the ICC profile defines the lay-down order of the inks
associated with the profile. A windows-based tool for creating these source profiles is contained in
./toolbin/color/icc_creator.

-sOutputICCProfile= filename

Set the ICC profile that will be associated with the output device. Care should be taken to ensure that the
number of colorants associated with the device is the same as the profile. If this is not set, an appropriate profile
(i.e. one with the proper number of colorants) will be selected from those in the directory specified by
ICCProfilesDir (see below). Note that if the output device is CMYK + spot colorants, a CMYK profile can be
used to provide color management for the CMYK colorants only. In this case, spot colors will pass through
unprocessed assuming the device supports those colorants. It is also possible for these devices to specify
NCLR ICC profiles for output.

-sICCOutputColors= “Cyan, Magenta, Yellow, Black, Orange, Violet”

For the psdcmyk and tiffsep separation devices, the device ICC profile can be an NCLR profile, which means something that includes non-traditional inks like Orange,
Violet, etc. In this case, the list of the color names in the order that they exist in the profile must be provided with this command line option. Note that if a color name that is
specified for the profile occurs also within the document (e.g. “Orange” above), then these color names will be associated with the same separation. Additional names
beyond those of the ICC profile component count can be included. In this case, those components will be installed into the tiffsep or psdcmyk device list of colors,
following the ICC profile colors. The number of spot colors (those that go beyond the standard CMYK colors) allowed by tiffsep or psdcmyk can be set using
-dMaxSpots=#. The default value for this is currently set to 10 (GS_SOFT_MAX_SPOTS). As an example consider the case where we wish to use a 6CLR ICC profile that
includes Orange and Violet, but need the device to include a specialty color component such as Varnish, which does not appear in the document and is not handled by the
6CLR ICC profile.

In addition, we desire to allow one more spot color of the document to come through to our device. For this case using
-sICCOutputColors="Cyan, Magenta, Yellow, Black, Orange, Violet, Varnish" -dMaxSpots=4 -sOutputICCProfile=My_6CLR_Profile.icc
would provide the desired outcome. Note that it is up to the device or through the use of -sNamedProfile (see below) to involve the setting of any values in the Varnish
channel. However, if an All color value is encountered in the document, the Varnish component will have its value set as will the Orange and Violet values (Likewise if a
spot color named Varnish is encountered in the document the Varnish component will be used for the values). The All value is typically used for placing registration targets
on separations. Finally, note that if an NCLR ICC profile is specified and ICCOutputColors is not used, then a set of default names will be used for the extra colorants
(non-CMYK) in the profile. These names are given as ICC_COLOR_N for the Nth non-CMYK channel.

Using Ghostscript

59

https://ghostscript.com/doc/current/GS9_Color_Management.pdf

-sProofProfile= filename

Enable the specificiation of a proofing profile that will make the color management system link multiple profiles
together to emulate the device defined by the proofing profile. See the document GS9 Color Management for
details about this option.

-sDeviceLinkProfile= filename

Define a device link profile. This profile is used following the output device profile. Care should be taken to ensure
that the output device process color model is the same as the output color space for the device link profile. In
addition, the color space of the OutputICCProfile should match the input color space of the device link profile.
For example, the following would be a valid specification
-sDEVICE=tiff32nc -sOutputICCProfile=srgb.icc -sDeviceLinkProfile=linkRGBtoCMYK.icc.
In this case, the output device’s color model is CMYK (tiff32nc) and the colors are mapped through sRGB and
through a devicelink profile that maps sRGB to CMYK values. See the document GS9 Color Management for
details about this option.

-sNamedProfile= filename

Define a structure that is to be used by the color management module (CMM) to provide color management of
named colors. While the ICC does define a named color format, this structure can in practice be much more
general. Many developers wish to use their own proprietary-based format for spot color management. This
command option is for developer use when an implementation for named color management is designed for the
function gsicc_transform_named_color located in gsicccache.c . An example implementation is currently
contained in the code for the handling of both Separation and DeviceN colors. For the general user this
command option should really not be used.

-sBlendColorProfile= filename

With the PDF transparency imaging model, a color space can be specified within which the color blending
operations are to take place. Some files lack this specification, in which case the blending occurs in the output
device’s native color space. This dependency of blending color space on the device color model can be avoided
by using the above command to force a specific color space in which to perform the blending.

-dColorAccuracy= 0/1/2

Set the level of accuracy that should be used. A setting of 0 will result in less accurate color rendering compared
to a setting of 2. However, the creation of a transformation will be faster at a setting of 0 compared to a setting of
2. Default setting is 2.

-dRenderIntent= 0/1/2/3

Set the rendering intent that should be used with the profile specified above by -sOutputICCProfile. The
options 0, 1, 2, and 3 correspond to the ICC intents of Perceptual, Colorimetric, Saturation, and Absolute
Colorimetric.

-dBlackPtComp= 0/1

Specify if black point compensation should be used with the profile specified above by -sOutputICCProfile.

-dKPreserve= 0/1/2

Specify if black preservation should be used when mapping from CMYK to CMYK. When using littleCMS as the
CMM, the code 0 corresponds to no preservation, 1 corresponds to the PRESERVE_K_ONLY approach described
in the littleCMS documentation and 2 corresponds to the PRESERVE_K_PLANE approach. This is only valid
when using littleCMS for color management.

Using Ghostscript

60

https://ghostscript.com/doc/current/GS9_Color_Management.pdf
https://ghostscript.com/doc/current/GS9_Color_Management.pdf

-sVectorICCProfile= filename

Set the ICC profile that will be associated with the output device for vector-based graphics (e.g. Fill, Stroke
operations). Care should be taken to ensure that the number of colorants associated with the device is the same
as the profile. This can be used to obtain more saturated colors for graphics.

-dVectorIntent= 0/1/2/3

Set the rendering intent that should be used with vector-based graphic objects. The options are the same as
specified for -dRenderIntent.

-dVectorBlackPt= 0/1

Specify if black point compensation should be used for vector-based graphic objects.

-dVectorKPreserve= 0/1/2

Specify if black preservation should be used when mapping from CMYK to CMYK for vector-based graphic
objects. The options are the same as specified for -dKPreserve.

-sImageICCProfile= filename

Set the ICC profile that will be associated with the output device for images. Care should be taken to ensure that
the number of colorants associated with the device is the same as the profile. This can be used to obtain
perceptually pleasing images.

-dImageIntent= 0/1/2/3

Set the rendering intent that should be used for images.

-dImageBlackPt= 0/1

Specify if black point compensation should be used with images.

-dImageKPreserve= 0/1/2

Specify if black preservation should be used when mapping from CMYK to CMYK for image objects. The options
are the same as specified for -dKPreserve.

-sTextICCProfile= filename

Set the ICC profile that will be associated with the output device for text. Care should be taken to ensure that the
number of colorants associated with the device is the same as the profile. This can be used ensure K only text.

-dTextIntent= 0/1/2/3

Set the rendering intent that should be used text objects. The options are the same as specified for
-dRenderIntent.

-dTextBlackPt= 0/1

Specify if black point compensation should be used with text objects.

-dTextKPreserve= 0/1/2

Specify if black preservation should be used when mapping from CMYK to CMYK for text objects. The options
are the same as specified for -dKPreserve.

Using Ghostscript

61

-dOverrideICC

Override any ICC profiles contained in the source document with the profiles specified by
sDefaultGrayProfile, sDefaultRGBProfile, sDefaultCMYKProfile. Note that if no profiles are
specified for the default Device color spaces, then the system default profiles will be used. For detailed override
control in the specification of source colors see -sSourceObjectICC.

-sSourceObjectICC= filename

This option provides an extreme level of override control to specify the source color spaces and rendering
intents to use with vector-based graphics, images and text for both RGB and CMYK source objects. The
specification is made through a file that contains on a line a key name to specify the object type (e.g.
Image_CMYK) followed by an ICC profile file name, a rendering intent number (0 for perceptual, 1 for
colorimetric, 2 for saturation, 3 for absolute colorimetric) and information for black point compensation, black
preservation, and source ICC override. It is also possible to turn off color management for certain object types,
use device link profiles for object types and do custom color replacements. An example file is given in
./gs/toolbin/color/src_color/objsrc_profiles_example.txt. Profiles to demonstrate this
method of specification are also included in this folder. Note that if objects are colorimetrically specified through
this mechanism other operations like -dImageIntent, -dOverrideICC, have no affect. Also see below the
interaction with the -dDeviceGrayToK option. See further details in the document GS9 Color Management.

-dDeviceGrayToK= true/false

By default, Ghostscript will map DeviceGray color spaces to pure K when the output device is CMYK based.
This may not always be desired. In particular, it may be desired to map from the gray ICC profile specified by
-sDefaultGrayProfile to the output device profile. To achieve this, one should specify
-dDeviceGrayToK=false. Note that this option may not have any effect in cases where SourceObjectICC
settings are made for gray objects. In particular, if the gray objects in SourceObjectICC are set to None,
which implies that ICC color management is not to be applied to these objects, then they are treated as
DeviceGray and always mapped to K values in a CMYK target device, regardless of the settings of
-dDeviceGrayToK (i.e. there is no color management). If instead, the gray objects in SourceObjectICC are
set to a specific ICC profile, then they are no longer DeviceGray but are ICC colors. They will be color
managed, regardless of the setting of -dDeviceGrayToK.

-dUseFastColor= true/false

This is used to avoid the use of ICC profiles for source colors. This includes those that are defined by
DeviceGray, DeviceRGB and DeviceCMYK definitions as well as ICC-based color spaces in the source
document. With UseFastColor set to true, the traditional Postscript 255 minus operations are used to convert
between RGB and CMYK with black generation and undercolor removal mappings.

-dSimulateOverprint= true/false

This option has been replaced by -dOverprint=

-dOverprint= /enable | /disable | /simulate

This option provides control of overprinting. The default setting is /enable which allows devices such as CMYK
that can support overprint to leave planes unchanged under control of PostScript and PDF overprint settings.

The /disable setting ignores all overprint (and overprint mode) from the input.

If /simulate is set, then pages with overprint (or overprint mode) set for CMYK or Separation colors will be
internally maintained and output to RGB or Gray devices.

Note

Not all spot color overprint cases can be accurately simulated with a CMYK only device. For example, a case
where you have a spot color overprinted with CMYK colors will be indistiguishable from a case where you have

Using Ghostscript

62

https://ghostscript.com/doc/current/GS9_Color_Management.pdf

spot color equivalent CMYK colorants overprinted with CMYK colors, even though they may need to show
significantly different overprint simulations. To obtain a full overprint simulation, use the /simulate setting or the
psdcmyk or tiffsep device, where the spot colors are kept in their own individual planes.

-dUsePDFX3Profile= int

This option enables rendering with an output intent defined in the PDF source file. If this option is included in the
command line, source device color values (e.g DeviceCMYK, DeviceRGB, or DeviceGray) that match the
color model of the output intent will be interpreted to be in the output intent color space. In addition, if the output
device color model matches the output intent color model, then the destination ICC profile will be the output
intent ICC profile. If there is a mismatch between the device color model and the output intent, the output intent
profile will be used as a proofing profile, since that is the intended rendering. Note that a PDF document can
have multiple rendering intents per the PDF specification. As such, with the option -dUsePDFX3Profile the
first output intent encountered will be used. It is possible to specify a particular output intent where int is an
integer (a value of 0 is the same as not specifying a number). Probing of the output intents for a particular file is
possible using extractICCprofiles.ps in ./gs/toolbin. Finally, note that the ICC profile member entry is an
option in the output intent dictionary. In these cases, the output intent specifies a registry and a standard profile
(e.g. Fogra39). Ghostscript will not make use of these output intents. Instead, if desired, these standard profiles
should be used with the commands specified above (e.g. -sOutputICCProfile).

-sUseOutputIntent= string

Like -dUsePDFX3Profile above, this option enables rendering with an output intent defined in the PDF
source file. This option behaves the same way as the -dUsePDFX3Profile, but the selection criteria are
different. Because its possible (as of PDF 2.0) for each page to have a different array, its not sufficient just to
supply an array index, as the same profile might potentially be at different indices in each array.

Instead this option takes a string, which is first compared against the OutputConditionIdentifier in each
OutputIntent in the array. If the OutputConditionIdentifier is not a standard identifier then it should
be Custom and the UseOutputIntent string will be matched against the value of the Info key instead. If the
OutputConditionIdentifier or Info matches the value of UseOuttpuIntent, then that OutputIntent
is selected if the OutputIntent contains a DestOutputProfile key.

-sICCProfilesDir= path

Set a directory in which to search for the above profiles. The directory path must end with a file system delimiter.
If the user doesn’t use the -sICCProfilesDir= command line option, Ghostscript creates a default value for it
by looking on the directory paths explained in How Ghostscript finds files. If the current directory is the first path
a test is made for the iccprofiles directory. Next, the remaining paths with the string Resource in it are
tested. The prefix up to the path separator character preceding the string Resource, concatenated with the string
iccprofiles is used and if this exists, then this path will be used for ICCProfilesDir.

Note that if the build is performed with COMPILE_INITS=1, then the profiles contained in gs/iccprofiles
will be placed in the ROM file system. If a directory is specified on the command line using
-sICCProfilesDir=, that directory is searched before the iccprofiles/ directory of the ROM file system is
searched.

Note

A note for Windows users, Artifex recommends the use of the forward slash delimiter due to the special
interpretation of " by the Microsoft C startup code. See Parsing C Command-Line Arguments for more
information.

Using Ghostscript

63

http://msdn.microsoft.com/en-us/library/a1y7w461.aspx

Other parameters

-dFILTERIMAGE

If set, this will ignore all images in the input (in this context image means a bitmap), these will therefore not be
rendered.

-dFILTERTEXT

If set, this will ignore all text in the input (just because it looks like text doesn’t mean it is, it might be an image),
text will therefore not be rendered.

-dFILTERVECTOR

If set, this will ignore anything which is neither text nor an image.

-dDELAYBIND

Causes bind to remember all its invocations, but not actually execute them until the .bindnow procedure is
called. Useful only for certain specialized packages like pstotext that redefine operators. See the documentation
for .bindnow for more information on using this feature.

-dDOPDFMARKS

Causes pdfmark to be called for bookmarks, annotations, links and cropbox when processing PDF files.
Normally, pdfmark is only called for these types for PostScript files or when the output device requests it (e.g.
pdfwrite device).

-dJOBSERVER

Define \004 (^D) to start a new encapsulated job used for compatibility with Adobe PS Interpreters that
ordinarily run under a job server. The -dNOOUTERSAVE switch is ignored if -dJOBSERVER is specified since job
servers always execute the input PostScript under a save level, although the exitserver operator can be
used to escape from the encapsulated job and execute as if the -dNOOUTERSAVE was specified. This also
requires that the input be from stdin, otherwise an error will result (Error:
/invalidrestore in --restore--).

Example usage is:

 gs ... -dJOBSERVER - < inputfile.ps

Or:

cat inputfile.ps | gs ... -dJOBSERVER -

Note

The ^D does not result in an end-of-file action on stdin as it may on some PostScript printers that rely on TBCP
(Tagged Binary Communication Protocol) to cause an out-of-band ^D to signal EOF in a stream input data. This
means that direct file actions on stdin such as flushfile and closefile will affect processing of data
beyond the ^D in the stream.

-dNOCACHE

Disables character caching. Useful only for debugging.

Using Ghostscript

64

-dNOGC

Suppresses the initial automatic enabling of the garbage collector in Level 2 systems. (The vmreclaim operator
is not disabled.) Useful only for debugging.

-dNOOUTERSAVE

Suppresses the initial save that is used for compatibility with Adobe PS Interpreters that ordinarily run under a
job server. If a job server is going to be used to set up the outermost save level, then -dNOOUTERSAVE should
be used so that the restore between jobs will restore global VM as expected.

-dNOSAFER

Equivalent to -dDELAYSAFER.

This flag disables SAFER mode until the .setsafe procedure is run. This is intended for clients or scripts that
cannot operate in SAFER mode. If Ghostscript is started with -dNOSAFER or -dDELAYSAFER, PostScript
programs are allowed to read, write, rename or delete any files in the system that are not protected by operating
system permissions.

This mode should be used with caution, and .setsafe should be run prior to running any PostScript file with
unknown contents.

-dSAFER

Important

Ghostscript now (as of 9.50) defaults to SAFER being active.

Enables access controls on files. Access controls fall into three categories, files from which Ghostscript is
permitted to read, ones to which it is permitted to write, and ones over which it has “control” (i.e. delete/rename).
These access controls apply to all files accessed via Ghostscript’s internal interface to the C library file handling.
Whilst we have taken considerable pains to ensure that all the code we maintain (as well as the so called
“contrib” devices, that are devices included in our release packages, but not strictly maintained by the
Ghostscript development team) uses this interface, we have no control over thirdparty code.

This is an entirely new implementation of SAFER for Ghostscript versions 9.50 and later. Earlier versions (see
-dOLDSAFER) relied on storing the file permission lists in Postscript VM (Virtual Memory), and only applied file
access permissions to the Postscript file related operators. It relied on restricting the function of setpagedevice
to avoid the device code from being manipulated into opening arbitrary files. The application of the file
permissions was done within the internal context of the Postscript interpreter, and some other aspects of the
Postscript restrictions were applied in the Postscript environment. With so many of the feature’s capabilities
relying on the Postscript context and environment, by using other (Ghostscript specific) features maliciously, the
restrictions could be overridden.

Whilst the path storage and application of the permissions is implemented entirely in C, it is still possible for
Postscript to add and remove paths from the permissions lists (see .addcontrolpath) until such time as the
access controls are enabled (see .activatepathcontrol), any call to .addcontrolpath after .activatepathcontrol will
result in a Fatal error causing the interpreter to immediately exit.

An incompatibility exists between the pre-9.50 and 9.50 and later SAFER. By removing storage and application
entirely from the Postscript language environment and internal context, SAFER is no longer affected by
Postscript save/restore operations. Previously, it was possible to do the equivalent of:

save
.setsafe
Postscript ops
restore

Using Ghostscript

65

In that sequence, the Postscript ops would run with SAFER protection but after the restore, SAFER would no
longer be in force. This is no longer the case. After the call to .setsafe the file controls are in force until the
interpreter exits. As the 9.50 and later implementation no longer restricts the operation of setpagedevice, and
because this capability is extremely rarely used, we feel the improvement in security warrants the small
reduction in flexibility.

Path matching is very simple: it is case sensitive, and we do not implement full featured “globbing” or regular
expression matching (such complexity would significantly and negatively impact performance). Further, the
string parameter(s) passed to the --permit-file-* option must exactly match the string(s) used to reference
the file(s): for example, you cannot use an absolute path to grant permission, and then a relative path to
reference the file (or vice versa) - the path match will fail. Similarly, you cannot grant permission through one
symlink, and then reference a file directly, or through an alternative symlink - again, the matching will fail.

The following cases are handled:

"/path/to/file"

Permits access only to the file: “/path/to/file”

"/path/to/directory/"

Permits access to any file in, and only in, the directory: “/path/to/directory”

"/path/to/directory/*"

Permits access to any file in the directory: “/path/to/directory” and any child of that directory.

Important

Note for Windows Users

The file/path pattern matching is case sensitive, even on Windows. This is a change in behaviour compared
to the old code which, on Windows, was case insensitive. This is in recognition of changes in Windows
behaviour, in that it now supports (although does not enforce) case sensitivity.

Four command line parameters permit explicit control of the paths included in the access control lists:

--permit-file-read=pathlist

Adds a path, or list of paths, to the “permit read” list. A list of paths is a series of paths separated by the
appropriate path list separator for your platform (for example, on Unix-like systems it is “:” and on MS Windows it
is “;”).

--permit-file-write=pathlist

Adds a path, or list of paths, to the “permit write” list. A list of paths is a series of paths separated by the
appropriate path list separator for your platform (for example, on Unix-like systems it is “:” and on MS Windows it
is “;”).

--permit-file-control=pathlist

Adds a path, or list of paths, to the “permit control” list. A list of paths is a series of paths separated by the
appropriate path list separator for your platform (for example, on Unix-like systems it is “:” and on MS Windows it
is “;”).

--permit-file-all=pathlist

Adds a path, or list of paths, to the all the above lists. A list of paths is a series of paths separated by the
appropriate path list separator for your platform (for example, on Unix-like systems it is “:” and on MS Windows it
is “;”).

‘*’ may be used as a wildcard in the above paths to mean “any character other than the directory separator. Do
not use two or more *’s without intervening characters.

Finally, paths supplied on the command line (such as those in -I, -sFONTPATH parameters) are added to the
permitted reading list. Similarly, paths read during initialisation from Fontmap, cidfmap, and the platform

Using Ghostscript

66

specific font file enumeration (e.g. fontconfig on Unix systems) are automatically added to the permit read
lists.

-dOLDSAFER

Important

This enables deprecated code which will shortly be removed.

Used in combination with -dSAFER (or .setsafe) enables the pre-9.50 SAFER implementation. It is included
(for now) in case any users find a case where the 9.50 and later SAFER does not work for them. It means such
users can keep working until we have assessed the issue, and distributed a solution.

Disables the deletefile and renamefile operators, and the ability to open piped commands (%pipe%cmd)
at all. Only %stdout and %stderr can be opened for writing. Disables reading of files other than %stdin,
those given as a command line argument, or those contained on one of the paths given by LIBPATH and
FONTPATH and specified by the system params /FontResourceDir and /GenericResourceDir.

This mode also sets the .LockSafetyParams parameter of the default device, or the device specified with the
-sDEVICE= switch to protect against programs that attempt to write to files using the OutputFile device
parameter. Note that since the device parameters specified on the command line (including OutputFile) are
set prior to SAFER mode, the -sOutputFile=... on the command line is unrestricted.

SAFER mode also prevents changing the /GenericResourceDir, /FontResourceDir and either the
/SystemParamsPassword or the /StartJobPassword.

When running -dNOSAFER it is possible to perform a save, followed by .setsafe, execute a file or procedure in
SAFER mode, then use restore to return to NOSAFER mode. It is possible that a crafted foreign file could restore
back to a point when NOSAFER was in operation.

-dPreBandThreshold= true/false

If the target device is a halftone device, then images that are normally stored in the command list during banded
output will be halftoned during the command list writing phase, if the resulting image will result in a smaller
command list. The decision to halftone depends upon the output and source resolution as well as the output and
source color space.

-dWRITESYSTEMDICT

Leaves systemdict writable. This is necessary when running special utility programs such as font2c and
pcharstr, which must bypass normal PostScript access protection.

Improving performance
Ghostscript attempts to find an optimum balance between speed and memory consumption, but there are some
cases in which you may get a very large speedup by telling Ghostscript to use more memory.

Please note that this discussion relates to devices which produce a bitmap format as the output. These parameters
have no effect on the vector devices, such as pdfwrite.

• For raster printers and image format (jpeg*, tiff*, png* …) devices, performance can be ‘tuned’ by adjusting
some of the parameters related to banding (clist) options (refer to: Banding Parameters).

• All devices may use a display list (“clist”) and use banding when rendering PDF 1.4 transparency. This prevents
allocation of excessively large amounts of memory for the transparency buffer stack. The -dMaxBitmap=
option is used to control when to use the display list, and the other banding parameters mentioned above
control the band size.

Using Ghostscript

67

In general, page buffer mode is faster than banded/clist mode (a full page buffer is used when
-dMaxBitmap=# is large enough for the entire raster image) since there is no need to write, then interpret
the clist data.

On a multi-core system where multiple threads can be dispatched to individual processors/cores, banding
mode may provide higher performance since -dNumRenderingThreads=# can be used to take
advantage of more than one CPU core when rendering the clist. The number of threads should generally
be set to the number of available processor cores for best throughput.

In general, larger -dBufferSpace=# values provide slightly higher performance since the per-band
overhead is reduced.

• If you are using X Windows, setting the -dMaxBitmap= parameter described in X device parameters may
dramatically improve performance on files that have a lot of bitmap images.

• With some PDF files, or if you are using Chinese, Japanese, or other fonts with very large character sets,
adding the following sequence of switches before the first file name may dramatically improve performance at
the cost of an additional memory. For example, to allow use of 30Mb of extra RAM use:
-c 30000000 setvmthreshold -f.

This can also be useful in processing large documents when using a high-level (vector) output device (like
pdfwrite) that maintains significant internal state.

• For pattern tiles that are very large, Ghostscript uses an internal display list (memory based clist), but this can
slow things down. The current default threshold is 8Mb – pattern tiles larger than this will be cached as clist
rather than bitmap tiles. The parameter -dMaxPatternBitmap=# can be used to adjust this threshold, smaller
to reduce memory requirements and larger to avoid performance impacts due to clist based pattern handling.

For example, -dMaxPatternBitmap=200000 will use clist based patterns for pattern tiles larger than
200,000 bytes.

Summary of environment variables

GS, GSC (MS Windows only)

Specify the names of the Ghostscript executables. GS brings up a new typein window and possibly a graphics
window; GSC uses the DOS console. If these are not set, GS defaults to gswin32, and GSC defaults to
gswin32c.

GS_DEVICE

Defines the default output device. This overrides the compiled-in default, but is overridden by any command line
setting.

GS_FONTPATH

Specifies a list of directories to scan for fonts if a font requested can’t be found anywhere on the search path.

GS_LIB

Provides a search path for initialization files and fonts.

GS_OPTIONS

Defines a list of command-line arguments to be processed before the ones actually specified on the command
line. For example, setting GS_DEVICE to XYZ is equivalent to setting GS_OPTIONS to -sDEVICE=XYZ. The
contents of GS_OPTIONS are not limited to switches; they may include actual file names or even “@file”
arguments.

Using Ghostscript

68

TEMP, TMPDIR

Defines a directory name for temporary files. If both TEMP and TMPDIR are defined, TMPDIR takes precedence.

Debugging
The information here describing is probably interesting only to developers.

Debug switches

There are several debugging switches that are detected by the interpreter. These switches are available whether or
not Ghostscript was built with the DEBUG macro defined to the compiler (refer to building a debugging configuration).

Previous to 8.10, there was a single DEBUG flag, enabled with -dDEBUG on the command line. Now there are several
debugging flags to allow more selective debugging information to be printed containing only what is needed to
investigate particular areas. For backward compatibilty, the -dDEBUG option will set all of the subset switches.

-dCCFONTDEBUG Compiled Fonts

-dCFFDEBUG CFF Fonts

-dCMAPDEBUG CMAP

-dDOCIEDEBUG CIE color

-dEPSDEBUG EPS handling

-dFAPIDEBUG Font API

-dINITDEBUG Initialization

-dPDFDEBUG PDF Interpreter

-dPDFWRDEBUG PDF Writer

-dSETPDDEBUG setpagedevice

-dSTRESDEBUG Static Resources

-dTTFDEBUG TTF Fonts

-dVGIFDEBUG ViewGIF

-dVJPGDEBUG ViewJPEG

The PDF interpreter normally tries to repair, or ignore, all problems encountered in PDF files. Setting
-dPDFSTOPONERROR instead causes the interpreter to signal an error and stop processing the PDF file, instead of
printing a warning.

The -dPDFSTOPONWARNING switch behaves the same, but will stop if a condition which would normally merit a
warning (instead of an error) is encountered. Note that setting -dPDFSTOPONWARNING also sets
-dPDFSTOPONERROR.

The -Z and -T switches apply only if the interpreter was built for a debugging configuration. In the table below, the
first column is a debugging switch, the second is an equivalent switch (if any) and the third is its usage.

Switch Equivalent switch Usage

0 garbage collector, minimal detail

1 type 1 and type 42 font interpreter

2 curve subdivider/rasterizer

3 curve subdivider/rasterizer, detail

4 garbage collector (strings)

5 garbage collector (strings, detail)

6 garbage collector (clumps, roots)

7 garbage collector (objects)

Using Ghostscript

69

8 garbage collector (refs)

9 garbage collector (pointers)

a allocator (large blocks only)

A allocator (all calls)

b bitmap image processor

B bitmap images, detail

c color/halftone mapper

d dictionary put/undef

D dictionary lookups

e external (OS-related) calls

f fill algorithm (summary)

F fill algorithm (detail)

g gsave/grestore[all]

h halftone renderer

H halftones, every pixel

i interpreter, just names

I interpreter, everything

j (Japanese) composite fonts

k character cache and xfonts

K character cache, every access

l command lists, bands

L command lists, everything

m makefont and font cache

n name lookup (new names only)

o outliner (stroke)

O stroke detail

p band list paths

P all paths

q clipping

r arc renderer

s streams

S scanner

t tiling algorithm

u undo saver (for save/restore), finalization

U undo saver, more detail

v compositors: alpha/transparency/overprint/rop

V compositors: alpha/transparency/overprint/rop, more detail

w compression encoder/decoder

x transformations

y Type 1 hints

Using Ghostscript

70

Y Type 1 hints, every access

z trapezoid fill

operator error returns

% externally processed comments

* image and RasterOp parameters

: command list and allocator/time summary

~ math functions and Functions

' contexts, create/destroy

" contexts, every operation

^ reference counting

_ high-level (vector) output

! Postscript operator names (this option is available only when
Ghostscript is compiled with a predefined macro
DEBUG_TRACE_PS_OPERATORS)

| (reserved for experimental code)

The following switch affects what is printed, but does not select specific items for printing:

Switch Equivalent switch Usage

/ include file name and line number on all trace output

These switches select debugging options other than what should be printed:

Switch Equivalent switch Usage

$ set unused parts of object references to identifiable garbage values

+ use minimum-size stack blocks

, don’t use path-based banding

<code class="code
docutils literal notra
nslate">`</code>

don’t use high-level banded images

? validate pointers before, during and after garbage collection, also
before and after save and restore; also make other allocator validity
checks

@ fill newly allocated, garbage-collected, and freed storage with a
marker (a1, c1, and f1 respectively)

f the filling algorithm with characters

F the filling algorithm with non-character paths

h the Type 1 hinter

s the shading algorithm

S the stroking algorithm

Switches used in debugging

Switch Description

-Bsize Run all subsequent files named on the command line
(except for -F) through the run_string interface,
using a buffer of size bytes.

Using Ghostscript

71

-B- Turn off -B: run subsequent files (except for -F) directly
in the normal way.

-Ffile Execute the file with -B1 temporarily in effect

-Kn Limit the total amount of memory that the interpreter
can have allocated at any one time to nK bytes. n is a
positive decimal integer.

-Mn Force the interpreter’s allocator to acquire additional
memory in units of nK bytes, rather than the default
20K.
n is a positive decimal integer, on 16-bit systems no
greater than 63.

-Nn Allocate space for nK names, rather than the default
(normally 64K).
n may be greater than 64 only if EXTEND_NAMES was
defined (in inameidx.h) when the interpreter was
compiled.

-Zxxx
-Z-xxx

Turn debugging printout on (off). Each of the xxx
characters selects an option.
Case is significant: “a” and “A” have different meanings.

-Txxx
-T-xxx

Turn Visual Trace on (off). Each of the xxx characters
selects an option.
Case is significant: “f” and “F” have different meanings.

In addition, calling Ghostscript with --debug will list all the currently defined (non visual trace) debugging flags, both
in their short form (as listed above for use with -Z) and in a long form, which can be used as in:
--debug=tiling,alloc. All the short form flags for -Z have an equivalent long form. Future flags may be added
with a long form only (due to all the short form flags being used already).

Visual Trace

Visual Trace allows to view internal Ghostscript data in a graphical form while execution of C code. Special
instructions to be inserted into C code for generating the output. Client application rasterizes it into a window.

Currently the rasterization is implemented for Windows only, in clients gswin32.exe and gswin32c.exe. They
open Visual Trace window when graphical debug output appears, -T switch is set, and Ghostscript was built with
DEBUG option.

There are two important incompletenesses of the implementation :

1. The graphical output uses a hardcoded scale. An advanced client would provide a scale option via user
interface.

2. Breaks are not implemented in the client. If you need a step-by-step view, you should use an interactive C
debugger to delay execution at breakpoints.

Appendix: Paper sizes known to Ghostscript
The paper sizes known to Ghostscript are defined at the beginning of the initialization file gs_statd.ps; see the
comments there for more details about the definitions. The table here lists them by name and size. gs_statd.ps
defines their sizes exactly in points, and the dimensions in inches (at 72 points per inch) and centimeters shown in
the table are derived from those, rounded to the nearest 0.1 unit. A guide to international paper sizes can be found at
papersizes.org.

U.S. standard

Name Inches mm Points Notes

W x H W x H W x H

11 x 17 11.0 x 17.0 279 x 432 792 x 1224 11×17in portrait

Using Ghostscript

72

https://www.papersizes.org/

ledger 17.0 x 11.0 432 x 279 1224 x 792 11×17in landscape

legal 8.5 x 14.0 216 x 356 612 x 1008

letter 8.5 x 11.0 216 x 279 612 x 792

letter small 8.5 x 11.0 216 x 279 612 x 792

archA 9.0 x 12.0 229 x 305 648 x 864

archB 12.0 x 18.0 305 x 457 864 x 1296

archC 18.0 x 24.0 457 x 610 1296 x 1728

archD 24.0 x 36.0 610 x 914 1728 x 2592

archE 36.0 x 48.0 914 x 1219 2592 x 3456

ISO standard

Name Inches mm Points Notes

W x H W x H W x H

a0 33.1 x 46.8 841 x 1189 2384 x 3370

a1 23.4 x 33.1 594 x 841 1684 x 2384

a2 16.5 x 23.4 420 x 594 1191 x 1684

a3 11.7 x 16.5 297 x 420 842 x 1191

a4 8.3 x 11.7 210 x 297 595 x 842

a4small 8.3 x 11.7 210 x 297 595 x 842

a5 5.8 x 8.3 148 x 210 420 x 595

a6 4.1 x 5.8 105 x 148 297 x 420

a7 2.9 x 4.1 74 x 105 210 x 297

a8 2.1 x 2.9 52 x 74 148 x 210

a9 1.5 x 2.1 37 x 52 105 x 148

a10 1.0 x 1.5 26 x 37 73 x 105

isob0 39.4 x 55.7 1000 x 1414 2835 x 4008

isob1 27.8 x 39.4 707 x 1000 2004 x 2835

isob2 19.7 x 27.8 500 x 707 1417 x 2004

isob3 13.9 x 19.7 353 x 500 1001 x 1417

isob4 9.8 x 13.9 250 x 353 709 x 1001

isob5 6.9 x 9.8 176 x 250 499 x 709

isob6 4.9 x 6.9 125 x 176 354 x 499

c0 36.1 x 51.1 917 x 1297 2599 x 3677

c1 25.5 x 36.1 648 x 917 1837 x 2599

c2 18.0 x 25.5 458 x 648 1298 x 1837

c3 12.8 x 18.0 324 x 458 918 x 1298

c4 9.0 x 12.8 229 x 324 649 x 918

c5 6.4 x 9.0 162 x 229 459 x 649

c6 4.5 x 6.4 114 x 162 323 x 459

Using Ghostscript

73

JIS standard

Name mm Notes

W x H

jisb0 1030 x 1456

jisb1 728 x 1030

jisb2 515 x 728

jisb 364 x 515

jisb4 257 x 364

jisb5 182 x 257

jisb6 128 x 182

ISO/JIS switchable

Name

b0

b1

b2

b3

b4

b5

Note

Initially the B paper sizes are the ISO sizes, e.g., b0 is the same as isob0. Running the file lib/jispaper.ps
makes the B paper sizes be the JIS sizes, e.g., b0 becomes the same as jisb0.

Other

Name Inches mm Points Notes

W x H W x H W x H

flsa 8.5 x 13.0 216 x 330 612 x 936 U.S. foolscap

flse 8.5 x 13.0 216 x 330 612 x 936 European foolscap

halfletter 5.5 x 8.5 140 x 216 396 x 612

hagaki 3.9 x 5.8 100 x 148 283 x 420 Japanese postcard

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

Using Ghostscript

74

https://www.artifex.com

API

What is the Ghostscript Interpreter API?
The Ghostscript interpreter can be built as a dynamic link library (DLL) on Microsoft Windows, as a shared object on
the Linux, Unix and MacOS X platforms. With some changes, it could be built as a static library. This document
describes the Application Programming Interface (API) for the Ghostscript interpreter library. This should not be
confused with the Ghostscript library which provides a graphics library but not the interpreter.

This supercedes the old DLL interface.

To provide the interface described in the usage documentation, a smaller independent executable loads the
DLL/shared object. This executable must provide all the interaction with the windowing system, including image
windows and, if necessary, a text window.

The Ghostscript interpreter library’s name and characteristics differ for each platform:

• The Win32 DLL gsdll32.dll can be used by multiple programs simultaneously, but only once within each
process.

• The OS/2 DLL gsdll2.dll has MULTIPLE NONSHARED data segments and can be called by multiple
programs simultaneously.

• The Linux shared object libgs.so can be used by multiple programs simultaneously.

The source for the executable is in dw*.* (Windows), dp*.* (OS/2) and dx*.* (Linux/Unix). See these source files
for examples of how to use the DLL.

The source file dxmainc.c can also serve as an example of how to use the shared library component on MacOS X,
providing the same command-line tool it does on any linux, bsd or similar operating system.

At this stage, Ghostscript does not support multiple instances of the interpreter within a single process.

Exported functions
The functions exported by the DLL/shared object are described in the header file iapi.h and are summarised
below. Omitted from the summary are the calling convention (e.g. __stdcall), details of return values and error
handling.

• int gsapi_revision (gsapi_revision_t *pr, int len); details

• int gsapi_new_instance (void **pinstance, void *caller_handle); details

• void gsapi_delete_instance (void *instance); details

• int gsapi_set_stdio_with_handle (void *instance, int(*stdin_fn)(void *caller_handle, char *buf, int len), int(*stdout_fn)(void *caller_handle, const char *str, int len), int(*stderr_fn)(void *caller_handle, const char *str, int len), void *caller_handle);
details

• int gsapi_set_stdio (void *instance, int(*stdin_fn)(void *caller_handle, char *buf, int len), int(*stdout_fn)(void *caller_handle, const char *str, int len), int(*stderr_fn)(void *caller_handle, const char *str, int len));
details

• int gsapi_set_poll_with_handle (void *instance, int(*poll_fn)(void *caller_handle), void *caller_handle);
details

• int gsapi_set_poll (void *instance, int(*poll_fn)(void *caller_handle)); details

• int gsapi_set_display_callback (void *instance, display_callback *callback); details

• int gsapi_register_callout (void *instance, gs_callout callout, void *callout_handle);
details

• void gsapi_deregister_callout (void *instance, gs_callout callout, void *callout_handle);
details

• int gsapi_set_arg_encoding (void *instance, int encoding); details

• int gsapi_get_default_device_list(void *instance, char **list, int *listlen);
details

API

75

• int gsapi_set_default_device_list(void *instance, const char *list, int listlen);
details

• int gsapi_run_string_begin (void *instance, int user_errors, int *pexit_code);
details

• int gsapi_run_string_continue (void *instance, const char *str, unsigned int length, int user_errors, int *pexit_code);
details

• int gsapi_run_string_end (void *instance, int user_errors, int *pexit_code); details

• int gsapi_run_string_with_length (void *instance, const char *str, unsigned int length, int user_errors, int *pexit_code);
details

• int gsapi_run_string (void *instance, const char *str, int user_errors, int *pexit_code);
details

• int gsapi_run_file (void *instance, const char *file_name, int user_errors, int *pexit_code);
details

• int gsapi_init_with_args (void *instance, int argc, char **argv); details

• int gsapi_exit (void *instance); details

• int gsapi_set_param(void *instance, const char *param, const void *value, gs_set_param_type type);
details

• int gsapi_get_param(void *instance, const char *param, void *value, gs_set_param_type type);
details

• int gsapi_enumerate_params(void *instance, void **iter, const char **key, gs_set_param_type *type);
details

• int gsapi_add_control_path(void *instance, int type, const char *path); details

• int gsapi_remove_control_path(void *instance, int type, const char *path); details

• void gsapi_purge_control_paths(void *instance, int type); details

• void gsapi_activate_path_control(void *instance, int enable); details

• int gsapi_is_path_control_active(void *instance); details

• int gsapi_add_fs (void *instance, gsapi_fs_t *fs, void *secret); details

• void gsapi_remove_fs (void *instance, gsapi_fs_t *fs, void *secret); details

gsapi_revision()

This function returns the revision numbers and strings of the Ghostscript interpreter library; you should call it before
any other interpreter library functions to make sure that the correct version of the Ghostscript interpreter has been
loaded.

typedef struct gsapi_revision_s {
 const char *product;
 const char *copyright;
 long revision;
 long revisiondate;
} gsapi_revision_t;
gsapi_revision_t r;

if (gsapi_revision(&r, sizeof(r)) == 0) {
 if (r.revision < 650)
 printf("Need at least Ghostscript 6.50");
}
else {
 printf("revision structure size is incorrect");
}

API

76

gsapi_new_instance()

Create a new instance of Ghostscript. This instance is passed to most other gsapi functions. The caller_handle is the
default value that will be provided to callback functions. On some platforms (those that do not support threading),
only one instance of Ghostscript is supported at a time; any attempt to create more than one at a time would result in
gsapi_new_instance returning an error.

While the core Ghostscript devices are believed to be thread safe now, a handful of devices are known not to be (at
least the x11 devices, uniprint, and the open printing devices). A new mechanism has been implemented that allows
devices to check for concurrent use and to refuse to start up. The devices shipped with Ghostscript known to use
global variables have had these calls added to them. Any authors of non-standard Ghostscript devices that use
global variables should consider adding the same calls to their own code.

The first parameter, is a pointer to an opaque pointer (void **). The opaque pointer (void *) must be initialised to
NULL before the call to gsapi_new_instance(). See Example 1.

gsapi_delete_instance()

Destroy an instance of Ghostscript. Before you call this, Ghostscript must have finished. If Ghostscript has been
initialised, you must call gsapi_exit before gsapi_delete_instance.

gsapi_set_stdio_with_handle()

Set the callback functions for stdio, together with the handle to use in the callback functions. The stdin callback
function should return the number of characters read, 0 for EOF, or -1 for error. The stdout and stderr callback
functions should return the number of characters written.

NOTE: These callbacks do not affect output device I/O when using “%stdout” as the output file. In that case, device
output will still be directed to the process “stdout” file descriptor, not to the stdio callback.

gsapi_set_stdio()

Set the callback functions for stdio. The handle used in the callbacks will be taken from the value passed to
gsapi_new_instance. Otherwise the behaviour of this function matches gsapi_set_stdio_with_handle.

gsapi_set_poll_with_handle()

Set the callback function for polling, together with the handle to pass to the callback function. This function will only
be called if the Ghostscript interpreter was compiled with CHECK_INTERRUPTS as described in gpcheck.h.

The polling function should return zero if all is well, and return negative if it wants Ghostscript to abort. This is often
used for checking for a user cancel. This can also be used for handling window events or cooperative multitasking.

The polling function is called very frequently during interpretation and rendering so it must be fast. If the function is
slow, then using a counter to return 0 immediately some number of times can be used to reduce the performance
impact.

gsapi_set_poll()

Set the callback function for polling. The handle passed to the callback function will be taken from the handle passed
to gsapi_new_instance. Otherwise the behaviour of this function matches gsapi_set_poll_with_handle.

gsapi_set_display_callback()

This call is deprecated; please use gsapi_register_callout to register a callout handler for the display device in
preference. Set the callback structure for the display device. The handle passed in the callback functions is taken
from the DisplayHandle parameter (or NULL if there is no such parameter). If the display device is used, this must
be called after gsapi_new_instance() and before gsapi_init_with_args(). See gdevdsp.h for more
details.

gsapi_register_callout()

This call registers a callout handler.

API

77

gsapi_deregister_callout()

This call deregisters a callout handler previously registered with gsapi_register_callout. All three arguments must
match exactly for the callout handler to be deregistered.

gsapi_set_arg_encoding()

Set the encoding used for the interpretation of all subsequent args supplied via the gsapi interface on this instance.
By default we expect args to be in encoding 0 (the ‘local’ encoding for this OS). On Windows this means “the
currently selected codepage”. On Linux this typically means utf8. This means that omitting to call this function will
leave Ghostscript running exactly as it always has. Please note that use of the ‘local’ encoding is now deprecated
and should be avoided in new code. This must be called after gsapi_new_instance() and before
gsapi_init_with_args().

gsapi_set_default_device_list()

Set the string containing the list of default device names, for example “display x11alpha x11 bbox”. Allows the calling
application to influence which device(s) gs will try, in order, in it’s selection of the default device. This must be called
after gsapi_new_instance() and before gsapi_init_with_args().

gsapi_get_default_device_list()

Returns a pointer to the current default device string. This must be called after gsapi_new_instance() and
before gsapi_init_with_args().

gsapi_init_with_args()

Initialise the interpreter. This calls gs_main_init_with_args() in imainarg.c . See below for return codes.
The arguments are the same as the “C” main function: argv[0] is ignored and the user supplied arguments are
argv[1] to argv[argc-1].

gsapi_run_*()

The gsapi_run_* functions are like gs_main_run_* except that the error_object is omitted. If these functions
return <= -100, either quit or a fatal error has occured. You must call gsapi_exit() next. The only exception is
gsapi_run_string_continue() which will return gs_error_NeedInput if all is well. See below for return
codes.

The address passed in pexit_code will be used to return the exit code for the interpreter in case of a quit or fatal
error. The user_errors argument is normally set to zero to indicate that errors should be handled through the
normal mechanisms within the interpreted code. If set to a negative value, the functions will return an error code
directly to the caller, bypassing the interpreted language. The interpreted language’s error handler is bypassed,
regardless of user_errors parameter, for the gs_error_interrupt generated when the polling callback returns
a negative value. A positive user_errors is treated the same as zero.

There is a 64 KB length limit on any buffer submitted to a gsapi_run_* function for processing. If you have more
than 65535 bytes of input then you must split it into smaller pieces and submit each in a separate
gsapi_run_string_continue() call.

gsapi_exit()

Exit the interpreter. This must be called on shutdown if gsapi_init_with_args() has been called, and just
before gsapi_delete_instance().

gsapi_set_param()

Set a parameter. Broadly, this is equivalent to setting a parameter using -d, -s or -p on the command line. This call
cannot be made during a run_string operation. Parameters in this context are not the same as ‘arguments’ as
processed by gsapi_init_with_args, but often the same thing can be achieved. For example, with
gsapi_init_with_args, we can pass “-r200” to change the resolution. Broadly the same thing can be achieved
by using gsapi_set_param to set a parsed value of “<</HWResolution [200.0 200.0]>>”.

API

78

Note, that internally, when we set a parameter, we perform an initgraphics operation. This means that using
set_param other than at the start of a page is likely to give unexpected results.

Further, note that attempting to set a parameter that the device does not recognise will be silently ignored, and that
parameter will not be found in subsequent gsapi_get_param calls.

The type argument dictates the kind of object that value points to:

typedef enum {
 gs_spt_invalid = -1,
 gs_spt_null = 0, /* void * is NULL */
 gs_spt_bool = 1, /* void * is a pointer to an int (0 false,
 * non-zero true). */
 gs_spt_int = 2, /* void * is a pointer to an int */
 gs_spt_float = 3, /* void * is a float * */
 gs_spt_name = 4, /* void * is a char * */
 gs_spt_string = 5, /* void * is a char * */
 gs_spt_long = 6, /* void * is a long * */
 gs_spt_i64 = 7, /* void * is an int64_t * */
 gs_spt_size_t = 8, /* void * is a size_t * */
 gs_spt_parsed = 9, /* void * is a pointer to a char * to be parsed */

 /* Setting a typed param causes it to be instantly fed to to the
 * device. This can cause the device to reinitialise itself. Hence,
 * setting a sequence of typed params can cause the device to reset
 * itself several times. Accordingly, if you OR the type with
 * gs_spt_more_to_come, the param will held ready to be passed into
 * the device, and will only actually be sent when the next typed
 * param is set without this flag (or on device init). Not valid
 * for get_typed_param. */
 gs_spt_more_to_come = 1<<31
} gs_set_param_type;

Combining a type value by ORRing it with the gs_spt_more_to_come flag will cause the set_param operation to
be queued internally, but not actually be sent to the device. Thus a series of set_param operations can be queued,
for example as below:

int code = gsapi_set_param(instance,
 "HWResolution",
 "[300 300]",
 gs_spt_parsed | gs_spt_more_to_come);
if (code >= 0) {
 int i = 1;
 code = gsapi_set_param(instance,
 "FirstPage",
 &i,
 gs_spt_int | gs_spt_more_to_come);
}
if (code >= 0) {
 int i = 3;
 code = gsapi_set_param(instance,
 "DownScaleFactor",
 &i,
 gs_spt_int);
}

This enables a series of set operations to be performed ‘atomically’. This can be useful for performance, in that any
reconfigurations to the device (such as page size changes or memory reallocations) will only happen when all the
parameters are sent, rather than potentially each time each one is sent.

gsapi_get_param()

Get a parameter. Retrieve the current value of a parameter.

API

79

If an error occurs, the return value is negative. Otherwise the return value is the number of bytes required for storage
of the value. Call once with value = NULL to get the number of bytes required, then call again with value pointing
to at least the required number of bytes where the value will be copied out. Note that the caller is required to know
the type of value in order to get it. For all types other than string, name, and parsed knowing the type means you
already know the size required.

This call retrieves parameters/values that have made it to the device. Thus, any values set using the
gs_spt_more_to_come without a following call without that flag will not be retrieved. Similarly, attempting to get a
parameter before gsapi_init_with_args has been called will not list any, even if gsapi_set_param has been
used.

Attempting to read a parameter that is not set will return gs_error_undefined (-21). Note that calling
gsapi_set_param followed by gsapi_get_param may not find the value, if the device did not recognise the key
as being one of its configuration keys.

gsapi_enumerate_params()

Enumerate the current parameters. Call repeatedly to list out the current parameters.

The first call should have *iter = NULL. Subsequent calls should pass the same pointer in so the iterator can be
updated. Negative return codes indicate error, 0 success, and 1 indicates that there are no more keys to read. On
success, key will be updated to point to a null terminated string with the key name that is guaranteed to be valid until
the next call to gsapi_enumerate_params. If type is non NULL then *type will be updated to have the type of
the parameter.

Note that only one enumeration can happen at a time. Starting a second enumeration will reset the first.

The enumeration only returns parameters/values that have made it to the device. Thus, any values set using the
gs_spt_more_to_come without a following call without that flag will not be retrieved. Similarly, attempting to
enumerate parameters before gsapi_init_with_args has been called will not list any, even if
gsapi_set_param has been used.

gsapi_add_control_path()

Add a (case sensitive) path to one of the lists of permitted paths for file access. See dSAFER for more information
about permitted paths.

gsapi_remove_control_path()

Remove a (case sensitive) path from one of the lists of permitted paths for file access. See dSAFER for more
information about permitted paths.

gsapi_purge_control_paths()

Clear all the paths from one of the lists of permitted paths for file access. See dSAFER for more information about
permitted paths.

gsapi_activate_path_control()

Enable/Disable path control (i.e. whether paths are checked against permitted paths before access is granted). See
dSAFER for more information about permitted paths.

gsapi_is_path_control_active()

Query whether path control is activated or not. See dSAFER for more information about permitted paths.

gsapi_add_fs

Adds a new ‘Filing System’ to the interpreter. This enables callers to implement their own filing systems. The system
starts with just the conventional ‘file’ handlers installed, to allow access to the local filing system. Whenever files are
to be opened from the interpreter, the file paths are offered around each registered filing system in turn (from most
recently registered to oldest), until either an error is given, or the file is opened successfully.

API

80

Details of the gsapi_fs_t are given below.

gsapi_remove_fs

Remove a previously registered ‘Filing System’ from the interpreter. Both the function pointers within the gs_fs_t
and the secret value must match exactly.

gsapi_fs_t

Each ‘filing system’ within gs is a structure of function pointers; each function pointer gives a handler from taking a
different named resource (a file, a pipe, a printer, a scratch file etc) and attempts to open it.

typedef struct
{
 int (*open_file)(const gs_memory_t *mem,
 void *secret,
 const char *fname,
 const char *mode,
 gp_file **file);
 int (*open_pipe)(const gs_memory_t *mem,
 void *secret,
 const char *fname,
 char *rfname, /* 4096 bytes */
 const char *mode,
 gp_file **file);
 int (*open_scratch)(const gs_memory_t *mem,
 void *secret,
 const char *prefix,
 char *rfname, /* 4096 bytes */
 const char *mode,
 int rm,
 gp_file **file);
 int (*open_printer)(const gs_memory_t *mem,
 void *secret,
 char *fname, /* 4096 bytes */
 int binary,
 gp_file **file);
 int (*open_handle)(const gs_memory_t *mem,
 void *secret,
 char *fname, /* 4096 bytes */
 const char *mode,
 gp_file **file);
} gsapi_fs_t;

If the filename (always given in utf-8 format) is recognised as being one that the filing system handles (perhaps by
the prefix used), then it should open the file, fill in the gp_file pointer and return 0.

If the filename is not-recognised as being one that the filing system handles, then returning 0 will cause the filename
to be offered to other registered filing systems.

If an error is returned (perhaps gs_error_invalidfileaccess), then no other filing system will be allowed to try
to open the file. This provides a mechanism whereby a caller to gsapi can completely control access to all files
accessed via gp_fopen at runtime.

Note, that while most file access within Ghostscript will be redirected via these functions, stdio will not; see the
existing mechanisms within Ghostscript for intercepting/replacing this.

• The open_file function pointer will be called when something (most often a call to gp_fopen) attempts to
open a file.

• The open_pipe function pointer will be called when something (most often a call to gp_popen) attempts to
open a pipe. rfname points to a 4K buffer in which the actual name of the opened pipe should be returned.

API

81

• The open_scratch function pointer will be called when something (most often a call to
gp_open_scratch_file or gp_open_scratch_file_rm) attempts to open a temporary file. rfname points
to a 4K buffer in which the actual name of the opened pipe should be returned. If rm is true, then the file should
be set to delete itself when all handles to it are closed.

• The open_printer function pointer will be called when something (most often a call to gp_open_printer)
attempts to open a stream to a printer. If binary is true, then the stream should be opened as binary; most
streams will be binary by default - this has historical meaning on OS/2.

• The open_handle function pointer will be called when something (most often a call via the postscript
%handle% IO device) attempts to open a Windows handle. This entry point will never be called on
non-Windows builds.

Any of these which are left as NULL will never be called; a filing system with all of the entries left as NULL is therefore
pointless.

The most complex part of the implementation of these functions is the creation of a gp_file instance to return.
There are some helper functions for this, best explained by example.

Let us consider a hypothetical filing system that encrypts data as it is written, and decrypts it as it is read back. As
each file is read and written the encryption/decryption routines will need to use some state, carried between calls to
the filing system. We therefore might define a new type ‘derived’ from gp_file as follows:

typedef struct
{
 gp_file base;
 /* State private to the implementation of this file for encryption/decryption */
 /* For example: */
 int foo;
 char *bar;
} gp_file_crypt;

An implementation of gs_fs_t for our ‘crypt’ filing system might then look like this:

gsapi_fs_t gs_fs_crypt =
{
 crypt_open_file,
 NULL, /* open_pipe */
 NULL, /* open_scratch */
 NULL, /* open_printer */
 NULL /* open_handle */
};

In the above definition, we define a single handler, to cope with the opening of our input/output files. If we wanted to
encrypt/decrypt other files too (perhaps the temporary files we produce) we’d need to define additional handlers
(such as open_scratch).

Our handler might look as follows:

int crypt_open_file(const gs_memory_t *mem,
 void *secret,
 const char *filename,
 const char *mode,
 gp_file **file)
{
 gp_file_crypt crypt;

 /* Ignore any filename not starting with "crypt://" */
 if (strncmp(filename, "crypt://", 8) != 0)
 return 0;

 /* Allocate us an instance (and fill in the non-crypt-specific
 * internals) */
 crypt = (gp_file_crypt *)gp_file_alloc(mem, &crypt_ops, sizeof(*crypt), "gp_file_crypt");
 if (crypt == NULL)

API

82

 return gs_error_VMerror; /* Allocation failed */

 /* Setup the crypt-specific state */
 crypt->foo = 1;
 crypt->bar = gs_alloc_bytes(mem->non_gc_memory, 256, "bar");
 /* If allocations fail, we need to clean up before exiting */
 if (crypt->bar) {
 gp_file_dealloc(crypt);
 return gs_error_VMerror;
 }

 /* Return the new instance */
 *file = &crypt.base;
 return 0;
}

The crucial part of this function is the definition of crypt_ops, an instance of the gp_file_ops_t type; a table of
function pointers that implement the actual operations required.

typedef struct {
 int (*close)(gp_file *);
 int (*getc)(gp_file *);
 int (*putc)(gp_file *, int);
 int (*read)(gp_file *, size_t size, unsigned int count, void *buf);
 int (*write)(gp_file *, size_t size, unsigned int count, const void *buf);
 int (*seek)(gp_file *, gs_offset_t offset, int whence);
 gs_offset_t (*tell)(gp_file *);
 int (*eof)(gp_file *);
 gp_file *(*dup)(gp_file *, const char *mode);
 int (*seekable)(gp_file *);
 int (*pread)(gp_file *, size_t count, gs_offset_t offset, void *buf);
 int (*pwrite)(gp_file *, size_t count, gs_offset_t offset, const void *buf);
 int (*is_char_buffered)(gp_file *file);
 void (*fflush)(gp_file *file);
 int (*ferror)(gp_file *file);
 FILE *(*get_file)(gp_file *file);
 void (*clearerr)(gp_file *file);
 gp_file *(*reopen)(gp_file *f, const char *fname, const char *mode);
} gp_file_ops_t;

These functions generally follow the same patterns as the posix functions that match them, and so in many cases we
will describe these with references to such. Whenever these routines are called, they will be passed a gp_file
pointer. This pointer will have originated from the crypt_open_file call, and so can safely be cast back to a
gp_file_crypt pointer to allow private data to be accessed.

close(gp_file *)

• close the given file; free any storage in the crypt specific parts of gp_file_crypt, but not the
gp_file_crypt structure itself.

int getc(gp_file *)

• Get a single character from the file, returning it as an int (or -1 for EOF). Behaves like
fgetc(FILE *).

int putc(gp_file *, int)

• Put a single character to the file, returning the character on success, or EOF (and setting the error
indicator) on error. Behaves like fgetc(FILE *).

int read(gp_file *, size_t size, unsigned int count, void *buf)

• Reads count entries of size bytes the file into buf, returning the number of entries read. Behaves like
fread(FILE *, size, count, buf).

API

83

int write(gp_file *, size_t size, unsigned int count, const void *buf)

• Writes count entries of size bytes from buf into the file, returning the number of entries written.
Behaves like fwrite(FILE *, size, count, buf).

int seek(gp_file *, gs_offset_t offset, int whence)

• Seeks within the file. Behaves like fseek(FILE *, offset, whence).
gs_offset_t tell(gp_file *)

• Returns the current offset within the file. Behaves like ftell(FILE *).
int eof(gp_file *)

• Returns 1 if we are at the end of the file, 0 otherwise. Behaves like feof(FILE *).
gp_file * dup(gp_file *, const char *mode)

• Optional function, only used if clist files are to be stored in this filing system. Behaves like
fdup(FILE *). Leave NULL if not implemented.

int seekable(gp_file *)

• Returns 1 if the file is seekable, 0 otherwise. Certain output devices will only work with seekable files.
int pread(gp_file *, size_t count, gs_offset_t offset, void *buf)

• Optional function, only used if clist files are to be stored in this filing system. Behaves like an atomic
fseek(FILE *, offset, 0) and fread(FILE *, 1, count, buf). Akin to pread.

int pwrite(gp_file *, size_t count, gs_offset_t offset, const void *buf)

• Optional function, only used if clist files are to be stored in this filing system. Behaves like an atomic
fseek(FILE *, offset, 0) and fwrite(FILE *, 1, count, buf). Akin to pwrite.

int is_char_buffered(gp_file *file)

• Returns 1 if the file is character buffered, 0 otherwise. Used for handling reading from terminals. Very
unlikely to be used, so returning 0 all the time should be safe. Leave NULL to indicate “always 0”.

void fflush(gp_file *file)

• Ensures that any buffered data is written to the file. Behaves like fflush(FILE *). Leave NULL to
indicate that no flushing is ever required.

int ferror(gp_file *file)

• Returns non-zero if there has been an error, or 0 otherwise. Behaves like ferror(FILE *).
FILE * get_file(gp_file *file)

• Optional: Gets the FILE * pointer that backs this file. Required for a few devices that insist on
working with FILE *’s direct. Generally safe to leave this set to NULL, and those devices will fail
gracefully.

void clearerr(gp_file *file)

• Clear the error and EOF values for a file. Behaves like clearerror(FILE *).
gp_file * reopen(gp_file *f, const char *fname, const char *mode)

• Optional function, only used if the gp_file came from an open_scratch call; can be left as NULL if
the open_scratch pointer is set to NULL. Reopen a stream with a different mode. Behaves like
freopen(fname, mode, FILE *).

Callouts
Callouts are a mechanism for the core code (specifically devices) to communicate with the user of gsapi. This
communication can take the form of passing information out vis-a-vis what devices are doing, or requesting
configuration from the caller to affect exactly how the device itself works.

API

84

This is deliberately an extensible system, so exact details of callouts should be documented with the device in
question. In general however a callout handler will be of the form:

typedef int (*gs_callout)(void *callout_handle,
 const char *device_name,
 int id,
 int size,
 void *data);

The callout_handle value passed to the callout will be the value passed in at registration. The device_name
should be a null-terminated string giving the name of the device (though care should be taken to cope with the case
where device_name is NULL for potential future uses). The id value will have a (device-specific) meaning; see the
documentation for the device in question for more details. The same id value may be used to mean different things in
different devices. Finally, size and data have callout specific meanings, but typically, data will be a pointer to data
block (which may either be uninitialised or wholly/partially initialised on entry, and may be updated on exit), and size
will be the size (in bytes) of the block pointed to by data.

A return value of -1 (gs_error_unknownerror) means the callout was not recognised by the handler, and should
be passed to more handlers. Other negative values are interpreted as standard Ghostscript error values, and stop
the propagation of the callout. Non-negative return codes mean the callout was handled and should not be passed to
any more registered callout handlers.

Return codes
The gsapi_init_with_args, gsapi_run_* and gsapi_exit functions return an integer code.

Return Codes from gsapi_*()

CODE STATUS

0 No errors

gs_error_Quit “quit” has been executed. This is not an error.
`gsapi_exit() must be called next.

gs_error_interrupt The polling callback function returned a negative value,
requesting Ghostscript to abort.

gs_error_NeedInput More input is needed by
gsapi_run_string_continue(). This is not an
error.

gs_error_Info “gs -h” has been executed. This is not an error.
gsapi_exit() must be called next.

< 0 Error

<= gs_error_Fatal Fatal error. gsapi_exit() must be called next.

The gsapi_run_*() functions do not flush stdio. If you want to see output from Ghostscript you must do this
explicitly as shown in the example below.

When executing a string with gsapi_run_string_*(), currentfile is the input from the string. Reading from
%stdin uses the stdin callback.

Example Usage
To try out the following examples in a development environment like Microsoft’s developer tools or Metrowerks
Codewarrior, create a new project, save the example source code as a .c file and add it, along with the Ghostscript
dll or shared library. You will also need to make sure the Ghostscript headers are available, either by adding their
location (the src directory in the Ghostscript source distribution) to the project’s search path, or by copying
ierrors.h and iapi.h into the same directory as the example source.

API

85

Example 1

/* Example of using GS DLL as a ps2pdf converter. */

#if defined(_WIN32) && !defined(_Windows)
define _Windows
#endif
#ifdef _Windows
/* add this source to a project with gsdll32.dll, or compile it directly with:
 * cl -D_Windows -Isrc -Febin\ps2pdf.exe ps2pdf.c bin\gsdll32.lib
 */
include <windows.h>
define GSDLLEXPORT __declspec(dllimport)
#endif

#include "ierrors.h"
#include "iapi.h"

void *minst = NULL;

int main(int argc, char *argv[])
{
 int code, code1;
 const char * gsargv[7];
 int gsargc;
 gsargv[0] = "";
 gsargv[1] = "-dNOPAUSE";
 gsargv[2] = "-dBATCH";
 gsargv[3] = "-dSAFER";
 gsargv[4] = "-sDEVICE=pdfwrite";
 gsargv[5] = "-sOutputFile=out.pdf";
 gsargv[6] = "input.ps";
 gsargc=7;

 code = gsapi_new_instance(&minst, NULL);
 if (code < 0)
 return 1;
 code = gsapi_set_arg_encoding(minst, GS_ARG_ENCODING_UTF8);
 if (code == 0)
 code = gsapi_init_with_args(minst, gsargc, gsargv);
 code1 = gsapi_exit(minst);
 if ((code == 0) || (code == gs_error_Quit))
 code = code1;

 gsapi_delete_instance(minst);

 if ((code == 0) || (code == gs_error_Quit))
 return 0;
 return 1;
}

API

86

Example 2

/* Similar to command line gs */

#if defined(_WIN32) && !defined(_Windows)
define _Windows
#endif
#ifdef _Windows
/* Compile directly with:
 * cl -D_Windows -Isrc -Febin\gstest.exe gstest.c bin\gsdll32.lib
 */
include <windows.h>
define GSDLLEXPORT __declspec(dllimport)
#endif
#include <stdio.h>
#include "ierrors.h"
#include "iapi.h"

/* stdio functions */
static int GSDLLCALL
gsdll_stdin(void *instance, char *buf, int len)
{
 int ch;
 int count = 0;
 while (count < len) {
 ch = fgetc(stdin);
 if (ch == EOF)
 return 0;
 *buf++ = ch;
 count++;
 if (ch == '\n')
 break;
 }
 return count;
}

static int GSDLLCALL
gsdll_stdout(void *instance, const char *str, int len)
{
 fwrite(str, 1, len, stdout);
 fflush(stdout);
 return len;
}

static int GSDLLCALL
gsdll_stderr(void *instance, const char *str, int len)
{
 fwrite(str, 1, len, stderr);
 fflush(stderr);
 return len;
}

void *minst = NULL;
const char start_string[] = "systemdict /start get exec\n";

int main(int argc, char *argv[])
{
 int code, code1;
 int exit_code;

API

87

 code = gsapi_new_instance(&minst, NULL);
 if (code < 0)
 return 1;
 gsapi_set_stdio(minst, gsdll_stdin, gsdll_stdout, gsdll_stderr);
 code = gsapi_set_arg_encoding(minst, GS_ARG_ENCODING_UTF8);
 if (code == 0)
 code = gsapi_init_with_args(minst, argc, argv);
 if (code == 0)
 code = gsapi_run_string(minst, start_string, 0, &exit_code);
 code1 = gsapi_exit(minst);
 if ((code == 0) || (code == gs_error_Quit))
 code = code1;

 gsapi_delete_instance(minst);

 if ((code == 0) || (code == gs_error_Quit))
 return 0;
 return 1;
}

Example 3

Replace main() in either of the above with the following code, showing how you can feed Ghostscript piecemeal:

const char *command = "1 2 add == flush\n";

int main(int argc, char *argv[])
{
 int code, code1;
 int exit_code;

 code = gsapi_new_instance(&minst, NULL);
 if (code < 0)
 return 1;
 code = gsapi_set_arg_encoding(minst, GS_ARG_ENCODING_UTF8);
 if (code == 0)
 code = gsapi_init_with_args(minst, argc, argv);

 if (code == 0) {
 gsapi_run_string_begin(minst, 0, &exit_code);
 gsapi_run_string_continue(minst, command, strlen(command), 0, &exit_code);
 gsapi_run_string_continue(minst, "qu", 2, 0, &exit_code);
 gsapi_run_string_continue(minst, "it", 2, 0, &exit_code);
 gsapi_run_string_end(minst, 0, &exit_code);
 }

 code1 = gsapi_exit(minst);
 if ((code == 0) || (code == gs_error_Quit))
 code = code1;

 gsapi_delete_instance(minst);

 if ((code == 0) || (code == gs_error_Quit))
 return 0;
 return 1;
}

API

88

Example 4

When feeding Ghostscript piecemeal buffers, one can use the normal operators to configure things and invoke library
routines. For example, to parse a PDF file one could say:

code = gsapi_run_string(minst, "(example.pdf) .runlibfile", 0, &exit_code);

and Ghostscript would open and process the file named “example.pdf” as if it had been passed as an argument to
gsapi_init_with_args().

Multiple Threads
The Ghostscript library should have been compiled with a thread safe run time library. Synchronisation of threads is
entirely up to the caller. The exported gsapi_*() functions must be called from one thread only.

Standard Input and Output
When using the Ghostscript interpreter library interface, you have a choice of two standard input/output methods.

• If you do nothing, the “C” stdio will be used.

• If you use gsapi_set_stdio(), all stdio will be redirected to the callback functions you provide. This would
be used in a graphical user interface environment where stdio is not available, or where you wish to process
Ghostscript input or output.

The callback functions are described in iapi.h.

Display Device
The display device is available for use with the Ghostscript interpreter library. While originally designed for allowing
screen display of rendered output from Ghostscript, this is now powerful enough to provide a simple mechanism for
getting rendered output suitable for use in all manner of output scenarios, including printing.

Details of the API and options are given in the file gdevdsp.h. This device provides you with access to the raster
output of Ghostscript. It is the callers responsibility to copy this raster to a display window or printer.

In order for this device to operate, it needs access to a structure containing a set of callback functions, and a callback
handle (an opaque void * that can be used by caller to locate its own state). There are 2 ways that the device can
get this information, a legacy method, and a modern method.

Legacy method

The address of the callback structure, is provided using gsapi_set_display_callback(). This must be called
after gsapi_new_instance() and before gsapi_init_with_args().

With this call, the callback handle is passed as NULL by default, but can be overridden by using a parameter. We
actively dislike this way of working, as we consider passing addresses via the command line distasteful. The handle
can be set using:

-sDisplayHandle=1234

Where “1234” is a string. The API was changed to use a string rather than an integer/long value when support for 64
bit systems arrived. A display “handle” is often a pointer, and since these command line options have to survive
being processed by Postscript machinery, and Postscript only permits 32 bit number values, a different
representation was required. Hence changing the value to a string, so that 64 bit values can be supported. The string
formats allowed are:

1234 implicit base 10

10#1234 explicit base 10

16#04d2 explicit base 16

The “number string” is parsed by the display device to retrieve the number value, and is then assigned to the void
pointer parameter “pHandle” in the display device structure. Thus, for a trivial example, passing
-sDisplayHandle=0 will result in the first parameter passed to your display device callbacks being: (void *)0.

API

89

The previous API, using a number value:

-dDisplayHandle=1234

is still supported on 32 bit systems, but will cause a “typecheck” error on 64 bit systems, and is considered
deprecated. It should not be used in new code.

Modern method

The preferred method is to register a callout handler using gsapi_register_callout. When this handler is called for the
“display” device, with id = 0 (= DISPLAY_CALLOUT_GET_CALLBACK), then data should point to an empty
gs_display_get_callback_t block, with size = sizeof(gs_display_get_callback_t).

typedef struct {
 display_callback *callback;
 void *caller_handle;
} gs_display_get_callback_t;

The handler should fill in the structure before returning, with a return code of 0.

Note, that the DisplayHandle value is only consulted for display device callbacks registered using the (legacy,
now deprecated) gsapi_set_display_callback API, not the preferred gsapi_register_callout based
mechanism.

The device raster format can be configured using:

-dDisplayFormat=NNNN

Options include:

• native, gray, RGB, CMYK or separation color spaces.

• alpha byte (ignored).

• 1 to 16 bits/component.

• bigendian (RGB) or littleendian (BGR) order.

• top first or bottom first raster.

• 16 bits/pixel with 555 or 565 bitfields.

• Chunky, Planar and Planar interleaved formats.

• “Full screen” or “Rectangle Request” modes of operation.

The operation of the device is best described with a walkthrough of some example code that uses it. For simplicity
and clarity, we have omitted the error handling code in this example; in production code, every place where we get a
code value returned we should check it for failure (a negative value) and clean up accordingly. First, we create an
instance of Ghostscript:

void *minst = NULL;
code = gsapi_new_instance(&minst, NULL);
code = gsapi_set_stdio(minst, gsdll_stdin, gsdll_stdout, gsdll_stderr);

Next, we have to give the display device the address of our callback structure. In old code, we would do so using
something like this:

code = gsapi_set_display_callback(minst, &display_callback);

We strongly recommend that you don’t do that, but instead use the more modern callout mechanism:

code = gsapi_register_callout(minst, my_callout_handler, state);

where state is any void * value you like, usually a pointer to help you reach any internal state you may need.
Earlier in your code you would have the definition of my_callout_handler that might look like this:

static int
my_callout_handler(void *instance,
 void *callout_handle,
 const char *device_name,

API

90

 int id,
 int size,
 void *data)
{
 /* On entry, callout_handle == the value of state passed in
 * to gsapi_register_callout. */
 /* We are only interested in callouts from the display device. */
 if (device_name == NULL || strcmp(device_name, "display"))
 return -1;

 if (id == DISPLAY_CALLOUT_GET_CALLBACK)
 {
 /* Fill in the supplied block with the details of our callback
 * handler, and the handle to use. In this instance, the handle
 * is the pointer to our test structure. */
 gs_display_get_callback_t *cb = (gs_display_get_callback_t *)data;
 cb->callback = &display_callback;
 cb->caller_handle = callout_handle;
 return 0;
 }
 return -1;
}

As you can see, this callout handler only responds to callouts for the display device, and then only for one particular
function (id). It returns the same display_callback structure as the deprecated, legacy mechanism passed in
using gsapi_set_display_callback, with the added benefit that the caller_handle value can be passed in
too. In this example we pass in the same value as was used for callout_handle, but implementations are free to
use any value they want.

Returning to our example, we now set up a set of arguments to setup Ghostscript:

int argc = 0;
/* Allow for up to 32 args of up to 64 chars each. */
char argv[32][64];
sprintf(argc[argc++], "gs");
sprintf(argv[argc++], "-sDEVICE=display");

The zeroth arg is a dummy argument to match the standard C mechanism for passing arguments to a program.
Traditionally this is the name of the program being invoked. Next, we tell Ghostscript to use the display device.

sprintf(argv[argc++], "-sDEVICE=display");

Next we tell the display device what output format to use. The format is flexible enough to support common
Windows, OS/2, Linux and Mac raster formats.

The format values are described in gdevdsp.h. To select the display device with a Windows 24-bit RGB raster:

sprintf(argv[argc++], "-dDisplayFormat=%d",
 DISPLAY_COLORS_RGB | DISPLAY_ALPHA_NONE | DISPLAY_DEPTH_8 |
 DISPLAY_LITTLEENDIAN | DISPLAY_BOTTOMFIRST);

If (and only if) you used the legacy mechanism described above, you will need another argument to pass in the
caller_handle value to be parroted back to the functions listed within display_callback:

sprintf(arg2, "-dDisplayHandle=%d", callout_handle);

Any other arguments that you want can be added to the end of the command line, typically including a file to run.
Then we pass that all to Ghostscript:

code = gsapi_init_with_args(minst, argc, argv);

At this point you should start to see your display callback functions being called. Exactly which callback functions are
provided, and how they respond will determine exactly how the display device operates. The primary choice will be
whether the device runs in “full page” or “rectangle request” mode. Details of these are given below.

API

91

Once we have finished processing the file, we can process other files using gsapi_run_file, or feed in data using
gsapi_run_string. Once you have finished, you can shut the interpreter down and exit, using:

code = gsapi_exit(minst);
gsapi_delete_instance(minst);

A full list of the display callback functions can be found in gdevdsp.h. There are several different versions of the
callback, corresponding to different “generations” of the device. In general you should use the latest one. The size
field of the structure should be initialised to the size of the structure in bytes.

display_open()

int (*display_open)(void *handle, void *device);

This function will be called when the display device is opened. The device may be opened and closed many times,
sometimes without any output being produced.

display_preclose()

int (*display_preclose)(void *handle, void *device);

This function will be called when the display device is about to be closed. The device will not actually be closed until
this function returns.

display_close()

int (*display_close)(void *handle, void *device);

This function will be called once the display device has been closed. There will be no more events from the device
unless/until it is reopened.

display_presize()

int (*display_presize)(void *handle, void *device,
 int width, int height, int raster, unsigned int format);

This function will be called when the display device is about to be resized. The device will only be resized if this
function returns 0.

display_size()

int (*display_size)(void *handle, void *device, int width, int height,
 int raster, unsigned int format, unsigned char *pimage);

This function will be called when the display device is has been resized. The pointer to the raster image is pimage.

display_sync()

int (*display_sync)(void *handle, void *device);

This function may be called periodically during display to flush the page to the display.

display_page()

int (*display_page)(void *handle, void *device, int copies, int flush);

This function is called on a “showpage” operation (i.e. at the end of every page). Operation will continue as soon as
this function returns.

API

92

display_update()

int (*display_update)(void *handle, void *device,
 int x, int y, int w, int h);

This function may get called repeatedly during rendering to indicate that an area of the output has been updated.
Certain types of rendering will not see this function called back at all (in particular files using transparency).

display_memalloc()

int (*display_memalloc)(void *handle, void *device,
 size_t long size);

Note: In older versions of this API, size is an unsigned long rather than a size_t.

If this function pointer is sent as NULL, then the display device will handle all the memory allocations internally, and
will always work in full page rendering mode.

Otherwise, this function will be called to allocate the storage for the page to be rendered into. If a non-NULL value is
returned, then the device will proceed to render the full page into it. If NULL is returned, then the device will check a)
whether we are using a V2 or greater display callback structure and b) whether that structure specifies a
rectangle_request function pointer.

If both of those conditions are true, then the device will continue in rectangle request mode. Otherwise it will fail with
an out of memory error.

display_memfree()

int (*display_memfree)(void *handle, void *device, void *ptr);

This function should be NULL if and only if display_memalloc is NULL. Any memory allocated using
display_memalloc will be freed via this function.

display_separation()

int (*display_separation)(void *handle, void *device,
 int component, const char *component_name,
 unsigned short c, unsigned short m,
 unsigned short y, unsigned short k);

When using DISPLAY_COLORS_SEPARATION, this function will be called once for every separation component - first
“Cyan”, “Magenta”, “Yellow” and “Black”, then any spot colors used. The supplied c, m, y and k values give the
equivalent color for each spot. Each colorant value ranges from 0 (for none) to 65535 (full).

In separation color mode you are expected to count the number of calls you get to this function after each
display_size to know how many colors you are dealing with.

display_adjust_band_height()

int (*display_adjust_band_height)(void *handle, void *device,
 int bandheight);

When running in “rectangle request mode” the device first renders the page to a display list internally. It can then be
played back repeatedly so that different regions (rectangles) of the page can be extracted in sequence. A common
use of this is to support “banded” operation, where the page is divided into multiple non-overlapping bands of a fixed
height.

The display device itself will pick an appropriate band height for it to use. If this function pointer is left as NULL then
this value will be used unchanged. Otherwise, the proposed value will be offered to this function. This function can
override the choice of bandheight, by returning the value that it would like to be used in preference.

In general, this figure should (as much as possible) only be adjusted downwards. For example, a device targeting an
inkjet printer with 200 nozzles in the print head might like to extract bands that are a multiple of 200 lines high. So the

API

93

function might return max(200, 200*(bandheight/200)). If the function returns 0, then the existing value will
be used unchanged.

Any size rectangle can be chosen with any size bandheight, so ultimately the value chosen here will not matter
much. It may make some small difference in speed in some cases.

display_rectangle_request()

int (*display_rectangle_request)(void *handle, void *device,
 void **memory, int *ox, int *oy,
 int *raster, int *plane_raster,
 int *x, int *y, int *w, int *h);

If the display device chooses to use rectangle request mode, this function will be called repeatedly to request a
rectangle to render. Ghostscript will render the rectangle, and call this function again. The implementer is expected to
handle the rectangle that has just been rendered, and to return the details of another rectangle to render. This will
continue until a rectangle with zero height or width is returned, whereupon Ghostscript will continue operation.

On entry, *raster and *plane_raster are set to the values expected by the format in use. All the other pointers
point to uninitialised values.

On exit, the values should be updated appropriately. The implementor is expected to store the values returned so
that the rendered output given can be correctly interpreted when control returns to this function.

memory should be updated to point to a block of memory to use for the rendered output. Pixel (*ox, *oy) is the first
pixel represented in that block.

*raster is the number of bytes difference between the address of component 0 of Pixel(*ox, *oy) and the address
of component 0 of Pixel(*ox, 1+``*oy``).

*plane_raster is the number of bytes difference between the address of component 0 of Pixel(*ox, *oy) and the
address of component 1 of Pixel(*ox, *oy), if in planar mode, 0 otherwise. *x, *y, *w and *h give the rectangle
requested within that memory block.

Any set of rectangles can be rendered with this method, so this can be used to drive Ghostscript in various ways.
Firstly, it is simple to request a set of non-overlapping “bands” that cover the page, to drive a printer. Alternatively,
rectangles can be chosen to fill a given block of memory to implement a window panning around a larger page.
Either the whole image could be redrawn each time, or smaller rectangles around the edge of the panned area could
be requested. The choice is down to the caller.

Some examples of driving this code in full page mode are in `dwmain.c``(Windows), ``dpmain.c (OS/2) and
dxmain.c (X11/Linux), and dmmain.c (MacOS Classic or Carbon).

Alternatively an example that drives this code in both full page and rectangle request mode can be found in
api_test.c.

On some platforms, the calling convention for the display device callbacks in gdevdsp.h is not the same as the
exported gsapi_*() functions in iapi.h.

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

API

94

https://www.artifex.com

Language Bindings
The core of Ghostscript is written in C, but also supports language bindings for the following programming
languages:

• C#

• Java

• Python

All of the above languages have equivalent methods as defined in the C API. Java and C# provide additional helper
methods to make the use of the API easier for certain applications. These languages also provide example viewers
that make use of these methods.

This developer documentation is organized by programming language type and includes API reference and sample
code.

Before using the language bindings first ensure that Ghostscript is built for your platform before proceeding. See:

• Building with Visual Studio

• Building with MacOS

• Building with Unix

The C API
Ghostscript has been in development for over thirty years and is written in C. The API has evolved over time and is
continually being developed. The language bindings into Ghostscript will attempt to mirror this evolution and match
the current C API as much as possible.

Licensing
Before using Ghostscript, please make sure that you have a valid license to do so. There are two available licenses;
make sure you pick the one whose terms you can comply with.

Open Source license

If your software is open source, you may use Ghostscript under the terms of the GNU Affero General Public License.

This means that all of the source code for your complete app must be released under a compatible open source
license!

It also means that you may not use any proprietary closed source libraries or components in your app.

Please read the full text of the AGPL license agreement from the FSF web site

If you cannot or do not want to comply with these restrictions, you must acquire a commercial license instead.

Commercial license

If your project does not meet the requirements of the AGPL, please contact our sales team to discuss a commercial
license. Each Artifex commercial license is crafted based on your individual use case.

Demo code
Please locate the demos folder in your ghostpdl source code download from the GhostPDL repository to find
sample code demonstrating the language bindings in action.

C#

Introduction

In the GhostPDL repository a sample C# project can be found in /demos/csharp.

Language Bindings

95

https://artifex.com/licensing/commercial/
https://ghostscript.com/releases/gpdldnld.html

Within this project the following namespaces and corresponding C# files are of relevance:

• GhostAPI ghostapi.cs

• GhostNET ghostnet.cs

• GhostMono ghostmono.cs

Platform & setup

Ghostscript should be built as a shared library for your platform.

See Building Ghostscript.

GhostAPI

GhostAPI is the main wrapper responsible for bridging over to the C library and ensuring that the correct DLLs are
imported.

GhostAPI contains the ghostapi class which does not need to be instantiated as it provides public static methods.
These methods, which mirror their C counterparts, are as follows:

Method Description

gsapi_revision Returns the revision numbers and strings of the Ghostscript interpreter library.

gsapi_new_instance Create a new instance of Ghostscript.

gsapi_delete_instance Destroy an instance of Ghostscript.

gsapi_set_stdio_with_han
dle

Set the callback functions for stdio, together with the handle to use in the callback
functions.

gsapi_set_stdio Set the callback functions for stdio.

gsapi_set_poll_with_hand
le

Set the callback function for polling, together with the handle to pass to the callback
function.

gsapi_set_poll Set the callback function for polling.

gsapi_set_display_callbac
k

deprecated

gsapi_register_callout This call registers a callout handler.

gsapi_deregister_callout This call deregisters a previously registered callout handler.

gsapi_set_arg_encoding Set the encoding used for the interpretation of all subsequent args supplied via the
gsapi interface on this instance.

gsapi_set_default_device
_list

Set the string containing the list of default device names.

gsapi_get_default_device
_list

Returns a pointer to the current default device string.

gsapi_init_with_args Initialise the interpreter.

gsapi_run_* (Wildcard for various “run” methods).

gsapi_exit Exit the interpreter.

gsapi_set_param Set a parameter.

gsapi_get_param Get a parameter.

gsapi_enumerate_params Enumerate the current parameters.

gsapi_add_control_path Add a (case sensitive) path to one of the lists of permitted paths for file access.

gsapi_remove_control_pa
th

Remove a (case sensitive) path from one of the lists of permitted paths for file
access.

Language Bindings

96

gsapi_purge_control_path
s

Clear all the paths from one of the lists of permitted paths for file access.

gsapi_activate_path_contr
ol

Enable/Disable path control.

gsapi_is_path_control_act
ive

Query whether path control is activated or not.

GhostAPI contains some essential structs & enums as well as a static class for some constants, finally it contains the
main GSAPI class which holds the key methods which interface with the C library.

Structs and Enums

gsapi_revision_t

This struct is used to contain information pertinent to the version of Ghostscript.

public struct gsapi_revision_t
{
 public IntPtr product;
 public IntPtr copyright;
 public int revision;
 public int revisiondate;
}

gs_set_param_type

public enum gs_set_param_type
{
 gs_spt_invalid = -1,
 gs_spt_null = 0, /* void * is NULL */
 gs_spt_bool = 1, /* void * is NULL (false) or non-NULL (true) */
 gs_spt_int = 2, /* void * is a pointer to an int */
 gs_spt_float = 3, /* void * is a float * */
 gs_spt_name = 4, /* void * is a char * */
 gs_spt_string = 5, /* void * is a char * */
 gs_spt_long = 6, /* void * is a long * */
 gs_spt_i64 = 7, /* void * is an int64_t * */
 gs_spt_size_t = 8, /* void * is a size_t * */
 gs_spt_parsed = 9, /* void * is a pointer to a char * to be parsed */
 gs_spt_more_to_come = 1 << 31
};

gsEncoding

public enum gsEncoding
{
 GS_ARG_ENCODING_LOCAL = 0,
 GS_ARG_ENCODING_UTF8 = 1,
 GS_ARG_ENCODING_UTF16LE = 2
};

Constants

Constants are stored in the static class gsConstants for direct referencing.

Language Bindings

97

gsConstants

static class gsConstants
{
 public const int E_QUIT = -101;
 public const int GS_READ_BUFFER = 32768;
 public const int DISPLAY_UNUSED_LAST = (1 << 7);
 public const int DISPLAY_COLORS_RGB = (1 << 2);
 public const int DISPLAY_DEPTH_8 = (1 << 11);
 public const int DISPLAY_LITTLEENDIAN = (1 << 16);
 public const int DISPLAY_BIGENDIAN = (0 << 16);
}

GSAPI

Methods contained within are explained below.

gsapi_run_* and gsapi_exit methods return an int code which can be interpreted as follows:

code status

0 no error

gsConstants.E_QUIT “quit” has been executed. This is not an error.
gsapi_exit must be called next

<0 error

Note

For full details on these return codes please see The C API return codes.

All GSAPI methods aside from gsapi_revision and gsapi_new_instance should pass an instance of
Ghostscript as their first parameter with an IntPtr instance

gsapi_revision

This method returns the revision numbers and strings of the Ghostscript interpreter library; you should call it before
any other interpreter library functions to make sure that the correct version of the Ghostscript interpreter has been
loaded.

public static extern int gsapi_revision(ref gsapi_revision_t vers, int size);

Note

The method should write to a reference variable which conforms to the struct gsapi_revision_t.

gsapi_new_instance

Creates a new instance of Ghostscript. This instance is passed to most other GSAPI methods. Unless Ghostscript
has been compiled with the GS_THREADSAFE define, only one instance at a time is supported.

public static extern int gsapi_new_instance(out IntPtr pinstance,
 IntPtr caller_handle);

Language Bindings

98

Note

The method returns a pointer which represents your instance of Ghostscript.

gsapi_delete_instance

Destroy an instance of Ghostscript. Before you call this, Ghostscript must have finished. If Ghostscript has been
initialised, you must call gsapi_exit beforehand.

public static extern void gsapi_delete_instance(IntPtr instance);

Sample code:

GSAPI.gsapi_delete_instance(gsInstance);
gsInstance = IntPtr.Zero;

gsapi_set_stdio_with_handle

Set the callback functions for stdio, together with the handle to use in the callback functions. The stdin callback
function should return the number of characters read, 0 for EOF, or -1 for error. The stdout and stderr callback
functions should return the number of characters written.

Note

These callbacks do not affect output device I/O when using “%stdout” as the output file. In that case, device
output will still be directed to the process “stdout” file descriptor, not to the stdio callback.

public static extern int gsapi_set_stdio_with_handle(IntPtr instance,
 gs_stdio_handler stdin,
 gs_stdio_handler stdout,
 gs_stdio_handler stderr,
 IntPtr caller_handle);

gsapi_set_stdio

Set the callback functions for stdio. The handle used in the callbacks will be taken from the value passed to
gsapi_new_instance. Otherwise the behaviour of this function matches gsapi_set_stdio_with_handle.

public static extern int gsapi_set_stdio_with_handle(IntPtr instance,
 gs_stdio_handler stdin,
 gs_stdio_handler stdout,
 gs_stdio_handler stderr);

gsapi_set_poll_with_handle

Set the callback function for polling, together with the handle to pass to the callback function. This function will only
be called if the Ghostscript interpreter was compiled with CHECK_INTERRUPTS as described in gpcheck.h.

The polling function should return zero if all is well, and return negative if it wants Ghostscript to abort. This is often
used for checking for a user cancel. This can also be used for handling window events or cooperative multitasking.

The polling function is called very frequently during interpretation and rendering so it must be fast. If the function is
slow, then using a counter to return 0 immediately some number of times can be used to reduce the performance
impact.

public static extern int gsapi_set_poll_with_handle(IntPtr instance,
 gsPollHandler pollfn,
 IntPtr caller_handle);

Language Bindings

99

gsapi_set_poll

Set the callback function for polling. The handle passed to the callback function will be taken from the handle passed
to gsapi_new_instance. Otherwise the behaviour of this function matches gsapi_set_poll_with_handle.

public static extern int gsapi_set_poll(IntPtr instance,
 gsPollHandler pollfn);

gsapi_set_display_callback

This call is deprecated; please use gsapi_register_callout to register a callout handler for the display device in
preference.

public static extern int gsapi_set_display_callback(IntPtr pinstance,
 IntPtr caller_handle);

gsapi_register_callout

This call registers a callout handler.

public static extern int gsapi_register_callout(IntPtr instance,
 gsCallOut callout,
 IntPtr callout_handle);

gsapi_deregister_callout

This call deregisters a callout handler previously registered with gsapi_register_callout. All three arguments must
match exactly for the callout handler to be deregistered.

public static extern int gsapi_deregister_callout(IntPtr instance,
 gsCallOut callout,
 IntPtr callout_handle);

gsapi_set_arg_encoding

Set the encoding used for the interpretation of all subsequent arguments supplied via the GhostAPI interface on this
instance. By default we expect args to be in encoding 0 (the ‘local’ encoding for this OS). On Windows this means
“the currently selected codepage”. On Linux this typically means utf8. This means that omitting to call this function
will leave Ghostscript running exactly as it always has. Please note that use of the ‘local’ encoding is now deprecated
and should be avoided in new code. This must be called after gsapi_new_instance and before gsapi_init_with_args.

public static extern int gsapi_set_arg_encoding(IntPtr instance,
 int encoding);

gsapi_set_default_device_list

Set the string containing the list of default device names, for example “display x11alpha x11 bbox”. Allows the calling
application to influence which device(s) Ghostscript will try, in order, in its selection of the default device. This must
be called after gsapi_new_instance and before gsapi_init_with_args.

public static extern int gsapi_set_default_device_list(IntPtr instance,
 IntPtr list,
 ref int listlen);

gsapi_get_default_device_list

Returns a pointer to the current default device string. This must be called after gsapi_new_instance and before
gsapi_init_with_args.

public static extern int gsapi_get_default_device_list(IntPtr instance,
 ref IntPtr list,
 ref int listlen);

Language Bindings

100

gsapi_init_with_args

To initialise the interpreter, pass your instance of Ghostscript, your argument count, argc and your argument
variables, argv.

public static extern int gsapi_init_with_args(IntPtr instance,
 int argc,
 IntPtr argv);

gsapi_run_*

If these functions return <= -100, either quit or a fatal error has occured. You must call gsapi_exit next. The only
exception is gsapi_run_string_continue which will return gs_error_NeedInput if all is well.

There is a 64 KB length limit on any buffer submitted to a gsapi_run_* function for processing. If you have more
than 65535 bytes of input then you must split it into smaller pieces and submit each in a separate
gsapi_run_string_continue call.

gsapi_run_string_begin

public static extern int gsapi_run_string_begin(IntPtr instance,
 int usererr,
 ref int exitcode);

gsapi_run_string_continue

public static extern int gsapi_run_string_continue(IntPtr instance,
 IntPtr command,
 int count,
 int usererr,
 ref int exitcode);

gsapi_run_string_with_length

public static extern int gsapi_run_string_with_length(IntPtr instance,
 IntPtr command,
 uint length,
 int usererr,
 ref int exitcode);

gsapi_run_string

public static extern int gsapi_run_string(IntPtr instance,
 IntPtr command,
 int usererr,
 ref int exitcode);

gsapi_run_string_end

public static extern int gsapi_run_string_end(IntPtr instance,
 int usererr,
 ref int exitcode);

gsapi_run_file

public static extern int gsapi_run_file(IntPtr instance,
 IntPtr filename,
 int usererr,
 ref int exitcode);

Language Bindings

101

gsapi_exit

Exit the interpreter. This must be called on shutdown if gsapi_init_with_args has been called, and just before
gsapi_delete_instance.

public static extern int gsapi_exit(IntPtr instance);

gsapi_set_param

Sets a parameter.

Broadly, this is equivalent to setting a parameter using -d, -s or -p on the command line. This call cannot be made
during a gsapi_run_string operation.

Parameters in this context are not the same as ‘arguments’ as processed by gsapi_init_with_args, but often the
same thing can be achieved. For example, with gsapi_init_with_args, we can pass “-r200” to change the resolution.
Broadly the same thing can be achieved by using gsapi_set_param to set a parsed value of “<</HWResolution [
200.0 200.0]>>”.

Internally, when we set a parameter, we perform an initgraphics operation. This means that using
gsapi_set_param other than at the start of a page is likely to give unexpected results.

Attempting to set a parameter that the device does not recognise will be silently ignored, and that parameter will not
be found in subsequent gsapi_get_param calls.

public static extern int gsapi_set_param(IntPtr instance,
 IntPtr param,
 IntPtr value,
 gs_set_param_type type);

Note

The type argument, as a gs_set_param_type, dictates the kind of object that the value argument points to.

For more on the C implementation of parameters see: Ghostscript parameters in C.

gsapi_get_param

Retrieve the current value of a parameter.

If an error occurs, the return value is negative. Otherwise the return value is the number of bytes required for storage
of the value. Call once with value NULL to get the number of bytes required, then call again with value pointing to at
least the required number of bytes where the value will be copied out. Note that the caller is required to know the
type of value in order to get it. For all types other than gs_spt_string, gs_spt_name, and gs_spt_parsed
knowing the type means you already know the size required.

This call retrieves parameters/values that have made it to the device. Thus, any values set using
gs_spt_more_to_come without a following call omitting that flag will not be retrieved. Similarly, attempting to get a
parameter before gsapi_init_with_args has been called will not list any, even if gsapi_set_param has been used.

Attempting to read a parameter that is not set will return gs_error_undefined (-21). Note that calling
gsapi_set_param followed by gsapi_get_param may not find the value, if the device did not recognise the key as
being one of its configuration keys.

For further documentation please refer to the C API.

public static extern int gsapi_get_param(IntPtr instance,
 IntPtr param,
 IntPtr value,
 gs_set_param_type type);

gsapi_enumerate_params

Enumerate the current parameters. Call repeatedly to list out the current parameters.

Language Bindings

102

The first call should have iter = NULL. Subsequent calls should pass the same pointer in so the iterator can be
updated. Negative return codes indicate error, 0 success, and 1 indicates that there are no more keys to read. On
success, key will be updated to point to a null terminated string with the key name that is guaranteed to be valid until
the next call to gsapi_enumerate_params. If type is non NULL then the pointer type will be updated to have the type
of the parameter.

Note

Only one enumeration can happen at a time. Starting a second enumeration will reset the first.

The enumeration only returns parameters/values that have made it to the device. Thus, any values set using the
gs_spt_more_to_come without a following call omitting that flag will not be retrieved. Similarly, attempting to
enumerate parameters before gsapi_init_with_args has been called will not list any, even if gsapi_set_param has
been used.

public static extern int gsapi_enumerate_params(IntPtr instance,
 out IntPtr iter,
 out IntPtr key,
 IntPtr type);

gsapi_add_control_path

Add a (case sensitive) path to one of the lists of permitted paths for file access.

public static extern int gsapi_add_control_path(IntPtr instance,
 int type,
 IntPtr path);

gsapi_remove_control_path

Remove a (case sensitive) path from one of the lists of permitted paths for file access.

public static extern int gsapi_remove_control_path(IntPtr instance,
 int type,
 IntPtr path);

gsapi_purge_control_paths

Clear all the paths from one of the lists of permitted paths for file access.

public static extern void gsapi_purge_control_paths(IntPtr instance,
 int type);

gsapi_activate_path_control

Enable/Disable path control (i.e. whether paths are checked against permitted paths before access is granted).

public static extern void gsapi_activate_path_control(IntPtr instance,
 int enable);

gsapi_is_path_control_active

Query whether path control is activated or not.

public static extern int gsapi_is_path_control_active(IntPtr instance);

Callback and Callout prototypes

GSAPI also defines some prototype pointers which are defined as follows.

Language Bindings

103

gs_stdio_handler

/* Callback proto for stdio */
public delegate int gs_stdio_handler(IntPtr caller_handle,
 IntPtr buffer,
 int len);

gsPollHandler

/* Callback proto for poll function */
public delegate int gsPollHandler(IntPtr caller_handle);

gsCallOut

/* Callout proto */
public delegate int gsCallOut(IntPtr callout_handle,
 IntPtr device_name,
 int id,
 int size,
 IntPtr data);

GhostNET

GhostNET is the .NET interface into GhostAPI. It exemplifies how to do more complex operations involving multiple
API calls and sequences. See the table below for the main methods:

Method Description

No
te
s

GetVersion Returns the version of Ghostscript.

DisplayDeviceOpen Sets up the display device ahead of time.

DisplayDeviceClose Closes the display device and deletes the instance.

GetPageCount Returns the page count for the document.

CreateXPS Launches a thread to create an XPS document for Windows printing. as
yn
ch
ro
no
us

DistillPS Launches a thread rendering all the pages of a supplied PostScript file to a PDF. as
yn
ch
ro
no
us

DisplayDeviceRunFi
le

Launches a thread to run a file with the display device. as
yn
ch
ro
no
us

Language Bindings

104

https://dotnet.microsoft.com/

DisplayDeviceRend
erThumbs

Launches a thread rendering all the pages with the display device to collect
thumbnail images.

as
yn
ch
ro
no
us

DisplayDeviceRend
erPages

Launches a thread rendering a set of pages with the display device. as
yn
ch
ro
no
us

GetStatus Returns the current status of Ghostscript.

Cancel Cancels asynchronous operations.

GhostscriptExceptio
n

An application developer can log any exceptions in this public class.

In demos/csharp/windows/ghostnet.sln there is a sample C# demo project.

This project can be opened in Visual Studio and used to test the Ghostscript API alongside a UI which handles
opening PostScript and PDF files. The sample application here allows for file browsing and Ghostscript file viewing.

Below is a screenshot of the sample application with a PDF open:

Enums

Tasks

The Ghostscript task type enum is used to inform GhostAPI of the type of operation which is being requested.

Task Description

PS_DISTILL Task associated with converting a PostScript stream to
a PDF document.

CREATE_XPS Task associated with outputting a copy of a document
to XPS.

SAVE_RESULT Task associated with saving documents.

GET_PAGE_COUNT Task associated with getting the page count of a
document.

GENERIC Generic task identifier.

DISPLAY_DEV_THUMBS Display Device task associated with rendering
thumbnails.

DISPLAY_DEV_NON_PDF Display Device task associated with non-PDF or
non-XPS rendering (see: Ghostscript & Page
Description Languages).

DISPLAY_DEV_PDF Display Device task associated with PDF & XPS
rendering (see: Ghostscript & Page Description
Languages).

DISPLAY_DEV_RUN_FILE Display Device task associated with running files.

Task types are defined as GS_Task_t.

public enum GS_Task_t
{
 PS_DISTILL,
 CREATE_XPS,
 SAVE_RESULT,

Language Bindings

105

https://visualstudio.microsoft.com/

 GET_PAGE_COUNT,
 GENERIC,
 DISPLAY_DEV_THUMBS,
 DISPLAY_DEV_NON_PDF,
 DISPLAY_DEV_PDF,
 DISPLAY_DEV_RUN_FILE
}

Results

Result types are defined as GS_Result_t.

public enum GS_Result_t
{
 gsOK,
 gsFAILED,
 gsCANCELLED
}

Status

Status types are defined as gsStatus.

public enum gsStatus
{
 GS_READY,
 GS_BUSY,
 GS_ERROR
}

The Parameter Struct

The parameter struct gsParamState_t allows for bundles of information to be processed by Ghostscript to
complete overall requests.

public struct gsParamState_t
{
 public String outputfile;
 public String inputfile;
 public GS_Task_t task;
 public GS_Result_t result;
 public int num_pages;
 public List<int> pages;
 public int firstpage;
 public int lastpage;
 public int currpage;
 public List<String> args;
 public int return_code;
 public double zoom;
 public bool aa;
 public bool is_valid;
};

Parameters explained

Setting up your parameters (with any dedicated bespoke method(s) which your application requires) is needed when
communicating directly with GhostAPI.

When requesting Ghostscript to process an operation an application developer should send a parameter payload
which defines the details for the operation.

For example in GhostNET we can see the public method as follows:

Language Bindings

106

public gsStatus DistillPS(String fileName, int resolution)
{
 gsParamState_t gsparams = new gsParamState_t();
 gsparams.args = new List<string>();

 gsparams.inputfile = fileName;
 gsparams.args.Add("gs");
 gsparams.args.Add("-sDEVICE=pdfwrite");
 gsparams.outputfile = Path.GetTempFileName();
 gsparams.args.Add("-o" + gsparams.outputfile);
 gsparams.task = GS_Task_t.PS_DISTILL;

 return RunGhostscriptAsync(gsparams);
}

Here we can see a parameter payload being setup before being passed on to the asynchronous method
RunGhostscriptAsync which sets up a worker thread to run according to the task type in the payload.

GhostNET handles many common operations on an application developer’s behalf, however if you require to write
your own methods to interface with GhostAPI then referring to the public methods in GhostNET is a good starting
point.

For full documentation on parameters refer to Ghostscript parameters.

The Event class

GhostNET contains a public class gsEventArgs which is an extension of the C# class EventArgs. This class is
used to set and get events as they occur. GhostNET will create these payloads and deliver them back to the
application layer’s ProgressCallBack method asynchronously.

public class gsEventArgs : EventArgs
{
 private bool m_completed;
 private int m_progress;
 private gsParamState_t m_param;
 public bool Completed
 {
 get { return m_completed; }
 }
 public gsParamState_t Params
 {
 get { return m_param; }
 }
 public int Progress
 {
 get { return m_progress; }
 }
 public gsEventArgs(bool completed, int progress, gsParamState_t param)
 {
 m_completed = completed;
 m_progress = progress;
 m_param = param;
 }
}

GSNET

This class should be instantiated as a member variable in your application with callback definitions setup as required.

Handlers for asynchronous operations can injected by providing your own bespoke callback methods to your
instance’s ProgressCallBack function.

Language Bindings

107

Sample code

/* Set up ghostscript with callbacks for system updates */
m_ghostscript = new GSNET();
m_ghostscript.ProgressCallBack += new GSNET.Progress(gsProgress);
m_ghostscript.StdIOCallBack += new GSNET.StdIO(gsIO);
m_ghostscript.DLLProblemCallBack += new GSNET.DLLProblem(gsDLL);
m_ghostscript.PageRenderedCallBack += new GSNET.PageRendered(gsPageRendered);
m_ghostscript.DisplayDeviceOpen();

/* example callback stubs for asynchronous operations */
private void gsProgress(gsEventArgs asyncInformation)
{
 Console.WriteLine($"gsProgress().progress:{asyncInformation.Progress}");

 if (asyncInformation.Completed) // task complete
 {
 // what was the task?
 switch (asyncInformation.Params.task)
 {
 case GS_Task_t.CREATE_XPS:
 Console.WriteLine($"CREATE_XPS.outputfile:");
 Console.WriteLine($"{asyncInformation.Params.result.outputfile}");
 break;

 case GS_Task_t.PS_DISTILL:
 Console.WriteLine($"PS_DISTILL.outputfile:");
 Console.WriteLine($"{asyncInformation.Params.result.outputfile}");
 break;

 case GS_Task_t.SAVE_RESULT:

 break;

 case GS_Task_t.DISPLAY_DEV_THUMBS:

 break;

 case GS_Task_t.DISPLAY_DEV_RUN_FILE:

 break;

 case GS_Task_t.DISPLAY_DEV_PDF:

 break;

 case GS_Task_t.DISPLAY_DEV_NON_PDF:

 break;

 default:

 break;
 }

 // task failed
 if (asyncInformation.Params.result == GS_Result_t.gsFAILED)
 {
 switch (asyncInformation.Params.task)
 {

Language Bindings

108

 case GS_Task_t.CREATE_XPS:

 break;

 case GS_Task_t.PS_DISTILL:

 break;

 case GS_Task_t.SAVE_RESULT:

 break;

 default:

 break;
 }
 return;
 }

 // task cancelled
 if (asyncInformation.Params.result == GS_Result_t.gsCANCELLED)
 {

 }
 }
 else // task is still running
 {
 switch (asyncInformation.Params.task)
 {
 case GS_Task_t.CREATE_XPS:

 break;

 case GS_Task_t.PS_DISTILL:

 break;

 case GS_Task_t.SAVE_RESULT:

 break;
 }
 }
}

private void gsIO(String message, int len)
{
 Console.WriteLine($"gsIO().message:{message}, length:{len}");
}

private void gsDLL(String message)
{
 Console.WriteLine($"gsDLL().message:{message}");
}

private void gsPageRendered(int width,
 int height,
 int raster,
 IntPtr data,
 gsParamState_t state)
{

Language Bindings

109

};

Note

Once a Ghostscript operation is in progress any defined callback functions will be called as the operation runs up
unto completion. These callback methods are essential for your application to interpret activity events and react
accordingly.

An explanation of callbacks and the available public methods within GSNET are explained below.

Delegates

To handle asynchronous events GhostNET has four delegates which define callback methods that an application
can assign to.

Callback Description

DLLProblemCallBack Occurs if there is some issue with the Ghostscript DLL.

StdIOCallBack Occurs if Ghostscript outputs something to stderr or
stdout.

ProgressCallBack Occurs as Ghostscript makes its way through a file.

PageRenderedCallBack Occurs when a page has been rendered and the data
from the display device is ready.

DLLProblemCallBack

internal delegate void DLLProblem(String mess);
internal event DLLProblem DLLProblemCallBack;

StdIOCallBack

internal delegate void StdIO(String mess,
 int len);
internal event StdIO StdIOCallBack;

ProgressCallBack

internal delegate void Progress(gsEventArgs info);
internal event Progress ProgressCallBack;

PageRenderedCallBack

internal delegate void PageRendered(int width,
 int height,
 int raster,
 IntPtr data,
 gsParamState_t state);
internal event PageRendered PageRenderedCallBack;

GetVersion

Use this method to get Ghostscript version info as a String.

public String GetVersion()

Language Bindings

110

Sample code:

String gs_vers = m_ghostscript.GetVersion();

Note

An exception will be thrown if there is any issue with the Ghostscript DLL.

DisplayDeviceOpen

Sets up the display device ahead of time.

public gsParamState_t DisplayDeviceOpen()

Sample code:

m_ghostscript.DisplayDeviceOpen();

Note

Calling this method instantiates Ghostscript and configures the encoding and the callbacks for the display device.

DisplayDeviceClose

Closes the display device and deletes the instance.

public gsParamState_t DisplayDeviceClose()

Sample code:

m_ghostscript.DisplayDeviceClose();

Note

Calling this method deletes Ghostscript.

GetPageCount

Use this method to get the number of pages in a supplied document.

public int GetPageCount(String fileName)

Sample code:

int page_number = m_ghostscript.GetPageCount("my_document.pdf");

Note

If Ghostscript is unable to determine the page count then this method will return -1.

CreateXPS

Launches a thread to create an XPS document for Windows printing. This method is asynchronous and logic should
be hooked into your application upon GSNET instantiation to interpret progress.

Language Bindings

111

public gsStatus CreateXPS(String fileName,
 int resolution,
 int num_pages,
 double width,
 double height,
 bool fit_page,
 int firstpage,
 int lastpage)

Sample code:

m_ghostscript.CreateXPS("my_document.pdf",
 300,
 10,
 1000,
 1000,
 true,
 0,
 9);

DistillPS

Launches a thread rendering all the pages of a supplied PostScript file to a PDF.

public gsStatus DistillPS(String fileName, int resolution)

Sample code:

m_ghostscript.DistillPS("my_postscript_document.ps", 300);

DisplayDeviceRunFile

Launches a thread to run a file with the display device.

public gsStatus DisplayDeviceRunFile(String fileName,
 double zoom,
 bool aa, // anti-aliasing value
 int firstpage,
 int lastpage)

Sample code:

m_ghostscript.DisplayDeviceRunFile("my_document.pdf",
 1.0,
 true,
 0,
 9);

DisplayDeviceRenderThumbs

Launches a thread rendering all the pages with the display device to collect thumbnail images.

Recommended zoom level for thumbnails is between 0.05 and 0.2, additionally anti-aliasing is probably not required.

public gsStatus DisplayDeviceRenderThumbs(String fileName,
 double zoom,
 bool aa)

Sample code:

m_ghostscript.DisplayDeviceRenderThumbs("my_document.pdf",
 0.1,
 false);

Language Bindings

112

DisplayDeviceRenderPages

Launches a thread rendering a set of pages with the display device. For use with languages that can be indexed via
pages which include PDF and XPS. (see: Ghostscript & Page Description Languages)

public gsStatus DisplayDeviceRenderPages(String fileName,
 int first_page,
 int last_page,
 double zoom)

Sample code:

m_ghostscript.DisplayDeviceRenderPages("my_document.pdf",
 0,
 9,
 1.0);

GetStatus

Returns the current status of Ghostscript.

public gsStatus GetStatus()

Sample code:

gsStatus status = m_ghostscript.GetStatus();

Cancel

Cancels asynchronous operations.

public void Cancel()

Sample code:

m_ghostscript.Cancel();

GhostscriptException

An application developer can log any exceptions in this public class as required by editing the constructor.

public class GhostscriptException : Exception
{
 public GhostscriptException(string message) : base(message)
 {
 // Report exceptions as required
 }
}

GhostMono

GhostMono is the C# interface into the GhostAPI library and is developed for Linux systems.

As such GhostMono is the Mono equivalent of GhostNET with no dependency on a Windows environment.

Enums

Tasks

The Ghostscript task type enum is used to inform GhostAPI of the type of operation which is being requested.

Task Description

PS_DISTILL Task associated with converting a PostScript stream to
a PDF document.

Language Bindings

113

https://www.mono-project.com/

CREATE_XPS Task associated with outputting a copy of a document
to XPS.

SAVE_RESULT Task associated with saving documents.

GET_PAGE_COUNT Task associated with getting the page count of a
document.

GENERIC Generic task identifier.

DISPLAY_DEV_THUMBS Display Device task associated with rendering
thumbnails.

DISPLAY_DEV_NON_PDF Display Device task associated with non-PDF or
non-XPS rendering (see: Ghostscript & Page
Description Languages).

DISPLAY_DEV_PDF Display Device task associated with PDF & XPS
rendering (see: Ghostscript & Page Description
Languages).

DISPLAY_DEV_RUN_FILE Display Device task associated with running files.

Task types are defined as GS_Task_t.

public enum GS_Task_t
{
 PS_DISTILL,
 CREATE_XPS,
 SAVE_RESULT,
 GET_PAGE_COUNT,
 GENERIC,
 DISPLAY_DEV_THUMBS,
 DISPLAY_DEV_NON_PDF,
 DISPLAY_DEV_PDF,
 DISPLAY_DEV_RUN_FILE
}

Results

Result types are defined as GS_Result_t.

public enum GS_Result_t
{
 gsOK,
 gsFAILED,
 gsCANCELLED
}

Status

Status types are defined as gsStatus.

public enum gsStatus
{
 GS_READY,
 GS_BUSY,
 GS_ERROR
}

The Parameter Struct

The parameter struct gsParamState_t allows for bundles of information to be processed by Ghostscript to
complete overall requests.

Language Bindings

114

public struct gsParamState_t
{
 public String outputfile;
 public String inputfile;
 public GS_Task_t task;
 public GS_Result_t result;
 public int num_pages;
 public List<int> pages;
 public int firstpage;
 public int lastpage;
 public int currpage;
 public List<String> args;
 public int return_code;
 public double zoom;
};

Parameters explained

Setting up your parameters (with any dedicated bespoke method(s) which your application requires) is needed when
communicating directly with GhostAPI.

When requesting Ghostscript to process an operation an application developer should send a parameter payload
which defines the details for the operation.

For example in GhostMono we can see the public method as follows:

public gsStatus DistillPS(String fileName, int resolution)
{
 gsParamState_t gsparams = new gsParamState_t();
 gsparams.args = new List<string>();

 gsparams.inputfile = fileName;
 gsparams.args.Add("gs");
 gsparams.args.Add("-dNOPAUSE");
 gsparams.args.Add("-dBATCH");
 gsparams.args.Add("-I%rom%Resource/Init/");
 gsparams.args.Add("-dSAFER");
 gsparams.args.Add("-sDEVICE=pdfwrite");
 gsparams.outputfile = Path.GetTempFileName();
 gsparams.args.Add("-o" + gsparams.outputfile);
 gsparams.task = GS_Task_t.PS_DISTILL;

 return RunGhostscriptAsync(gsparams);
}

Here we can see a parameter payload being setup before being passed on to the asynchronous method
RunGhostscriptAsync which sets up a worker thread to run according to the task type in the payload.

GhostMono handles many common operations on an application developer’s behalf, however if you require to write
your own methods to interface with GhostAPI then referring to the public methods in GhostMono is a good starting
point.

For full documentation on parameters refer to Ghostscript parameters in C.

The Event class

GhostMono contains a public class gsThreadCallBack. This class is used to set and get callback information as
they occur. GhostMono will create these payloads and deliver them back to the application layer’s
ProgressCallBack method asynchronously.

public class gsThreadCallBack
{
 private bool m_completed;

Language Bindings

115

 private int m_progress;
 private gsParamState_t m_param;
 public bool Completed
 {
 get { return m_completed; }
 }
 public gsParamState_t Params
 {
 get { return m_param; }
 }
 public int Progress
 {
 get { return m_progress; }
 }
 public gsThreadCallBack(bool completed, int progress, gsParamState_t param)
 {
 m_completed = completed;
 m_progress = progress;
 m_param = param;
 }
}

GSMONO

This class should be instantiated as a member variable in your application with callback definitions setup as required.

Handlers for asynchronous operations can injected by providing your own bespoke callback methods to your
instance’s ProgressCallBack function.

/* Set up Ghostscript with callbacks for system updates */
m_ghostscript = new GSMONO();
m_ghostscript.ProgressCallBack += new GSMONO.Progress(gsProgress);
m_ghostscript.StdIOCallBack += new GSMONO.StdIO(gsIO);
m_ghostscript.DLLProblemCallBack += new GSMONO.DLLProblem(gsDLL);
m_ghostscript.PageRenderedCallBack += new GSMONO.PageRendered(gsPageRendered);
m_ghostscript.DisplayDeviceOpen();

/* example callback stubs for asynchronous operations */
private void gsProgress(gsThreadCallBack asyncInformation)
{
 Console.WriteLine($"gsProgress().progress:{asyncInformation.Progress}");

 if (asyncInformation.Completed) // task complete
 {
 // what was the task?
 switch (asyncInformation.Params.task)
 {
 case GS_Task_t.CREATE_XPS:
 Console.WriteLine($"CREATE_XPS.outputfile:");
 Console.WriteLine($"{asyncInformation.Params.result.outputfile}");
 break;

 case GS_Task_t.PS_DISTILL:
 Console.WriteLine($"PS_DISTILL.outputfile:");
 Console.WriteLine($"{asyncInformation.Params.result.outputfile}");
 break;

 case GS_Task_t.SAVE_RESULT:

 break;

Language Bindings

116

 case GS_Task_t.DISPLAY_DEV_THUMBS:

 break;

 case GS_Task_t.DISPLAY_DEV_RUN_FILE:

 break;

 case GS_Task_t.DISPLAY_DEV_PDF:

 break;

 case GS_Task_t.DISPLAY_DEV_NON_PDF:

 break;

 default:

 break;
 }

 // task failed
 if (asyncInformation.Params.result == GS_Result_t.gsFAILED)
 {
 switch (asyncInformation.Params.task)
 {
 case GS_Task_t.CREATE_XPS:

 break;

 case GS_Task_t.PS_DISTILL:

 break;

 case GS_Task_t.SAVE_RESULT:

 break;

 default:

 break;
 }
 return;
 }

 // task cancelled
 if (asyncInformation.Params.result == GS_Result_t.gsCANCELLED)
 {

 }
 }
 else // task is still running
 {
 switch (asyncInformation.Params.task)
 {
 case GS_Task_t.CREATE_XPS:

 break;

 case GS_Task_t.PS_DISTILL:

Language Bindings

117

 break;

 case GS_Task_t.SAVE_RESULT:

 break;
 }
 }
}

private void gsIO(String message, int len)
{
 Console.WriteLine($"gsIO().message:{message}, length:{len}");
}

private void gsDLL(String message)
{
 Console.WriteLine($"gsDLL().message:{message}");
}

private void gsPageRendered(int width,
 int height,
 int raster,
 IntPtr data,
 gsParamState_t state)
{

};

Note

Once a Ghostscript operation is in progress any defined callback functions will be called as the operation runs up
unto completion. These callback methods are essential for your application to interpret activity events and react
accordingly.

An explanation of callbacks and the available public methods within GSMONO are explained below.

Delegates

To handle asynchronous events GhostMONO has four delegates which define callback methods that an application
can assign to.

Callback Description

DLLProblemCallBack Occurs if there is some issue with the Ghostscript
Shared Object (libgpdl.so)

StdIOCallBack Occurs if Ghostscript outputs something to stderr or
stdout.

ProgressCallBack Occurs as Ghostscript makes its way through a file.

PageRenderedCallBack Occurs when a page has been rendered and the data
from the display device is ready.

DLLProblemCallBack

internal delegate void DLLProblem(String mess);
internal event DLLProblem DLLProblemCallBack;

Language Bindings

118

StdIOCallBack

internal delegate void StdIO(String mess,
 int len);
internal event StdIO StdIOCallBack;

ProgressCallBack

internal delegate void Progress(gsEventArgs info);
internal event Progress ProgressCallBack;

PageRenderedCallBack

internal delegate void PageRendered(int width,
 int height,
 int raster,
 IntPtr data,
 gsParamState_t state);
internal event PageRendered PageRenderedCallBack;

GetVersion

Use this method to get Ghostscript version info as a String.

public String GetVersion()

Sample code:

String gs_vers = m_ghostscript.GetVersion();

Note

An exception will be thrown if there is any issue with the Ghostscript DLL.

DisplayDeviceOpen

Sets up the display device ahead of time.

public gsParamState_t DisplayDeviceOpen()

Sample code:

m_ghostscript.DisplayDeviceOpen();

Note

Calling this method instantiates Ghostscript and configures the encoding and the callbacks for the display device.

DisplayDeviceClose

Closes the display device and deletes the instance.

public gsParamState_t DisplayDeviceClose()

Sample code:

m_ghostscript.DisplayDeviceClose();

Language Bindings

119

Note

Calling this method deletes Ghostscript.

GetPageCount

Use this method to get the number of pages in a supplied document.

public int GetPageCount(String fileName)

Sample code:

int page_number = m_ghostscript.GetPageCount("my_document.pdf");

Note

If Ghostscript is unable to determine the page count then this method will return -1.

DistillPS

Launches a thread rendering all the pages of a supplied PostScript file to a PDF.

public gsStatus DistillPS(String fileName, int resolution)

Sample code:

m_ghostscript.DistillPS("my_postscript_document.ps", 300);

DisplayDeviceRenderAll

Launches a thread rendering all the document pages with the display device. For use with languages that can be
indexed via pages which include PDF and XPS. (see: Ghostscript & Page Description Languages)

public gsStatus DisplayDeviceRenderAll(String fileName, double zoom, bool aa, GS_Task_t task)

Sample code:

m_ghostscript.DisplayDeviceRenderAll("my_document.pdf",
 0.1,
 false,
 GS_Task_t.DISPLAY_DEV_THUMBS_NON_PDF);

DisplayDeviceRenderThumbs

Launches a thread rendering all the pages with the display device to collect thumbnail images.

Recommended zoom level for thumbnails is between 0.05 and 0.2, additionally anti-aliasing is probably not required.

public gsStatus DisplayDeviceRenderThumbs(String fileName,
 double zoom,
 bool aa)

Sample code:

m_ghostscript.DisplayDeviceRenderThumbs("my_document.pdf",
 0.1,
 false);

DisplayDeviceRenderPages

Launches a thread rendering a set of pages with the display device. For use with languages that can be indexed via
pages which include PDF and XPS. (see: Ghostscript & Page Description Languages)

Language Bindings

120

public gsStatus DisplayDeviceRenderPages(String fileName,
 int first_page,
 int last_page,
 double zoom)

Sample code:

m_ghostscript.DisplayDeviceRenderPages("my_document.pdf",
 0,
 9,
 1.0);

GetStatus

Returns the current status of Ghostscript.

public gsStatus GetStatus()

Sample code:

gsStatus status = m_ghostscript.GetStatus();

GhostscriptException

An application developer can log any exceptions in this public class as required by editing the constructor.

public class GhostscriptException : Exception
{
 public GhostscriptException(string message) : base(message)
 {
 // Report exceptions as required
 }
}

Note

Ghostscript & Page Description Languages

Ghostscript handles the following PDLs: PCL PDF PS XPS.

PCL and PS do not allow random access, meaning that, to print page 2 in a 100 page document, Ghostscript has
to read the entire document stream of 100 pages.

On the other hand, PDF and XPS allow for going directly to page 2 and then only dealing with that content. The
tasks DISPLAY_DEV_NON_PDF and DISPLAY_DEV_PDF keep track of what sort of input Ghostscript is dealing
with and enables the application to direct progress or completion callbacks accordingly.

Java

Introduction

In the GhostPDL repository sample Java projects can be found in /demos/java.

Within this location the following folders are of relevance:

• jni jni

• gsjava gsjava

• gstest gstest

• gsviewer gsviewer

Language Bindings

121

https://en.wikipedia.org/wiki/Page_description_language

Platform & setup

Ghostscript should be built as a shared library for your platform.

See Building Ghostscript.

jni: Building the Java Native Interface

Before building the JNI ensure that Ghostscript has already been built for your platform and that you have JDK
installed.

The JNI is for use in the Java interface, this object must be placed somewhere on your Java PATH. On Windows, the
DLL can be placed in the working directory, next to gsjava.jar.

Platform JNI file

Windows gs_jni.dll

MacOS gs_jni.dylib

Linux / OpenBSD gs_jni.so

Preparing your include folder

The build scripts require the header jni.h, which defines all JNI functions, and jni_md.h, which defines all
system-specific integer types. The build scripts expect an include folder relative to their location which contain these
header files from your system.

These headers are typically found in the following directories:

Platform jni.h jni_md.h

Windows C:Program FilesJava<JDK
Install>includejni.h

C:Program FilesJava<JDK
Install>includewin32jni_md.h

MacOS /Library/Java/JavaVirtualMachines/
<JDK Install>/Contents/Home/inclu
de/jni.h

/Library/Java/JavaVirtualMachines/
<JDK Install>/Contents/Home/inclu
de/darwin/jni_md.h

Linux /lib/jvm/<JDK Install>/include/jni.h /lib/jvm/<JDK
Install>/include/linux/jni_md.h

Once your include folder has been located folder you can copy it and place it in your
ghostpdl/demos/java/jni/gs_jni folder.

Your build scripts should now be ready to run as they will be able to find the required JNI header files in their own
relative include folder.

Building on Windows

The jni folder contains a Visual Studio Solution file /jni/gs_jni/gs_jni.sln which you should use to build the
required JNI gs_jni.dll library file.

With the project open in Visual Studio, select the required architecture from the drop down - then right click on ‘gs_jni’
in the solution explorer and choose “Build”.

Building on MacOS

On your command line, navigate to ghostpdl/demos/java/jni/gs_jni and ensure that the build script is
executable and then run it, with:

chmod +x build_darwin.sh
./build_darwin.sh

Building on Linux

On your command line, navigate to ghostpdl/demos/java/jni/gs_jni and ensure that the build script is
executable and then run it, with:

Language Bindings

122

chmod +x build_linux.sh
./build_linux.sh

gsjava: Building the JAR

gsjava.jar is the Java library which contains classes and interfaces which enable API calls required to use
Ghostscript.

Assuming that the JAR for your project has been built and properly linked with your own project then the Ghostscript
API should be available by importing the required classes within your project’s .java files.

Building with the command line

Navigate to ghostpdl/demos/java/gsjava and use the following:

Platform Run file

Windows build_win32.bat

MacOS build_darwin.sh

Linux build_linux.sh

Note

gsjava has a dependency on jni, please ensure that gs_jni is able to be built beforehand.

Building with Eclipse

Alternatively you can use Eclipse to build the JAR file.

Using Eclipse import the source folder gsjava as a project and select Export > Java > JAR File as shown in
the screenshot example below:

Linking the JAR

The built JAR should be properly linked within your project Java Build Path as follows:

Demo projects

gstest

Use this to quickly test Ghostscript methods.

This project can be opened in Eclipse and used to test the Ghostscript API. The sample here simply sets up an
instance of Ghostscript and then sets and gets some parameters accordingly.

gsviewer

A handy file viewer.

This project can be used to test the Ghostscript API alongside a UI which handles opening PostScript and PDF files.
The sample application here allows for file browsing and Ghostscript file viewing.

Below is a screenshot of the sample application with a PDF open:

To run the project navigate to the demos/java/gsviewer location and ensure that the required libraries are in the
directory:

Platform Ghostscript library file
JNI library

file

Windows gpdldll64.dll gs_jni.dll

Language Bindings

123

https://www.eclipse.org/eclipseide/
https://www.eclipse.org/eclipseide/

MacOS libgpdl.dylib gs_jni.dyl
ib

Linux /
OpenBSD

libgpdl.so (this may have been built as libgs.so,
so it should be copied into this directory and
renamed to libgpdl.so)

gs_jni.so

Building on Windows

Run the build_win32.bat script.

Running on Windows

To run, open gsviewer.jar either through File Explorer or in the command line through the following command:

java -jar gsviewer.jar

Building on MacOS

On your command line, navigate to ghostpdl/demos/java/gsviewer and ensure that the build script is
executable and then run it, with:

chmod +x build_darwin.sh
./build_darwin.sh

This will automatically build gs_jni.dylib (in the ghostpdl/demos/java/jni/gs_jni/ location) and
gsjava.jar gsviewer.jar in the gsviewer directory.

Running on MacOS

Ensure that the Ghostscript library exists in the gsviewer directory. (Copy and move the built library from
ghostpdl/sobin as required).

Ensure that the run script is executable and then run it, with:

chmod +x start_darwin.sh
./start_darwin.sh

Building on Linux

On your command line, navigate to ghostpdl/demos/java/gsviewer and ensure that the build script is
executable and then run it, with:

chmod +x build_linux.sh
./build_linux.sh

This will automatically build gs_jni.so (in the ghostpdl/demos/java/jni/gs_jni/ location) and
gsjava.jar gsviewer.jar in the gsviewer directory.

Note

On Linux, when using OpenJDK, the property “assistive_technologies” may need to be modified for the Java
code to build. It can be modified by editing the “accessibility.properties” file. This is located at:

/etc/java-8-openjdk/accessibility.properties

Running on Linux

Ensure that the Ghostscript library exists in the gsviewer directory. (Copy and move the built library from
ghostpdl/sobin as required).

Ensure that the run script is executable and then run it, with:

Language Bindings

124

chmod +x start_linux.sh
./start_linux.sh

Using the Java library

gsjava

There are two main classes within the gsjava.jar library to consider:

GSAPI & GSInstance

GSAPI is the main Ghostscript API class which bridges into the Ghostscript C library.

GSInstance is a wrapper class for GSAPI which encapsulates an instance of Ghostscript and allows for simpler API
calls.

Sample code:

// to use GSAPI
import static com.artifex.gsjava.GSAPI.*;

// to use GSInstance
import com.artifex.gsjava.GSInstance;

GSAPI

gsapi_revision

This method returns the revision numbers and strings of the Ghostscript interpreter library; you should call it before
any other interpreter library functions to make sure that the correct version of the Ghostscript interpreter has been
loaded.

public static native int gsapi_revision(GSAPI.Revision revision,
 int len);

Note

The method should write to a reference variable which conforms to the class GSAPI.Revision.

GSAPI.Revision

This class is used to store information about Ghostscript and provides handy getters for the product and the
copyright information.

public static class Revision {
 public volatile byte[] product;
 public volatile byte[] copyright;
 public volatile long revision;
 public volatile long revisionDate;

 public Revision() {
 this.product = null;
 this.copyright = null;
 this.revision = 0L;
 this.revisionDate = 0L;
 }

 /**
 * Returns the product information as a String.

Language Bindings

125

 *
 * @return The product information.
 */
 public String getProduct() {
 return new String(product);
 }

 /**
 * Returns the copyright information as a String.
 *
 * @return The copyright information.
 */
 public String getCopyright() {
 return new String(copyright);
 }
}

gsapi_new_instance

Creates a new instance of Ghostscript. This instance is passed to most other GSAPI methods. Unless Ghostscript
has been compiled with the GS_THREADSAFE define, only one instance at a time is supported.

public static native int gsapi_new_instance(Reference<Long> instance,
 long callerHandle);

Note

The method returns a reference which represents your instance of Ghostscript.

gsapi_delete_instance

Destroy an instance of Ghostscript. Before you call this, Ghostscript must have finished. If Ghostscript has been
initialised, you should call gsapi_exit beforehand.

public static native void gsapi_delete_instance(long instance);

gsapi_set_stdio_with_handle

Set the callback functions for stdio, together with the handle to use in the callback functions. The stdin callback
function should return the number of characters read, 0 for EOF, or -1 for error. The stdout and stderr callback
functions should return the number of characters written.

public static native int gsapi_set_stdio_with_handle(long instance,
 IStdInFunction stdin,
 IStdOutFunction stdout,
 IStdErrFunction stderr,
 long callerHandle);

gsapi_set_stdio

Set the callback functions for stdio. The handle used in the callbacks will be taken from the value passed to
gsapi_new_instance. Otherwise the behaviour of this function matches gsapi_set_stdio_with_handle.

public static native int gsapi_set_stdio(long instance,
 IStdInFunction stdin,
 IStdOutFunction stdout,
 IStdErrFunction stderr);

Language Bindings

126

gsapi_set_poll_with_handle

Set the callback function for polling, together with the handle to pass to the callback function. This function will only
be called if the Ghostscript interpreter was compiled with CHECK_INTERRUPTS as described in gpcheck.h.

The polling function should return zero if all is well, and return negative if it wants Ghostscript to abort. This is often
used for checking for a user cancel. This can also be used for handling window events or cooperative multitasking.

The polling function is called very frequently during interpretation and rendering so it must be fast. If the function is
slow, then using a counter to return 0 immediately some number of times can be used to reduce the performance
impact.

public static native int gsapi_set_poll_with_handle(long instance,
 IPollFunction pollfun,
 long callerHandle);

gsapi_set_poll

Set the callback function for polling. The handle passed to the callback function will be taken from the handle passed
to gsapi_new_instance. Otherwise the behaviour of this function matches gsapi_set_poll_with_handle.

public static native int gsapi_set_poll(long instance,
 IPollFunction pollfun);

gsapi_set_display_callback

This call is deprecated; please use gsapi_register_callout to register a callout handler for the display device in
preference.

public static native int gsapi_set_display_callback(long instance,
 DisplayCallback displayCallback);

gsapi_register_callout

This call registers a callout handler.

public static native int gsapi_register_callout(long instance,
 ICalloutFunction callout,
 long calloutHandle);

gsapi_deregister_callout

This call deregisters a callout handler previously registered with gsapi_register_callout. All three arguments must
match exactly for the callout handler to be deregistered.

public static native void gsapi_deregister_callout(long instance,
 ICalloutFunction callout,
 long calloutHandle);

gsapi_set_arg_encoding

Set the encoding used for the interpretation of all subsequent arguments supplied via the GSAPI interface on this
instance. By default we expect args to be in encoding 0 (the ‘local’ encoding for this OS). On Windows this means
“the currently selected codepage”. This means that omitting to call this function will leave Ghostscript running exactly
as it always has. Please note that use of the ‘local’ encoding is now deprecated and should be avoided in new code.
This must be called after gsapi_new_instance and before gsapi_init_with_args.

public static native int gsapi_set_arg_encoding(long instance,
 int encoding);

gsapi_set_default_device_list

Set the string containing the list of default device names, for example “display x11alpha x11 bbox”. Allows the calling
application to influence which device(s) Ghostscript will try, in order, in its selection of the default device. This must
be called after gsapi_new_instance and before gsapi_init_with_args.

Language Bindings

127

public static native int gsapi_set_default_device_list(long instance,
 byte[] list,
 int listlen);

gsapi_get_default_device_list

Returns a pointer to the current default device string. This must be called after gsapi_new_instance and before
gsapi_init_with_args.

public static native int gsapi_get_default_device_list(long instance,
 Reference<byte[]> list,
 Reference<Integer> listlen);

gsapi_init_with_args

To initialise the interpreter, pass your instance of Ghostscript, your argument count: argc, and your argument
variables: argv.

public static native int gsapi_init_with_args(long instance,
 int argc,
 byte[][] argv);

Note

There are also simpler utility methods which eliminates the need to send through your argument count and allows
for simpler String passing for your argument array.

Utility methods:

public static int gsapi_init_with_args(long instance,
 String[] argv);

public static int gsapi_init_with_args(long instance,
 List<String> argv);

gsapi_run_*

If these functions return <= -100, either quit or a fatal error has occured. You must call java gsapi_exit next. The
only exception is gsapi_run_string_continue which will return gs_error_NeedInput if all is well.

There is a 64 KB length limit on any buffer submitted to a gsapi_run_* function for processing. If you have more
than 65535 bytes of input then you must split it into smaller pieces and submit each in a separate
gsapi_run_string_continue call.

gsapi_run_string_begin

public static native int gsapi_run_string_begin(long instance,
 int userErrors,
 Reference<Integer> pExitCode);

gsapi_run_string_continue

public static native int gsapi_run_string_continue(long instance,
 byte[] str,
 int length,
 int userErrors,
 Reference<Integer> pExitCode);

Language Bindings

128

Note

There is a simpler utility method which allows for simpler String passing for the str argument.

Utility method:

public static int gsapi_run_string_continue(long instance,
 String str,
 int length,
 int userErrors,
 Reference<Integer> pExitCode);

gsapi_run_string_with_length

public static native int gsapi_run_string_with_length(long instance,
 byte[] str,
 int length,
 int userErrors,
 Reference<Integer> pExitCode);

Note

There is a simpler utility method which allows for simpler String passing for the str argument.

Utility method:

public static int gsapi_run_string_with_length(long instance,
 String str,
 int length,
 int userErrors,
 Reference<Integer> pExitCode);

gsapi_run_string

public static native int gsapi_run_string(long instance,
 byte[] str,
 int userErrors,
 Reference<Integer> pExitCode);

Note

There is a simpler utility method which allows for simpler String passing for the str argument.

Utility method:

public static int gsapi_run_string(long instance,
 String str,
 int userErrors,
 Reference<Integer> pExitCode);

Language Bindings

129

gsapi_run_string_end

public static native int gsapi_run_string_end(long instance,
 int userErrors,
 Reference<Integer> pExitCode);

gsapi_run_file

public static native int gsapi_run_file(long instance,
 byte[] fileName,
 int userErrors,
 Reference<Integer> pExitCode);

Note

There is a simpler utility method which allows for simpler String passing for the fileName argument.

Utility method:

public static int gsapi_run_file(long instance,
 String fileName,
 int userErrors,
 Reference<Integer> pExitCode);

gsapi_exit

Exit the interpreter. This must be called on shutdown if gsapi_init_with_args has been called, and just before
gsapi_delete_instance.

public static native int gsapi_exit(long instance);

gsapi_set_param

Sets a parameter. Broadly, this is equivalent to setting a parameter using -d, -s or -p on the command line. This
call cannot be made during a gsapi_run_string operation.

Parameters in this context are not the same as ‘arguments’ as processed by gsapi_init_with_args, but often the
same thing can be achieved. For example, with gsapi_init_with_args, we can pass “-r200” to change the resolution.
Broadly the same thing can be achieved by using gsapi_set_param to set a parsed value of “<</HWResolution [
200.0 200.0]>>”.

Internally, when we set a parameter, we perform an initgraphics operation. This means that using
gsapi_set_param other than at the start of a page is likely to give unexpected results.

Attempting to set a parameter that the device does not recognise will be silently ignored, and that parameter will not
be found in subsequent gsapi_get_param calls.

public static native int gsapi_set_param(long instance,
 byte[] param,
 Object value,
 int paramType);

Note

For more on the C implementation of parameters see: Ghostscript parameters in C.

There are also simpler utility methods which allows for simpler String passing for your arguments.

Utility methods:

Language Bindings

130

public static int gsapi_set_param(long instance,
 String param,
 String value,
 int paramType);

public static int gsapi_set_param(long instance,
 String param,
 Object value,
 int paramType);

gsapi_get_param

Retrieve the current value of a parameter.

If an error occurs, the return value is negative. Otherwise the return value is the number of bytes required for storage
of the value. Call once with value NULL to get the number of bytes required, then call again with value pointing to at
least the required number of bytes where the value will be copied out. Note that the caller is required to know the
type of value in order to get it. For all types other than gs_spt_string, gs_spt_name, and gs_spt_parsed
knowing the type means you already know the size required.

This call retrieves parameters/values that have made it to the device. Thus, any values set using
gs_spt_more_to_come without a following call omitting that flag will not be retrieved. Similarly, attempting to get a
parameter before gsapi_init_with_args has been called will not list any, even if gsapi_set_param has been used.

Attempting to read a parameter that is not set will return gs_error_undefined (-21). Note that calling
gsapi_set_param followed by gsapi_get_param may not find the value, if the device did not recognise the key as
being one of its configuration keys.

For further documentation please refer to the C API.

public static native int gsapi_get_param(long instance,
 byte[] param,
 long value,
 int paramType);

Note

There is a simpler utility method which allows for simpler String passing for the param argument.

Utility method:

public static int gsapi_get_param(long instance,
 String param,
 long value,
 int paramType);

gsapi_enumerate_params

Enumerate the current parameters. Call repeatedly to list out the current parameters.

The first call should have iter = NULL. Subsequent calls should pass the same pointer in so the iterator can be
updated. Negative return codes indicate error, 0 success, and 1 indicates that there are no more keys to read. On
success, key will be updated to point to a null terminated string with the key name that is guaranteed to be valid until
the next call to gsapi_enumerate_params. If type is non NULL then the pointer type will be updated to have the type
of the parameter.

Language Bindings

131

Note

Only one enumeration can happen at a time. Starting a second enumeration will reset the first.

The enumeration only returns parameters/values that have made it to the device. Thus, any values set using the
gs_spt_more_to_come without a following call omitting that flag will not be retrieved. Similarly, attempting to
enumerate parameters before gsapi_init_with_args has been called will not list any, even if gsapi_set_param has
been used.

public static native int gsapi_enumerate_params(long instance,
 Reference<Long> iter,
 Reference<byte[]> key,
 Reference<Integer> paramType);

gsapi_add_control_path

Add a (case sensitive) path to one of the lists of permitted paths for file access.

public static native int gsapi_add_control_path(long instance,
 int type,
 byte[] path);

Note

There is a simpler utility method which allows for simpler String passing for the path argument.

Utility method:

public static int gsapi_add_control_path(long instance,
 int type,
 String path);

gsapi_remove_control_path

Remove a (case sensitive) path from one of the lists of permitted paths for file access.

public static native int gsapi_remove_control_path(long instance,
 int type,
 byte[] path);

Note

There is a simpler utility method which allows for simpler String passing for the path argument.

Utility method:

public static int gsapi_remove_control_path(long instance,
 int type,
 String path);

gsapi_purge_control_paths

Clear all the paths from one of the lists of permitted paths for file access.

public static native void gsapi_purge_control_paths(long instance,
 int type);

Language Bindings

132

gsapi_activate_path_control

Enable/Disable path control (i.e. whether paths are checked against permitted paths before access is granted).

public static native void gsapi_activate_path_control(long instance,
 boolean enable);

gsapi_is_path_control_active

Query whether path control is activated or not.

public static native boolean gsapi_is_path_control_active(long instance);

Callback & Callout interfaces

gsjava.jar also defines some functional interfaces for callbacks & callouts with package
com.artifex.gsjava.callback which are defined as follows.

IStdInFunction

public interface IStdInFunction {
 /**
 * @param callerHandle The caller handle.
 * @param buf A string represented by a byte array.
 * @param len The number of bytes to read.
 * @return The number of bytes read, must be <code>len</code>/
 */
 public int onStdIn(long callerHandle,
 byte[] buf,
 int len);
}

IStdOutFunction

public interface IStdOutFunction {
 /**
 * Called when something should be written to the standard
 * output stream.
 *
 * @param callerHandle The caller handle.
 * @param str The string represented by a byte array to write.
 * @param len The number of bytes to write.
 * @return The number of bytes written, must be <code>len</code>.
 */
 public int onStdOut(long callerHandle,
 byte[] str,
 int len);
}

Language Bindings

133

IStdErrFunction

public interface IStdErrFunction {
 /**
 * Called when something should be written to the standard error stream.
 *
 * @param callerHandle The caller handle.
 * @param str The string represented by a byte array to write.
 * @param len The length of bytes to be written.
 * @return The amount of bytes written, must be <code>len</code>.
 */
 public int onStdErr(long callerHandle,
 byte[] str,
 int len);
}

IPollFunction

public interface IPollFunction {
 public int onPoll(long callerHandle);
}

ICalloutFunction

public interface ICalloutFunction {
 public int onCallout(long instance,
 long calloutHandle,
 byte[] deviceName,
 int id,
 int size,
 long data);
}

GSInstance

This is a utility class which makes Ghostscript calls easier by storing a Ghostscript instance and, optionally, a caller
handle. Essentially the class acts as a handy wrapper for the standard GSAPI methods.

Constructors

public GSInstance() throws IllegalStateException;
public GSInstance(long callerHandle) throws IllegalStateException;

delete_instance

Wraps gsapi_delete_instance.

public void delete_instance();

set_stdio

Wraps gsapi_set_stdio.

public int set_stdio(IStdInFunction stdin,
 IStdOutFunction stdout,
 IStdErrFunction stderr);

set_poll

Wraps gsapi_set_poll.

Language Bindings

134

public int set_poll(IPollFunction pollfun);

set_display_callback

Wraps gsapi_set_display_callback.

public int set_display_callback(DisplayCallback displaycallback);

register_callout

Wraps gsapi_register_callout.

public int register_callout(ICalloutFunction callout);

deregister_callout

Wraps gsapi_deregister_callout.

public void deregister_callout(ICalloutFunction callout);

set_arg_encoding

Wraps gsapi_set_arg_encoding.

public int set_arg_encoding(int encoding);

set_default_device_list

Wraps gsapi_set_default_device_list.

public int set_default_device_list(byte[] list,
 int listlen);

get_default_device_list

Wraps gsapi_get_default_device_list.

public int get_default_device_list(Reference<byte[]> list,
 Reference<Integer> listlen);

init_with_args

Wraps gsapi_init_with_args.

public int init_with_args(int argc,
 byte[][] argv);

public int init_with_args(String[] argv);

public int init_with_args(List<String> argv);

run_string_begin

Wraps gsapi_run_string_begin.

public int run_string_begin(int userErrors,
 Reference<Integer> pExitCode);

run_string_continue

Wraps gsapi_run_string_continue.

public int run_string_continue(byte[] str,
 int length,
 int userErrors,

Language Bindings

135

 Reference<Integer> pExitCode);

public int run_string_continue(String str,
 int length,
 int userErrors,
 Reference<Integer> pExitCode);

run_string

Wraps gsapi_run_string.

public int run_string(byte[] str,
 int userErrors,
 Reference<Integer> pExitCode);

public int run_string(String str,
 int userErrors,
 Reference<Integer> pExitCode);

run_file

Wraps gsapi_run_file.

public int run_file(byte[] fileName,
 int userErrors,
 Reference<Integer> pExitCode);

public int run_file(String filename,
 int userErrors,
 Reference<Integer> pExitCode);

exit

Wraps gsapi_exit.

public int exit();

set_param

Wraps gsapi_set_param.

public int set_param(byte[] param,
 Object value,
 int paramType);

public int set_param(String param,
 String value,
 int paramType);

public int set_param(String param,
 Object value,
 int paramType);

get_param

Wraps gsapi_get_param.

public int get_param(byte[] param,
 long value,
 int paramType);

public int get_param(String param,

Language Bindings

136

 long value,
 int paramType);

enumerate_params

Wraps gsapi_enumerate_params.

public int enumerate_params(Reference<Long> iter,
 Reference<byte[]> key,
 Reference<Integer> paramType);

add_control_path

Wraps gsapi_add_control_path.

public int add_control_path(int type,
 byte[] path);

public int add_control_path(int type,
 String path);

remove_control_path

Wraps gsapi_remove_control_path.

public int remove_control_path(int type,
 byte[] path);

public int remove_control_path(int type,
 String path);

purge_control_paths

Wraps gsapi_purge_control_paths.

public void purge_control_paths(int type);

activate_path_control

Wraps gsapi_activate_path_control.

public void activate_path_control(boolean enable);

is_path_control_active

Wraps gsapi_is_path_control_active.

public boolean is_path_control_active();

Utility classes

The com.artifex.gsjava.util package contains a set of classes and interfaces which are used throughout the
API.

com.artifex.gsjava.util.Reference

Reference<T> is used in many of the Ghostscript calls, it stores a reference to a generic value of type T. This class
exists to emulate pointers being passed to a native function. Its value can be fetched with getValue() and set with
setValue(T value).

public class Reference<T> {

 private volatile T value;

Language Bindings

137

 public Reference() {
 this(null);
 }

 public Reference(T value) {
 this.value = value;
 }

 public void setValue(T value) {
 this.value = value;
 }

 public T getValue() {
 return value;
 }
 ...
}

Python

Introduction

The Python API is provided by the file gsapi.py - this is the binding to the Ghostscript C library.

In the GhostPDL repository sample Python examples can be found in /demos/python/examples.py.

Platform & setup

Ghostscript should be built as a shared library for your platform.

See Building Ghostscript.

Specifying the Ghostscript shared library

Two environmental variables can be used to specify where to find the Ghostscript shared library.

GSAPI_LIB sets the exact path of the Ghostscript shared library, otherwise, GSAPI_LIBDIR sets the directory
containing the Ghostscript shared library.

If neither is defined we will use the OS’s default location(s) for shared libraries.

If GSAPI_LIB is not defined, the leafname of the shared library is inferred from the OS type:

Platform Shared library file

Windows gsdll64.dll

MacOS libgs.dylib

Linux / OpenBSD libgs.so

API test

The gsapi.py file that provides the Python bindings can also be used to test the bindings, by running it directly.

Assuming that your Ghostscript library has successfully been created, then from the root of your ghostpdl
repository checkout do the following:

Windows

Run gsapi.py as a test script in a cmd.exe window:

set GSAPI_LIBDIR=debugbin&& python ./demos/python/gsapi.py

Run gsapi.py as a test script in a PowerShell window:

Language Bindings

138

cmd /C "set GSAPI_LIBDIR=debugbin&& python ./demos/python/gsapi.py"

Linux/OpenBSD/MacOS

Run gsapi.py as a test script:

GSAPI_LIBDIR=sodebugbin ./demos/python/gsapi.py

Note

If there are no errors then this will have validated that the Ghostscript library is present & operational.

The gsapi Python module

Assuming that the above platform & setup has been completed, then gsapi should be imported into your own
Python scripts for API usage.

• Implemented using Python’s ctypes module.

• All functions have the same name as the C function that they wrap.

• Functions raise a GSError exception if the underlying function returned a negative error code.

• Functions that don’t have out-params return None. Out-params are returned directly (using tuples if there are
more than one).

gsapi_revision()

Returns a gsapi_revision_t.

This method returns the revision numbers and strings of the Ghostscript interpreter library; you should call it before
any other interpreter library functions to make sure that the correct version of the Ghostscript interpreter has been
loaded.

Sample code:

version_info = gsapi.gsapi_revision()
print(version_info)

C code reference: gsapi_revision

gsapi_new_instance(caller_handle)

Returns a new instance of Ghostscript to be used with other gsapi_*() functions.

Parameters:

caller_handle

Typically unused, but is passed to callbacks e.g. via gsapi_set_stdio(). Must be convertible to a C void*, so
None or an integer is ok but other types such as strings will fail.

Sample code:

instance = gsapi.gsapi_new_instance(1)

C code reference: gsapi_new_instance

gsapi_delete_instance(instance)

Destroy an instance of Ghostscript. Before you call this, Ghostscript should ensure to have finished any processes.

Parameters:

instance

Your instance of Ghostscript.

Sample code:

Language Bindings

139

gsapi.gsapi_delete_instance(instance)

C code reference: gsapi_delete_instance

gsapi_set_stdio(instance, stdin_fn, stdout_fn, stderr_fn)

Set the callback functions for stdio, together with the handle to use in the callback functions.

Parameters:

instance

Your instance of Ghostscript.

stdin_fn

If not None, will be called with:

• (caller_handle, text, len_):

• caller_handle: As passed originally to gsapi_new_instance().

• text: A ctypes.LP_c_char of length len_.
stdout_fn , stderr_fn

If not None, called with:

• (caller_handle, text):

• caller_handle: As passed originally to gsapi_new_instance().

• text: A Python bytes object.
Should return the number of bytes of text that they handled; for convenience None is converted to len(text).

Sample code:

def stdout_fn(caller_handle, bytes_):
 sys.stdout.write(bytes_.decode('latin-1'))

gsapi.gsapi_set_stdio(instance, None, stdout_fn, None)
print('gsapi_set_stdio() ok.')

C code reference: gsapi_set_stdio

gsapi_set_poll(instance, poll_fn)

Set the callback function for polling.

Parameters:

instance

Your instance of Ghostscript.

poll_fn

Will be called with caller_handle as passed to gsapi_new_instance(python gsapi_new_instance).

Sample code:

def poll_fn(caller_handle, bytes_):
 sys.stdout.write(bytes_.decode('latin-1'))

gsapi.gsapi_set_poll(instance, poll_fn)
print('gsapi_set_poll() ok.')

C code reference: gsapi_set_poll

gsapi_set_display_callback(instance, callback)

Sets the display callback.

Parameters:

Language Bindings

140

instance

Your instance of Ghostscript.

callback

Must be a display_callback instance.

Sample code:

d = display_callback()
gsapi.gsapi_set_display_callback(instance, d)
print('gsapi_set_display_callback() ok.')

C code reference: gsapi_set_display_callback

gsapi_set_arg_encoding(instance, encoding)

Set the encoding used for the interpretation of all subsequent arguments supplied via the GhostAPI interface on this
instance. By default we expect args to be in encoding 0 (the ‘local’ encoding for this OS). On Windows this means
“the currently selected codepage”. On Linux this typically means utf8. This means that omitting to call this function
will leave Ghostscript running exactly as it always has.

This must be called after gsapi_new_instance and before gsapi_init_with_args.

Parameters:

instance

Your instance of Ghostscript.

encoding

Encoding must be one of:

Encoding enum Value

GS_ARG_ENCODING_LOCAL 0

GS_ARG_ENCODING_UTF8 1

GS_ARG_ENCODING_UTF16LE 2

Sample code:

gsapi.gsapi_set_arg_encoding(instance, gsapi.GS_ARG_ENCODING_UTF8)

Note

Please note that use of the ‘local’ encoding (GS_ARG_ENCODING_LOCAL) is now deprecated and should be
avoided in new code.

C code reference: gsapi_set_arg_encoding

gsapi_set_default_device_list(instance, list_)

Set the string containing the list of default device names, for example “display x11alpha x11 bbox”. Allows the calling
application to influence which device(s) Ghostscript will try, in order, in its selection of the default device. This must
be called after gsapi_new_instance and before gsapi_init_with_args.

Parameters:

instance

Your instance of Ghostscript.

list_

A string of device names.

Sample code:

Language Bindings

141

gsapi.gsapi_set_default_device_list(instance, 'bmp256 bmp32b bmpgray cdeskjet cdj1600 cdj500')

C code reference: gsapi_set_default_device_list

gsapi_get_default_device_list(instance)

Returns a string containing the list of default device names. This must be called after gsapi_new_instance and before
gsapi_init_with_args.

Parameters:

instance

Your instance of Ghostscript.

Sample code:

device_list = gsapi.gsapi_get_default_device_list(instance)
print(device_list)

C code reference: gsapi_get_default_device_list

gsapi_init_with_args(instance, args)

To initialise the interpreter, pass your instance of Ghostscript and your argument variables with args.

Parameters:

instance

Your instance of Ghostscript.

args

A list/tuple of strings.

Sample code:

in_filename = 'tiger.eps'
out_filename = 'tiger.pdf'
params = ['gs', '-dNOPAUSE', '-dBATCH', '-sDEVICE=pdfwrite',
 '-o', out_filename, '-f', in_filename]
gsapi.gsapi_init_with_args(instance, params)

C code reference: gsapi_init_with_args

gsapi_run_*

There is a 64 KB length limit on any buffer submitted to a gsapi_run_* function for processing. If you have more than
65535 bytes of input then you must split it into smaller pieces and submit each in a separate
gsapi_run_string_continue call.

On success (underlying C function’s return value is >=0), these functions return the underlying C function’s
exit_code out-parameter (and the return value is discarded). Otherwise they raise a GSError in the usual way
(and the underlying exit_code out-parameter is discarded).

For full details on these return codes please see The C API return codes.

Note

User errors parameter explained

The user_errors argument is normally set to zero to indicate that errors should be handled through the normal
mechanisms within the interpreted code. If set to a negative value, the functions will return an error code directly
to the caller, bypassing the interpreted language. The interpreted language’s error handler is bypassed,
regardless of user_errors parameter, for the gs_error_interrupt generated when the polling callback
returns a negative value. A positive user_errors is treated the same as zero.

Language Bindings

142

C code reference: gsapi_run_*

gsapi_run_string_begin(instance, user_errors)

Starts a run_string_ operation.

Parameters:

instance

Your instance of Ghostscript.

user_errors

An int, for more see: User errors parameter explained.

Sample code:

exitcode = gsapi.gsapi_run_string_begin(instance, 0)

C code reference: gsapi_run_*

gsapi_run_string_continue(instance, str_, user_errors)

Processes file byte data (str_) to feed as chunks into Ghostscript. This method should typically be called within a
buffer context.

Note

An exception is not raised for the gs_error_NeedInput return code.

Parameters:

instance

Your instance of Ghostscript.

str_

Should be either a Python string or a bytes object. If the former, it is converted into a bytes object using utf-8
encoding.

user_errors

An int, for more see: User errors parameter explained.

Sample code:

exitcode = gsapi.gsapi_run_string_continue(instance, data, 0)

Note

For the return code, we don’t raise an exception for gs_error_NeedInput.

C code reference: gsapi_run_*

gsapi_run_string_with_length(instance, str_, length, user_errors)

Processes file byte data (str_) to feed into Ghostscript when the length is known and the file byte data is
immediately available.

Parameters:

instance

Your instance of Ghostscript.

str_

Language Bindings

143

Should be either a Python string or a bytes object. If the former, it is converted into a bytes object using utf-8
encoding.

length

An int representing the length of str_.

user_errors

An int, for more see: User errors parameter explained.

Sample code:

gsapi.gsapi_run_string_with_length(instance,"hello",5,0)

Note

If using this method then ensure that the file byte data will fit into a single (<64k) buffer.

C code reference: gsapi_run_*

gsapi_run_string(instance, str_, user_errors)

Processes file byte data (str_) to feed into Ghostscript.

Parameters:

instance

Your instance of Ghostscript.

str_

Should be either a Python string or a bytes object. If the former, it is converted into a bytes object using utf-8
encoding.

user_errors

An int, for more see: User errors parameter explained.

Sample code:

gsapi.gsapi_run_string(instance,"hello",0)

Note

This method can only work on a standard, null terminated C string.

C code reference: gsapi_run_*

gsapi_run_string_end(instance, user_errors)

Ends a run_string_ operation.

Parameters:

instance

Your instance of Ghostscript.

user_errors

An int, for more see: User errors parameter explained.

Sample code:

exitcode = gsapi.gsapi_run_string_end(instance, 0)

C code reference: gsapi_run_*

Language Bindings

144

gsapi_run_file(instance, filename, user_errors)

Runs a file through Ghostscript.

Parameters:

instance

Your instance of Ghostscript.

filename

String representing file name.

user_errors

An int, for more see: User errors parameter explained.

Sample code:

in_filename = 'tiger.eps'
gsapi.gsapi_run_file(instance, in_filename, 0)

Note

This will process the supplied input file with any previously supplied argument parameters.

C code reference: gsapi_run_*

gsapi_exit(instance)

Returns a successful exit code 0, or raises a GSError exception on error.

Exit the interpreter. This must be called on shutdown if gsapi_init_with_args has been called, and just before
gsapi_delete_instance.

Parameters:

instance

Your instance of Ghostscript.

Sample code:

gsapi.gsapi_exit(instance)

C code reference: gsapi_exit

gsapi_set_param(instance, param, value, type_=None)

Sets a parameter.

We behave much like the underlying gsapi_set_param() C function, except that we also support automatic
inference of type type_ arg by looking at the type of value.

Parameters:

instance

Your instance of Ghostscript.

param

Name of parameter, either a bytes or a str; if str it is encoded using latin-1.

value

A bool, int, float, bytes or str. If str, it is encoded into a bytes using utf-8.

type_

If type_ is not None, value must be convertible to the Python type implied by type_:

type_ Python type(s)

Language Bindings

145

gs_spt_null [Ignored]

gs_spt_bool bool

gs_spt_int int

gs_spt_float float

gs_spt_name [Error]

gs_spt_string (bytes, str)

gs_spt_long int

gs_spt_i64 int

gs_spt_size_t int

gs_spt_parsed (bytes, str)

gs_spt_more_to_come (bytes, str)

An exception is raised if type_ is an integer type and value is outside its range.

If type_ is None, we choose something suitable for type of value:

Python type of value type_

bool gs_spt_bool

int gs_spt_i64

float gs_spt_float

bytes gs_spt_parsed

str gs_spt_parsed (encoded with utf-8)

If value is None, we use gs_spt_null.

Otherwise type_ must be a gs_spt_* except for gs_spt_invalid and gs_spt_name (we don’t allow
psapi_spt_name because the underlying C does not copy the string, so cannot be safely used from Python).

Sample code:

set_margins = gsapi.gsapi_set_param(instance, "Margins", "[10 10]")

C code reference: gsapi_set_param

gsapi_get_param(instance, param, type_=None, encoding=None)

Returns value of specified parameter, or None if parameter type is gs_spt_null.

Parameters:

instance

Your instance of Ghostscript.

param

Name of parameter, either a bytes or str; if a str it is encoded using latin-1.

type_

A gs_spt_* constant or None. If None we try each gs_spt_* until one succeeds; if none succeeds we raise
the last error.

encoding

Only affects string values. If None we return a bytes object, otherwise it should be the encoding to use to
decode into a string, e.g. ‘utf-8’.

Sample code:

get_margins = gsapi.gsapi_get_param(instance, "Margins")

C code reference: gsapi_get_param

Language Bindings

146

gsapi_enumerate_params(instance)

Enumerate the current parameters on the instance of Ghostscript.

Yields (key, value) for each param. key is decoded as latin-1.

Parameters:

instance

Your instance of Ghostscript.

Sample code:

for param, type_ in gsapi.gsapi_enumerate_params(instance):
 val = gsapi.gsapi_get_param(instance,param, encoding='utf-8')
 print('%-24s : %s' % (param, val))

C code reference: gsapi_enumerate_params

gsapi_add_control_path(instance, type_, path)

Add a (case sensitive) path to one of the lists of permitted paths for file access.

Parameters:

instance

Your instance of Ghostscript.

type_

An int which must be one of:

Enum Value

GS_PERMIT_FILE_READING 0

GS_PERMIT_FILE_WRITING 1

GS_PERMIT_FILE_CONTROL 2

path

A string representing the file path.

Sample code:

gsapi.gsapi_add_control_path(instance, gsapi.GS_PERMIT_FILE_READING, "/docs/secure/")

C code reference: gsapi_add_control_path

gsapi_remove_control_path(instance, type_, path)

Remove a (case sensitive) path from one of the lists of permitted paths for file access.

Parameters:

instance

Your instance of Ghostscript.

type_

An int representing the permission type.

path

A string representing the file path.

Sample code:

gsapi.gsapi_remove_control_path(instance, gsapi.GS_PERMIT_FILE_READING, "/docs/secure/")

C code reference: gsapi_remove_control_path

Language Bindings

147

gsapi_purge_control_paths(instance, type_)

Clear all the paths from one of the lists of permitted paths for file access.

Parameters:

instance

Your instance of Ghostscript.

type_

An int representing the permission type.

Sample code:

gsapi.gsapi_purge_control_paths(instance, gsapi.GS_PERMIT_FILE_READING)

C code reference: gsapi_purge_control_paths

gsapi_activate_path_control(instance, enable)

Enable/Disable path control (i.e. whether paths are checked against permitted paths before access is granted).

Parameters:

instance

Your instance of Ghostscript.

enable

bool to enable/disable path control.

Sample code:

gsapi.gsapi_activate_path_control(instance, true)

C code reference: gsapi_activate_path_control

gsapi_is_path_control_active(instance)

Query whether path control is activated or not.

Parameters:

instance

Your instance of Ghostscript.

Sample code:

isActive = gsapi.gsapi_is_path_control_active(instance)

C code reference: gsapi_is_path_control_active

Language Bindings

148

Details of Ghostscript Output Devices
For other information, see the Ghostscript overview. You may also be interested in how to build Ghostscript
and install it, as well as the description of the driver interface.

Documentation for some older, superceded devices has been moved to unsupported devices. In general such
devices are deprecated and will be removed in future versions of Ghostscript. In general all older printer drivers can
be replaced by the ijs interface and one of the available 3rd party raster driver collections. We recommend moving to
the ijs device for all such printing.

Documentation for device subclassing can be found on the Device Subclassing page.

Notes on measurements
Several different important kinds of measures appear throughout this document: inches, centimeters and millimeters,
points, dots per inch and bits per pixel.

Inches

1 inch equals 2.54 centimeters. The inch measure is sometimes represented by in or a quotation mark (”) to the
right of a measure, like 8.5in or 8.5”. U.S. “letter” paper is exactly 8.5in×11in, approximately 21.6cm×27.9cm.
(See in the usage documentation all the paper sizes predefined in Ghostscript.)

Centimeters and millimeters

ISO standard paper sizes such as A4 and A3 are commonly represented in the SI units of centimeters and
millimeters. Centimeters are abbreviated cm, millimeters mm. ISO A4 paper is quite close to 210×297
millimeters (approximately 8.3×11.7 inches).

Points

Points are a measure traditionally used in the printing trade and now in PostScript, which specifies exactly 72
points per inch (approximately 28.35 per centimeter). The paper sizes known to Ghostscript are defined in the
initialization file gs_statd.ps in terms of points.

Dots per inch

Dots per inch or “dpi” is the common measure of printing resolution in the US.

Bits per pixel

Commonly abbreviated “bpp” this is the number of digital bits used to represent the color of each pixel. This is
also referred to as ‘bit depth’ or ‘pixel depth’.

Image file formats
Ghostscript supports output to a variety of image file formats and is widely used for rasterizing postscript and pdf
files. A collection of such formats (‘output devices’ in Ghostscript terminology) are described in this section.

Here are some commonly useful driver options that apply to all raster drivers. Options specific to particular file
formats are described in their respective sections below.

-sOutputFile=filename

This is a general option telling Ghostscript what to name the output. It can either be a single filename ‘tiger.png’ or a
template ‘figure-%03d.jpg’ where the %03d is replaced by the page number.

-rres
-rxresxyres

Details of Ghostscript Output Devices

149

This option sets the resolution of the output file in dots per inch. The default value if you don’t specify this options is
usually 72 dpi.

-dTextAlphaBits=n
-dGraphicsAlphaBits=n

These options control the use of subsample antialiasing. Their use is highly recommended for producing high quality
rasterizations of the input files. The size of the subsampling box n should be 4 for optimum output, but smaller values
can be used for faster rendering. Antialiasing is enabled separately for text and graphics content.

Because this feature relies upon rendering the input it is incompatible, and will generate an error on attempted use,
with any of the vector output devices.

It is also conventional to call Ghostscript with the -dSAFER -dBATCH -dNOPAUSE trio of options when rasterizing
to a file. These suppress interactive prompts and enable some security checks on the file to be run. Please see the
Using Ghostscript section for further details.

PNG file format

PNG (pronounced ‘ping’) stands for Portable Network Graphics, and is the recommended format for high-quality
images. It supports full quality color and transparency, offers excellent lossless compression of the image data, and
is widely supported. Please see the PNG website for a complete description of the format.

Ghostscript provides a variety of devices for PNG output varying by bit depth. For normal use we recommend
png16m for 24-bit RGB color, or pnggray for grayscale. The png256, png16 and pngmono devices respectively
provide 8-bit color, 4-bit color and black-and-white for special needs. The pngmonod device is also a black-and-white
device, but the output is formed from an internal 8 bit grayscale rendering which is then error diffused and converted
down to 1bpp.

The png16malpha and pngalpha devices are 32-bit RGBA color with transparency indicating pixel coverage. The
background is transparent unless it has been explicitly filled. PDF 1.4 transparent files do not give a transparent
background with this device. The devices differ, in that the pngalpha device enables Text and graphics anti-aliasing
by default. We now recommend that people use the png16malpha device in preference, and achieve any required
antialiasing via the DownScaleFactor parameter, as this gives better results in many cases.

Options

The pngmonod, png16m, pnggray, png16malpha and pngalpha devices all respond to the following:

-dDownScaleFactor=integer

This causes the internal rendering to be scaled down by the given (integer <= 8) factor before being output. For
example, the following will produce a 200dpi output png from a 600dpi internal rendering:

gs -sDEVICE=png16m -r600 -dDownScaleFactor=3 -o tiger.png\
 examples/tiger.eps

The pngmonod device responds to the following option:

-dMinFeatureSize=state (0 to 4; default = 1)

This option allows a minimum feature size to be set; if any output pixel appears on its own, or as part of a group of
pixels smaller than MinFeatureSize x MinFeatureSize, it will be expanded to ensure that it does. This is useful
for output devices that are high resolution, but that have trouble rendering isolated pixels.

While this parameter will accept values from 0 to 4, not all are fully implemented. 0 and 1 cause no change to the
output (as expected). 2 works as specified. Values of 3 and 4 are accepted for compatibility, but behave as for 2.

The png16malpha and pngalpha devices respond to the following option:

-dBackgroundColor=16#RRGGBB (RGB color, default white = 16#ffffff)

For the png16malpha and pngalpha devices only, set the suggested background color in the PNG bKGD chunk.
When a program reading a PNG file does not support alpha transparency, the PNG library converts the image using
either a background color if supplied by the program or the bKGD chunk. One common web browser has this
problem, so when using <body bgcolor="CCCC00"> on a web page you would need to use
-dBackgroundColor=16#CCCC00 when creating alpha transparent PNG images for use on the page.

Details of Ghostscript Output Devices

150

http://www.libpng.org/pub/png/pngintro.html

Examples

Examples of how to use Ghostscript to convert postscript to PNG image files:

gs -dSAFER -dBATCH -dNOPAUSE -sDEVICE=png16m -dGraphicsAlphaBits=4 \
 -sOutputFile=tiger.png examples/tiger.png
gs -dSAFER -dBATCH -dNOPAUSE -r150 -sDEVICE=pnggray -dTextAlphaBits=4 \
 -sOutputFile=doc-%02d.png doc.pdf

In commercial builds, the png16m device will accept a -dDeskew option to automatically detect/correct skew when
generating output bitmaps.

JPEG file format (JFIF)

Ghostscript includes output drivers that can produce jpeg files from postscript or pdf images. These are the jpeg and
jpeggray devices.

Technically these produce Independent JPEG Group JFIF (JPEG File Interchange Format) files, the common sort
found on the web.

Please note that JPEG is a compression method specifically intended for continuous-tone images such as
photographs, not for graphics, and it is therefore quite unsuitable for the vast majority of page images produced with
PostScript. For anything other than pages containing simple images the lossy compression of the jpeg format will
result in poor quality output regardless of the input. To learn more about the distinction, consult a reference about
uses and abuses of JPEG, such as the JPEG FAQ.

Options

The JPEG devices support several special parameters to control the JPEG “quality setting” (DCT quantization level).

-dJPEGQ=N (integer from 0 to 100, default 75)

Set the quality level N according to the widely used IJG quality scale, which balances the extent of compression
against the fidelity of the image when reconstituted. Lower values drop more information from the image to achieve
higher compression, and therefore have lower quality when reconstituted.

-dQFactor=M (float from 0.0 to 1.0)

Adobe’s QFactor quality scale, which you may use in place of JPEGQ above. The QFactor scale is used by
PostScript’s DCTEncode filter but is nearly unheard-of elsewhere.

At this writing the default JPEG quality level of 75 is equivalent to -dQFactor=0.5, but the JPEG default might
change in the future. There is currently no support for any additional JPEG compression options, such as the other
DCTEncode filter parameters.

Examples

You can use the JPEG output drivers – jpeg to produce color JPEG files and jpeggray for grayscale JPEGs – the
same as other file-format drivers: by specifying the device name and an output file name, for example

gs -sDEVICE=jpeg -sOutputFile=foo.jpg foo.ps

PNM

The PNM (portable network map) family of formats are very simple uncompressed image formats commonly used on
unix-like systems. They are particularly useful for testing or as input to an external conversion utility.

A wide variety of data formats and depths is supported. Devices include pbm pbmraw pgm pgmraw pgnm pgnmraw
pnm pnmraw ppm ppmraw pkm pkmraw pksm pksmraw.

TIFF file formats

TIFF is a loose collection of formats, now largely superceded by PNG except in applications where backward
compatibility or special compression is required. The TIFF file format is described in the TIFF 6.0 Specification
published by Adobe Systems Incorporated.

Details of Ghostscript Output Devices

151

http://www.faqs.org/faqs/jpeg-faq/

Note

Due to the structure of the TIFF format, writing TIFF output requires that the target file be seekable. Writing to
stdout, pipes or other similar stream is not supported. Attempting to do so will generate an error.

There are two unrelated sets of TIFF drivers. There are five color TIFF drivers that produce uncompressed output:

tiffgray

Produces 8-bit gray output.

tiff12nc

Produces 12-bit RGB output (4 bits per component).

tiff24nc

Produces 24-bit RGB output (8 bits per component).

tiff48nc

Produces 48-bit RGB output (16 bits per component).

tiff32nc

Produces 32-bit CMYK output (8 bits per component).

tiff64nc

Produces 64-bit CMYK output (16 bits per component).

tiffsep

The tiffsep device creates multiple output files: a single 32 bit composite CMYK file and multiple tiffgray files, one
for each separation (unless -dNoSeparationFiles is specified). If separation files are being produced and
more than one page is being generated, the output file specification must include a format specifier (e.g
-o outfile-%d.tif) so that each page can have a uniquely named set of separation files.

The default compression is lzw but this may be overridden by the -sCompression= option.

The file specified via the OutputFile command line parameter will contain CMYK data. This data is based
upon the CMYK data within the file plus an equivalent CMYK color for each spot color. The equivalent CMYK
color for each spot color is determined using the alternate tint transform function specified in the Separation
and devicen color spaces. Since this file is created based upon having color planes for each colorant, the file will
correctly represent the appearance of overprinting with spot colors.

File names for the separations for the CMYK colorants are created by appending ‘.Cyan.tif’, ‘.Magenta.tif’
‘.Yellow.tif’ or ‘.Black.tif’ to the end of the file name specified via the OutputFile parameter. File names for the
spot color separation files are created by appending the Spot color name in ‘(’ and ‘).tif’ to the filename.

Note that, while the name of the ink is case-sensitive, the filename may not be (depending on the Operating
System), so if a spot name matches one of the process ink names, it will have the spot number included as part
of the name (e.g. YELLOW0).

If desired the file names for the spot color separation files can be created by appending ‘.sn.tif’ (where n is the
spot color number, see below) to the end of the file name specified via the OutputFile parameter. This
change is a compile time edit. To obtain this type of output the function create_separation_file_name in
gdevtsep.c should be called with a true value for its use_sep_name parameter.

The tiffsep device will automatically recognize spot colors. In this case their order is determined by when they
are found in the input file. The names of spot colors may be specified via the SeparationColorNames device
parameters.

Internally each spot color is assigned a spot color number. These numbers start with 0 for the first spot color.
The spot color numbers are assigned in the same order as the names are printed to stderr (see below). This
order also matches the ordering in the SeparationColorNames list, if this parameter is specified. The spot
color numbers are not affected by the SeparationOrder parameter.

If only a subset of the colorants for a file is desired, then the separations to be output can be selected via the
SeparationOrder device parameter. When colorants are selected via the SeparationOrder parameter, the
composite CMYK output contains the equivalent CMYK data only for the selected colorants.

Details of Ghostscript Output Devices

152

Note

The composite CMYK output, because it uses the tint transformed colour equivalents for any spot colours
(see Postscript Language Reference “Separation Color Spaces” and “DeviceN Color Spaces”), may not
produce an accurate preview, if the job uses overprinting.

The tiffsep device also prints the names of any spot colors detected within a document to stderr, (stderr is also
used for the output from the bbox device). For each spot color, the name of the color is printed preceded by
‘%%SeparationName: ‘. This provides a simple mechanism for users and external applications to be informed
about the names of spot colors within a document.

Generally Ghostscript will support a maximum of 64 process and spot colors. The tiffsep device the psdcmyk
device and the psdcmyk16 devices maintain rendered data in a planar form with a maximum of 64 planes set by
the definition of GS_CLIENT_COLOR_MAX_COMPONENTS in the code. That is there can be up to 64 colorants
accurately handled with overprint on a single page. If more than 64 colorants are encountered, those beyond 64
will be mapped to CMYK using the alternate tint transform.

When rendering a PDF document, Ghostscript can deteremine prior to rendering how many colorants occur on a
particular page. With Postscript, this is not possible in general. To optimize for this, when rendering Postscript, it
is possible to specify at run-time the number of spot colorants you wish to have the device capable of handling
using the -dMaxSpots=N command option, where N is the number of spot colorants that you wish to be able to
handle and must be no more than the 64 minus the number of process colors. For example, 60 or less for a
CMYK device such as tiffsep. If you specify more than is needed, the document will render more slowly. The
ideal case is to use the same number as the maximum number of spot colorants that occur on a single page of
the document. If more spot colorants are encountered than is specified by -dMaxSpots, then a warning will be
printed indicating that some spot colorants will be mapped to CMYK using the alternate tint transform.

The tiffsep device accepts a -dBitsPerComponent= option, which may be set to 8 (the default) or 1. In 1bpp
mode, the device renders each component internally in 8 bits, but then converts down to 1bpp with error
diffusion before output as described below in the tiffscaled device. No composite file is produced in 1bpp mode,
only individual separations.

The device also accepts the -dDownScaleFactor= -dTrapX= -dTrapy= and -sPostRenderProfile=
parameters as described below in the tiffscaled device, and -dMinFeatureSize= in 1bpp mode.

When -dDownScaleFactor= is used in 8 bit mode with the tiffsep (and
psdcmyk/psdrgb/psdcmyk16/psdrgb16) device(s) 2 additional “special” ratios are available, 32 and 34. 32
provides a 3:2 downscale (so from 300 to 200 dpi, say). 34 produces a 3:4 upscale (so from 300 to 400 dpi,
say).

In commercial builds, with 8 bit per component output, the -dDeskew option can be used to automatically
detect/correct skew when generating output bitmaps.

The tiffscaled and tiffscaled4 devices can optionally use Even Toned Screening, rather than simple Floyd
Steinberg error diffusion. This patented technique gives better quality at the expense of some speed. While the
code used has many quality tuning options, none of these are currently exposed. Any device author interested in
trying these options should contact Artifex for more information. Currently ETS can be enabled using
-dDownScaleETS=1.

tiffsep1

The tiffsep1 device creates multiple output files, one for each component or separation color. The device creates
multiple tiffg4 files (the compression can be set using -sCompression= described below). The 1 bit per
component output is halftoned using the current screening set by ‘setcolorscreen’ or ‘sethalftone’ which allows
for ordered dither or stochastic threshold array dither to be used. This is faster than error diffusion.

The file specified via the OutputFile command line parameter will not be created (it is opened, but deleted
prior to finishing each page).

File names for the separations for the CMYK colorants are created by appending ‘(Cyan).tif’, ‘(Magenta).tif’
‘(Yellow).tif’ or ‘(Black).tif’ to the to the end of the file name specified via the OutputFile parameter. File
names for the spot color separation files are created by appending the Spot color name in ‘(’ and ‘).tif’ to the
filename. If the file name specified via the OutputFile parameter ends with the suffix ‘.tif’, then the suffix is
removed prior to adding the component name in ‘(’ and ‘).tif’.

Details of Ghostscript Output Devices

153

tiffscaled

The tiffscaled device renders internally at the specified resolution to an 8 bit greyscale image. This is then scaled
down by an integer scale factor (set by -dDownScaleFactor= described below) and then error diffused to give
1bpp output. The compression can be set using -sCompression= as described below.

tiffscaled4

The tiffscaled4 device renders internally at the specified resolution to an 8 bit cmyk image. This is then scaled
down by an integer scale factor (set by -dDownScaleFactor= described below) and then error diffused to give
4bpp cmyk output. The compression can be set using -sCompression= as described below.

tiffscaled8

The tiffscaled8 device renders internally at the specified resolution to an 8 bit greyscale image. This is then
scaled down by an integer scale factor (set by -dDownScaleFactor= described below). The compression can
be set using -sCompression= as described below.

tiffscaled24

The tiffscaled24 device renders internally at the specified resolution to a 24 bit rgb image. This is then scaled
down by an integer scale factor (set by -dDownScaleFactor= described below). The compression can be set
using -sCompression= as described below.

In commercial builds, the -dDeskew option can be used to automatically detect/correct skew when generating
output bitmaps.

tiffscaled32

The tiffscaled32 device renders internally at the specified resolution to a 32 bit cmyk image. This is then scaled
down by an integer scale factor (set by -dDownScaleFactor= described below). The compression can be set
using -sCompression= as described below.

In commercial builds, the -dDeskew option can be used to automatically detect/correct skew when generating
output bitmaps.

The remaining TIFF drivers all produce black-and-white output with different compression modes:

tiffcrle

G3 fax encoding with no EOLs.

tiffg3

G3 fax encoding with EOLs.

tiffg32d

2-D G3 fax encoding.

tiffg4

G4 fax encoding.

tifflzw

LZW-compatible (tag = 5) compression.

tiffpack

PackBits (tag = 32773) compression.

See the AdjustWidth option documentation below for important information about these devices.

Options

All TIFF drivers support creation of files that are comprised of more than a single strip. Multi-strip files reduce the
memory requirement on the reader, since readers need only store and process one strip at a time. The
MaxStripSize parameter controls the strip size:

-dMaxStripSize=N

Where N is a non-negative integer; default = 8192, 0 on Fax devices. Set the maximum (uncompressed) size of a
strip.

The TIFF 6.0 specification, Section 7, page 27, recommends that the size of each strip be about 8 Kbytes.

If the value of the MaxStripSize parameter is smaller than a single image row, then no error will be generated, and
the TIFF file will be generated correctly using one row per strip. Note that smaller strip sizes increase the size of the

Details of Ghostscript Output Devices

154

file by increasing the size of the StripOffsets and StripByteCounts tables, and by reducing the effectiveness
of the compression which must start over for each strip.

If the value of MaxStripSize is 0, then the entire image will be a single strip.

Since v. 8.51 the logical order of bits within a byte, FillOrder, tag = 266 is controlled by a parameter:

-dFillOrder=1 | 2 (default = 1)

If this option set to 2 then pixels are arranged within a byte such that pixels with lower column values are stored in
the lower-order bits of the byte; otherwise pixels are arranged in reverse order.

Earlier versions of Ghostscript always generated TIFF files with FillOrder = 2. According to the TIFF 6.0
specification, Section 8, page 32, support of FillOrder = 2 is not required in a Baseline TIFF compliant reader

The writing of BigTIFF format output files is controlled with the -dUseBigTIFF parameter.

Unfortunately, due the unpredictable size of compressed output, we cannot automate the selection of BigTIFF,
using it only when the output file grows large enough to warrant it.

-dUseBigTIFF(=false/true) (boolean, default: false)

Forces use (or not) of BigTIFF format in output from TIFF devices.

The writing of the DateTime TAG can be controlled using the -dTIFFDateTime parameter.

-dTIFFDateTime(=true/false) (boolean, default: true)

Write or otherwise the DateTime TAG to the TIFF output file. Thus to disable writing the TAG, use:
-dTIFFDateTime=false.

The compression scheme that is used for the image data can be set for all tiff devices with:

-sCompression=none | crle | g3 | g4 | lzw | pack

Change the compression scheme of the tiff device. crle, g3, and g4 may only be used with 1 bit devices (including
tiffsep1).

For the tiffsep device, it changes the compression scheme of the separation files and composite cmyk file (which is
lzw by default). It defaults to g4 for the tiffsep1 device.

The black-and-white TIFF devices also provide the following parameters:

-dAdjustWidth=state (0, 1, or value; default = 1)

If this option is 1 then if the requested page width is in the range of either 1680..1736 or 2000..2056 columns, set the
page width to A4 (1728 columns) or B4 (2048 columns) respectively. If this option is set to a value >1 then the width
is unconditionally adjusted to this value.

This behavior is the default for all the fax based devices (i.e. all the black and white devices except tifflzw, tiffpack
and tiffscaled). Pass -dAdjustWidth=0 to force this behaviour off.

When using this option with tiffscaled it is the downsampled size that triggers the adjustment.

-dMinFeatureSize=state (0 to 4; default = 1)

This option allows a minimum feature size to be set; if any output pixel appears on its own, or as part of a group of
pixels smaller than MinFeatureSize x MinFeatureSize, it will be expanded to ensure that it does. This is useful
for output devices that are high resolution, but that have trouble rendering isolated pixels.

While this parameter will accept values from 0 to 4, not all are fully implemented. 0 and 1 cause no change to the
output (as expected). 2 works as specified. 3 and 4 currently expand pixels correctly horizontally, but only expand
vertically to the 2 pixel size.

The mechanism by which MinFeatureSize is implemented for tiffscaled is different, in that it is done as part of the
error diffusion. Values of 0 to 2 work as expected, but values 3 and 4 (while accepted for compatibility) will behave as
for 2.

The tiffscaled, tiffscaled4, tiffscaled8, tiffscaled24 and tiffscaled32 TIFF drivers also provide the following two
parameters:

-dDownScaleFactor=factor (integer <= 8; default = 1)

Details of Ghostscript Output Devices

155

If this option set then the page is downscaled by the given factor on both axes before error diffusion takes place. For
example rendering with -r600 and then specifying -dDownScaleFactor=3 will produce a 200dpi image.

-sPostRenderProfile=path (path to an ICC profile)

If this option set then the page will be color transformed using that profile after downscaling.

This is useful when the file uses overprint to separately paint to some subset of the C, M, Y, and K colorants, but the
final CMYK is to be color corrected for printing or display.

The tiffsep TIFF device also provide this parameter:

-dPrintSpotCMYK=boolean defaults to false.

When set to true the device will print (to stdout) the name of each ink used on the page, and the CMYK values which
are equivalent to 100% of that ink. The values are 16-bits ranging from 0 to 32760.

The tiffsep device (along with the tiffscaled32 and psdcmyk devices) can perform rudimentary automatic bitmap
‘trapping’ on the final rendered bitmap. This code is disabled by default; see the note below as to why.

Trapping is a process whereby the output is adjusted to minimise the visual impact of offsets between each printed
plane. Typically this involves slightly extending abutting regions that are rendered in different inks. The intent of this
is to avoid the unsightly gaps that might be otherwise be revealed in the final printout if the different color plates do
not exactly line up.

This trapping is controlled by 3 device parameters. Firstly the maximum X and Y offsets are specified using
-dTrapX=N and -dTrapY=N (where N is a figure in pixels, before the downscaler is applied).

The final control is to inform the trapping process in what order inks should be processed, from darkest to lightest.
For a typical CMYK device this order would be [3 1 0 2] (K darker than M darker than C darker than Y). This is the
default. In the case where CMYK + spots are used, the code defaults to assuming that the spots are lighter than the
standard colours and are sent darkest first (thus [3 1 0 2 4 5 6 …]).

To override these defaults, the TrapOrder parameter can be used, for example:

gs -sDEVICE=psdcmyk -dTrapX=2 -dTrapY=2 -o out.psd -c "<< /TrapOrder [4 5 3 1 0 2] >> setpagedevice" -f examples\tiger.eps

Note

Trapping patents. Trapping is an technology area encumbered by many patents. We believe that the last of
these has now lapsed, and so have enabled the code by default.

FAX

Ghostscript supports a variety of fax encodings, both encapsulated in TIFF (see above) and as raw files. The later
case is described here.

The fax devices are faxg3, faxg32d and faxg4.

The fax devices support the MinFeatureSize parameter as defined in the TIFF device section.

It appears from this commit: 0abc209b8460396cdece8fc824c053a2662c4cbf that some (many ?) fax readers
cannot cope with multiple strip TIFF files. The commit noted above works around this by assuming no fax output will
exceed 1MB. Unfrotunately it also altered all the TIFF devices’ default strip size which we now think was inadvisable.
The fax devices now use a MaxStripSize of 0 so that the file only contains a single strip. This can still be
overridden by specifying MaxStripSize on the command line.

BMP

BMP is a simple uncompressed image format commonly used on MS Windows.

It is supported by the bmpmono bmpgray bmpsep1 bmpsep8 bmp16 bmp256 bmp16m bmp32b series of devices.

Details of Ghostscript Output Devices

156

PCX

PCX is an image format sometimes used on MS Windows. It has some support for image compression and alternate
color spaces, and so can be a useful way to output CMYK.

It is supported by the pcxmono pcxgray pcx16 pcx256 pcx24b pcxcmyk series of devices.

PSD

PSD is the image format used by Adobe Photoshop.

It is supported by the psdcmyk psdrgb psdcmyk16 psdrgb16 series of devices.

Of special interest with the psdcmyk and psdcmyk16 devices is that they support spot colors. See the comments
under the tiffsep and tiffsep1 device about the maximum number of spot colors supported by Ghostscript.

The psdcmyk16 and psdrgb16 devices are essentially the same as the psdcmyk and psdrgb devices except they
provide 16 bit output.

The psdcmykog device produces PSD files with 6 components: Cyan, Magenta, Yellow, blacK, Orange, and Green.
This device does not support the -dDownScaleFactor= option (see below), instead it always scales down by a
factor of two.

These devices support the same -dDownScaleFactor= ratios as tiffsep. The psdcmyk device supports the same
trapping options as tiffsep (but see this note).

Note

The PSD format is a single image per file format, so you must use the “%d” format for the OutputFile (or “-o”)
file name parameter (see One page per file for details). An attempt to output multiple pages to a single PSD file
(i.e. without the “%d” format) will result in an ioerror Postscript error.

In commercial builds, for the psdcmyk and psdrgb devices, the -dDeskew option can be used to automatically
detect/correct skew when generating output bitmaps.

PDF

These devices render input to a bitmap (or in the case of PCLm multiple bitmaps) then wraps the bitmap(s) up as the
content of a PDF file. For PCLm there are some additional rules regarding headers, extra content and the order in
which the content is written in the PDF file.

The aim is to support the PCLm mobile printing standard, and to permit production of PDF files from input where the
graphics model differs significantly from PDF (eg PCL and RasterOPs).

There are five devices named pdfimage8, pdfimage24, pdfimage32, pclm and pclm8. These produce valid PDF files
with a colour depth of 8 (Gray), 24 (RGB) or 32 (CMYK), the pclm device only supports 24-bit RGB and the pclm8
device only supports 8-bit gray. These are all implemented as ‘downscale’ devices, which means they can implement
page level anti-aliasing using the -dDownScaleFactor switch.

-dDownScaleFactor=integer

This causes the internal rendering to be scaled down by the given (integer <= 8) factor before being output. For
example, the following will produce a PDF containing a 200dpi output from a 600dpi internal rendering:

gs -sDEVICE=pdfimage8 -r600 -dDownScaleFactor=3 -o tiger.pdf\
 examples/tiger.eps

In commercial builds, the -dDeskew option can be used to automatically detect/correct skew when generating the
output file.

The type of compression used for the image data can also be selected using the -sCompression switch. Valid
compression types are None, LZW, Flate, jpeg and RLE.

Details of Ghostscript Output Devices

157

Note

LZW is not supported on pclm (not valid) and None is only supported on pclm for debugging purposes.

For JPEG compression the devices support both the JPEGQ and QFactor switches as documented for the JPEG file
format device.

In addition, the PCLm device supports some other parameters. Firstly, the -dStripHeight switch to set the vertical
height of the strips of image content, as required by the specification.

Secondly, the standard postscript -dDuplex and -dTumbleswitches are supported, in that if both are set to true,
every verso page (i.e. all even pages) will be rotated by 180 degrees.

As an extension to this, a -dTumble2 parameter is also supported that will add an additional X-axis flip for every
verso page. Thus -dDuplex=true -dTumble=false -dTumble2=true will result in verso pages being flipped
horizontally, and -dDuplex=true -dTumble=true -dTumble2=true will result in verso pages being flipped
vertically.

Note

In addition to raster image files, Ghostscript supports output in a number of ‘high-level’ formats. These allow
Ghostscript to preserve (as much as possible) the drawing elements of the input file maintaining flexibility,
resolution independence, and editability.

Optical Character Recognition (OCR) devices

OCR text output

These devices render internally in 8 bit greyscale, and then feed the resultant image into an OCR engine. Currently,
we are using the Tesseract engine. Not only is this both free and open source, it gives very good results, and
supports a huge number of languages/scripts.

The Tesseract engine relies on files to encapsulate each language and/or script. These “traineddata” files are
available in different forms, including fast and best variants. Alternatively, people can train their own data using the
standard Tesseract tools.

These files are looked for from a variety of places.

1. Files will be searched for in the directory given by the environment variable TESSDATA_PREFIX.

2. Then they will be searched for within the ROM filing system. Any files placed in “tessdata” will be included within
the ROM filing system in the binary for any standard (COMPILE_INITS=1) build.

3. Then files will be searched for in the configured ‘tessdata’ path. On Unix, this can be specified at the configure
stage using ‘–with-tessdata=<path>’ (where <path> is a list of directories to search, separated by ‘:’ (on Unix) or
‘;’ (on Windows)).

4. Finally, we resort to searching the current directory.

Please note, this pattern of directory searching differs from the original release of the OCR devices.

By default, the OCR process defaults to looking for English text, using “eng.traineddata”. This can be changed by
using the -sOCRLanguage= switch:

-sOCRLanguage=language

This sets the trained data sets to use within the Tesseract OCR engine.

For example, the following will use English and Arabic:

gs -sDEVICE=ocr -r200 -sOCRLanguage="eng+ara" -o out.txt\
 zlib/zlib.3.pdf

Details of Ghostscript Output Devices

158

The first device is named ocr. It extracts data as unicode codepoints and outputs them to the device as a stream of
UTF-8 bytes.

The second device is named hocr. This extracts the data in hOCR format.

These devices are implemented as downscaling devices, so the standard parameters can be used to control this
process. It may seem strange to use downscaling on an image that is not actually going to be output, but there are
actually good reasons for this. Firstly, the higher the resolution, the slower the OCR process. Secondly, the way the
Tesseract OCR engine works means that anti-aliased images perform broadly as well as the super-sampled image
from which it came.

PDF image output (with OCR text)

These devices do the same render to bitmap and wrap as a PDF process as the PDFimage devices above, but with
the addition of an OCR step at the end. The OCR’d text is overlaid “invisibly” over the images, so searching and
cut/paste should still work.

The OCR engine being used is Tesseract. For information on this including how to control what language data is
used, see the OCR devices section above.

There are three devices named pdfocr8, pdfocr24 and pdfocr32. These produce valid PDF files with a colour depth of
8 (Gray), 24 (RGB) or 32 (CMYK).

These devices accept all the same flags as the PDFimage devices described above.

Vector PDF output (with OCR Unicode CMaps)

The pdfwrite device has been augmented to use the OCR engine to analyse text (not images!) in the input stream,
and derive Unicode code points for it. That information can then be used to create ToUnicode CMaps which are
attached to the Font (or CIDFont) objects embedded in the PDF file.

Fonts which have ToUnicode CMaps can be reliably (limited by the accuracy of the CMap) used in search and
copy/paste functions, as well as text extraction from PDF files. Note that OCR is not a 100% perfect process; it is
possible that some text might be misidentified.

OCR is a slow operation! In addition it can (for Latin text at least) sometimes be preferable not to add ToUnicode
information which may be incorrect, but instead to use the existing font Encoding. For English text this may give
better results.

For these reasons the OCR functionality of pdfwrite can be controlled by using a new parameter -sUseOCR. This has
three possible values:

-sUseOCR=string

string values as follows:

Never

Default - don’t use OCR at all even if support is built-in.

AsNeeded

If there is no existing ToUnicode information, use OCR.

Always

Ignore any existing information and always use OCR.

High level devices
Please refer to High Level Devices for documentation on the device options for these devices.

PDF writer

The pdfwrite device outputs PDF.

Details of Ghostscript Output Devices

159

https://en.wikipedia.org/wiki/HOCR

PS2 writer

The ps2write device outputs postscript language level 2. It is recommnded that this device is used for PostScript
output. There is no longer any support for creating PostScript level 1 output.

EPS writer

The eps2write device outputs encapsulated postscript.

PXL

The pxlmono and pxlcolor devices output HP PCL-XL, a graphic language understood by many recent laser printers.

Text output

The txtwrite device will output the text contained in the original document as Unicode.

Display devices
Ghostscript is often used for screen display of postscript and pdf documents. In many cases, a client or ‘viewer’
application calls the Ghostscript engine to do the rasterization and handles the display of the resulting image itself,
but it is also possible to invoke Ghostscript directly and select an output device which directly handles displaying the
image on screen.

This section describes the various display-oriented devices that are available in Ghostscript.

X Window System

Perhaps the most common use of of a display device is with the X Window System on unix-like systems. It is the
default device on the command line client on such systems, and is used more creatively by the gv client application.

The available devices are:

x11

This is the default device, handling display on X11R6.

x11alpha

This is the x11 device, but with antialiasing. It is equivalent to invoking the x11 device with the options
-dGraphicsAlphaBits=4 -dTextAlphaBits=4 -dMaxBitmap=50000000.

x11cmyk

This device rasterizes the image in the CMYK color space, then flattens it to RGB for display. It’s intended for
testing only.

x11mono

This is a strict black-and-white device for 1-bit monochrome displays.

x11gray2

This is a device for 2 bpp (4-level) monochrome displays.

x11gray4

This is a device for 4 bpp (16-level) monochrome displays.

On Mac OS X as of 10.6, the X server (XQuartz) only supports color depth 15 and 24. Depth 15 isn’t well-tested, and
it may be desirable, for serious use, to switch to depth 24 with:

defaults write org.x.X11 depth 24

Display device (MS Windows, OS/2, gtk+)

The display device is used by the MS Windows, OS/2 and the gtk+ versions of Ghostscript.

Options

The display device has several user settable options.

Details of Ghostscript Output Devices

160

-dDisplayFormat=N (integer bit-field)

Some common values are 16#30804 for Windows RGB, 16#804 for gtk+ RGB, 16#20101 for Windows
monochrome, 16#102 for gtk+ monochrome, 16#20802 grayscale, 16#20808 for CMYK, 16#a0800 for
separations.

The bit fields are:

• native (1), gray (2), RGB (4), CMYK (8), or separation (80000) color spaces.

• unused first byte (40) or last byte (80).

• 1 (100), 4 (400), or 8 (800) bits/component.

• bigendian (00000 = RGB) or littleendian (10000 = BGR) order.

• top first (20000) or bottom first (00000) raster.

• 16 bits/pixel with 555 (00000) or 565 (40000) bitfields.

• For more details, see the Ghostscript Interpreter API.

-dDisplayResolution=DPI

Set the initial resolution resolution for the display device. This is used by the Windows clients to set the display
device resolution to the Windows display logical resolution. This can be overriden by the command line option
-rDPI.

When using the separation color space, the following options may be set using setpagedevice, as described in
the PostScript Language Reference:

SeparationColorNames

An array giving the names of the spot colors.

SeparationOrder

An array giving the names and order of the colorants to be output.

IJS - Inkjet and other raster devices
IJS is a relatively new initiative to improve the quality and ease of use of inkjet printing with Ghostscript. Using IJS,
you can add new drivers, or upgrade existing ones, without recompiling Ghostscript. All driver authors are
encouraged to adapt their drivers for IJS, and if there is an IJS driver available for your printer, it should be your first
choice.

Please see the IJS web page for more information about IJS, including a listing of IJS-compatible drivers.

A typical command line for IJS is:

gs -dSAFER -sDEVICE=ijs -sIjsServer=hpijs -sDeviceManufacturer=HEWLETT-PACKARD -sDeviceModel='DESKJET 990' -dIjsUseOutputFD -sOutputFile=/dev/usb/lp1 -dNOPAUSE -- examples/tiger.eps

Individual IJS command line parameters are as follows:

-sIjsServer={path}

Sets the pathname for the IJS server (ie printer driver). Ghostscript will spawn a new process for this driver, and
communicate with it using the IJS protocol. The pathname need not be absolute, as the PATH environment
variable is searched, but it’s probably a good idea for robustness and security. Note also that if -dSAFER is not
specified, it’s possible for PostScript code to set this parameter, so it can cause arbitrary code to be executed.
See the section on Security for more information.

-sDeviceManufacturer={name} -sDeviceModel={name}

These parameters select the device according to IEEE-1284 standard device ID strings. In general, consult the
documentation for the driver to find the appropriate settings. Note that, if the value contains a space, you’ll want
to quote the value in your shell, as in the example above.

-sIjsParams={params}

This parameter allows you to set arbitrary IJS parameters on the IJS driver. The format is a comma-separated
list of key=value pairs. If it is necessary to send a value containing a comma or backslash, it can be escaped
with a backslash. Thus, -sIjsParams=Foo=bar,Baz=a\,b sets the parameter Foo to “bar”, and Baz to “a,b”.

-dIjsUseOutputFD

Details of Ghostscript Output Devices

161

This flag indicates that Ghostscript should open the output file and pass a file descriptor to the server. If not set,
Ghostscript simply passes the filename set in OutputFile to the server. In most cases, this flag won’t matter, but
if you have a driver which works only with OutputFD (such as hpijs 1.0.2), or if you’re using the
-sOutputFile="|cmd" syntax, you’ll need to set it.

-dBitsPerSample=N

This parameter controls the number of bits per sample. The default value of 8 should be appropriate for most
work. For monochrome images, use -dBitsPerSample=1.

Generic Ghostscript options that are particularly relevant for IJS are summarized below:

-rnumber -rnumber1xnumber2

Sets the resolution, in dpi. If the resolution is not specified, Ghostscript queries the IJS server to determine the
preferred resolution. When the resolution is specified, it overrides the value (if any) preferred by the IJS server.

-dDuplex -dTumble

These flags enable duplex (two-sided) printing. Tumble controls the orientation. When Tumble is false, the
pages are oriented suitably at the left or right. When Tumble is true, the pages are oriented suitably for binding
at the top or bottom.

-sProcessColorModel={name}

Use this flag to select the process color model. Suitable values include DeviceGray, DeviceRGB, and
DeviceCMYK.

Building IJS

IJS is included by default on Unix gcc builds, and also in autoconf’ed builds. Others may need some makefile
tweaking. Firstly, make sure the IJS device is selected:

DEVICE_DEVS2=$(DD)ijs.dev

Next, make sure that the path and execution type are set in the top level makefile. The values for Unix are as
follows:

IJSSRCDIR=ijs IJSEXECTYPE=unix

At present, “unix” and “win” are the only supported values for IJSEXECTYPE. If neither sounds appropriate for
your system, it’s possible that more porting work is needed.

Lastly, make sure that ijs.mak is included in the top level makefile. It should be present right after the include of
icclib.mak.

IJS is not inherently platform-specific. We’re very much interested in taking patches from people who have ported it
to non-mainstream platforms. And once it’s built, you won’t have to recompile Ghostscript to support new drivers!

Rinkj - Resplendent inkjet driver
The Rinkj driver is an experimental new driver, capable of driving some Epson printers at a very high level of quality.
It is not currently recommended for the faint of heart.

You will need to add the following line to your makefile:

DEVICE_DEVS2=$(DD)rinkj.dev

Most of the configuration parameters, including resolution, choice of printer model, and linearization curves, are
in a separate setup file. In addition, we rely heavily on an ICC profile for mapping document colors to actual
device colors.

A typical command line invocation is:

gs -r1440x720 -sDEVICE=rinkj -sOutputFile=/dev/usb/lp0 -sSetupFile=lib/rinkj-2200-setup -sProfileOut=2200-cmyk.icm -dNOPAUSE -dBATCH file.ps

Individual Rinkj command line parameters are as follows:

-sSetupFile={path}

Specifies the path for the setup file.

-sProfileOut={path}

Specifies the path for the output ICC profile. This profile should be a link profile, mapping the
ProcessColorModel (DeviceCMYK by default) to the device color space.

Details of Ghostscript Output Devices

162

For 6- and 7-color devices, the target color space for the output profile is currently a 4-component space. The
conversion from this into the 6- or 7-color space (the “ink split”) is done by lookup tables in the setup file.

Setup files are in a simple “Key: value” text format. Relevant keys are:

Manufacturer:{name} Model:{name}

The manufacturer and model of the individual device, using the same syntax as IEEE printer identification
strings. Currently, the only supported manufacturer string is “EPSON”, and the only supported model strings are
“Stylus Photo 2200” and “Stylus Photo 7600”.

Resolution:{x-dpi}x{y-dpi}

The resolution in dpi. Usually, this should match the Ghostscript resolution set with the -r switch. Otherwise, the
page image will be scaled.

Dither:{int}

Selects among variant dither options. Currently, the choices are 1 for one-bit dither, and 2, for a 2-bit variable
dot dither.

Aspect:{int}

Controls the aspect ratio for highlight dot placement. Valid values are 1, 2, and 4. For best results, choose a
value near the x resolution divided by the y resolution. For example, if resolution is 1440x720, aspect should be
2.

Microdot:{int}

Chooses a microdot size. On EPSON devices, this value is passed directly through to the “ESC (e” command.
See EPSON documentation for further details (see, I told you this wasn’t for the faint of heart).

Unidirectional:{int}

Enables (1) or disables (0) unidirectional printing, which is slower but possibly higher quality.

AddLut:{plane}

Adds a linearization look-up table. The plane is one of “CcMmYKk”. The lookup table data follows. The line
immediately following AddLut is the number of data points. Then, for each data point is a line consisting of two
space-separated floats - the output value and the input value. If more than one LUT is specified for a single
plane, they are applied in sequence.

A typical setup file is supplied in lib/rinkj-2200-setup. It is configured for the 2200, but can be adapted to the
7600 just by changing the “Model” line.

A known issue with this driver is poor support for margins and page size. In some cases, this will cause an additional
page to be ejected at the end of a job. You may be able to work around this by supplying a cut-down value for
-dDEVICEHEIGHTPOINTS, for example 755 for an 8.5x11 inch page on the EPSON 2200.

HP Deskjet official drivers
HP provides official drivers for many of their Deskjet printer models. In order to use these drivers, you will need the
HP Inkjet Server as well as Ghostscript, available from HP Linux Imaging and Printing. This version of Ghostscript
includes the patch from version 0.97 of the hpijs software. If you are installing hpijs from an RPM, you will only
need the hpijs RPM, not the Ghostscript-hpijs one, as the code needed to work with hpijs is already included.

Note that newer version of the hpijs drivers support the IJS protocol. If you can, you should consider using the ijs
driver instead. Among other things, the hpijs Ghostscript driver is Unix-only, and is untested on older Unix
platforms.

As of the 0.97 version, hpijs supports the following printer models:

e-Series: e-20

DeskJet 350C Series: 350C

DeskJet 600C Series: 600C, 660C, 670/672C, 670TV, 680/682C

DeskJet 600C Series Photo: 610/612C, 640/648C, 690/692/693/694/695/697C

DeskJet 630C Series: 630/632C

DeskJet 800C Series: 810/812C, 830/832C, 840/842/843C, 880/882C, 895C

DeskJet 900C Series, PhotoSmart: 930/932C, 950/952C, 970C, PhotoSmart 1000/1100

Details of Ghostscript Output Devices

163

https://developers.hp.com/hp-linux-imaging-and-printing/

DeskJet 990C, PhotoSmart: 960C, 980C, 990C, PhotoSmart 1215/1218

You will need to add the following line to your makefile:

DEVICE_DEVS2=$(DD)DJ630.dev $(DD)DJ6xx.dev $(DD)DJ6xxP.dev $(DD)DJ8xx.dev $(DD)DJ9xx.dev $(DD)DJ9xxVIP.dev $(DD)AP21xx.dev

Please see HP Linux Imaging and Printing for more information about this driver. Thanks to the folks at HP,
especially David Suffield for making this driver available and working to integrate it with Ghostscript.

Gimp-Print driver collection
The Gimp-Print project provides a large collection of printer drivers with an IJS interface. Please see Gimp print for
details.

MS Windows printers
This section was written by Russell Lang, the author of Ghostscript’s MS Windows-specific printer driver, and
updated by Pierre Arnaud.

The mswinpr2 device uses MS Windows printer drivers, and thus should work with any printer with
device-independent bitmap (DIB) raster capabilities. The printer resolution cannot be selected directly using
PostScript commands from Ghostscript: use the printer setup in the Control Panel instead. It is however possible to
specify a maximum resolution for the printed document (see below).

If no Windows printer name is specified in -sOutputFile, Ghostscript prompts for a Windows printer using the
standard Print Setup dialog box. You must set the orientation to Portrait and the page size to that expected by
Ghostscript; otherwise the image will be clipped. Ghostscript sets the physical device size to that of the Windows
printer driver, but it does not update the PostScript clipping path.

If a Windows printer name is specified in -sOutputFile using the format “%printer%printer_name”, for
instance:

gs ... -sOutputFile="%printer%Apple LaserWriter II NT"

Then Ghostscript attempts to open the Windows printer without prompting (except, of course, if the printer is
connected to FILE:). Ghostscript attempts to set the Windows printer page size and orientation to match that
expected by Ghostscript, but doesn’t always succeed. It uses this algorithm:

1. If the requested page size matches one of the Windows standard page sizes +/- 2mm, request that standard
size.

2. Otherwise if the requested page size matches one of the Windows standard page sizes in landscape mode, ask
for that standard size in landscape.

3. Otherwise ask for the page size by specifying only its dimensions.

4. Merge the requests above with the defaults. If the printer driver ignores the requested paper size, no error is
generated: it will print on the wrong paper size.

5. Open the Windows printer with the merged orientation and size.

The Ghostscript physical device size is updated to match the Windows printer physical device.

Supported command-line parameters

The mswinpr2 device supports a limited number of command-line parameters (e.g. it does not support setting the
printer resolution). The recognized parameters are the following:

-sDEVICE=mswinpr2

Selects the MS Windows printer device. If Ghostscript was not compiled with this device as the default output
device, you have to specify it on the command line.

-dNoCancel

Hides the progress dialog, which shows the percent of the document page already processed and also provides
a cancel button. This option is useful if GS is intended to print pages in the background, without any user
intervention.

-sOutputFile="%printer%printer_name"

Details of Ghostscript Output Devices

164

https://developers.hp.com/hp-linux-imaging-and-printing/
file:///Users/jamielemon/Desktop/freelance/artifex/SDK/ghostscript/ghostpdl/doc/gimp-print.sourceforge.net

Specifies which printer should be used. The printer_name should be typed exactly as it appears in the
Printers control panel, including spaces.

Supported options (device properties)

Several extra options exist which cannot be set through the command-line, but only by executing the appropriate
PostScript setup code. These options can be set through the inclusion of a setup file on the command-line:

gs ... setup.ps ...

The setup.ps file is responsible for the device selection, therefore you should not specify the
-sDEVICE=mswinpr2 option on the command-line if you are using such a setup file. Here is an example of such a
setup file:

 mark
 /NoCancel true % don't show the cancel dialog
 /BitsPerPixel 4 % force 4 bits/pixel
 /UserSettings
 <<
 /DocumentName (Ghostscript document) % name for the Windows spooler
 /MaxResolution 360 % maximum document resolution
 >>
 (mswinpr2) finddevice % select the Windows device driver
 putdeviceprops
setdevice

This example disables the progress dialog (same as the -dNoCancel option), forces a 4 bits/pixel output resolution
and specifies additional user settings, such as the document name (which will be displayed by the Windows spooler
for the queued document) and the maximum resolution (here 360 dpi). It then finds and selects an instance of the
MS Windows device printer and activates it. This will show the standard printer dialog, since no /OutputFile
property was specified.

The following options are available:

/NoCancel boolean

Disables (hides) the progress dialog when set to true or show the progress dialog if not set or set to false.

/OutputFile string

Specifies which printer should be used. The string should be of the form %printer%printer_name, where the
printer_name should be typed exactly as it appears in the Printers control panel, including spaces.

/QueryUser integer

Shows the standard printer dialog (1 or any other value), shows the printer setup dialog (2) or selects the default
Windows printer without any user interaction (3).

/BitsPerPixel integer

Sets the device depth to the specified bits per pixel. Currently supported values are 1 (monochrome), 4 (CMYK
with screening handled by Ghostscript) and 24 (True Color, dithering handled by the Windows printer driver; this
option can produce huge print jobs).

/UserSettings dict

Sets additional options, defined in a dictionary. The following properties can be set:

/DocumentName string

Defines the user friendly document name which will be displayed by the Windows spooler.

/DocumentRange [n1 n2]

Defines the range of pages contained in the document. This information can be used by the printer dialog,
in conjunction with the following property.

/SelectedRange [n1 n2]

Defines the selected range of pages. This information will be displayed in the printer dialog and will be
updated after the user interaction. A PostScript program could check these values and print only the
selected page range.

/MaxResolution dpi

Details of Ghostscript Output Devices

165

Specifies the maximum tolerated output resolution. If the selected printer has a higher resolution than dpi,
then Ghostscript will render the document with a submultiple of the printer resolution. For example, if
MaxResolution is set to 360 and the output printer supports up to 1200 dpi, then Ghostscript renders the
document with an internal resolution of 1200/4=300 dpi. This can be very useful to reduce the memory
requirements when printing in True Color on some high resolution ink-jet color printers.

These properties can be queried through the currentpagedevice operator. The following PostScript code snippet
shows how to do it for some of the properties:

currentpagedevice /BitsPerPixel get == % displays the selected depth

currentpagedevice /UserSettings get % get the additional options..
/us exch def % ..and assign them to a variable

us /DocumentName get == % displays the document name
us /SelectedRange get == % displays the selected page range

% other misc. information (don't rely on them)

us /Color get == % 1 => monochrome output, 2 => color output
us /PrintCopies get == % displays the number of copies requested

There are a few undocumented parameters stored in the UserSettings dictionary. You should not rely on them.
Their use is still experimental and they could be removed in a future version.

Duplex printing

If the Windows printer supports the duplex printing feature, then it will also be available through the mswinpr2 device.
You can query for this support through the /Duplex property of the currentpagedevice. If it returns null, then
the feature is not supported by the selected printer. Otherwise, true means that the printer is currently set up to print
on both faces of the paper and false that it is not, but that it can.

The following example shows how to print on both faces of the paper (using the long side of the paper as the
reference):

<< /Duplex true /Tumble false >> setpagedevice

Sun SPARCprinter
This section was contributed by Martin Schulte.

With a SPARCprinter you always buy software that enables you to do PostScript printing on it. A page image is
composed on the host, which sends a bitmap to the SPARCprinter through a special SBUS video interface. So the
need for a Ghostscript interface to the SPARCprinter seems low, but on the other hand, Sun’s software prints some
PostScript drawings incorrectly: some pages contain a thin vertical line of rubbish, and on some Mathematica
drawings the text at the axes isn’t rotated. Ghostscript, however, gives the correct results. Moreover, replacing
proprietary software should never be a bad idea.

The problem is that there has yet been no effort to make the SPARCPrinter driver behave like a BSD output filter. I
made my tests using the script shown here.

Installation

Add sparc.dev to DEVICE_DEVS and compile Ghostscript as described in the documentation on how to build
Ghostscript. Afterwards you can use the following script as an example for printing after modifying it with the right
pathnames – including for {GSPATH} the full pathname of the Ghostscript executable:

outcmd1='/vol/local/lib/troff2/psxlate -r'
outcmd2='{GSPATH} -sDEVICE=sparc -sOUTPUTFILE=/dev/lpvi0 -'

if [$# -eq 0]
then
 $outcmd1 | $outcmd2

Details of Ghostscript Output Devices

166

else
 cat $* | $outcmd1 | $outcmd2
fi

Problems

Since /dev/lpi can be opened only for exclusive use, if another job has it open (engine_ctl_sparc or another
Ghostscript are the most likely candidates), Ghostscript stops with “Error: /invalidfileaccess in –.outputpage–”

In case of common printer problems like being out of paper, a warning describing the reason is printed to stdout. The
driver tries access again each five seconds. Due to a problem with the device driver (in the kernel) the reason for
printer failure isn’t always reported correctly to the program. This is the case, for instance, if you open the top cover
(error E5 on the printer’s display). Look at the display on the printer itself if a “Printer problem with unknown reason”
is reported. Fatal errors cause the print job to be terminated.

Note

There is some confusion whether the resolution setting should be the integers 300 and 400, or the symbolic
constants DPI300 and DPI400 (defined in lpviio.h). Ghostscript releases have had it both ways. It is currently
the latter. However, INOUE Namihiko reports (in bug #215256) that the former works better for him. If anyone
has a definitive answer, please let us know.

Apple dot matrix printer
This section was contributed by Mark Wedel.

The Apple Dot Matrix Printer (DMP) was a parallel predecessor to the Imagewriter printer. As far as I know,
Imagewriter commands are a superset of the Dot Matrix printer’s, so the driver should generate output that can be
printed on Imagewriters.

To print images, the driver sets the printer for unidirectional printing and 15 characters per inch (cpi), or 120dpi. It
sets the line feed to 1/9 inch. When finished, it sets the printer to bidirectional printing, 1/8-inch line feeds, and 12 cpi.
There appears to be no way to reset the printer to initial values.

This code does not set for 8-bit characters (which is required). It also assumes that carriage return-newline is
needed, and not just carriage return. These are all switch settings on the DMP, and I have configured them for 8-bit
data and carriage return exclusively. Ensure that the Unix printer daemon handles 8-bit (binary) data properly; in my
SunOS 4.1.1 printcap file the string “ms=pass8,-opost” works fine for this.

Finally, you can search devdemp.c for “Init” and “Reset” to find the strings that initialize the printer and reset things
when finished, and change them to meet your needs.

Special and Test devices
The devices in this section are intended primarily for testing. They may be interesting as code examples, as well.

Raw ‘bit’ devices

There are a collection of ‘bit’ devices that don’t do any special formatting but output ‘raw’ binary data for the page
images. These are used for benchmarking but can also be useful when you want to directly access the raster data.

The raw devices are bit bitrgb bitcmyk.

Bounding box output

There is a special bbox “device” that just prints the bounding box of each page. You select it in the usual way:

gs -dSAFER -dNOPAUSE -dBATCH -sDEVICE=bbox

It prints the output in a format like this:

Details of Ghostscript Output Devices

167

mailto:master@cats.ucsc.edu

%%BoundingBox: 14 37 570 719
%%HiResBoundingBox: 14.3ep08066 37.547999 569.495061 718.319158

Currently, it always prints the bounding box on stderr; eventually, it should also recognize -sOutputFile=.

By default, white objects don’t contribute to the bounding box because many files fill the whole page with white
before drawing other objects. This can be changed by:

<< /WhiteIsOpaque true >> setpagedevice

Note that this device, like other devices, has a resolution and a (maximum) page size. As for other devices, the
product (resolution x page size) is limited to approximately 500K pixels. By default, the resolution is 4000 DPI and
the maximum page size is approximately 125”, or approximately 9000 default (1/72”) user coordinate units. If you
need to measure larger pages than this, you must reset both the resolution and the page size in pixels, e.g.,

gs -dNOPAUSE -dBATCH -sDEVICE=bbox -r100 -g500000x500000

Note

The box returned by the bbox device is just sufficient to contain the pixels which would be rendered by
Ghostscript at the selected resolution. The language rendering rules can mean this differs by up to two pixels
from the ‘theoretical’ area covered, and the precise area covered by curves and line joins is also, to some extent,
related to the resolution. Finally the actual pixel position needs to be converted back to PostScript points, and
that can be affected by mathematical precision, which can cause rounding errors. As a result the bounding box
returned may differ very slightly from that which was expected.

Ink coverage output

There are two special inkcov devices that print the ink coverage of each page; the inkcov device and the ink_cov
device. They are selected like this:

gs -dSAFER -dNOPAUSE -dBATCH -o- -sDEVICE=inkcov Y.pdf
gs -dSAFER -dNOPAUSE -dBATCH -o- -sDEVICE=ink_cov Y.pdf

These commands also work as expected:

gs -o X_inkcov.txt -sDEVICE=inkcov Y.pdf
gs -o X_inkcov_page%03d.txt -sDEVICE=inkcov Y.pdf

The devices print their output in a format like this:

Page 1
 0.10022 0.09563 0.10071 0.06259 CMYK OK
Page 2
 0.06108 0.05000 0.05834 0.04727 CMYK OK

The difference between the two devices is that the inkcov device considers each rendered pixel and whether it marks
the C, M, Y or K channels. So the percentages are a measure of how many device pixels contain that ink. The
ink_cov device gives the more traditional use of ink coverage, it also considers the amount of each colourant at each
rendered pixel, so the percentages in this case are what percentage of the ink is used on the page.

As an example, If we take a page which is covered by a pure 100% cyan fill both devices would give the same result
1.00 0.00 0.00 0.00; each pixel is marked by the cyan ink and each pixel contains 100% cyan. If however we use a
50% cyan fill the inkcov device will still give 1.00 0.00 0.00 0.00 as 100% of the pixels contain cyan. The ink_cov
device, however, would give a result of 0.50 0.00 0.00 0.00.

Permutation (DeviceN color model)

With no additional parameters, the device named “permute” looks to Ghostscript like a standard CMYK contone
device, and outputs a PPM file, using a simple CMYK->RGB transform. This should be the baseline for regression
testing.

Details of Ghostscript Output Devices

168

With the addition of -dPermute=1, the internal behavior changes somewhat, but in most cases the resulting
rendered file should be the same. In this mode, the color model becomes “DeviceN” rather than “DeviceCMYK”, the
number of components goes to six, and the color model is considered to be the (yellow, cyan, cyan, magenta, 0,
black) tuple. This is what’s rendered into the memory buffer. Finally, on conversion to RGB for output, the colors are
permuted back.

As such, this code should check that all imaging code paths are 64-bit clean. Additionally, it should find incorrect
code that assumes that the color model is one of DeviceGray, DeviceRGB, or DeviceCMYK.

Currently, the code has the limitation of 8-bit continuous tone rendering only. An enhancement to do halftones is
planned as well. Note, however, that when testing permuted halftones for consistency, it is important to permute the
planes of the default halftone accordingly, and that any file which sets halftones explicitly will fail a consistency
check.

spotcmyk (DeviceN color model)

The spotcmyk device was created for debugging and testing of the devicen extensions to Ghostscript that were
released in version 8.0. There are also another device (devicen) in the same source file. It were created for testing
however it are not actually useful except as example code.

The spotcmyk device was also designed to provide example code for a device which supports spot colors. Spot
colors need to be specified prior to opening the first page. This can be done via adding the following to the command
line: -c "<< /SeparationColorNames [/Name1 /Name2] >> setpagedevice" -f.

The spotcmyk device produces a binary data file (similar to the bitcmyk device) for the CMYK data. This data file has
the name specified by the “OutputFile” parameter. The device also produces a binary data file (similar to the bitmono
device) for each spot color plane. These data files have the name specified by the “OutputFile” parameter with “sn”
appended to the end (where “n” is the spot color number 0 to 12)”.

After the spotcmyk device produces the binary data files, the files are read and PCX format versions of these files are
created with “.pcx” appended to the binary source file name.

If the spotcmyk is being used with three spot colors and the “OutputFile” parameter is xxx then the following files
would be created by the device:

xxx binary CMYK data

xxxs0 binary data for first spot color

xxxs1 binary data for second spot color

xxxs2 binary data for third spot color

xxx.pcx CMYK data in PCX format

xxxs0.pcx first spot color in PCX format

xxxs1.pcx second spot color in PCX format

xxxs2.pcx third spot color in PCX format

The spotcmyk device has the creation of the binary data files separated from the creation of the PCX files since the
source file is intended as example code and many people may not be interested in the PCX format. The PCX format
was chosen because it was simple to implement from pre-existing code and viewers are available. The PCX format
does have the dis-advantage that most of those viewers are on Windows.

XCF (DeviceN color model)

The XCF file format is the native image format for the GIMP program. This format is currently supported by two
devices: xcfrgb and xcfcmyk.

We have been warned by the people supporting the GIMP program that they reserve the right to change the XCF
format at anytime and thus these devices may become invalid. They are being included in the documentation
because we have received some questions about what these devices do.

The XCF devices were created for testing of the devicen extensions to Ghostscript which were released in version
8.0.

The xcfrgb device uses a DeviceRGB process color model and creates a normal XCF file.

Details of Ghostscript Output Devices

169

The xcfcmyk device was created as a means of viewing spot colors for those users that do not have access to either
Photoshop (see the PSD devices) or a PCX viewer (see the spotcmyk device).

The xcfcmyk device starts by using a DeviceCMYK process color model. The DeviceCMYK process color model
allows the xcfcmyk device to also support spot colors. Spot colors need to be specified prior to opening the first page.
This can be done via adding the following to the command line:

-c "<< /SeparationColorNames [/Name1 /Name2] >> setpagedevice" -f

After a page is complete, the xcfcmyk converts the CMYK image data into RGB for storing in the XCF output file. The
XCF format does not currently support CMYK data directly. The spot color planes are converted into alpha channel
planes. This is done because the XCF format does not currently support spot colors.

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

Details of Ghostscript Output Devices

170

https://www.artifex.com

High Level Devices
High level devices are Ghostscript output devices which do not render to a raster, in general they produce ‘vector’ as
opposed to bitmap output. Such devices currently include: pdfwrite, ps2write, eps2write, txtwrite, xpswrite, pxlmono,
pxlcolor and docxwrite.

Although these devices produce output which is not a raster, they still work in the same general fashion as all
Ghostscript devices. The input (PostScript, PDF, XPS, PCL or PXL) is handled by an appropriate interpreter, the
interpreter processes the input and produces from it a sequence of drawing ‘primitives’ which are handed to the
device. The device decides whether to handle the primitive itself, or call upon the graphics library to render the
primitive to the final raster.

Primitives are quite low level graphics operations; as an example consider the PDF sequence
'0 0 100 100 re f'. This constructs a rectangle with the bottom left corner at 0,0 which is 100 units wide by 100
units high, and fills it with the current color. A lower level implementation using only primitives would first move the
current point to 0,0, then construct a line to 0,100, then a line to 100,100, a line to 100, 0 and finally a line back to
0,0. It would then fill the result.

Obviously that’s a simple example but it serves to demonstrate the point.

Now the raster devices all call the graphics library to process primitives (though they may choose to take some
action first) and render the result to a bitmap. The high level devices instead reassemble the primitives back into high
level page description and write the result to a file. This means that the output, while it should be visually the same as
the input (because it makes the same marks), is not the same as the original input, even if the output Page
Description Language is the same as the input one was (eg PDF to PDF).

Why is this important? Firstly because the description of the page won’t be the same, if your workflow relies upon (for
example) finding rectangles in the description then it might not work after it has been processed by a high level
device, as the rectangles may all have turned into lengthy path descriptions.

In addition, any part of the original input which does not actually make marks on the page (such as hyperlinks,
bookmarks, comments etc) will normally not be present in the output, even if the output is the same format. In
general the PDF interpreter and the PDF output device (pdfwrite) try to preserve the non-marking information from
the input, but some kinds of content are not carried across, in particular comments are not preserved.

We often hear from users that they are ‘splitting’ PDF files, or ‘modifying’ them, or converting them to PDF/A, and it’s
important to realize that this is not what’s happening. Instead, a new PDF file is being created, which should look the
same as the original, but the actual insides of the PDF file are not the same as the original. This may not be a
problem, but if it’s important to keep the original contents, then you need to use a different tool (we’d suggest
MuPDF, also available from Artifex). Of course, if the intention is to produce a modified PDF file (for example,
reducing the resolution of images, or changing the colour space), then clearly you cannot keep the original contents
unchanged, and pdfwrite performs these tasks well.

PCL-XL (PXL)
The pxlmono and pxlcolor devices output HP PCL-XL, a graphic language understood by many recent laser printers.

Options

-dCompressMode=1 | 2 | 3 (default is 1)

Set the compression algorithm used for bitmap graphics. RLE=1, JPEG=2, DeltaRow=3. When JPEG=2 is on, it
is applied only to full-color images; indexed-color graphics and masks continues to be compressed with RLE.

Text output
The txtwrite device will output the text contained in the original document as Unicode.

Options

-dTextFormat=0 | 1 | 2 | 3 | 4 (default is 3)

Format 0 is intended for use by developers and outputs XML-escaped Unicode along with information regarding
the format of the text (position, font name, point size, etc). The XML output is the same format as the MuPDF
output, but no additional processing is performed on the content, so no block detection.

High Level Devices

171

https://mupdf.com

Format 1 uses the same XML output format, but attempts similar processing to MuPDF, and will output blocks of
text. Note the algorithm used is not the same as the MuPDF code, and so the results will not be identical.

Format 2 outputs Unicode (UCS2) text (with a Byte Order Mark) which approximates the layout of the text in the
original document.

Format 3 is the same as format 2, but the text is encoded in UTF-8.

Format 4 is internal format similar to Format 0 but with extra information.

DOCX output
The docxwrite device creates a DOCX file suitable for use with applications such as Word or LibreOffice, containing
the text in the original document.

Rotated text is placed into textboxes. Heuristics are used to group glyphs into words, lines and paragraphs; for some
types of formatting, these heuristics may not be able to recover all of the original document structure.

This device currently has no special configuration parameters.

XPS file output
The xpswrite device writes its output according to the Microsoft XML Paper Specification. This specification was later
amended to the Open XML Paper specification, submitted to ECMA International and adopted as ECMA-388.

This device currently has no special configuration parameters.

The family of PDF and PostScript output devices

Common controls and features

The PDF and PostScript (including Encapsulated PostScript, or EPS) devices have much of their code in common,
and so many of the controlling parameters are also common amongst the devices. The pdfwrite, ps2write and
eps2write devices create PDF or PostScript files whose visual appearance should match, as closely as possible, the
appearance of the original input (PS, PDF, XPS, PCL, PXL). There are a number of caveats as mentioned in the
overview above. In addition to the general comments there are some additional points that bear mentioning.

PCL has a graphics model which differs significantly from the PostScript or PDF one, in particular it has a form of
transparency called RasterOps, some aspects of which cannot be represented in PDF at a high level (or at all, in
PostScript). The pdfwrite device makes no attempt to handle this, and the resulting PDF file will not match the
original input. The only way to deal with these types of file is to render the whole page to a bitmap and then ‘wrap’ the
bitmap as a PDF file. Currently we do not do this either, but it is possible that a future enhancement may do so.

If the input contains PDF-compatible transparency, but the ps2write device is selected, or the pdfwrite device is
selected, but has been told to limit the PDF feature set to a version less than 1.4, the transparency cannot be
preserved. In this case the entire page is rendered to a bitmap and that bitmap is ‘wrapped up’ in appropriate PDF or
PostScript content. The output should be visually the same as the input, but since it has been rendered it will not
scale up or down well, unlike the original, vector, content of the input.

The options in the command line may include any switches that may be used with the language interpreter
appropriate for the input (see here for a complete list). In addition the following options are common to all the pdfwrite
family of devices, and should work when specified on the command line with any of the language interpreters.

-rresolution

Sets the resolution for pattern fills, for fonts that must be converted to bitmaps and any other rendering required
(eg rendering transparent pages for output to PDF versions < 14). The default internal resolution for pdfwrite is
720dpi.

-dUNROLLFORMS

When converting from PostScript, pdfwrite (and ps2write) preserve the use of Form resources as Form XObjects
in the output. Some badly written PostScript can cause this to produce incorrect output (the Quality Logic CET
tests for example). By setting this flag, forms will be unrolled and stored in the output each time they are used,
which avoids the problems. Note that the output file will of course be larger this way. We do not attempt to
preserve Form XObjects from PDF files, unless they are associated with transparency groups.

High Level Devices

172

-dNoOutputFonts

Ordinarily the pdfwrite device family goes to considerable lengths to preserve fonts from the input as fonts in the
output. However in some highly specific cases it can be useful to have the text emitted as linework/bitmaps
instead. Setting this switch will prevent these devices from emitting any fonts, all text will be stored as vectors (or
bitmaps in the case of bitmapped fonts) in the page content stream. Note that this will produce larger output
which will process more slowly, render differently and particularly at lower resolution produce less consistent text
rendering. Use with caution.

-dCompressFonts=boolean

Defines whether pdfwrite will compress embedded fonts in the output. The default value is true; the false setting
is intended only for debugging as it will result in larger output.

-dCompressStreams=boolean

Defines whether pdfwrite will compress streams other than those in fonts or pages in the output. The default
value is true; the false setting is intended only for debugging as it will result in larger output.

Distiller Parameters

Options may also include -dparameter=value or -sparameter=string switches for setting “distiller
parameters”, Adobe’s documented parameters for controlling the conversion of PostScript into PDF. The PostScript
setdistillerparams and currentdistillerparams operators are also recognized when the input is
PostScript, and provide an equivalent way to set these parameters from within a PostScript input file.

Although the name implies that these parameters are for controlling PDF output, in fact the whole family of devices
use these same parameters to control the conversion into PostScript and EPS as well.

The pdfwrite family of devices recognize all of the Acrobat Distiller 5 parameters defined in the DistillerParameters
(version 5) document available from the Adobe web site. Cells in the table below containing ‘=’ mean that the value
of the parameter is the same as in the “default” column.

Parameter
name Notes default screen ebook printer prepress

AlwaysEmbe
d

(13) [] = = = =

AntiAliasColo
rImages

(0) false = = = =

AntiAliasGray
Images

(0) false = = = =

AntiAliasMon
oImages

(0) false = = = =

ASCII85Enco
dePages

false = = = =

AutoFilterCol
orImages

(1) true = = = =

AutoFilterGra
yImages

(1) true = = = =

AutoPosition
EPSFiles

(0) true = = = =

AutoRotateP
ages

/PageByPage /PageByPage /All /None /None

Binding (0) /Left = = = =

CalCMYKPro
file

(0) () = = = =

CalGrayProfil
e

(0) () = = = =

High Level Devices

173

CalRGBProfil
e

(0) () = = = =

CannotEmbe
dFontPolicy

(0) /Warning /Warning /Warning /Warning /Error

ColorACSIma
geDict

(13) (7) (10) (10) (8) (9)

ColorConvers
ionStrategy

(6) LeaveColorU
nchanged

RGB RGB UseDeviceIn
dependentCo
lor

LeaveColorU
nchanged

ColorImageD
epth

-1 = = = =

ColorImageDi
ct

(13) (7) = = = =

ColorImageFi
lter

/DCTEncode = = = =

ColorImageD
ownsampleT
hreshold

1.5 = = = =

ColorImageD
ownsampleT
ype

(3) /Subsample /Average /Average /Average /Bicubic

ColorImageR
esolution

72 72 150 300 300

Compatibility
Level

1.7 1.5 1.5 1.7 1.7

CompressPa
ges

(14) true = = = =

ConvertCMY
KImagesToR
GB

false = = = =

ConvertImag
esToIndexed

(0) false = = = =

CoreDistVers
ion

4000 = = = =

CreateJobTic
ket

(0) false false false true true

DefaultRende
ringIntent

/Default = = = =

DetectBlends (0) true = = = =

DoThumbnail
s

(0) false false false false true

Downsample
ColorImages

false true true false false

Downsample
GrayImages

false true true false false

Downsample
MonoImages

false true true false false

EmbedAllFon
ts

true false true true true

High Level Devices

174

EmitDSCWar
nings

(0) false = = = =

EncodeColorI
mages

true = = = =

EncodeGrayI
mages

true = = = =

EncodeMono
Images

true = = = =

EndPage (0) -1 = = = =

GrayACSIma
geDict

(13) (7) (7) (10) (8) (9)

GrayImageD
epth

-1 = = = =

GrayImageDi
ct

(13) (7) = = = =

GrayImageD
ownsampleT
hreshold

1.5 = = = =

GrayImageD
ownsampleT
ype

(3) /Subsample /Average /Bicubic /Bicubic /Bicubic

GrayImageFil
ter

/DCTEncode = = = =

GrayImageR
esolution

72 72 150 300 300

ImageMemor
y

(0) 524288 = = = =

LockDistillerP
arams

false = = = =

LZWEncode
Pages

(2) false = = = =

MaxSubsetP
ct

100 = = = =

MonoImageD
epth

-1 = = = =

MonoImageD
ict

(13) <<K -1>> = = = =

MonoImageD
ownsampleT
hreshold

1.5 = = = =

MonoImageD
ownsampleT
ype

/Subsample /Subsample /Subsample /Subsample /Subsample

MonoImageFi
lter

/CCITTFaxEn
code

= = = =

MonoImageR
esolution

300 300 300 1200 1200

NeverEmbed (13) (11) (12) (11) (12) (11) (12) [] (12) [] (12)

High Level Devices

175

OffOptimizati
ons

0 = = = =

OPM 1 = = = =

Optimize (0) (5) false true true true true

ParseDSCCo
mments

true = = = =

ParseDSCCo
mmentsForD
ocInfo

true = = = =

PreserveCop
yPage

(0) true = = = =

PreserveEPS
Info

(0) true = = = =

PreserveHalft
oneInfo

false = = = =

PreserveOPI
Comments

(0) false false false true true

PreserveOve
rprintSettings

false false false true true

sRGBProfile (0) () = = = =

StartPage (0) 1 = = = =

SubsetFonts true = = = =

TransferFunc
tionInfo

(4) /Preserve = = = =

UCRandBGIn
fo

/Remove /Remove /Remove /Preserve /Preserve

UseFlateCom
pression

(2) true = = = =

UsePrologue (0) false = = = =

PassThrough
JPEGImages

(15) true = = = =

PassThrough
JPXImages

(16) true = = = =

Note 0

This parameter can be set and queried, but currently has no effect.

Note 1

-dAutoFilterxxxImages=false works since Ghostscript version 7.30. Older versions of Ghostscript don’t
examine the image to decide between JPEG and LZW or Flate compression: they always use Flate
compression.

Note 2

Because the LZW compression scheme was covered by patents at the time this device was created, pdfwrite
does not actually use LZW compression: all requests for LZW compression are ignored.
UseFlateCompression is treated as always on, but the switch CompressPages can be set to false to turn

High Level Devices

176

off page level stream compression. Now that the patent has expired, we could change this should it become
worthwhile.

Note 3

The xxxDownsampleType parameters can also have the value /Bicubic (a Distiller 4 feature), this will use a
Mitchell filter. (older versions of pdfwrite simply used Average instead). If a non-integer downsample factor is
used the code will clamp to the nearest integer (if the difference is less than 0.1) or will silently switch to the old
bicubic filter, NOT the Mitchell filter.

Note 4

The default for transfer functions is to preserve them, this is because transfer functions are a device-dependent
feature, a set of transfer functions designed for an RGB device will give incorrect output on a CMYK device for
instance. The pdfwrite device does now support /Preserve, /Apply and /Remove (the previous
documentation was incorrect, application of transfer functions was not supported). PDF 2.0 deprecates the use
of transfer functions, and so when producing PDF 2.0 compatible output if the TransferFunctionInfor is set
to /Preserve it will be silently replaced with /Apply. You can instead specifically set
TransferFunctionInfo to /Remove when producing PDF 2.0 in order to avoid the transfer function being
applied.

Note 5

Use the -dFastWebView command line switch to ‘optimize’ output.

Note 6

The value UseDeviceIndependentColorForImages works the same as UseDeviceIndependentColor.
The value sRGB actually converts to RGB with the default Ghostscript conversion. The new Ghostscript-specific
value Gray converts all colors to DeviceGray. With the introduction of new color conversion code in version
9.11 it is no longer necessary to set ProcessColorModel when selecting Gray, RGB or CMYK. It is also no
longer necessary to set UseCIEColor for UseDeviceIndependentColor to work properly, and the use of
UseCIEColor is now strongly discouraged.

Note 7

The default image parameter dictionary is:

<< /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>

Note 8

The printer ACS image parameter dictionary is:

<< /QFactor 0.4 /Blend 1 /ColorTransform 1 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >>

Note 9

The prepress ACS image parameter dictionary is:

<< /QFactor 0.15 /Blend 1 /ColorTransform 1 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >>

Note 10

The screen and ebook ACS image parameter dictionary is:

<< /QFactor 0.76 /Blend 1 /ColorTransform 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>

Note 11

High Level Devices

177

The default, screen, and ebook settings never embed the 14 standard fonts (Courier, Helvetica, and Times
families, Symbol, and ZapfDingbats). This behaviour is intentional but can be overridden by:

<< /NeverEmbed [] >> setdistillerparams

Note 12

NeverEmbed can include CID font names. If a CID font is substituted in lib/cidfmap, the substitute font name
is used when the CID font is embedded, and the original CID font name is used when it is not embedded.
NeverEmbed should always specify the original CID font name.

Note 13

The arrays AlwaysEmbed and NeverEmbed and image parameter dictionaries ColorACSImageDict, ColorACSImageDict, ColorImageDict, GrayACSImageDict, GrayImageDict,
MonoImageDict cannot be specified on the command line. To specify these, you must use PostScript, either by including it in the PostScript source or by passing the -c command-line parameter to
Ghostscript as described in Limitations below. For example, including the PostScript string in your file in.ps:

<</AlwaysEmbed [/Helvetica /Times-Roman]>> setdistillerparams

is equivalent to invoking:

gs -dBATCH -dSAFER -DNOPAUSE -q -sDEVICE=pdfwrite -sOutputFile=out.pdf -c '<</AlwaysEmbed [/Helvetica /Times-Roman]>> setdistillerparams' -f in.ps

or using the extra parameters in a file:

@params.in

where the file params.in contains:

-c '<</AlwaysEmbed [/Helvetica /Times-Roman]>> setdistillerparams' -f in.ps

Note 14

The default value of CompressPages is false for ps2write and eps2write.

Note 15

When true image data in the source which is encoded using the DCT (JPEG) filter will not be decompressed and
then recompressed on output. This prevents the multiplication of JPEG artefacts caused by lossy compression.
PassThroughJPEGImages currently only affects simple JPEG images. It has no effect on JPX (JPEG2000)
encoded images (see below) or masked images. In addition this parameter will be ignored if the pdfwrite device
needs to modify the source data. This can happen if the image is being downsampled, changing colour space or
having transfer functions applied. Note that this parameter essentially overrides the EncodeColorImages and
EncodeGrayImages parameters if they are false, the image will still be written with a DCTDecode filter. NB this
feature currently only works with PostScript or PDF input, it does not work with PCL, PXL or XPS input.

Note 16

When true image data in the source which is encoded using the JPX (JPEG 2000) filter will not be
decompressed and then recompressed on output. This prevents the multiplication of JPEG artefacts caused by
lossy compression. PassThroughJPXImages currently only affects simple JPX encoded images. It has no
effect on JPEG encoded images (see above) or masked images. In addition this parameter will be ignored if the
pdfwrite device needs to modify the source data. This can happen if the image is being downsampled, changing
colour space or having transfer functions applied. Note that this parameter essentially overrides the
EncodeColorImages and EncodeGrayImages parameters if they are false, the image will still be written with
a JPXDecode filter. NB this feature currently only works with PostScript or PDF input, it does not work with PCL,
PXL or XPS input.

High Level Devices

178

Color Conversion and Management

As of the 9.11 pre-release, the color management in the pdfwrite family has been substantially altered so that it now
uses the same Color Management System as rendering (the default is LCMS2). This considerably improves the color
handling in both pdfwrite and ps2write, particularly in the areas of Separation and devicen color spaces, and
Indexed color spaces with images.

Note that while pdfwrite uses the same CMS as the rendering devices, this does not mean that the entire suite of
options is available, as described in the GS9_Colour Management.pdf file. The colour management code has no
effect at all unless either ColorConversionStrategy or ConvertCMYKImagesToRGB is set, or content has to be
rendered to an image (this is rare and usually required only when converting a PDF file with transparency to a
version < PDF 1.4).

Options based on object type (image, text, linework) are not used, all objects are converted using the same scheme.
-dKPreserve has no effect because we will not convert CMYK to CMYK. -dDeviceGrayToK also has no effect;
when converting to CMYK DeviceGray objects are left in DeviceGray since that can be mapped directly to the K
channel.

The ColorConversionStrategy switch can now be set to LeaveColorUnchanged, Gray, RGB, CMYK or
UseDeviceIndependentColor. Note that, particularly for ps2write, LeaveColorUnchanged may still need to
convert colors into a different space (ICCbased colors cannot be represented in PostScript for example).
ColorConversionStrategy can be specified either as; a string by using the -s switch
(-sColorConversionStrategy=RGB) or as a name using the -d switch
(-dColorConversionStrategy=/RGB). ps2write cannot currently convert into device-independent color spaces,
and so UseDeviceIndependentColor should not be used with ps2write (or eps2write).

All other color spaces are converted appropriately. Separation and devicen spaces will be preserved if possible
(ps2write cannot preserve devicen or Lab) and if the alternate space is not appropriate a new alternate space will be
created, e.g. a [/Separation (MyColor) /DeviceRGB {...}] when the ColorConversionStrategy is
set to CMYK would be converted to [/Separation (MyColor) /DeviceCMYK {...}] The new tint transform
will be created by sampling the original tint transform, converting the RGB values into CMYK, and then creating a
function to linearly interpolate between those values.

The PreserveSeparation switch now controls whether the pdfwrite family of devices will attempt to preserve
Separation spaces. If this is set to false then all Separation colours will be converted into the current device
space specified by ProcessColorModel.

Setting page orientation

By default Ghostscript determines viewing page orientation based on the dominant text orientation on the page.
Sometimes, when the page has text in several orientations or has no text at all, wrong orientation can be selected.

Acrobat Distiller parameter AutoRotatePages controls the automatic orientation selection algorithm. On
Ghostscript, besides input stream, Distiller parameters can be given as command line arguments. For instance:
-dAutoRotatePages=/None or /All or /PageByPage.

When there is no text on the page or automatic page rotation is set to /None an orientation value from
setpagedevice is used. Valid values are: 0 (portrait), 3 (landscape), 2 (upside down), and 1 (seascape). The
orientation can be set from the command line as -c "<</Orientation 3>> setpagedevice" using
Ghostscript directly but cannot be set in ps2pdf. See Limitations below.

Ghostscript passes the orientation values from DSC comments to the pdfwrite driver, and these are compared with
the auto-rotate heuristic. If they are different then the DSC value will be used preferentially. If the heuristic is to be
preferred over the DSC comments then comment parsing can be disabled by setting
-dParseDSCComments=false.

Controls and features specific to PostScript and PDF input

-dPDFSETTINGS=configuration

Presets the “distiller parameters” to one of the following predefined settings:

• /screen selects low-resolution output similar to the Acrobat Distiller (up to version X) “Screen Optimized”
setting.

• /ebook selects medium-resolution output similar to the Acrobat Distiller (up to version X) “eBook” setting.

High Level Devices

179

• /printer selects output similar to the Acrobat Distiller “Print Optimized” (up to version X) setting.

• /prepress selects output similar to Acrobat Distiller “Prepress Optimized” (up to version X) setting.

• /default selects output intended to be useful across a wide variety of uses, possibly at the expense of a
larger output file.

Note

Adobe has recently changed the names of the presets it uses in Adobe Acrobat Distiller, in order to avoid
confusion with earlier versions we do not plan to change the names of the PDFSETTINGS parameters. The
precise value for each control is listed in the table above.

Please be aware that the /prepress setting does not indicate the highest quality conversion. Using any of these
presets will involve altering the input, and as such may result in a PDF of poorer quality (compared to the input) than
simply using the defaults. The ‘best’ quality (where best means closest to the original input) is obtained by not setting
this parameter at all (or by using /default).

The PDFSETTINGS presets should only be used if you are sure you understand that the output will be altered in a
variety of ways from the input. It is usually better to adjust the controls individually (see the table below) if you have a
genuine requirement to produce, for example, a PDF file where the images are reduced in resolution.

Controls and features specific to PCL and PXL input

Many of the controls used for distiller parameters can be used on the command line with the -d or -s switches, and
these will work correctly with PCL or PXL input. However, some controls (e.g. /NeverEmbed) do not take simple
numeric or string arguments, and these cannot be set from the command line. When the input is PostScript or PDF
we can use the -c and -f switches to send PostScript through the interpreter to control these parameters, but
clearly this is not possible when the interpreter does not understand PostScript. In addition some features are
controlled using the PostScript pdfmark operator and again that clearly is not possible unless we are using a
PostScript interpreter to read the input.

To overcome this new, GhostPCL-specific, PJL parameters have been added. These parameters are defined as
PDFMARK and SETDISTILLERPARAMS. In order to reduce confusion when using PostScript and PCL as inputs these
PJL parameters take essentially the same PostScript constructs as the corresponding PostScript operators pdfmark
and setdistillerparams. However it is important to realise that these are not processed by a full PostScript
interpreter, and there are syntactic rules which must be followed carefully when using these parameters.

You cannot use arbitrary PostScript operators, only boolean, number, name, string, array and dictionary objects are
supported (but see PUTFILE later). All tokens must be separated by white space, so while this [/Test(string)]
is perfectly valid in PostScript, you must instead write it as [/Test (string)] for PJL parsing. All PDFMARK
and SETDISTILLERPARAMS must be set as DEFAULT, the values must be on a single line, and delimited by "".

pdfmarks sometimes require the insertion of file objects (especially for production of PDF/A files) so we must find
some way to handle these. This is done (for the pdfmark case only) by defining a special (non-standard) pdfmark
name PUTFILE, this simply takes the preceding string, and uses it as a fully qualified path to a file. Any further
pdfmark operations can then use the named object holding the file to access it.

The easiest way to use these parameters is to create a ‘settings’ file, put all the commands in it, and then put it on
the command line immediately before the real input file. For example:

./gpcl6 -sDEVICE=pdfwrite -dPDFA=1 -dCompressPages=false -dCompressFonts=false -sOutputFile=./out.pdf ./pdfa.pjl ./input.pcl

Where pdfa.pjl contains the PJL commands to create a PDF/A-1b file (see example below).

Example creation of a PDF/A output file

For readability the line has been bisected, when used for real this must be a single line. The ‘ESC’ represents a
single byte, value 0x1B, an escape character in ASCII. The line must end with an ASCII newline (\n, 0x0A) and
this must be the only newline following the @PJL. The line breaks between "" below should be replaced with space
characters, the double quote characters (") are required.

ESC%-12345X
@PJL DEFAULT PDFMARK = "

High Level Devices

180

[/_objdef {icc_PDFA} /type /stream /OBJ pdfmark
[{icc_PDFA} << /N 3 >> /PUT pdfmark
[{icc_PDFA} (/ghostpdl/iccprofiles/default_rgb.icc) /PUTFILE pdfmark
[/_objdef {OutputIntent_PDFA} /type /dict /OBJ pdfmark
[{OutputIntent_PDFA} << /S /GTS_PDFA1 /Type /OutputIntent /DestOutputProfile {icc_PDFA} /OutputConditionIdentifier (sRGB) >> /PUT pdfmark
[{Catalog} << /OutputIntents [{OutputIntent_PDFA}] >> /PUT pdfmark
[/Author (Ken) /Creator (also Ken) /Title (PDF/A-1b) /DOCINFO pdfmark
"

Example using DISTILLERPARAMS to set the quality of JPEG compression

ESC%-12345X @PJL DEFAULT SETDISTILLERPARAMS = "<< /ColorImageDict << /QFactor 0.7 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> >>"

PDF file output

-dMaxInlineImageSize=integer

Specifies the maximum size of an inline image, in bytes. For images larger than this size, pdfwrite will create an
XObject instead of embedding the image into the context stream. The default value is 4000. Note that redundant
inline images must be embedded each time they occur in the document, while multiple references can be made
to a single XObject image. Therefore it may be advantageous to set a small or zero value if the source document
is expected to contain multiple identical images, reducing the size of the generated PDF.

-dDoNumCopies

When present, causes pdfwrite to use the #copies or /NumCopies entry in the page device dictionary to
duplicate each page in the output PDF file as many times as the ‘copies’ value. This is intended for use by
workflow applications like cups and should not be used for generating general purpose PDF files. In particular
any pdfmark operations which rely on page numbers, such as Link or Outline annotations will not work
correctly with this flag.

-dDetectDuplicateImages

Takes a Boolean argument, when set to true (the default) pdfwrite will compare all new images with all the
images encountered to date (NOT small images which are stored in-line) to see if the new image is a duplicate
of an earlier one. If it is a duplicate then instead of writing a new image into the PDF file, the PDF will reuse the
reference to the earlier image. This can considerably reduce the size of the output PDF file, but increases the
time taken to process the file. This time grows exponentially as more images are added, and on large input files
with numerous images can be prohibitively slow. Setting this to false will improve performance at the cost of final
file size.

-dFastWebView

Takes a Boolean argument, default is false. When set to true pdfwrite will reorder the output PDF file to conform
to the Adobe ‘linearised’ PDF specification. The Acrobat user interface refers to this as ‘Optimised for Fast Web
Viewing’. Note that this will cause the conversion to PDF to be slightly slower and will usually result in a slightly
larger PDF file. This option is incompatible with producing an encrypted (password protected) PDF file.

-dPreserveAnnots=boolean

We now attempt to preserve most annotations from input PDF files as annotations in the output PDF file (note,
not in output PostScript!). There are a few annotation types which are not preserved, most notably Link and
Widget annotations. However, should you wish to revert to the old behaviour, or find that the new behaviour
leads to problems, you can set this switch to false which will cause all annotations to be inserted into the page
content stream, instead of preserved as annotations.

In addition, finer control is available by defining an array /PreserveAnnotTypes. Annotation types listed in
this array will be preserved, whilst those not listed will be drawn according to the setting of ShowAnnots and
ShowAnnotTypes. By using the controls PreserveAnnots, PreserveAnnotTypes, ShowAnnots and
ShowAnnotTypes it is possible to select by annotation type whether annotations are preserved as annotations,
drawn into the page, or simply dropped.

To use this feature: -c "/PreserveAnnotTypes [....] def" -f <input file>

Where the array can contain one or more of the following names: /Stamp, /Squiggly, /Underline, /Link,
/Text, /Highlight, /Ink, /FreeText, /StrikeOut and /stamp_dict.

High Level Devices

181

For example, adding the follow to the command line:
-c "/PreserveAnnotTypes [/Text /UnderLine] def" -f <input file> would preserve only
annotations with the subtypes “Text” and “UnderLine”.

-dPreserveMarkedContent=boolean

We now attempt to preserve marked content from input PDF files through to the output PDF file (note, not in
output PostScript!) This does not include marked content relating to optional content, because currently we do
not preserve optional content, it is instead applied by the interpreter.

This control also requires the PDF interpreter to pass the marked content to the pdfwrite device, this is only done
with the new (C-based) PDF interpreter. The old (PostScript-based) interpreter does not support this feature and
will not pass marked content to the pdfwrite device.

-dOmitInfoDateboolean

Under some conditions the CreationDate and ModDate in the /Info dictionary are optional and can be
omitted. They are required when producing PDF/X output however. This control will allow the user to omit the
/CreationDate and /ModDate entries in the Info dictionary (and the corresponding information in the XMP
metadata, if present). If you try to set this control when writing PDF/X output, the device will give a warning and
ignore this control.

-dOmitIDboolean

Under some conditions the /ID array trailer dictionary is optional and can be omitted. It is required when
producing PDF 2.0, or encrypted PDFs however. This control will allow the user to omit the /ID entry in the
trailer dictionary. If you try to set this control when writing PDF 2.0 or encrypted PDF output, the device will give
a warning and ignore this control.

-dOmitXMPboolean

Under some conditions the XMP /Metadata entry in the Catalog dictionary is optional and can be omitted. It
is required when producing PDF/A output however. This control will allow the user to omit the /Metadata entry
in the Catalog dictionary. If you try to set this control when writing PDF/A output, the device will give a warning
and ignore this control.

The following options are useful for creating PDF 1.2 files:

-dPatternImagemask=boolean

With CompatibilityLevel < 1.3 it specifies whether the target viewer handles ImageMask with a pattern color.
Some old viewers, such as Ghostscript 3.30 fail with such constructs. Setting this option to false, one can get
more compatibility, but the mask interpolation is lost. With CompatibilityLevel ≥ 1.3 this option is ignored. Default
value is false.

-dMaxClipPathSize=integer

Specifies the maximum number of elements in the clipping path that the target viewer can handle. This option is
used only with CompatibilityLevel < 1.3 and PatternImagemask=false, and only when converting a
mask into a clipping path. If the clipping path exceeds the specified size, the masked image and the clipping
path is decomposed into smaller images. The value of the option counts straight path segments (curved
segments are not used for representing a mask). Default value is 12000.

-dMaxShadingBitmapSize=integer

Specifies the maximum number of bytes allowed for representing a shading as a bitmap. If a shading exceeds
this value, the resolution of the output bitmap is reduced to fit into the specified number of bytes. Note that the
number of bytes depends on the number of color components in ProcessColorModel or
ColorConversionStrategy, assumes 8 bits per sample, and doesn’t consider image compression or
downsampling. The image is rendered at the current resolution as specified by -r or the default of 720 dpi.
Default value is 256000. In general larger values will result in higher quality, but the output file size may increase
dramatically, particularly with shadings which cover large areas. Shadings should generally only be rendered to
images if CompatibilityLevel is 1.2 or less or if ColorCoversionStrategy specifies a color space
different to that of the shading.

-dHaveTrueTypes=boolean

With CompatibilityLevel < 1.3 it specifies whether the target viewer can handle TrueType fonts. If not,
TrueType fonts are converted into raster fonts with resolution specified in HWResolution. Note that large text
at higher resolutions results in very large bitmaps which are likely to defeat caching in many printers. As a result
the text is emitted as simple images rather than as a (type 3) bitmap font. The PostScript user parameter
MaxFontItem can be used to increase the maximum size of a cache entry which will increase the

High Level Devices

182

size/resolution of the text which can be stored in a font. With CompatibilityLevel ≥ 1.3 this option is
ignored. Default value is true.

The following options are useful for creating PDF 1.3 files:

-dHaveTransparency=boolean

With CompatibilityLevel ≥ 1.4 it specifies whether the target viewer can handle PDF 1.4 transparency
objects. If not, the page is converted into a single plain image with all transparency flattened. Default value is
true.

The following option specifies creation of a PDF/X-3 file:

-dPDFX=boolean

Specifies the generated document is to follow the PDF/X-3 standard. When true, a DefaultRGB ColorSpace
resource must be defined, and options NOSUBSTDEVICECOLORS, NOCIE must not be specified. Default value is
false.

The pdfwrite device does not currently support PDF/X versions other than 3.

When generating a PDF/X-3 document, Ghostscript performs the following special actions to satisfy the PDF/X-3
standard:

• All fonts are embedded.

• DeviceRGB color space is substituted with the DefaultRGB color space, which must be defined in the
ColorSpace category. The easiest way is to provide it in the DefaultRGB file in the resource directory.

• DeviceRGB color values are passed unchanged. If a user needs a non trivial color adjustment, a non trivial
DefaultRGB color space must be defined.

• Transfer functions and halftone phases are skipped.

• /PS pdfmark interprets the DataSource stream or file.

• TrimBox and BleedBox entries are generated in page descriptions. Their values can be changed using the
PDFXTrimBoxToMediaBoxOffset, PDFXSetBleedBoxToMediaBox, and
PDFXBleedBoxToTrimBoxOffset distiller parameters (see below).

The following switches are used for creating encrypted documents:

-sOwnerPassword=string

Defines that the document be encrypted with the specified owner password.

-sUserPassword=string

Defines the user password for opening the document. If empty, the document can be opened with no password,
but the owner password is required to edit it.

-dPermissions=number

Defines the PDF permissions flag field. Negative values are allowed to represent unsigned integers with the
highest bit set. See the PDF Reference manual for the meaning of the flag bits.

-dEncryptionR=number

Defines the encryption method revision number - either 2 or 3.

-dKeyLength=number

Defines the length (in bits) of the encryption key. Must be a multiple of 8 in the interval [40, 128]. If the length
isn’t 40, -dEncryptionR must be 3.

The following switches are used for generating metadata according to the Adobe XMP specification :

-sDocumentUUID=string

Defines a DocumentID to be included into the document Metadata. If not specified, Ghostscript generates an
UUID automatically. Otherwise the specified string is copied into the document without checking its syntax or
consistence.

Note that Adobe XMP specification requires DocumentID must be same for all versions of a document. Since
Ghostscript does not provide a maintenance of document versions, users are responsible to provide a correct
UUID through this parameter.

Note that Ghostscript has no access to the host node ID due to a minimization of platform dependent modules.
Therefore it uses an MD5 hash of the document contents for generating UUIDs.

High Level Devices

183

-sInstanceUUID=string

Defines a instance ID to be included into the document Metadata. If not specified, Ghostscript generates an
UUID automatically. Otherwise the specified string is copied into the document without checking its syntax or
consistence.

Note that the Adobe XMP specification requires the instance ID to be unique for all versions of the document.
This parameter may be used to disable unique ID generation for debug purposes.

When none of DocumentUUID and InstanceUUID are specified, the generated DocumentID appears same
as instance ID.

-sDocumentTimeSeq=integer

Defines an integer to be used as a deconflictor for generating UUIDs, when several invocations of Ghostscript
create several PDF documents within same clock quantum (tick). Mainly reserved for very fast computers and/or
multithreading applications, which may appear in future. If both DocumentUUID and InstanceUUID are
specified, DocumentTimeSeq is ignored.

-sDSCEncoding=string

Defines the name of a Postscript encoding in which DSC comments in the source document are encoded. If
specified, the comments are converted from that encoding into Unicode UTF-8 when writing Metadata. If not
specified, the comments are copied to Metadata with no conversion. Note that Adobe Distiller for Windows
uses the default locale’s code page for this translation, so it’s result may differ from Ghostscript. Adobe Acrobat
appears to use PDFDocEncoding when displaying document’s properties, so we recommend this value.

-sUseOCR=string

Controls the use of OCR in pdfwrite. If enabled this will use an OCR engine to analyse the glyph bitmaps used to
draw text in a PDF file, and the resulting Unicode code points are then used to construct a ToUnicode CMap.

PDF files containing ToUnicode CMaps can be searched, use copy/paste and extract the text, subject to the
accuracy of the ToUnicode CMap. Since not all PDF files contain these it can be beneficial to create them.

Note that, for English text, it is possible that the existing standard character encoding (which most PDF
consumers will fall back to in the absence of Unicode information) is better than using OCR, as OCR is not a
100% reliable process. OCR processing is also comparatively slow.

For the reasons above it is useful to be able to exercise some control over the action of pdfwrite when OCR
processing is available, and the UseOCR parameter provides that control. There are three possible values:

• Never Default - don’t use OCR at all even if support is built-in.

• AsNeeded If there is no existing ToUnicode information, use OCR.

• Always Ignore any existing information and always use OCR.

Our experimentation with the Tesseract OCR engine has shown that the more text we can supply for the engine
to look at, the better the result we get. We are, unfortunately, limited to the graphics library operations for text as
follows.

The code works on text ‘fragments’; these are the text sequences sent to the text operators of the source
language. Generally most input languages will try to send text in its simplest form, eg “Hello”, but the
requirements of justification, kerning and so on mean that sometimes each character is positioned
independently on the page.

So pdfwrite renders all the bitmaps for every character in the text document, when set up to use OCR. Later, if
any character in the font does not have a Unicode value already we use the bitmaps to assemble a ‘strip’ of text
which we then send to the OCR engine. If the engine returns a different number of recognised characters than
we expected then we ignore that result. We’ve found that (for English text) constructions such as “. The” tend to
ignore the full stop, presumably because the OCR engine thinks that it is simply noise. In contrast “text.” does
identify the full stop correctly. So by ignoring the failed result we can potentially get a better result later in the
document.

Obviously this is all heuristic and undoubtedly there is more we can do to improve the functionality here, but we
need concrete examples to work from.

High Level Devices

184

PostScript file output

The ps2write device handles the same set of distiller parameters as are handled by the pdfwrite device (and 2 unique
extensions, see below).

The option -dMaxInlineImageSize=integer must not be used with ps2write as all images are inline in
PostScript.

There are also two additional (not Adobe-standard) Distiller parameters, specific to ps2write:

/PSDocOptions string

No default value. If defined, the contents of the string will be emitted in the output PostScript prolog enclosed
within %%BeginSetup and %%EndSetup comments. This is intended as a means of introducing device-specific
document wide setup or configuration options into the output. Default media selection, printer resolution etc
might be included here.

/PSPageOptions array of strings

No default value. If defined, the contents of the strings in the array will be emitted in the output PostScript at the
start of each page, one string per page, enclosed within %%BeginPageSetup and %%EndPageSetup
comments. This is intended as a means of introducing device-specific setup or configuration options into the
output on a page by page basis. The strings are used from the array sequentially, if there are more pages than
strings then we ‘wrap round’ and start again with the first string. This makes it convenient to do setup for
even/odd pages by simply including 2 strings in the array.

Note

Executing setpagedevice will reset distiller parameters to the default, if you use any of these options via
setdistillerparams, and expect to execute setpagedevice, you should set /LockDistillerParams
true. Ordinarily the PDF interpreter executes setpagedevice for every page in order to set the media size.

Note

The strings contained in PSDocOptions, and the PSPageOptions array, are written verbatim to the output. No
error checking is (or can be) performed on these strings and it is the users responsibility to ensure they contain
well formed PostScript which does not cause errors on the target device.

There are also the following ps2write specific options :

-dProduceDSC=boolean

Default value is true. When this value is true the output PostScript file will be constructed in a way which is
compatible with the Adobe Document Structuring Convention, and will include a set of comments appropriate for
use by document managers. This enables features such as page extraction, N-up printing and so on to be
performed. When set to false, the output file will not be DSC-compliant. Older versions of Ghostscript cannot
produce DSC-compliant output from ps2write, and the behaviour for these older versions matches the case
when ProduceDSC is false.

-dCompressEntireFile=boolean

When this parameter is true, the LZWEncode and ASCII85Encode filters will be applied to the entire output file.
In this case CompressPages should be false to prevent a dual compression. When this parameter is false,
these filters will be applied to the initial procset only, if CompressPages is true. Default value is false.

Note

It is not possible to set CompressEntireFile when ProduceDSC is true as a single compressed object cannot
conform to the DSC. It is possible to set CompressPages which will also compress the ps2write ProcSet.

High Level Devices

185

Controlling device specific behaviour

A few options can be used to influence the behavior of a printer or PostScript interpreter that reads the result of
ps2ps2. All of these options are incompatible with DSC-compliant PostScript, in order to use any of them
ProduceDSC must be set to false.

-dRotatePages=boolean

The printer will rotate pages for a better fit with the physical size. Default value : false. Must be false if
-dSetPageSize=true.

-dFitPages=boolean

The printer will scale pages down to better fit the physical page size. The rendering quality may be poor due to
the scaling, especially for fonts which Ghostscript had converted into bitmaps (see the ps2write device
parameter HaveTrueTypes; See options about the PageSize entry of the Policies dictionary while the
conversion step). Default value : false. Must be false if -dSetPageSize=true or -dCenterPages=true.

-dCenterPages=boolean

The printer will center the page image on the selected media. Compatible with -dRotatePages=true, which
may rotate the image on the media if it fits better, and then center it. Default value : false. Must be false if
-dSetPageSize=true or -dFitPages=true.

-dSetPageSize=boolean

The printer will try to set page size from the job. Only use with printers which can handle random PageSize.
Defaults to true, must be false if -dRotatePages=true, -dCenterPages=true or -dFitPages=true.

-dDoNumCopies=boolean

The PostScript emitted by ps2write will try to use copypage to create the number of copies originally requested.
Note that this relies on the level 2 semantics for copypage and will not reliably work on language level 3
devices (such as Ghostscript itself). Defaults to false.

This flag is not compatible with the ProduceDSC flag which will take precedence if set.

These correspond to keys in the Postscript userdict of the target printer’s virtual memory to control its behavior while
executing a job generated with ps2write.

These keys can be set when executing using the ps2write device, this ‘fixes’ the resulting behaviour according to
which key has been set. If these keys are not defined during conversion, the resulting PostScript will not attempt any
form of media selection. In this case the behaviour can then be modified by setting the keys, either by modifying the
resulting PostScript or setting the values in some other manner on the target device.

See also the distiller params PSDocOptions and PSPageOptions mentioned above.

Encapsulated PostScript (EPS) file output

The eps2write device is the same as the ps2write device, except that it produces Encapsulated PostScript, which is
intended to be imported into another document and treated as a ‘black box’. There are certain restrictions which EPS
files must follow, the primary one being that they must be DSC conformant. This means that you must not set
-dProduceDSC to false.

In addition EPS files may only contain a single page and may not contain device-specific PostScript. You should
therefore not use the PSDocOptions or PSPageOptions or any of the switches noted in the ps2write section
above under Controlling device specific behaviour.

Creating a PDF/X-3 document
To create a PDF/X-3 document from a Postscript or a PDF file, you should :

• Specify the pdfwrite device or use the ps2pdf script.

• Specify the -dPDFX option. It provides the document conformity and forces -dCompatibilityLevel=1.3.

• Specify -sColorConversionStrategy=Gray, -sColorConversionStrategy=CMYK or
-sColorConversionStrategy=UseDeviceIndependentColor (RGB is not allowed). If you plan to
create a device-independent color PDF file then you should set the ProcessColorModel using
-sProcessColorModel=DeviceGray or -sProcessColorModel=DeviceCMYK.

High Level Devices

186

• Specify a PDF/X definition file before running the input document. It provides additional information to be
included into the output document. A sample PDF/X definition file may be found in gs/lib/PDFX_def.ps.
You will need to modify the content of this file; in particular you must alter the /ICCProfile so that it points to
a valid ICC profile for your OutputCondition. The string ‘(…)’ defining the ICCProfile must be a fully qualified
device and path specification appropriate for your Operating System.

• If a registered printing condition is applicable, specify its identifier in the PDF/X definition file. Otherwise provide
an ICC profile and specify it in the PDF/X definition file as explained below.

• Provide a DefaultRGB resource file in the ColorSpace resource category. Either define it in the PDF/X
definition file, or provide a definition of gs/Resource/ColorSpace/DefaultRGB.
gs/Resource/ColorSpace/DefaultRGB is usually distributed with Ghostscript, its content may not
necessarily satisfy your needs, see below.

Note

Unless -dNOSAFER is specified (NOT reccomended!) the ICC profile will be read using the SAFER file
permissions; you must ensure that the profile is in a directory which is readable according to the SAFER
permissions, or that the file itself is specifically made readable. See -dSAFER for details of how to set file
permissions for SAFER.

As mentioned above, the PDF/X definition file provides special information, which the PDF/X-3 standard requires.
You can find a sample file in gs/lib/PDFX_def.ps, and edit it according to your needs. The file follows Postscript
syntax and uses the operator pdfmark to pass the special information. To ease customisation the lines likely to
need editing in the sample file are marked with the comment % Customize. They are explained below.

OutputCondition string

Defines an OutputCondition value for the output intent dictionary.

OutputConditionIdentifier string

Defines an OutputConditionIdentifier value for the output intent dictionary.

ICCProfile string

May be omitted if OutputConditionIdentifier specifies a registered identifier of characterized printing
condition (see IPA_2003-11_PDFX.pdf). Defines a file name of an ICC profile file to be included into the output
document. You may specify either an absolute file name, or a relative path from the working directory.

Title string

Defines the document title. Only useful if the source Postscript file doesn’t define a title with DSC comments.
Otherwise remove entire line from definition file.

Info string

Defines an Info value for the output intent dictionary.

The Ghostscript distribution does not contain an ICC profile to be used for creating a PDF/X-3 document. Users
should either create an appropriate one themselves, or use one from a public domain, or create one with the
PDF/X-3 inspector freeware.

The PDF/X-3 standard requires a TrimBox entry to be written for all page descriptions. This is an array of four
offsets that specify how the page is to be trimmed after it has been printed. It is set to the same as MediaBox by
default unless the PDFXTrimBoxToMediaBoxOffset distiller parameter is present. It accepts offsets to the
MediaBox as an array [left right top bottom], e.g., the PostScript input code
<< /PDFXTrimBoxToMediaBoxOffset [10 20 30 40] >> setdistillerparams specifies that 10 points
will be trimmed at the left, 20 points at the right, 30 points at the top, and 40 points at the bottom.

Another page entry is the BleedBox. It gives the area of the page to which actual output items may extend; cut
marks, color bars etc. must be positioned in the area between the BleedBox and the MediaBox. The TrimBox is
always contained within the BleedBox. By default, the PDFXSetBleedBoxToMediaBox distiller parameter is true,
and the BleedBox is set to the same values as the MediaBox. If it is set to false, the
PDFXBleedBoxToTrimBoxOffset parameter gives offset to the TrimBox. It accepts a four-value array in the
same format as the PDFXTrimBoxToMediaBoxOffset parameter.

Here is a sample command line to invoke Ghostscript for generating a PDF/X-3 document :

High Level Devices

187

http://www.color.org/IPA_2003-11_PDFX.pdf

gs -dPDFX -dBATCH -dNOPAUSE -sColorConversionStrategy=CMYK -sDEVICE=pdfwrite -sOutputFile=out-x3.pdf PDFX_def.ps input.ps

Please also see the PDFACompatibilityPolicy control described under Creating a PDF/A document. The same
control is now used to specify the desired behaviour when an input file cannot be converted ‘as is’ into a PDF/X file.

Creating a PDF/A document
To create a PDF/A document, please follow the instructions for Creating a PDF/X-3 document, with the following
exceptions :

• Specify the pdfwrite device or use the ps2pdf script.

• Specify the -dPDFA option to specify PDF/A-1, -dPDFA=2 for PDF/A-2 or -dPDFA=3 for PDF/A-3.

• Specify -sColorConversionStrategy=RGB, -sColorConversionStrategy=CMYK or
-sColorConversionStrategy=UseDeviceIndependentColor. If you plan to create a
device-independent color PDF file then you should set the ProcessColorModel using
-sProcessColorModel=DeviceRGB or -sProcessColorModel=DeviceCMYK.

• Specify a PDF/A definition file before running the input document. It provides additional information to be
included in the output document. A sample PDF/A definition file may be found in gs/lib/PDFA_def.ps. You
will need to modify the content of this file; in particular you must alter the /ICCProfile so that it points to a
valid ICC profile for your OutputIntent. The string ‘(…)’ defining the ICCProfile must be a fully qualified
device and path specification appropriate for your Operating System.

There is one additional control for PDF/A output:

PDFACompatibilityPolicy integer

When an operation (e.g. pdfmark) is encountered which cannot be emitted in a PDF/A compliant file, this policy
is consulted, there are currently three possible values:

0 - (default) Include the feature or operation in the output file, the file will not be PDF/A compliant. Because the
document Catalog is emitted before this is encountered, the file will still contain PDF/A metadata but will not be
compliant. A warning will be emitted in this case.

1 - The feature or operation is ignored, the resulting PDF file will be PDF/A compliant. A warning will be emitted
for every elided feature.

2 - Processing of the file is aborted with an error, the exact error may vary depending on the nature of the PDF/A
incompatibility.

Here is a sample command line to invoke Ghostscript for generating a PDF/A document:

gs -dPDFA=1 -dBATCH -dNOPAUSE -sColorConversionStrategy=RGB -sDEVICE=pdfwrite -sOutputFile=out-a.pdf PDFA_def.ps input.ps

Ghostscript PDF Printer Description
To assist with creating a PostScript file suitable for conversion to PDF, Ghostscript includes ghostpdf.ppd, a
PostScript Printer Description (PPD) file. This allows some distiller parameters to be set when a PostScript file is
generated.

Windows XP or 2000

To install a “Ghostscript PDF” printer on Windows XP, select the Windows Control Panel, Printers and Faxes, Add a
Printer, Local Printer, Use port FILE: (Print to File), Have Disk…, select the directory containing ghostpdf.ppd and
ghostpdf.inf, select “Ghostscript PDF”, Replace existing driver (if asked), and answer the remaining questions
appropriately. After installing, open the “Ghostscript PDF” properties, select the Device Settings tab, set “Minimum
Font Size to Download as Outline” to 0 pixels.

To set distiller parameters, select the “Ghostscript PDF” Printing Preferences, then the Advanced button. The PDF
settings are under “Printer Features”.

High Level Devices

188

pdfmark extensions
In order to better support the ZugFERD electronic invoice standard and potentially other standards in the future, a
new non-standard pdfmark has been defined for use by pdfwrite.

This pdfmark allows additional Metadata to be defined which will be inserted into the Metadata generated by the
pdfwrite device. This is necessary because the standard requires a PDF/A-3 file be produced, with an extension
schema (and some additional XML data) contained within the Metadata referenced from the Catalog object.

While it would be possible to use the existing Metadata pdfmark to write a completely new set of metadata into the
Catalog, creating a conformant set of XML, with all the information synchronised with the /Info dictionary would
be challenging, this pdfmark allows the pdfwrite device to generate all the normal information leaving the user with
only the task of specifying the additional data.
[/XML (string containing additional XMP data) /Ext_Metadata pdfmark

Limitations
The pdfwrite family will sometimes convert input constructs to lower-level ones, even if a higher-level construct is
available. For example, if the PostScript file uses charpath to set a clipping path consisting of text, pdfwrite may
write the clipping path as a path in the PDF file, rather than as text, even though PDF is able to express clipping with
text. This is only a performance issue, and will be improved incrementally over time.

Some applications, such as HIGZ, produce PostScript files that use ridiculously large coordinates. On such files,
pdfwrite may cause a limitcheck error. If this occurs, try reducing the default internal resolution of 720 dpi by using
the -r switch, e.g., -r300 somefile.ps.

pdfwrite ignores the PDF 1.3 (Acrobat 4.x) pdfmarks related to document content structure: StRoleMap,
StClassMap, StPNE, StBookmarkRoot, StPush, StPop, StPopAll, StBMC, StBDC, EMC, StOBJ, StAttr,
StStore, StRetrieve, NamespacePush, NamespacePop, and NI. While this causes some structural information
to be omitted from the output file, the displayed and printed output are normally not affected.

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

High Level Devices

189

http://www.ferd-net.de/front_content.php?idcat=231&changelang=4
https://www.artifex.com

The Interface between Ghostscript and Device Drivers

Adding a driver
To add a driver to Ghostscript, first pick a name for your device, say “smurf”. (Device names must be 1 to 8
characters, begin with a letter, and consist only of letters, digits, and underscores. Case is significant: all current
device names are lower case.) Then all you need do is edit contrib.mak in two places.

1. The list of devices, in the section headed “Catalog”. Add “smurf” to the list.

2. The section headed “Device drivers”.

Suppose the files containing the “smurf” driver are called “joe” and “fred”. Then you should add the following lines:

------ The SMURF device ------

smurf_=$(GLOBJ)joe.$(OBJ) $(GLOBJ)fred.$(OBJ)
$(DD)smurf.dev: $(smurf_)
 $(SETDEV) $(DD)smurf $(smurf_)

$(GLOBJ)joe.$(OBJ) : $(GLSRC)joe.c
 $(GLCC) $(GLO_)joe.$(OBJ) $(C_) $(GLSRC)joe.c

$(GLOBJ)fred.$(OBJ) : $(GLSRC)fred.c
 $(GLCC) $(GLO_)fred.$(OBJ) $(C_) $(GLSRC)fred.c

and whatever joe.c and fred.c depend on. If the “smurf” driver also needs special libraries, for instance a library
named “gorf”, then the entry should look like this:

$(DD)smurf.dev : $(smurf_)
 $(SETDEV) $(DD)smurf $(smurf_)
 $(ADDMOD) $(DD)smurf -lib gorf

If, as will usually be the case, your driver is a printer driver (as discussed below), the device entry should look like
this:

$(DD)smurf.dev : $(smurf_) $(GLD)page.dev
$(SETPDEV) $(DD)smurf $(smurf_)

or:

$(DD)smurf.dev : $(smurf_) $(GLD)page.dev
$(SETPDEV) $(DD)smurf $(smurf_)
$(ADDMOD) $(DD)smurf -lib gorf

Note

The space before the :, and the explicit compilation rules for the .c files, are required for portability.

Keeping things simple
If you want to add a simple device (specifically, a monochrome printer), you probably don’t need to read the rest of
this document; just use the code in an existing driver as a guide. The Epson and Canon BubbleJet drivers
gdevepsn.c and gdevbj10.c are good models for dot-matrix printers, which require presenting the data for many
scan lines at once; the DeskJet/LaserJet drivers in gdevdjet.c are good models for laser printers, which take a
single scan line at a time but support data compression. For color printers, there are unfortunately no good models:
the two major color inkjet printer drivers, gdevcdj.c and gdevstc.c, are far too complex to read.

On the other hand, if you’re writing a driver for some more esoteric device, you probably do need at least some of the
information in the rest of this document. It might be a good idea for you to read it in conjunction with one of the
existing drivers.

The Interface between Ghostscript and Device Drivers

191

Duplication of code, and sheer volume of code, is a serious maintenance and distribution problem for Ghostscript. If
your device is similar to an existing one, try to implement your driver by adding some parameterization to an existing
driver rather than by copying code to create an entirely new source module. gdevepsn.c and gdevdjet.c are
good examples of this approach.

Driver structure
A device is represented by a structure divided into three parts:

1. Parameters that are present in all devices but may be different for each device or instance.

2. An initialize_device_procs procedure.

3. Device-specific parameters that may be different for each instance.

A prototype of the parameter structure (including both generic and device-specific parameters) is defined and
initialized at compile time, but is copied and filled in when an instance of the device is created. This structure should
be declared as const, but for backward compatibility reasons it is not.

The gx_device_common macro defines the common structure elements, with the intent that devices define and
export a structure along the following lines. Do not fill in the individual generic parameter values in the usual way for
C structures: use the macros defined for this purpose in gxdevice.h or, if applicable, gdevprn.h.

typedef struct smurf_device_s {
 gx_device_common;
 ... device-specific parameters ...
} smurf_device;
smurf_device gs_smurf_device = {
 ... macro for generic parameter values ...,
 initialize_device_procs,
 ... device-specific parameter values if any ...
};

The device structure instance must have the name gs_smurf_device, where “smurf” is the device name used in
contrib.mak. gx_device_common is a macro consisting only of the element definitions.

The initialize_device_procs function pointer is called when the device is created. Its sole job is to initialize
the entries in the device procedure table. On entry, the device procedure table will be full of NULL pointers. On exit,
any NULLs left in the table will be filled in with pointers to the default routines. Therefore, the routine should set any
non-default entries itself.

Devices that are (in object-oriented terms) derived from ‘base’ classes (for instance a new printer device that derives
from the prn device) can call provided helper functions for setting the standard functions for that base class.

For example, if the “smurf” device was a printer device, its initialize_device_procs procedure might look like:

static void smurf_initialize_device_procs(gx_device *dev) {
 /* We are derived from a prn device, and can print in the background */
 gdev_prn_initialize_bg(dev);

 /* Override functions for our specifics */
 set_dev_proc(dev, map_color_rgb, smurf_map_color_rgb);
 set_dev_proc(dev, map_rgb_color, smurf_map_rgb_color);
 ...
}

The initialize procedure function pointer does not live in the in the device procedure table (and as such is statically
initialized at compile time). Nonetheless, we refer to this as being a device procedure in the rest of the discussion
here.

Note that the initialize_device_procs function may be called with a pointer to a gx_device rather than to
the derived device class. This happens frequently when one device wants to obtain the prototype of another to copy
device procedures around. Initialization of items in the device other than device procs should therefore be reserved
for the initialize_device device procedure.

The Interface between Ghostscript and Device Drivers

192

The use of the initialize procedure is new to Ghostscript 9.55. Previous versions used a statically initialized table of
device procedures. We changed to a dynamically initialized system to more easily cope with future changes to the
device procedures.

All the device procedures are called with the device as the first argument. Since each device type is actually a
different structure type, the device procedures must be declared as taking a gx_device * as their first argument,
and must cast it to smurf_device * internally. For example, in the code for the “memory” device, the first
argument to all routines is called dev, but the routines actually use mdev to refer to elements of the full structure,
using the following standard initialization statement at the beginning of each procedure:

gx_memory_device *const mdev = (gx_device_memory *)dev;

(This is a cheap version of “object-oriented” programming: in C++, for example, the cast would be unnecessary, and
in fact the procedure table would be constructed by the compiler.)

Structure definition

You should consult the definition of struct gx_device_s in gxdevice.h for the complete details of the generic
device structure. Some of the most important members of this structure for ordinary drivers are:

const char *dname; The device name

bool is_open; True if device has been opened

gx_device_color_info color_info; Color information

int width; Width in pixels

int height; Height in pixels

The name in the structure (dname) should be the same as the name in contrib.mak.

For sophisticated developers only

If for any reason you need to change the definition of the basic device structure, or to add procedures, you must
change the following places:

• This document and the news document (if you want to keep the documentation up to date).

• The definition of gx_device_common and the procedures in gxdevcli.h.

• Possibly, the default forwarding procedures declared in gxdevice.h and implemented in gdevnfwd.c.

• The device procedure record completion routines in gdevdflt.c.

• Possibly, the default device implementation in gdevdflt.c, gdevddrw.c, and gxcmap.c.

• The bounding box device in gdevbbox.c (probably just adding NULL procedure entries if the new procedures
don’t produce output).

• These devices that must have complete (non-defaulted) procedure vectors:

• The null device in gdevnfwd.c.

• The command list “device” in gxclist.c. This is not an actual device; it only defines procedures.

• The “memory” devices in gdevmem.h and gdevm*.c.

• The clip list accumulation “device” in gxacpath.c.

• The clipping “devices” gxclip.c, gxclip2.c, and gxclipm.c.

• The pattern accumulation “device” in gxpcmap.c.

• The hit detection “device” in gdevhit.c.

• The generic printer device macros in gdevprn.h.

• The generic printer device code in gdevprn.c.

• The RasterOp source device in gdevrops.c.

The Interface between Ghostscript and Device Drivers

193

You may also have to change the code for gx_default_get_params or gx_default_put_params in
gsdparam.c.

You should not have to change any of the real devices in the standard Ghostscript distribution (listed in devs.mak
and contrib.mak) or any of your own devices, because all of them are supposed to use the macros in
gxdevice.h or gdevprn.h to define and initialize their state.

Coordinates and types

Coordinate system

Since each driver specifies the initial transformation from user coordinates to device coordinates, the driver can use
any coordinate system it wants, as long as a device coordinate will fit in an int. (This is only an issue on DOS
systems, where ints are only 16 bits. User coordinates are represented as floats.) Most current drivers use a
coordinate system with (0,0) in the upper left corner, with X increasing to the right and Y increasing toward the
bottom. However, there is supposed to be nothing in the rest of Ghostscript that assumes this, and indeed some
drivers use a coordinate system with (0,0) in the lower left corner.

Drivers must check (and, if necessary, clip) the coordinate parameters given to them: they should not assume the
coordinates will be in bounds. The fit_fill and fit_copy macros in gxdevice.h are very helpful in doing this.

Color definition

Between the Ghostscript graphics library and the device, colors are represented in three forms. Color components in
a color space (Gray, RGB, DeviceN, etc.) represented as frac values. Device colorants are represented as
gx_color_value values. For many procedures, colors are represented in a type called gx_color_index. All
three types are described in more detail in Types.

The color_info member of the device structure defines the color and gray-scale capabilities of the device. Its type
is defined as follows:

/*
 * The enlarged color model information structure: Some of the
 * information that was implicit in the component number in
 * the earlier conventions (component names, polarity, mapping
 * functions) are now explicitly provided.
 *
 * Also included is some information regarding the encoding of
 * color information into gx_color_index. Some of this information
 * was previously gathered indirectly from the mapping
 * functions in the existing code, specifically to speed up the
 * halftoned color rendering operator (see
 * gx_dc_ht_colored_fill_rectangle in gxcht.c). The information
 * is now provided explicitly because such optimizations are
 * more critical when the number of color components is large.
 *
 * Note: no pointers have been added to this structure, so there
 * is no requirement for a structure descriptor.
 */
typedef struct gx_device_color_info_s {

 /*
 * max_components is the maximum number of components for all
 * color models supported by this device. This does not include
 * any alpha components.
 */
 int max_components;

 /*
 * The number of color components. This does not include any
 * alpha-channel information, which may be integrated into
 * the gx_color_index but is otherwise passed as a separate

The Interface between Ghostscript and Device Drivers

194

 * component.
 */
 int num_components;

 /*
 * Polarity of the components of the color space, either
 * additive or subtractive. This is used to interpret transfer
 * functions and halftone threshold arrays. Possible values
 * are GX_CM_POLARITY_ADDITIVE or GX_CM_POLARITY_SUBTRACTIVE
 */
 gx_color_polarity_t polarity;

 /*
 * The number of bits of gx_color_index actually used.
 * This must be <= sizeof(gx_color_index), which is usually 64.
 */
 byte depth;

 /*
 * Index of the gray color component, if any. The max_gray and
 * dither_gray values apply to this component only; all other
 * components use the max_color and dither_color values.
 *
 * This will be GX_CINFO_COMP_NO_INDEX if there is no gray
 * component.
 */
 byte gray_index;

 /*
 * max_gray and max_color are the number of distinct native
 * intensity levels, less 1, for the gray and all other color
 * components, respectively. For nearly all current devices
 * that support both gray and non-gray components, the two
 * parameters have the same value.
 *
 * dither_grays and dither_colors are the number of intensity
 * levels between which halftoning can occur, for the gray and
 * all other color components, respectively. This is
 * essentially redundant information: in all reasonable cases,
 * dither_grays = max_gray + 1 and dither_colors = max_color + 1.
 * These parameters are, however, extensively used in the
 * current code, and thus have been retained.
 *
 * Note that the non-gray values may now be relevant even if
 * num_components == 1. This simplifies the handling of devices
 * with configurable color models which may be set for a single
 * non-gray color model.
 */
 gx_color_value max_gray; /* # of distinct color levels -1 */
 gx_color_value max_color;

 gx_color_value dither_grays;
 gx_color_value dither_colors;

 /*
 * Information to control super-sampling of objects to support
 * anti-aliasing.
 */
 gx_device_anti_alias_info anti_alias;

The Interface between Ghostscript and Device Drivers

195

 /*
 * Flag to indicate if gx_color_index for this device may be divided
 * into individual fields for each component. This is almost always
 * the case for printers, and is the case for most modern displays
 * as well. When this is the case, halftoning may be performed
 * separately for each component, which greatly simplifies processing
 * when the number of color components is large.
 *
 * If the gx_color_index is separable in this manner, the comp_shift
 * array provides the location of the low-order bit for each
 * component. This may be filled in by the client, but need not be.
 * If it is not provided, it will be calculated based on the values
 * in the max_gray and max_color fields as follows:
 *
 * comp_shift[num_components - 1] = 0,
 * comp_shift[i] = comp_shift[i + 1]
 * + (i == gray_index ? ceil(log2(max_gray + 1))
 * : ceil(log2(max_color + 1)))
 *
 * The comp_mask and comp_bits fields should be left empty by the client.
 * They will be filled in during initialization using the following
 * mechanism:
 *
 * comp_bits[i] = (i == gray_index ? ceil(log2(max_gray + 1))
 * : ceil(log2(max_color + 1)))
 *
 * comp_mask[i] = (((gx_color_index)1 << comp_bits[i]) - 1)
 * << comp_shift[i]
 *
 * (For current devices, it is almost always the case that
 * max_gray == max_color, if the color model contains both gray and
 * non-gray components.)
 *
 * If separable_and_linear is not set, the data in the other fields
 * is unpredictable and should be ignored.
 */
 gx_color_enc_sep_lin_t separable_and_linear;
 byte comp_shift[GX_DEVICE_COLOR_MAX_COMPONENTS];
 byte comp_bits[GX_DEVICE_COLOR_MAX_COMPONENTS];
 gx_color_index comp_mask[GX_DEVICE_COLOR_MAX_COMPONENTS];
 /*
 * Pointer to name for the process color model.
 */
 const char * cm_name;

} gx_device_color_info;

Note

See Changing color_info data before changing any information in the color_info structure for a device.

It is recommended that the values for this structure be defined using one of the standard macros provided for this
purpose. This allows for future changes to be made to the structure without changes being required in the actual
device code.

The following macros (in gxdevcli.h) provide convenient shorthands for initializing this structure for ordinary
black-and-white or color devices:

The Interface between Ghostscript and Device Drivers

196

#define dci_black_and_white ...
#define dci_color(depth,maxv,dither) ...

The #define dci_black_and_white macro defines a single bit monochrome device (For example: a typical
monochrome printer device.)

The #define dci_color(depth,maxv,dither) macro can be used to define a 24 bit RGB device or a 4 or 32
bit CMYK device.

The #define dci_extended_alpha_values macro (in gxdevcli.h) specifies most of the current fields in the
structure. However this macro allows only the default setting for the comp_shift, comp_bits, and comp_mask
fields to be set. Any device which requires a non-default setting for these fields has to correctly these fields during
the device open procedure. See Separable and linear fields and Changing color_info data.

The idea is that a device has a certain number of gray levels (max_gray+1) and a certain number of colors
(max_rgb+1) that it can produce directly. When Ghostscript wants to render a given color space color value as a
device color, it first tests whether the color is a gray level and if so:

If max_gray is large (>= 31), Ghostscript asks the device to approximate the gray level directly. If the device
returns a valid gx_color_index, Ghostscript uses it. Otherwise, Ghostscript assumes that the device can
represent dither_gray distinct gray levels, equally spaced along the diagonal of the color cube, and uses the
two nearest ones to the desired color for halftoning.

If the color is not a gray level:

If max_rgb is large (>= 31), Ghostscript asks the device to approximate the color directly. If the device returns
a valid gx_color_index, Ghostscript uses it. Otherwise, Ghostscript assumes that the device can represent
distinct colors, equally spaced throughout the color cube, and uses two of the nearest ones to the desired color
for halftoning.

Separable and linear fields

The three fields comp_shift, comp_bits, and comp_mask are only used if the separable_and_linear field is
set to GX_CINFO_SEP_LIN. In this situation a gx_color_index value must represent a combination created by
or’ing bits for each of the devices’s output colorants. The comp_shift array defines the location (shift count) of
each colorants bits in the output gx_color_index value. The comp_bits array defines the number of bits for each
colorant. The comp_mask array contains a mask which can be used to isolate the bits for each colorant. These fields
must be set if the device supports more than four colorants.

Changing color_info data

For most devices, the information in the device’s color_info structure is defined by the various device definition
macros and the data remains constant during the entire existence of the device. In general the Ghostscript graphics
assumes that the information is constant. However some devices want to modify the data in this structure.

The device’s put_params procedure may change color_info field values. After the data has been modified then
the device should be closed (via a call to gs_closedevice). Closing the device will erase the current page so these
changes should only be made before anything has been drawn on a page.

The device’s open_device procedure may change color_info field values. These changes should be done
before any other procedures are called.

The Ghostscript graphics library uses some of the data in color_info to set the default procedures for the
get_color_mapping_procs, get_color_comp_index, encode_color, and decode_color procedures.
These default procedures are set when the device is originally created. If any changes are made to the color_info
fields then the device’s open_device procedure has responsibility for insuring that the correct procedures are
contained in the device structure. (For an example, see the display device open procedure display_open and its
subroutine display_set_color_format (in gdevdsp.c).

Types

Here is a brief explanation of the various types that appear as parameters or results of the drivers.

frac (defined in gxfrac.h)

The Interface between Ghostscript and Device Drivers

197

This is the type used to represent color values for the input to the color model mapping procedures. It is currently
defined as a short. It has a range of frac_0 to frac_1.

gx_color_value (defined in gxdevice.h)

This is the type used to represent RGB or CMYK color values. It is currently equivalent to unsigned short.
However, Ghostscript may use less than the full range of the type to represent color values:
gx_color_value_bits is the number of bits actually used, and gx_max_color_value is the maximum
value, equal to (2^gx_max_color_value_bits)-1.

gx_device (defined in gxdevice.h)

This is the device structure, as explained above.

gs_matrix (defined in gsmatrix.h)

This is a 2-D homogeneous coordinate transformation matrix, used by many Ghostscript operators.

gx_color_index (defined in gxcindex.h)

This is meant to be whatever the driver uses to represent a device color. For example, it might be an index in a
color map, or it might be R, G, and B values packed into a single integer. The Ghostscript graphics library gets
gx_color_index values from the device’s encode_color and hands them back as arguments to several
other procedures. If the separable_and_linear field in the device’s color_info structure is not set to
GX_CINFO_SEP_LIN then Ghostscript does not do any computations with gx_color_index values.

The special value gx_no_color_index (defined as (~(gx_color_index)(0))) means “transparent” for
some of the procedures.

The size of gx_color_index can be either 32 or 64 bits. The choice depends upon the architecture of the
CPU and the compiler. The default type definition is simply:

typedef unsigned long gx_color_index;

However if GX_COLOR_INDEX_TYPE is defined, then it is used as the type for gx_color_index.

typedef GX_COLOR_INDEX_TYPE gx_color_index;

The smaller size (32 bits) may produce more efficient or faster executing code. The larger size (64 bits) is
needed for representing either more bits per component or more components. An example of the later case is a
device that supports 8 bit contone colorants using a DeviceCMYK process color model with its four colorants
and also supports additional spot colorants.

Currently autoconf attempts to find a 64 bit type definition for the compiler being used, and if a 64 bit type is
found then GX_COLOR_INDEX_TYPE is set to the type.

For Microsoft and the MSVC compiler, GX_COLOR_INDEX_TYPE will be set to unsigned _int64 if
USE_LARGE_COLOR_INDEX is set to 1 either on the make command line or by editing the definition in
msvc32.mak.

gs_param_list (defined in gsparam.h)

This is a parameter list, which is used to read and set attributes in a device. See the comments in gsparam.h,
and the description of the get_params and put_params procedures below, for more detail.

gx_tile_bitmap (defined in gxbitmap.h)

gx_strip_bitmap (defined in gxbitmap.h)

These structure types represent bitmaps to be used as a tile for filling a region (rectangle). gx_tile_bitmap is
an older, deprecated type lacking shift and rep_shift; gx_strip_bitmap has superseded it, and should be
used in new code. Here is a copy of the relevant part of the file:

/*
 * Structure for describing stored bitmaps.
 * Bitmaps are stored bit-big-endian (i.e., the 2^7 bit of the first
 * byte corresponds to x=0), as a sequence of bytes (i.e., you can't
 * do word-oriented operations on them if you're on a little-endian
 * platform like the Intel 80x86 or VAX). Each scan line must start on
 * a (32-bit) word boundary, and hence is padded to a word boundary,
 * although this should rarely be of concern, since the raster and width
 * are specified individually. The first scan line corresponds to y=0

The Interface between Ghostscript and Device Drivers

198

 * in whatever coordinate system is relevant.
 *
 * For bitmaps used as halftone tiles, we may replicate the tile in
 * X and/or Y, but it is still valuable to know the true tile dimensions
 * (i.e., the dimensions prior to replication). Requirements:
 * width % rep_width = 0
 * height % rep_height = 0
 *
 * For halftones at arbitrary angles, we provide for storing the halftone
 * data as a strip that must be shifted in X for different values of Y.
 * For an ordinary (non-shifted) halftone that has a repetition width of
 * W and a repetition height of H, the pixel at coordinate (X,Y)
 * corresponds to halftone pixel (X mod W, Y mod H), ignoring phase;
 * for a shifted halftone with shift S, the pixel at (X,Y) corresponds
 * to halftone pixel ((X + S * floor(Y/H)) mod W, Y mod H). In other words,
 * each Y increment of H shifts the strip left by S pixels.
 *
 * As for non-shifted tiles, a strip bitmap may include multiple copies
 * in X or Y to reduce loop overhead. In this case, we must distinguish:
 * - The height of an individual strip, which is the same as
 * the height of the bitmap being replicated (rep_height, H);
 * - The height of the entire bitmap (size.y).
 * Similarly, we must distinguish:
 * - The shift per strip (rep_shift, S);
 * - The shift for the entire bitmap (shift).
 * Note that shift = (rep_shift * size.y / rep_height) mod rep_width,
 * so the shift member of the structure is only an accelerator. It is,
 * however, an important one, since it indicates whether the overall
 * bitmap requires shifting or not.
 *
 * Note that for shifted tiles, size.y is the size of the stored bitmap
 * (1 or more strips), and NOT the height of the actual tile. The latter
 * is not stored in the structure at all: it can be computed as H * W /
 * gcd(S, W).
 *
 * If the bitmap consists of a multiple of W / gcd(S, W) copies in Y, the
 * effective shift is zero, reducing it to a tile. For simplicity, we
 * require that if shift is non-zero, the bitmap height be less than H * W /
 * gcd(S, W). I.e., we don't allow strip bitmaps that are large enough to
 * include a complete tile but that don't include an integral number of
 * tiles. Requirements:
 * rep_shift < rep_width
 * shift = (rep_shift * (size.y / rep_height)) % rep_width
 *
 * For the benefit of the planar device, we now have a num_planes field.
 * For chunky data this should be set to 1. For planar data, the data pointer
 * points to the first plane of data; subsequent planes of data follow
 * immediately after this as if there were num_planes * height lines of data.
 */
typedef struct gx_strip_bitmap_s {
 byte *data;
 int raster; /* bytes per scan line */
 gs_int_point size; /* width, height */
 gx_bitmap_id id;
 ushort rep_width, rep_height; /* true size of tile */
 ushort rep_shift;
 ushort shift;
 int num_planes;
} gx_strip_bitmap;

The Interface between Ghostscript and Device Drivers

199

Coding conventions
All the driver procedures defined below that return int results return 0 on success, or an appropriate negative error
code in the case of error conditions. The error codes are defined in gserrors.h; they correspond directly to the
errors defined in the PostScript language reference manuals. The most common ones for drivers are:

gs_error_invalidfileaccess

An attempt to open a file failed.

gs_error_ioerror

An error occurred in reading or writing a file.

gs_error_limitcheck

An otherwise valid parameter value was too large for the implementation.

gs_error_rangecheck

A parameter was outside the valid range.

gs_error_VMerror

An attempt to allocate memory failed. (If this happens, the procedure should release all memory it allocated
before it returns.)

If a driver does return an error, rather than a simple return statement it should use the return_error macro
defined in gx.h, which is automatically included by gdevprn.h but not by gserrors.h. For example:

return_error(gs_error_VMerror);

Allocating storage

While most drivers (especially printer drivers) follow a very similar template, there is one important coding convention
that is not obvious from reading the code for existing drivers: driver procedures must not use malloc to allocate any
storage that stays around after the procedure returns. Instead, they must use gs_malloc and gs_free, which have
slightly different calling conventions. (The prototypes for these are in gsmemory.h, which is included in gx.h, which
is included in gdevprn.h.) This is necessary so that Ghostscript can clean up all allocated memory before exiting,
which is essential in environments that provide only single-address-space multi-tasking (some versions of Microsoft
Windows).

char *gs_malloc(uint num_elements, uint element_size, const char *client_name);

Like calloc, but unlike malloc, gs_malloc takes an element count and an element size. For structures,
num_elements is 1 and element_size is sizeof the structure; for byte arrays, num_elements is the number of
bytes and element_size is 1. Unlike calloc, gs_malloc does not clear the block of storage.

The client_name is used for tracing and debugging. It must be a real string, not NULL. Normally it is the name of
the procedure in which the call occurs.

void gs_free(char *data, uint num_elements, uint element_size, const char *client_name);

Unlike free, gs_free demands that num_elements and element_size be supplied. It also requires a client
name, like gs_malloc.

Driver instance allocation

All driver instances allocated by Ghostscript’s standard allocator must point to a “structure descriptor” that tells the
garbage collector how to trace pointers in the structure. For drivers registered in the normal way (using the
makefile approach described above), no special care is needed as long as instances are created only by calling
the gs_copydevice procedure defined in gsdevice.h. If you have a need to define devices that are not
registered in this way, you must fill in the stype member in any dynamically allocated instances with a pointer to the
same structure descriptor used to allocate the instance. For more information about structure descriptors, see
gsmemory.h and gsstruct.h.

The Interface between Ghostscript and Device Drivers

200

Printer drivers
Printer drivers (which include drivers that write some kind of raster file) are especially simple to implement. The
printer driver must implement a print_page or print_page_copies procedure. There are macros in gdevprn.h
that generate the device structure for such devices, of which the simplest is prn_device; for an example, see
gdevbj10.c. If you are writing a printer driver, we suggest you start by reading gdevprn.h and the subsection on
Color mapping below; you may be able to ignore all the rest of the driver procedures.

The print_page procedures are defined as follows:

int (*print_page)(gx_device_printer *, FILE *)
int (*print_page_copies)(gx_device_printer *, FILE *, int)

This procedure must read out the rendered image from the device and write whatever is appropriate to the file. To
read back one or more scan lines of the image, the print_page procedure must call one of several procedures.
Traditionally devices have called gdev_prn_copy_scan_lines, gdev_prn_get_bits, or the generic
get_bits_rectangle device entry point. Alternatively devices may now call the new process_page entrypoint,
which can have significant performance advantages in multi-threaded situations.

int gdev_prn_copy_scan_lines(gx_device_printer *pdev, int y, byte *str, uint size)

For this procedure, str is where the data should be copied to, and size is the size of the buffer starting at str. This
procedure returns the number of scan lines copied, or <0 for an error. str need not be aligned.

int gdev_prn_get_bits(gx_device_printer *pdev, int y, byte *str, byte **actual_data)

This procedure reads out exactly one scan line. If the scan line is available in the correct format already,
*actual_data is set to point to it; otherwise, the scan line is copied to the buffer starting at str, and
*actual_data is set to str. This saves a copying step most of the time. str need not be aligned; however, if
*actual_data is set to point to an existing scan line, it will be aligned. (See the description of the get_bits
procedure below for more details.)

In either of these two cases, each row of the image is stored in the form described in the comment under
gx_tile_bitmap above; each pixel takes the number of bits specified as color_info.depth in the device
structure, and holds values returned by the device’s encode_color procedure.

The print_page procedure can determine the number of bytes required to hold a scan line by calling:

uint gdev_prn_raster(gx_device_printer *)

For a very simple concrete example of this pattern of use, we suggest reading the code in bit_print_page in
gdevbit.c.

If the device provides print_page, Ghostscript will call print_page the requisite number of times to print the
desired number of copies; if the device provides print_page_copies, Ghostscript will call print_page_copies
once per page, passing it the desired number of copies.

Printer drivers (Multi-threaded)
This interface is new, and subject to change without notice.

Ghostscript has supported multi-threaded rendering (controlled by the -dNumRenderingThreads command line
option) since version 8.64. This uses multiple threads of execution to accelerate the rendering phase of operations,
but driver specific operations (such as compression) have not been able to benefit in the same way.

As from Ghostscript 9.11 onwards, a new device function, process_page has been introduced to solve this. A
printer driver will be called via the print_page or print_page_copies entry point as before, but rather than
requesting a rectangle of pixels at a time (by calling get_bits_rectangle), the driver can now invite Ghostscript
to “process the page” in whatever sized chunks it chooses.

While the benefits of process_page come from its use with multiple rendering threads, it will work perfectly well in
single threaded mode too. Devices do not need to implement both schemes.

int (*process_page)(gx_device *dev, gx_process_page_options_t *options)

The device should fill out a gx_process_page_options_t structure and pass the address of this to the
process_page function. The entries within this structure will control exactly how Ghostscript will process the page.

The Interface between Ghostscript and Device Drivers

201

For forwards compatibility devices should ensure that any unknown fields/option bits within the structure are
initialised to 0.

typedef struct gx_process_page_options_s gx_process_page_options_t;

struct gx_process_page_options_s
{
 int (*init_buffer_fn)(void *arg, gx_device *dev, gs_memory_t *memory, int w, int h, void **buffer);
 void (*free_buffer_fn)(void *arg, gx_device *dev, gs_memory_t *memory, void *buffer);
 int (*process_fn)(void *arg, gx_device *dev, gx_device *bdev, const gs_int_rect *rect, void *buffer);
 int (*output_fn)(void *arg, gx_device *dev, void *buffer);
 void *arg;
 int options; /* A mask of GX_PROCPAGE_... options bits */
};

Ghostscript is free to process the page in 1 or more sections. The potential benefits of process_page come when
Ghostscript chooses to use more than 1 section (or “band”) and shares the job of rendering these bands between a
set of rendering threads. The overall scheme of operation is as follows:

• Ghostscript will call init_buffer_fn in turn, once for each rendering thread in use. This function should (as
far as possible) allocate any buffering that may be required to cope with a band of the given size.

• For each band rendered, Ghostscript will call process_fn to process the given rectangle of the page into the
buffer. To achieve this process_fn is passed a buffer device that contains the rendered version of that
rectangle (with the y range adjusted to start from 0). process_fn should call get_bits_rectangle as usual
to extract the rendered area. If the options to this call are set correctly (using GB_RETURN_POINTER) no
copying or additional storage will be required. All the calls to process_fn will be for non-overlapping
rectangles that cover the page, hence process_fn may overwrite the storage used in the returned buffer
device as part of the processing. Several calls to process_fn may take place simultaneously in different
threads, and there is no guarantee that they will happen ‘in order’.

• Ghostscript will call output_fn for each band in turn, passing in the processed buffer containing the output of the
process_fn stage. These calls are guaranteed to happen ‘in order’, and will be interleaved arbitrarily with the
process_fn calls. Once an output_fn returns, the buffer may instantly be reused for another process_fn
calls.

• Once the page has been processed, Ghostscript will call free_buffer_fn for each allocated buffer to allow
the device to clean up.

At the time of writing the only defined bit in the options word is GX_PROCPAGE_BOTTOM_UP which signifies that
Ghostscript should render bands from the bottom of the page to the top, rather than the default top to bottom.

The height of the bands used by Ghostscript when rendering the page can either be specified by the device itself
(using the band_params structure), or can be calculated by Ghostscript based upon the space available to it. It can
sometimes be much easier/more efficient to code a device if the band height can be relied upon to take only
particular values - for instance, a device that downscales its output will prefer the height to be a multiple of the
downscale used, or a device that uses DCT based compression may prefer a multiple of 8.

To accommodate such needs, before Ghostscript sets up its buffers, it will perform a gxdso_adjust_bandheight
call. A device can catch this call to adjust the calculated band height to a value it would prefer. To avoid invalidating
the calculated memory bounds this should generally be a ‘fine’ adjustment, and always downwards.

A simple example of how to use process_page may be found as the fpng device. Within this device:

• The init_buffer_fn allocates a buffer large enough to hold the compressed version of each band.

• The process_fn applies the sub/paeth filters to the buffered image, then compresses each band with zlib.

• The output_fn simply writes each compressed buffer to the file.

• The free_buffer_fn frees the buffers.

• In addition, the downscaler is called to demonstrate that it is possible to ‘chain’ process_page functions.

The fpng device is broadly equivalent to the png16m device, but performs much better when multiple threads are in
use. Compression is potentially worse than with png16m due to each band being compressed separately.

The Interface between Ghostscript and Device Drivers

202

While the print_page entry point is specific to printer devices, the process_page device entry point is not. It will,
however, only be useful for devices that involve rendering the page. As such, neither -dNumRenderingThreads or
process_page will help accelerate devices such as pdfwrite or ps2write.

Driver procedures
Most of the procedures that a driver may implement are optional. If a device doesn’t supply an optional procedure
WXYZ, the entry in the procedure structure may be either gx_default_WXYZ, for instance
gx_default_strip_tile_rectangle, or NULL or 0. (The device procedure must also call the gx_default_
procedure if it doesn’t implement the function for particular values of the arguments.) Since, by construction, device
procedure entries are set to 0 at creation time, ones that are not explicitly initialised will continue to work even if new
(optional) members are added.

Life cycle

When a device is first created, it will have an empty device procs table. The system will call the device’s
initialize_device_procs function pointer to fill out this table. This operation can never fail.

Note

This operation is also used for creating temporary ‘prototype’ devices for copying device procedures from.

A device instance begins life in a closed state. In this state, no output operations will occur. Only the following
procedures may be called:

initialize_device

open_device

get_initial_matrix

get_params

put_params

get_hardware_params

When setdevice installs a device instance in the graphics state, it checks whether the instance is closed or open. If
the instance is closed, setdevice calls the open routine, and then sets the state to open.

There is no user-accessible operation to close a device instance. This is not an oversight – it is required in order to
enforce the following invariant:

If a device instance is the current device in any graphics state, it must be open (have is_open set to true).

Device instances are only closed when they are about to be freed, which occurs in three situations:

• When a restore occurs, if the instance was created since the corresponding save and is in a VM being
restored. I.e., if the instance was created in local VM since a save, it will always be closed and freed by the
corresponding restore; if it was created in global VM, it will only be closed by the outermost restore,
regardless of the save level at the time the instance was created.

• By the garbage collector, if the instance is no longer accessible.

• When Ghostscript exits (terminates).

Open, close, sync, copy

void (*initialize_device_procs)(gx_device *dev)

Called once a new device instance has been created. The function should initialize the device procedure tables.
This cannot fail. NOTE: Clients should rarely need to call a device’s initialize_device_procs procedure:
this procedure is mostly used by the internal device creation code. The sole exception here is when a device
implementation wishes to copy device function pointers from another device; then a blank gx_device can be
created, and initialize_device_procs can be used to fill out the device procs table so it can be copied
from.

The Interface between Ghostscript and Device Drivers

203

int (*initialize_device)(gx_device *dev) [OPTIONAL]

Called once a new device instance has been created and the device procs table has been initialized. This
function should perform the minimum initialization to any internal device state required. If the initial setup fails,
this procedure should return an error; the new instance will be freed.

Note

Clients should never call a device’s initialize_device procedure: this procedure is only intended for
use by the internal device creation code.

int (*open_device)(gx_device *) [OPTIONAL]

Open the device: do any initialization associated with making the device instance valid. This must be done
before any output to the device. The default implementation does nothing.

Note

Clients should never call a device’s open_device procedure directly: they should always call
gs_opendevice instead.

void (*get_initial_matrix)(gx_device *, gs_matrix *) [OPTIONAL]

Construct the initial transformation matrix mapping user coordinates (nominally 1/72 inch per unit) to device
coordinates. The default procedure computes this from width, height, and [xy]_pixels_per_inch on the
assumption that the origin is in the upper left corner, that is:

xx = x_pixels_per_inch/72, xy = 0,
yx = 0, yy = -y_pixels_per_inch/72,
tx = 0, ty = height.

int (*sync_output)(gx_device *) [OPTIONAL]

Synchronize the device. If any output to the device has been buffered, send or write it now. Note that this may
be called several times in the process of constructing a page, so printer drivers should not implement this by
printing the page. The default implementation does nothing.

int (*output_page)(gx_device *, int num_copies, int flush) [OPTIONAL]

Output a fully composed page to the device. The num_copies argument is the number of copies that should be
produced for a hardcopy device. (This may be ignored if the driver has some other way to specify the number of
copies.) The flush argument is true for showpage, false for copypage. The default definition just calls
sync_output. Printer drivers should implement this by printing and ejecting the page.

int (*close_device)(gx_device *) [OPTIONAL]

Close the device: release any associated resources. After this, output to the device is no longer allowed. The
default implementation does nothing.

Note

Clients should never call a device’s close_device procedure directly: they should always call
gs_closedevice instead.

Color and alpha mapping

Note that code in the Ghostscript library may cache the results of calling one or more of the color mapping
procedures. If the result returned by any of these procedures would change (other than as a result of a change made
by the driver’s put_params procedure), the driver must call gx_device_decache_colors(dev).

The map_rgb_color, map_color_rgb, and map_cmyk_color are obsolete. They have been left in the device
procedure list for backward compatibility. See the encode_color and decode_color procedures below. To insure
that older device drivers are changed to use the new encode_color and decode_color procedures, the

The Interface between Ghostscript and Device Drivers

204

parameters for the older procedures have been changed to match the new procedures. To minimize changes in
devices that have already been written, the map_rgb_color and map_cmyk_color routines are used as the
default value for the encode_color routine. The map_cmyk_color routine is used if the number of components is
four. The map_rgb_color routine is used if the number of components is one or three. This works okay for RGB
and CMYK process color model devices. However this does not work properly for gray devices. The encode_color
routine for a gray device is only passed one component. Thus the map_rgb_color routine must be modified to only
use a single input (instead of three). (See the encode_color and decode_color routines below.)

Colors can be specified to the Ghostscript graphics library in a variety of forms. For example, there are a wide variety
of color spaces that can be used such as Gray, RGB, CMYK, DeviceN, Separation, Indexed, CIEbasedABC, etc. The
graphics library converts the various input color space values into four base color spaces: Gray, RGB, CMYK, and
DeviceN. The DeviceN color space allows for specifying values for individual device colorants or spot colors.

Colors are converted by the device in a two step process. The first step is to convert a color in one of the base color
spaces (Gray, RGB, CMYK, or DeviceN) into values for each device colorant. This transformation is done via a set of
procedures provided by the device. These procedures are provided by the get_color_mapping_procs device
procedure.

Between the first and second steps, the graphics library applies transfer functions to the device colorants. Where
needed, the output of the results after the transfer functions is used by the graphics library for halftoning.

In the second step, the device procedure encode_color is used to convert the transfer function results into a
gx_color_index value. The gx_color_index values are passed to specify colors to various routines. The
choice of the encoding for a gx_color_index is up to the device. Common choices are indexes into a color palette
or several integers packed together into a single value. The manner of this encoding is usually opaque to the
graphics library. The only exception to this statement occurs when halftoning 5 or more colorants. In this case the
graphics library assumes that if a colorant values is zero then the bits associated with the colorant in the
gx_color_index value are zero.

int get_color_comp_index(const gx_device * dev, const char * pname, int name_size, in
t src_index) [OPTIONAL]

This procedure returns the device colorant number of the given name. The possible return values are -1, 0 to
GX_DEVICE_COLOR_MAX_COMPONENTS - 1, or GX_DEVICE_COLOR_MAX_COMPONENTS. A value of -1
indicates that the specified name is not a colorant for the device. A value of 0 to
GX_DEVICE_COLOR_MAX_COMPONENTS - 1 indicates the colorant number of the given name. A value of
GX_DEVICE_COLOR_MAX_COMPONENTS indicates that the given name is a valid colorant name for the device
but the colorant is not currently being used. This is used for implementing names which are in
SeparationColorNames but not in SeparationOrder.

The default procedure returns results based upon process color model of DeviceGray, DeviceRGB, or
DeviceCMYK selected by color_info.num_components. This procedure must be defined if another process
color model is used by the device or spot colors are supported by the device.

const gx_cm_color_map_procs * get_color_mapping_procs(const gx_device * dev, const gx
_device ** tdev) [OPTIONAL]

This procedure returns a list of three procedures, together with the device to pass to them. These procedures
are used to translate values in either Gray, RGB, or CMYK color spaces into device colorant values. A separate
procedure is not required for the devicen and Separation color spaces since these already represent device
colorants.

In many cases, the device returned in tdev will be the same as dev, but the caller should not rely on this. For
cases where we have a chain of devices (perhaps because of a subclass or compositor device having been
introduced internally as part of the rendering process), the actual device that needs to do the color mapping may
be a child device of the original one. In such cases tdev will be returned as a different value to dev.

The default procedure returns a list of procedures based upon color_info.num_components. These
procedures are appropriate for DeviceGray, DeviceRGB, or DeviceCMYK process color model devices. A
procedure must be defined if another process color model is used by the device or spot colors are to be
supported. All these procedures take a gx_device pointer; these should be called with the value returned in
tdev NOT the initial value of dev.

gx_color_index (*encode_color)(gx_device * dev, gx_color_value * cv) [OPTIONAL]

Map a set of device color values into a gx_color_index value. The range of legal values of the arguments is 0
to gx_max_color_value. The default procedure packs bits into a gx_color_index value based upon the

The Interface between Ghostscript and Device Drivers

205

values in color_info.depth and color_info.num_components. Note that the encode_color procedure
must not return gx_no_color_index (all 1s).

int (*decode_color)(gx_device *, gx_color_index color, gx_color_value * CV) [OPTIONAL
]

This is the inverse of the encode_color procedure. Map a gx_color_index value to color values. The
default procedure unpacks bits from the gx_color_index value based upon the values in
color_info.depth and color_info.num_components.

typedef enum { go_text, go_graphics } graphic_object_type; int (*get_alpha_bits)(gx_d
evice *dev, graphic_object_type type) [OPTIONAL]

This procedure returns the number of bits to use for anti-aliasing. The default implementation simply returns the
color_info.anti_alias member of the driver structure.

void (*update_spot_equivalent_colors)(gx_device *, const gs_state *) [OPTIONAL]

This routine provides a method for the device to gather an equivalent color for spot colorants. This routine is
called when a Separation or devicen color space is installed. See comments at the start of gsequivc.c.

Note

This procedure is only needed for devices that support spot colorants and also need to have an equivalent
color for simulating the appearance of the spot colorants.

Pixel-level drawing

This group of drawing operations specifies data at the pixel level. All drawing operations use device coordinates and
device color values.

int (*fill_rectangle)(gx_device *, int x, int y, int width, int height, gx_color_inde
x color)

Fill a rectangle with a color. The set of pixels filled is
{(px,py) | x <= px < x + width and y <= py < y + height}. In other words, the point (x,y) is
included in the rectangle, as are (x+w-1,y), (x,y+h-1), and (x+w-1,y+h-1), but not (x+w,y), (x,y+h), or (x+w,y+h).
If width <= 0 or height <= 0, fill_rectangle should return 0 without drawing anything.

Note that fill_rectangle is the only non-optional procedure in the driver interface.

Bitmap imaging

Bitmap (or pixmap) images are stored in memory in a nearly standard way. The first byte corresponds to (0,0) in the
image coordinate system: bits (or polybit color values) are packed into it left to right. There may be padding at the
end of each scan line: the distance from one scan line to the next is always passed as an explicit argument.

int (*copy_mono)(gx_device *, const unsigned char *data, int data_x, int raster, gx_b
itmap_id id, int x, int y, int width, int height, gx_color_index color0, gx_color_ind
ex color1) [OPTIONAL]

Copy a monochrome image (similar to the PostScript image operator). Each scan line is raster bytes wide.
Copying begins at (data_x,0) and transfers a rectangle of the given width and height to the device at device
coordinate (x,y). (If the transfer should start at some non-zero y value in the data, the caller can adjust the data
address by the appropriate multiple of the raster.) The copying operation writes device color color0 at each
0-bit, and color1 at each 1-bit: if color0 or color1 is gx_no_color_index, the device pixel is unaffected if
the image bit is 0 or 1 respectively. If id is different from gx_no_bitmap_id, it identifies the bitmap contents
unambiguously; a call with the same id will always have the same data, raster, and data contents.

This operation, with color0 = gx_no_color_index, is the workhorse for text display in Ghostscript, so
implementing it efficiently is very important.

int (*strip_tile_rectangle)(gx_device *, const gx_strip_bitmap *tile, int x, int y, i
nt width, int height, gx_color_index color0, gx_color_index color1, int phase_x, int
phase_y) [OPTIONAL]

The Interface between Ghostscript and Device Drivers

206

Tile a rectangle. Tiling consists of doing multiple copy_mono operations to fill the rectangle with copies of the
tile. The tiles are aligned with the device coordinate system, to avoid “seams”. Specifically, the (phase_x,
phase_y) point of the tile is aligned with the origin of the device coordinate system. (Note that this is backwards
from the PostScript definition of halftone phase.) phase_x and phase_y are guaranteed to be in the range
[0..tile->width] and [0..tile->height] respectively.

If color0 and color1 are both gx_no_color_index, then the tile is a color pixmap, not a bitmap: see the
next section.

This operation is the workhorse for halftone filling in Ghostscript, so implementing it efficiently for solid tiles (that
is, where either color0 and color1 are both gx_no_color_index, for colored halftones, or neither one is
gx_no_color_index, for monochrome halftones) is very important.

Pixmap imaging

Pixmaps are just like bitmaps, except that each pixel may occupy more than one bit. In “chunky” or “Z format”, all the
bits for each pixel are grouped together. For copy_color, the number of bits per pixel is given by the
color_info.depth parameter in the device structure. The legal values are 1, 2, 4, 8, 16, 24, 32, 40, 48, 56, or 64.
The pixel values are device color codes (that is, whatever it is that encode_color returns).

If the data is planar, then each plane is contiguous, and the number of planes is given by
color_info.num_components. The bits per component is depth/num_components.

int (*copy_color)(gx_device *, const unsigned char *data, int data_x, int raster, gx_
bitmap_id id, int x, int y, int width, int height) [OPTIONAL]

Copy a color image with multiple bits per pixel. The raster is in bytes, but x and width are in pixels, not bits. If
id is different from gx_no_bitmap_id, it identifies the bitmap contents unambiguously; a call with the same
id will always have the same data, raster, and data contents.

int (*copy_planes)(gx_device *, const unsigned char *data, int data_x, int raster, gx
_bitmap_id id, int x, int y, int width, int height, int plane_height) [OPTIONAL]

Copy an image with data stored in planar format. The raster is in bytes, but x and width are in pixels, not bits. If
id is different from gx_no_bitmap_id, it identifies the bitmap contents unambiguously; a call with the same
id will always have the same data, raster, and data contents.

Each plane is depth/num_components number of bits and the distance between planes is plane_height
number of rows. The height is always less than or equal to the plane_height.

We do not provide a separate procedure for tiling with a pixmap; instead, strip_tile_rectangle can also take
colored tiles. This is indicated by the color0 and color1 arguments’ both being gx_no_color_index. In this
case, as for copy_color, the raster and height in the “bitmap” are interpreted as for real bitmaps, but the x and
width are in pixels, not bits.

typedef enum {
 transform_pixel_region_begin = 0,
 transform_pixel_region_data_needed = 1,
 transform_pixel_region_process_data = 2,
 transform_pixel_region_end = 3
 } transform_pixel_region_reason;
typedef struct {
 void *state;
 union {
 struct {
 const gs_int_rect *clip;
 int w; /* source width */
 int h; /* source height */
 int spp;
 const gx_dda_fixed_point *pixels; /* DDA to enumerate the destination positions of pixels across a row */
 const gx_dda_fixed_point *rows; /* DDA to enumerate the starting position of each row */
 gs_logical_operation_t lop;
 } init;
 struct {
 const unsigned char *buffer[GX_DEVICE_COLOR_MAX_COMPONENTS];
 int data_x;

The Interface between Ghostscript and Device Drivers

207

 gx_cmapper_t *cmapper;
 const gs_gstate *pgs;
 } process_data;
 } u;
} transform_pixel_region_data;

int (*transform_pixel_region)(gx_device *, transform_pixel_reason, transform_pixel_re
ason_data *data) [OPTIONAL]

Transform a 2-dimensional region of pixels into the destination. Given a 2d source block of pixels (supplied as
scanline data), this function transforms that data, maps it through the supplied colour lookup function, clips it,
and plots it into the device.

In all calls to this function a negative return value indicates an error.

Called first with the transform_pixel_region_init reason code, this prepares for subsequent calls to
scale a region as described in the data.u.init structure. A pointer to any state required for this should be
written into data.state, and the caller must pass that in to subsequent calls.

Subsequently this will be called with transform_pixel_region_data_needed. The function will then check
to see if the next scanline of data will be trivially clipped away. If so, then it will return zero to indicate that it is not
needed. This can help the caller to avoid unnecessary processing. A positive return value indicates that the line
is required.

For every line where the data is required, the function will be called with
transform_pixel_region_process_data. The function will then read and process the line from
data.u.process_data. The data in the buffer is packed 8 bit values, which will be fed into the supplied
cmapper to set the device color as required. This is then written into the device.

Once all the scanlines have been fed through calls to transform_pixel_region_data_needed and
transform_pixel_region_process_data, a final call with transform_pixel_region_end is made
that frees the state.

The default implementation of this device function will generally break the pixel data down into calls to
fill_rectangle, though in some cases (notably the portrait 8 bit per component output case), a faster route
through copy_color can be used.

Memory devices offer a version of this device function that can accelerate direct plotting to the memory array.

Note

Currently the clipping rectangle is not honoured for skewed (not portrait or landscape) transformations. This
is allowed for in the callers.

Compositing

In addition to direct writing of opaque pixels, devices must also support compositing. Currently two kinds of
compositing are defined (RasterOp and alpha-based), but more may be added in the future.

int (*copy_alpha)(gx_device *dev, const unsigned char *data, int data_x, int raster,
gx_bitmap_id id, int x, int y, int width, int height, gx_color_index color, int depth
) [OPTIONAL]

This procedure is somewhat misnamed: it was added to the interface before we really understood alpha channel
and compositing. Fill a given region with a given color modified by an individual alpha value for each pixel. For
each pixel, this is equivalent to alpha-compositing with a source pixel whose alpha value is obtained from the
pixmap (data, data_x, and raster) and whose color is the given color (which has not been premultiplied by
the alpha value), using the Sover rule.

depth, the number of bits per alpha value, is either 2, 4 or 8. Any copy_alpha routine must accept being called
with an 8 bit depth. In addition they should accept either 2 or 4 if the corresponding get_alpha_bits
procedure returns either of those values.

The Interface between Ghostscript and Device Drivers

208

int (*copy_alpha_hl_color)(gx_device *dev, const byte *data, int data_x, int raster,
gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor
, int depth) [OPTIONAL]

Equivalent function to copy_alpha, using high level color rather than a gx_color_index.

int (*composite)(dev_t *dev, gx_device_t **pcdev, const gs_composite_t *pcte, const g
s_imager_state *pis, gs_memory_t *memory) [OPTIONAL]

Requests that a device perform a compositing operation; the device should composite data written to it with the
device’s existing data, according to the compositing function defined by *pcte. If a device cannot perform such
an operation itself, it will create a compositor device to wrap itself that will perform such operations for it.
Accordingly, the caller must watch the return values from this function to understand if a new device has been
created to which future calls should be made.

Devices will normally implement this in one of the following standard ways:

• Devices that don’t do any imaging and don’t forward any imaging operations (for example, the null device,
the hit detection device, and the clipping list accumulation device) simply set *pcdev to themselves, and
return 0, which effectively ignores the compositing function.

• “Leaf” devices that do imaging and have no special optimizations for compositing (for example, some
memory devices) ask the gs_composite_t to create a default compositor device that ‘wraps’ the current
device. They put this in *pcdev and return 1.

• Leaf devices that can implement some kinds of compositing operation efficiently (for example, monobit
memory devices and RasterOp) inspect the type and values of *pcte to determine whether it specifies
such an operation: if so, they create a specialized compositor, and if not, they ask the gs_composite_t
to create a default compositor. They place this in *pcdev and return 1.

In short, on every non-error return, *pcdev will be set either to the leaf device (in the case where no special
compositing is required), or to the device that does the compositing. If the return code is 1, then *pcdev is a
new device that was created to wrap dev to perform the compositing for it. Callers may need to spot this case so
as to update which device future operations are sent to.

For forwarding devices, for example, if the call returns 1, then they should update their target device to be the
new device. For the graphics library, if the call returns 1, then it should update the current device to be the new
one.

Other kinds of forwarding devices, which don’t fall into any of these categories, require special treatment. In
principle, what they do is ask their target to create a compositor, and then create and return a copy of
themselves with the target’s new compositor as the target of the copy. There is a possible default
implementation of this approach: if the original device was D with target T, and T creates a compositor C, then
the default implementation creates a device F that for each operation temporarily changes D’s target to C,
forwards the operation to D, and then changes D’s target back to T. However, the Ghostscript library currently
only creates a compositor with an imaging forwarding device as target in a few specialized situations (banding,
and bounding box computation), and these are handled as special cases.

Note that the compositor may have a different color space, color representation, or bit depth from the device to
which it is compositing. For example, alpha-compositing devices use standard-format chunky color even if the
underlying device doesn’t.

Closing a compositor frees all of its storage, including the compositor itself. However, since the composite call
may return the same device, clients must check for this case, and only call the close procedure if a separate
device was created.

Polygon-level drawing

In addition to the pixel-level drawing operations that take integer device coordinates and pure device colors, the
driver interface includes higher-level operations that draw polygons using fixed-point coordinates, possibly halftoned
colors, and possibly a non-default logical operation.

The fill_* drawing operations all use the center-of-pixel rule: a pixel is colored if, and only if, its center falls within
the polygonal region being filled. If a pixel center (X+0.5,Y+0.5) falls exactly on the boundary, the pixel is filled if, and
only if, the boundary is horizontal and the filled region is above it, or the boundary is not horizontal and the filled
region is to the right of it.

The Interface between Ghostscript and Device Drivers

209

int (*fill_trapezoid)(gx_device *dev, const gs_fixed_edge *left, const gs_fixed_edge
 *right, fixed ybot, fixed ytop, bool swap_axes, const gx_drawing_color *pdcolor, gs_
logical_operation_t lop) [OPTIONAL]

Fill a trapezoid. The bottom and top edges are parallel to the x axis, and are defined by ybot and ytop,
respectively. The left and right edges are defined by left and right. Both of these represent lines
(gs_fixed_edge is defined in gxdevcli.h and consists of gs_fixed_point start and end points). The y
coordinates of these lines need not have any specific relation to ybot and ytop. The routine is defined this way
so that the filling algorithm can subdivide edges and still guarantee that the exact same pixels will be filled. If
swap_axes is set, the meanings of X and Y are interchanged.

int (*fill_parallelogram)(gx_device *dev, fixed px, fixed py, fixed ax, fixed ay, fix
ed bx, fixed by, const gx_drawing_color *pdcolor, gs_logical_operation_t lop) [OPTION
AL]

Fill a parallelogram whose corners are (px,``py``), (px+ax,``py+ay``), (px+bx,``py+by``), and
(px+ax+bx,``py+ay+by``). There are no constraints on the values of any of the parameters, so the
parallelogram may have any orientation relative to the coordinate axes.

int (*fill_triangle)(gx_device *dev, fixed px, fixed py, fixed ax, fixed ay, fixed bx
, fixed by, const gx_drawing_color *pdcolor, gs_logical_operation_t lop) [OPTIONAL]

Fill a triangle whose corners are (px,``py``), (px+ax,``py+ay``), and (px+bx,``py+by``).

int (*draw_thin_line)(gx_device *dev, fixed fx0, fixed fy0, fixed fx1, fixed fy1, con
st gx_drawing_color *pdcolor, gs_logical_operation_t lop) [OPTIONAL]

Draw a one-pixel-wide line from (fx0,``fy0``) to (fx1,``fy1``).

Linear color drawing

Linear color functions allow fast high quality rendering of shadings on continuous tone devices. They implement
filling simple areas with a lineary varying color. These functions are not called if the device applies halftones, or uses
a non-separable or a non-linear color model.

int (*fill_linear_color_triangle) (dev_t *dev, const gs_fill_attributes *fa, const gs
_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *p2, const frac31 *c
0, const frac31 *c1, const frac31 *c2) [OPTIONAL]

This function is the highest level one within the linear color function group. It fills a triangle with a linearly varying
color. Arguments specify 3 points in the device space - vertices of a triangle, and their colors. The colors are
represented as vectors of positive fractional numbers, each of which represents a color component value in the
interval [0,1]. The number of components in a vector in the number of color components in the device (process)
color model.

The implementation fills entire triangle. The filling rule is same as for Polygon-level drawing. The color of each
pixel within the triangle is computed as a linear interpolation of vertex colors.

The implementation may reject the request if the area or the color appears too complex for filling in a single
action. For doing that the implementation returns 0 and must not paint any pixel. In this case the graphics library
will perform a subdivision of the area into smaller triangles and call the function again with smaller areas.

Important

• Do not try to decompose the area within the implementation of fill_linear_color_triangle,
because it can break the plane coverage contiguity and cause a dropout. Instead request that the
graphics library should perform the decomposition. The graphics library is smart enough to do that
properly.

• The implementation must handle a special case, when only 2 colors are specified. It happens if p2 is
NULL. This means that the color does not depend on the X coordinate, i.e. it forms a linear gradient
along the Y axis. The implementation must not reject (return 0) such cases.

• The device color component value 1 may be represented with several hexadecimal values :
0x7FFF0000, 0x7FFFF000, 0x7FFFFF00, etc., because the precision here exceeds the color

The Interface between Ghostscript and Device Drivers

210

precision of the device. To convert a frac31 value into a device color component value, first drop
(ignore) the sign bit, then drop least significant bits - so many ones as you need to fit the device color
precision.

• The fa argument may contain the swap_axes bit set. In this case the implementation must swap
(transpose) X and Y axes.

• The implementation must not paint outside the clipping rectangle specified in the fa argument. If
fa->swap_axes is true, the clipping rectangle is transposed.

See gx_default_fill_linear_color_triangle in gdevddrw.c for sample code.

int (*fill_linear_color_trapezoid) (dev_t *dev, const gs_fill_attributes *fa, const g
s_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *p2, const gs_fixed
_point *p3, const frac31 *c0, const frac31 *c1, const frac31 *c2, const frac31 *c2) [
OPTIONAL]

This function is a lower level one within the linear color function group. The default implementation of
fill_linear_color_triangle calls this function 1-2 times per triangle. Besides that, this function may be
called by the graphics library for other special cases, when a decomposition into triangles appears undesirable.

While the prototype can specify a bilinear color, we assume that the implementation handles linear colors only.
This means that the implementation can ignore any of c0, c1, c2, c3 . The graphics library takes a special care
of the color linearity when calling this function. The reason for passing all 4 color arguments is to avoid color
precision problems.

Similarly to fill_linear_color_triangle , this function may be called with only 2 colors, and may reject
areas as being too complex. All those important notes are applicable here.

Sample code may be found in in gxdtfill.h; be aware it’s rather complicated. A linear color function is
generated from it as gx_fill_trapezoid_ns_lc with the following template parameters:

#define LINEAR_COLOR 1
#define EDGE_TYPE gs_linear_color_edge
#define FILL_ATTRS const gs_fill_attributes *
#define CONTIGUOUS_FILL 0
#define SWAP_AXES 0
#define FILL_DIRECT 1

See the helplers init_gradient, step_gradient (defined in gdevddrw.c), how to manage colors.

See check_gradient_overflow (defined in in gdevddrw.c), as an example of an area that can’t be painted
in a single action due to 64-bits fixed overflows.

int (*fill_linear_color_scanline) (dev_t *dev, const gs_fill_attributes *fa, int i, i
nt j, int w, const frac31 *c0, const int32_t *c0_f, const int32_t *cg_num, int32_t cg
_den) [OPTIONAL]

This function is the lowest level one within the linear color function group. It implements filling a scanline with a
linearly varying color. The default implementation for fill_linear_color_trapezoid calls this function,
and there are no other calls to it from the graphics libary. Thus if the device implements
fill_linear_color_triangle and fill_linear_color_trapezoid by own means, this function may
be left unimplemented.

i and j specify device coordinates (indices) of the starting pixel of the scanline, w specifies the width of the
scanline, i.e. the number of pixels to be painted to the right from the starting pixel, including the starting pixel.

c0 specifies the color for the starting pixel as a vector of fraction values, each of which represents a color value
in the interval [0,1].

c0_f specify a fraction part of the color for the starting pixel. See the formula below about using it.

cg_num specify a numerator for the color gradient - a vector of values in [-1,1], each of which correspond to a
color component.

cg_den specify the denominator for the color gradient - a value in [-1,1].

The Interface between Ghostscript and Device Drivers

211

The color for the pixel [i + k, j] to be computed like this :

(double)(c0[n] + (c0_f[n] + cg_num[n] * k) / cg_den) / (1 ^ 31 - 1)

where 0 <= k <= w , and n is a device color component index.

Important

• The fa argument may contain the swap_axes bit set. In this case the implementation must swap
(transpose) X and Y axes.

• The implementation must not paint outside the clipping rectangle specified in the fa argument. If
fa->swap_axes is true, the clipping rectangle is transposed.

See gx_default_fill_linear_color_scanline in gdevdsha.c for sample code.

High-level drawing

In addition to the lower-level drawing operations described above, the driver interface provides a set of high-level
operations. Normally these will have their default implementation, which converts the high-level operation to the
low-level ones just described; however, drivers that generate high-level (vector) output formats such as pdfwrite, or
communicate with devices that have firmware for higher-level operations such as polygon fills, may implement these
high-level operations directly. For more details, please consult the source code, specifically:

Header Defines

gxpaint.h gx_fill_params, gx_stroke_params

gxfixed.h fixed, gs_fixed_point (used by gx_*_params)

gxgstate.h gs_imager_state (used by gx_*_params)

gxline.h gx_line_params (used by gs_imager_state)

gslparam.h line cap/join values (used by gx_line_params)

gxmatrix.h gs_matrix_fixed (used by gs_imager_state)

gspath.h, gxpath.h, gzpath.h gx_path

gxcpath.h, gzcpath.h gx_clip_path

For a minimal example of how to implement the high-level drawing operations, see gdevtrac.c.

Paths

int (*fill_path)(gx_device *dev, const gs_imager_state *pis, gx_path *ppath, const gx
_fill_params *params, const gx_drawing_color *pdcolor, const gx_clip_path *pcpath) [O
PTIONAL]

Fill the given path, clipped by the given clip path, according to the given parameters, with the given color. The
clip path pointer may be NULL, meaning do not clip.

The implementation must paint the path with the specified device color, which may be either a pure color, or a
pattern. If the device can’t handle non-pure colors, it should check the color type and call the default
implementation gx_default_fill_path for cases which it can’t handle. The default implementation will
perform a subdivision of the area to be painted, and will call other device virtual functions (such as
fill_linear_color_triangle) with simpler areas.

int (*stroke_path)(gx_device *dev, const gs_imager_state *pis, gx_path *ppath, const
gx_stroke_params *params, const gx_drawing_color *pdcolor, const gx_clip_path *pcpath
) [OPTIONAL]

Stroke the given path, clipped by the given clip path, according to the given parameters, with the given color.
The clip path pointer may be NULL, meaning not to clip.

The Interface between Ghostscript and Device Drivers

212

int (*fill_mask)(gx_device *dev, const byte *data, int data_x, int raster, gx_bitmap_
id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int dept
h, int command, const gx_clip_path *pcpath) [OPTIONAL]

Color the 1-bits in the given mask (or according to the alpha values, if depth > 1), clipped by the given clip path,
with the given color and logical operation. The clip path pointer may be NULL, meaning do not clip. The
parameters data, ..., height are as for copy_mono; depth is as for copy_alpha; command is as below.

The function specification f

“Command” indicates the raster operation and transparency as follows:

Bits Notes

7-0 raster op

8 0 if source opaque, 1 if source transparent

9 0 if texture opaque, 1 if texture transparent

10 1 if pdf transparency is in use, 0 otherwise.
This makes no difference to the rendering,
but forces the raster operation to be considered non-idempotent by internal routines.

11 1 if the target of this operation is a specific plane, rather than all planes.
The plane in question is given by bits 13 upwards. This is only used by the planar device.

12- If bit 11 = 1, then bits 1

In general most devices should just check to see that bits they do not handle (11 and above typically) are zero, and
should jump to the default implementation, or return an error otherwise.

The raster operation follows the Microsoft and H-P specification. It is an 8-element truth table that specifies the
output value for each of the possible 2×2×2 input values as follows:

Bit Texture Source Destination

7 1 1 1

6 1 1 0

5 1 0 1

4 1 0 0

3 0 1 1

2 0 1 0

1 0 0 1

0 0 0 0

Transparency affects the output in the following way. A source or texture pixel is considered transparent if its value is
all 1s (for instance, 1 for bitmaps, 0xffffff for 24-bit RGB pixmaps) and the corresponding transparency bit is set
in the command. For each pixel, the result of the Boolean operation is written into the destination if, and only if,
neither the source nor the texture pixel is transparent. (Note that the HP RasterOp specification, on which this is
based, specifies that if the source and texture are both all 1s and the command specifies transparent source and
opaque texture, the result should be written in the output. We think this is an error in the documentation.)

Images

Similar to the high-level interface for fill and stroke graphics, a high-level interface exists for bitmap images. The
procedures in this part of the interface are optional.

Bitmap images come in a variety of types, corresponding closely (but not precisely) to the PostScript ImageTypes.
The generic or common part of all bitmap images is defined by:

typedef struct {
 const gx_image_type_t *type;

The Interface between Ghostscript and Device Drivers

213

 gs_matrix ImageMatrix;
} gs_image_common_t;

Bitmap images that supply data (all image types except image_type_from_device (2)) are defined by:

#define gs_image_max_components 5
typedef struct {
 << gs_image_common_t >>
 int Width;
 int Height;
 int BitsPerComponent;
 float Decode[gs_image_max_components * 2];
 bool Interpolate;
} gs_data_image_t;

Images that supply pixel (as opposed to mask) data are defined by:

typedef enum {
 /* Single plane, chunky pixels. */
 gs_image_format_chunky = 0,
 /* num_components planes, chunky components. */
 gs_image_format_component_planar = 1,
 /* BitsPerComponent * num_components planes, 1 bit per plane */
 gs_image_format_bit_planar = 2
} gs_image_format_t;
typedef struct {
 << gs_data_image_t >>
 const gs_color_space *ColorSpace;
 bool CombineWithColor;
} gs_pixel_image_t;

Ordinary PostScript Level 1 or Level 2 (ImageType 1) images are defined by:

typedef enum {
 /* No alpha. */
 gs_image_alpha_none = 0,
 /* Alpha precedes color components. */
 gs_image_alpha_first,
 /* Alpha follows color components. */
 gs_image_alpha_last
} gs_image_alpha_t;
typedef struct {
 << gs_pixel_image_t >>
 bool ImageMask;
 bool adjust;
 gs_image_alpha_t Alpha;
} gs_image1_t;
typedef gs_image1_t gs_image_t;

Of course, standard PostScript images don’t have an alpha component. For more details, consult the source code in
gsiparam.h and gsiparm*.h, which define parameters for an image.

The begin[_typed_]image driver procedures create image enumeration structures. The common part of these
structures consists of:

typedef struct gx_image_enum_common_s {
 const gx_image_type_t *image_type;
 const gx_image_enum_procs_t *procs;
 gx_device *dev;
 gs_id id;
 int num_planes;
 int plane_depths[gs_image_max_planes]; /* [num_planes] */
 int plane_widths[gs_image_max_planes] /* [num_planes] */
} gx_image_enum_common_t;

The Interface between Ghostscript and Device Drivers

214

where procs consists of:

typedef struct gx_image_enum_procs_s {

 /*
 * Pass the next batch of data for processing.
 */
 #define image_enum_proc_plane_data(proc)\
 int proc(gx_device *dev,\
 gx_image_enum_common_t *info, const gx_image_plane_t *planes,\
 int height)

 image_enum_proc_plane_data((*plane_data));

 /*
 * End processing an image, freeing the enumerator.
 */
 #define image_enum_proc_end_image(proc)\
 int proc(gx_device *dev,\
 gx_image_enum_common_t *info, bool draw_last)

 image_enum_proc_end_image((*end_image));

 /*
 * Flush any intermediate buffers to the target device.
 * We need this for situations where two images interact
 * (currently, only the mask and the data of ImageType 3).
 * This procedure is optional (may be 0).
 */
 #define image_enum_proc_flush(proc)\
 int proc(gx_image_enum_common_t *info)

 image_enum_proc_flush((*flush));

} gx_image_enum_procs_t;

In other words, begin[_typed]_image sets up an enumeration structure that contains the procedures that will
process the image data, together with all variables needed to maintain the state of the process. Since this is
somewhat tricky to get right, if you plan to create one of your own you should probably read an existing
implementation of begin[_typed]_image, such as the one in gdevbbox.c.

The data passed at each call of image_plane_data consists of one or more planes, as appropriate for the type of
image. begin[_typed]_image must initialize the plane_depths array in the enumeration structure with the
depths (bits per element) of the planes. The array of gx_image_plane_t structures passed to each call of
image_plane_data then defines where the data are stored, as follows:

typedef struct gx_image_plane_s {
 const byte *data;
 int data_x;
 uint raster;
} gx_image_plane_t;

int (*begin_typed_image)(gx_device *dev, const gs_imager_state *pis, const gs_matrix
*pmat, const gs_image_common_t *pim, gs_int_rect *prect, const gx_drawing_color *pdco
lor, const gx_clip_path *pcpath, gs_memory_t *memory, gx_image_enum_common_t **pinfo)
 [OPTIONAL]

Begin the transmission of an image. Zero or more calls of the image_plane_data function supplied in the
returned image enumerator will follow, and then a call of end_image. The parameters of begin_typed_image
are as follows:

The Interface between Ghostscript and Device Drivers

215

pis pointer to an imager state. The only relevant elements of the imager state are the CTM
(coordinate transformation matrix),
the logical operation (RasterOp or transparency), and the color rendering information.
For mask images, if pmat is not NULL and the color is pure, pis may be NULL.

pmat pointer to a gs_matrix structure that defines the image transformation matrix.
If pis is non-NULL, and pmat is NULL, then the ctm from pis should be used.

pim pointer to the gs_image_t structure that defines the image parameters.

prect if not NULL, defines a subrectangle of the image;
only the data for this subrectangle will be passed to image_plane_data,
and only this subrectangle should be drawn.

pdcolor defines a drawing color, only needed for masks or if CombineWithColor is true.

pcpath if not NULL, defines an optional clipping path.

memory defines the allocator to be used for allocating bookkeeping information.

pinfo the implementation should return a pointer to its state structure here.

begin_typed_image is expected to allocate a structure for its bookkeeping needs, using the allocator defined
by the memory parameter, and return it in *pinfo. begin_typed_image should not assume that the
structures in *pim, *prect, or *pdcolor will survive the call on begin_typed_image (except for the color
space in *pim->ColorSpace): it should copy any necessary parts of them into its own bookkeeping structure.
It may, however, assume that *pis, *pcpath, and of course *memory will live at least until end_image is
called.

begin_typed_image returns 0 normally, or 1 if the image does not need any data. In the latter case,
begin_typed_image does not allocate an enumeration structure.

The format of the image (how pixels are represented) is given by pim->format.

The actual transmission of data uses the procedures in the enumeration structure, not driver procedures, since the
handling of the data usually depends on the image type and parameters rather than the device. These procedures
are specified as follows.

int (*image_plane_data)(gx_device *dev, gx_image_enum_common_t *info, const gx_image_
plane_t *planes, int height)

This call provides more of the image source data: specifically, height rows, with Width pixels supplied for each
row.

The data for each row are packed big-endian within each byte, as for copy_color. The data_x (starting X
position within the row) and raster (number of bytes per row) are specified separately for each plane, and may
include some padding at the beginning or end of each row. Note that for non-mask images, the input data may
be in any color space and may have any number of bits per component (1, 2, 4, 8, 12); currently mask images
always have 1 bit per component, but in the future, they might allow multiple bits of alpha. Note also that each
call of image_plane_data passes complete pixels: for example, for a chunky image with 24 bits per pixel,
each call of image_plane_data passes 3N bytes of data (specifically, 3 × Width × height).

The interpretation of planes depends on the format member of the gs_image[_common]_t structure:

If the format is gs_image_format_chunky, planes[0].data points to data in “chunky” format, in which the
components follow each other (for instance, RGBRGBRGB….)

If the format is gs_image_format_component_planar, planes[0 .. N-1].data point to data for the N
components (for example, N=3 for RGB data); each plane contains samples for a single component, for
instance, RR…, GG…, BB…. Note that the planes are divided by component, not by bit: for example, for 24-bit
RGB data, N=3, with 8-bit values in each plane of data.

If the format is gs_image_format_bit_planar, planes[0 .. N*B-1].data point to data for the N
components of B bits each (for example, N=3 and B=4 for RGB data with 4 bits per component); each plane
contains samples for a single bit, for instance, R0 R1 R2 R3 G0 G1 G2 G3 B0 B1 B2 B3.

Note that the most significant bit of each plane comes first.

If, as a result of this call, image_plane_data has been called with all the data for the (sub-)image, it returns 1;
otherwise, it returns 0 or an error code as usual.

The Interface between Ghostscript and Device Drivers

216

image_plane_data, unlike most other procedures that take bitmaps as arguments, does not require the data
to be aligned in any way.

Note that for some image types, different planes may have different numbers of bits per pixel, as defined in the
plane_depths array.

int (*end_image)(gx_device *dev, void *info, bool draw_last)

Finish processing an image, either because all data have been supplied or because the caller has decided to
abandon this image. end_image may be called at any time after begin_typed_image. It should free the info
structure and any subsidiary structures. If draw_last is true, it should finish drawing any buffered lines of the
image.

Note

• While there will almost never be more than one image enumeration in progress – that is, after a
begin_typed_image, end_image will almost always be called before the next begin_typed_image –
driver code should not rely on this property; in particular, it should store all information regarding the image
in the info structure, not in the driver structure.

• If begin_typed_image saves its parameters in the info structure, it can decide on each call whether to
use its own algorithms or to use the default implementation. (It may need to call
gx_default_begin/end_image partway through.)

Text

The third high-level interface handles text. As for images, the interface is based on creating an enumerator which
then may execute the operation in multiple steps. As for the other high-level interfaces, the procedures are optional.

int (*text_begin)(gx_device *dev, gs_imager_state *pis, const gs_text_params_t *text,
 gs_font *font, const gx_clip_path *pcpath, gs_text_enum_t **ppte) [OPTIONAL]

Begin processing text, by creating a state structure and storing it in *ppte. The parameters of text_begin are
as follows:

dev The usual pointer to the device.

pis A pointer to an imager state. All elements may be relevant, depending on how the text is
rendered.

text A pointer to the structure that defines the text operation and parameters. See gstext.h for
details.

font Defines the font for drawing.

pcpath If not NULL, defines an optional clipping path. Only relevant if the text operation includes
TEXT_DO_DRAW.

ppte The implementation should return a pointer to its state structure here.

text_begin must allocate a structure for its bookkeeping needs, using the allocator used by the graphics state,
and return it in *ppte. text_begin may assume that the structures passed as parameters will survive until text
processing is complete.

If the text operation includes TEXT_DO...PATH then the character outline will be appended to the current path
in the pgs. The current point of that path indicates where drawing should occur and will be updated by the string
width (unless the text operation includes TEXT_DO_NONE).

If the text operation includes TEXT_DO_DRAW then the text color will be taken from the current colour in the
graphics state. (Otherwise no colour is required).

The bookkeeping information will be allocated using the memory allocator from the graphics state.

Clients should not call the driver text_begin procedure directly. Instead, they should call
gx_device_text_begin, which takes the same parameters and also initializes certain common elements of
the text enumeration structure, or gs_text_begin, which takes many of the parameters from a graphics state
structure. For details, see gstext.h.

The Interface between Ghostscript and Device Drivers

217

The actual processing of text uses the procedures in the enumeration structure, not driver procedures, since the
handling of the text may depend on the font and parameters rather than the device. Text processing may also
require the client to take action between characters, either because the client requested it (TEXT_INTERVENE in
the operation) or because rendering a character requires suspending text processing to call an external package
such as the PostScript interpreter. (It is a deliberate design decision to handle this by returning to the client,
rather than calling out of the text renderer, in order to avoid potentially unknown stack requirements.)
Specifically, the client must call the following procedures, which in turn call the procedures in the text
enumerator.

int gs_text_process(gs_text_enum_t *pte)

Continue processing text. This procedure may return 0 or a negative error code as usual, or one of the following
values (see gstext.h for details).

TEXT_PROCESS_RENDER The client must cause the current character to be rendered.
This currently only is used for PostScript Type 0-4 fonts and their
CID-keyed relatives.

TEXT_PROCESS_INTERVEN
E

The client has asked to intervene between characters. This is used for
cshow and kshow.

int gs_text_release(gs_gstate * pgs, gs_text_enum_t *pte, client_name_t cname)

Finish processing text and release all associated structures. Clients must call this procedure after
gs_text_process returns 0 or an error, and may call it at any time.

There are numerous other procedures that clients may call during text processing. See gstext.h for details.

Note

Unlike many other optional procedures, the default implementation of text_begin cannot simply return:
like the default implementation of begin[_typed]_image, it must create and return an enumerator.
Furthermore, the implementation of the process procedure (in the enumerator structure, called by
gs_text_process) cannot simply return without doing anything, even if it doesn’t want to draw anything on
the output. See the comments in gxtext.h for details.

Unicode support for high level (vector) devices

Implementing a new high level (also known as vector) device, one may need to translate Postscript character codes
into Unicode. This can be done pretty simply.

For translating a Postscript text you need to implement the device virtual function text_begin. It should create a
new instance of gs_text_enum_t in the heap (let its pointer be pte), and assign a special function to
gs_text_enum_t::procs.process. The function will receive pte. It should take the top level font from
pte->orig_font, and iterate with font->procs.next_char_glyph(pte, ..., &glyph). The last
argument receives a gs_glyph value, which encodes a Postscript character name or CID (and also stores it into
pte->returned.current_glyph). Then obtain the current subfont with gs_text_current_font(pte) (it can
differ from the font) and call subfont->procs.decode_glyph(subfont, glyph). The return value will be an
Unicode code, or GS_NO_CHAR if the glyph can’t be translated to Unicode.

Reading bits back

int (*get_bits_rectangle)(gx_device *dev, const gs_int_rect *prect, gs_get_bits_param
s_t *params) [OPTIONAL]

Read a rectangle of bits back from the device. The params structure consists of:

options the allowable formats for returning the data

data[32] pointers to the returned data

x_offset the X offset of the first returned pixel in data

raster the distance between scan lines in the returned data

The Interface between Ghostscript and Device Drivers

218

options is a bit mask specifying what formats the client is willing to accept. (If the client has more flexibility, the
implementation may be able to return the data more efficiently, by avoiding representation conversions.) The
options are divided into groups:

alignment

Specifies whether the returned data must be aligned in the normal manner for bitmaps, or whether
unaligned data are acceptable.

pointer or copy

Specifies whether the data may be copied into storage provided by the client and/or returned as pointers to
existing storage. (Note that if copying is not allowed, it is much more likely that the implementation will
return an error, since this requires that the client accept the data in the implementation’s internal format.)

X offset

Specifies whether the returned data must have a specific X offset (usually zero, but possibly other values to
avoid skew at some later stage of processing) or whether it may have any X offset (which may avoid skew
in the get_bits_rectangle operation itself).

raster

Specifies whether the raster (distance between returned scan lines) must have its standard value, must
have some other specific value, or may have any value. The standard value for the raster is the device
width padded out to the alignment modulus when using pointers, or the minimum raster to accommodate
the X offset + width when copying (padded out to the alignment modulus if standard alignment is required).

format

Specifies whether the data are returned in chunky (all components of a single pixel together),
component-planar (each component has its own scan lines), or bit-planar (each bit has its own scan lines)
format.

color space

Specifies whether the data are returned as native device pixels, or in a standard color space. Currently the
only supported standard space is RGB.

standard component depth

Specifies the number of bits per component if the data are returned in the standard color space. (Native
device pixels use dev->color_info.depth bits per pixel.)

alpha

Specifies whether alpha channel information should be returned as the first component, the last component,
or not at all. Note that for devices that have no alpha capability, the returned alpha values will be all 1s.

The client may set more than one option in each of the above groups; the implementation will choose one of the
selected options in each group to determine the actual form of the returned data, and will update
params[].options to indicate the form. The returned params[].options will normally have only one option set
per group.

For further details on params, see gxgetbit.h. For further details on options, see gxbitfmt.h.

Define w = prect->q.x - prect->p.x, h = prect->q.y - prect->p.y. If the bits cannot be read back
(for example, from a printer), return gs_error_unknownerror; if raster bytes is not enough space to hold
offset_x + w pixels, or if the source rectangle goes outside the device dimensions
(p.x < 0 || p.y < 0 || q.x > dev->width || q.y > dev->height), return gs_error_rangecheck;
if any regions could not be read, return gs_error_ioerror if unpainted is NULL, otherwise the number of
rectangles (see below); otherwise return 0.

The caller supplies a buffer of raster × h bytes starting at data[0] for the returned data in chunky format, or N
buffers of raster × h bytes starting at data[0] through data[N-1] in planar format where N is the number of
components or bits. The contents of the bits beyond the last valid bit in each scan line (as defined by w) are
unpredictable. data need not be aligned in any way. If x_offset is non-zero, the bits before the first valid bit in
each scan line are undefined. If the implementation returns pointers to the data, it stores them into data[0] or
data[0..N-1].

The Interface between Ghostscript and Device Drivers

219

Parameters

Devices may have an open-ended set of parameters, which are simply pairs consisting of a name and a value. The
value may be of various types: integer (int or long), boolean, float, string, name, NULL, array of integer, array of float,
or arrays or dictionaries of mixed types. For example, the Name of a device is a string; the Margins of a device is an
array of two floats. See gsparam.h for more details.

If a device has parameters other than the ones applicable to all devices (or, in the case of printer devices, all printer
devices), it must provide get_params and put_params procedures. If your device has parameters beyond those of
a straightforward display or printer, we strongly advise using the get_params and put_params procedures in an
existing device (for example, gdevcdj.c or gdevbit.c) as a model for your own code.

int (*get_params)(gx_device *dev, gs_param_list *plist) [OPTIONAL]

Read the parameters of the device into the parameter list at plist, using the param_write_* macros or
procedures defined in gsparam.h.

int (*get_hardware_params)(gx_device *dev, gs_param_list *plist) [OPTIONAL]

Read the hardware-related parameters of the device into the parameter list at plist. These are any parameters
whose values are under control of external forces rather than the program – for example, front panel switches,
paper jam or tray empty sensors, etc. If a parameter involves significant delay or hardware action, the driver
should only determine the value of the parameter if it is “requested” by the
gs_param_list [param_requested(plist, key_name)]. This function may cause the asynchronous
rendering pipeline (if enabled) to be drained, so it should be used sparingly.

int (*put_params)(gx_device *dev, gs_param_list *plist) [OPTIONAL]

Set the parameters of the device from the parameter list at plist, using the param_read_* macros/procedures
defined in gsparam.h. All put_params procedures must use a “two-phase commit” algorithm; see gsparam.h
for details.

Default color rendering dictionary (CRD) parameters

Drivers that want to provide one or more default CIE color rendering dictionaries (CRDs) can do so through
get_params. To do this, they create the CRD in the usual way (normally using the gs_cie_render1_build and
_initialize procedures defined in gscrd.h), and then write it as a parameter using
param_write_cie_render1 defined in gscrdp.h. However, the TransformPQR procedure requires special
handling. If the CRD uses a TransformPQR procedure different from the default (identity), the driver must do the
following:

• The TransformPQR element of the CRD must include a proc_name, and optionally proc_data. The
proc_name is an arbitrary name chosen by the driver to designate the particular TransformPQR function. It
must not be the same as any device parameter name; we strongly suggest it include the device name, for
instance, “bitTPQRDefault”.

• For each such named TransformPQR procedure, the driver’s get_param procedure must provide a
parameter of the same name. The parameter value must be a string whose bytes are the actual procedure
address.

For a complete example, see the bit_get_params procedure in gdevbit.c. Note that it is essential that the
driver return the CRD or the procedure address only if specifically requested (param_requested(...) > 0);
otherwise, errors will occur.

Device parameters affecting interpretation

Some parameters have been defined for high level (vector) device drivers which affect the operation of the
interpreter. These are documented here so that other devices requiring the same behaviour can use these
parameters.

/HighLevelDevice

True if the device is a high level (vector) device. Currently this controls haltone emission during setpagedevice.
Normally setpagdevice resets the halftone to a default value, which is unfortunate for high-level devices such
as ps2write and pdfwrite, as they are unable to tell that this is caused by setpagdevice rather than a halftone
set by the input file. In order to prevent spurious default halftones being embedded in the output, if
/HighLevelDevice is present and true in the device paramters, then the default halftone will not be set during
setpagedevice. Also prevents interpolation of imagemasks during PDF interpretation.

The Interface between Ghostscript and Device Drivers

220

/AllowIncrementalCFF

pdfwrite relies on font processing occuring in a particular order, which may not happen if CFF fonts are
downloaded incrementally. Defining this parameter to true will prevent incremental CFF downloading (may raise
an error during processing).

/AllowPSRepeatFuncs

pdfwrite emits functions as type 4, and as a result can’t convert PostScript functions using the repeat operator
into PDF functions. Defining this parameter as true will cause such functions to raise an error during processing.

/IsDistiller

Defining this parameter as true will result in the operators relating to ‘distillerparams’ being defined
(setdistillerparams/currentdistillerparams). Some PostScript files behave differently if these
operators are present (e.g. rotating the page) so this parameter may be true even if the device is not strictly a
Distiller. For example ps2write defines this parameter to be true.

/PreserveSMask

If this parameter is true then the PDF interpreter will not convert SMask (soft mask, ie transparent) images into
opaque images. This should be set to true for devices which can handle transparency (e.g. pdfwrite).

/PreserveTrMode

If this parameter is true then the PDF interpreter will not handle Text Rendering modes by degenerating into a
sequence of text operations, but will instead set the Tr mode, and emit the text once. This value should be true
for devices which can handle PDF text rendering modes directly.

/WantsToUnicode

In general, Unicode values are not of interest to rendering devices, but for high level (aka vector) devices, they
can be extremely valuable. If this parameter is defined as true then ToUnicode CMaps and
GlyphName2Unicode tables will be processed and stored.

Page devices

gx_device *(*get_page_device)(gx_device *dev) [OPTIONAL]

According to the Adobe specifications, some devices are “page devices” and some are not. This procedure
returns NULL if the device is not a page device, or the device itself if it is a page device. In the case of
forwarding devices, get_page_device returns the underlying page device (or NULL if the underlying device is
not a page device).

Miscellaneous

int (*get_band)(gx_device *dev, int y, int *band_start) [OPTIONAL]

If the device is a band device, this procedure stores in *band_start the scan line (device Y coordinate) of the
band that includes the given Y coordinate, and returns the number of scan lines in the band. If the device is not a
band device, this procedure returns 0. The latter is the default implementation.

void (*get_clipping_box)(gx_device *dev, gs_fixed_rect *pbox) [OPTIONAL]

Stores in *pbox a rectangle that defines the device’s clipping region. For all but a few specialized devices, this
is ((0,0),(width,height)).

Device Specific Operations

In order to enable the provision of operations that make sense only to a small range of devices/callers, we provide an
extensible function. The operation to perform is specified by an integer, taken from an enumeration in gxdevsop.h.

A typical user of this function might make a call to detect whether a device works in a particular way (such as
whether it has a particular color mapping) to enable an optimisation elsewhere. Sometimes it may be used to detect
a particular piece of functionality (such as whether copy_plane is supported); in other cases it may be used both to
detect the presence of other functionality and to perform functions as well (such as with the pdf specific pattern
management calls - moved here from their own dedicated device function).

This function is designed to be easy to chain through multiple levels of device without each intermediate device
needing to know about the full range of operations it may be asked to perform.

int (*dev_spec_op)(gx_device *dev, int dso, void *data, int size) [OPTIONAL]

The Interface between Ghostscript and Device Drivers

221

Perform device specific operation dso. Returns gs_error_undefined for an unknown (or unsupported
operation), other negative values for errors, and (dso specific) non-negative values to indicate success. For
details of the meanings of dso, data and size, see gxdevsop.h.

Tray selection
The logic for selecting input trays, and modifying other parameters based on tray selection, can be complex and
subtle, largely thanks to the requirement to be compatible with the PostScript language setpagedevice
mechanism. This section will describe recipes for several common scenarios for tray selection, with special attention
to the how the overall task factors into configuration options, generic logic provided by the PostScript language (or
not, if the device is used with other PDL’s), and implementation of the put_param / get_param device functions
within the device.

In general, tray selection is determined primarily through the setpagedevice operator, which is part of the
PostScript runtime. Ghostscript attempts to be as compatible as is reasonable with the PostScript standard, so for
more details, see the description in the PostScript language specifications, including the “supplements”, which tend
to have more detail about setpagedevice behavior than the PLRM book itself.

The first step is to set up an /InputAttributes dictionary matching the trays and so on available in the device.
The standard Ghostscript initialization files set up a large InputAttributes dictionary with many “known” page
sizes (the full list is in gs_statd.ps, under .setpagesize). It’s possible to edit this list in the Ghostscript source,
of course, but most of the time it is better to execute a snippet of PostScript code after the default initialization but
before sending any actual jobs.

Simply setting a new /InputAttributes dictionary with setpagedevice will not work, because the the language
specification for setpagedevice demands a “merging” behavior - paper tray keys present in the old dictionary will
be preserved even if the key is not present in the new /InputAttributes dictionary. Here is a sample invocation
that clears out all existing keys, and installs three new ones: a US letter page size for trays 0 and 1, and 11x17 for
tray 1. Note that you must add at least one valid entry into the /InputAttributes dictionary; if all are null, then the
setpagedevice will fail with a /configurationerror.

<< /InputAttributes
 currentpagedevice /InputAttributes get
 dup { pop 1 index exch null put } forall

 dup 0 << /PageSize [612 792] >> put
 dup 1 << /PageSize [612 792] >> put
 dup 2 << /PageSize [792 1224] >> put
>> setpagedevice

After this code runs, then requesting a letter page size (612x792 points) from setpagedevice will select tray 0, and
requesting an 11x17 size will select tray 2. To explicitly request tray 1, run:

<< /PageSize [612 792] /MediaPosition 1 >> setpagedevice

At this point, the chosen tray is sent to the device as the (nonstandard) %MediaSource device parameter. Devices
with switchable trays should implement this device parameter in the put_params procedure. Unlike the usual
protocol for device parameters, it is not necessary for devices to also implement get_params querying of this
paramter; it is effectively a write-only communication from the language to the device. Currently, among the devices
that ship with Ghostscript, only PCL (gdevdjet.c) and PCL/XL (gdevpx.c) implement this parameter, but that list
may well grow over time.

If the device has dynamic configuration of trays, etc., then the easiest way to get that information into the tray
selection logic is to send a setpagedevice request (if using the standard API, then using
gsapi_run_string_continue) to update the /InputAttributes dictionary immediately before beginning a
job.

Tray rotation and the LeadingEdge parameter

Large, sophisticated printers often have multiple trays supporting both short-edge and long-edge feed. For example,
if the paper path is 11 inches wide, then 11x17 pages must always print short-edge, but letter size pages print with
higher throughput if fed from long-edge trays. Generally, the device will expect the rasterized bitmap image to be
rotated with respect to the page, so that it’s always the same orientation with respect to the paper feed direction.

The Interface between Ghostscript and Device Drivers

222

The simplest way to achieve this behavior is to call gx_device_request_leadingedge to request a
LeadingEdge value LeadingEdge field in the device structure based on the %MediaSource tray selection index
and knowledge of the device’s trays. The default put_params implementation will then handle this request (it’s done
this way to preserve the transactional semantics of put_params; it needs the new value, but the changes can’t
actually be made until all params succeed). For example, if tray 0 is long-edge, while trays 1 and 2 are short-edge,
the following code outline should select the appropriate rotation:

my_put_params(gx_device *pdev, gs_param_list *plist) {
 my_device *dev = (my_device *)pdev;
 int MediaSource = dev->myMediaSource;

 code = param_read_int(plist, "%MediaSource", &MediaSource);

 switch (MediaSource) {
 case 0:
 gx_device_req_leadingedge(dev, 1);
 break;
 case 1:
 case 2:
 gx_device_req_leadingedge(dev, 0);
 break;
 }
 ...call default put_params, which makes the change...

 dev->myMediaSource = MediaSource;
 return 0;
}

Ghostscript also supports explicit rotation of the page through setting the /LeadingEdge parameter with
setpagedevice. The above code snippet will simply override this request. To give manual setting through
setpagedevice priority, don’t change the LeadingEdge field in the device if its LEADINGEDGE_SET_MASK bit is
set. In other words, simply enclose the above switch statement inside an
if (!(dev->LeadingEdge & LEADINGEDGE_SET_MASK) { ... } statement.

Interaction between LeadingEdge and PageSize

As of LanguageLevel 3, PostScript now has two mechanisms for rotating the imaging of the page: the LeadingEdge
parameter described in detail above, and the automatic rotation as enabled by the /PageSize page device
parameter (described in detail in Table 6.2 of the PLRM3). Briefly, the PageSize autorotation handles the case
where the page size requested in setpagedevice matches the swapped size of the paper source (as set in the
InputAttributesDictionary). This mechanism can be, and has been, used to implement long-edge feed, but
has several disadvantages. Among other things, it’s overly tied to the PostScript language, while the device code
above will work with other languages. Also, it only specifies one direction of rotation (90 degrees counterclockwise).
Thus, given the choice, LeadingEdge is to be preferred.

If PageSize is used, the following things are different:

• The PageSize array in InputAttributes is swapped, so it is [long short].

• The .MediaSize device parameter is similarly swapped.

• The initial matrix established by the device through the get_initial_matrix procedure is the same as for
the non-rotated case.

• The CTM rotation is done in the setpagedevice implementation.

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

The Interface between Ghostscript and Device Drivers

223

https://www.artifex.com

Ghostscript and the PostScript Language

Ghostscript’s capabilities in relation to PostScript
The Ghostscript interpreter, except as noted below, is intended to execute properly any source program written in the
(LanguageLevel 3) PostScript language as defined in the PostScript Language Reference, Third Edition (ISBN
0-201-37922-8) published by Addison-Wesley in mid-1999. However, the interpreter is configurable in ways that can
restrict it to various subsets of this language. Specifically, the base interpreter accepts the Level 1 subset of the
PostScript language, as defined in the first edition of the PostScript Language Reference Manual (ISBN
0-201-10174-2) Addison-Wesley 1985, plus the file system, version 25.0 language, and miscellaneous additions
listed in sections A.1.6, A.1.7, and A.1.8 of the Second Edition respectively, including allowing a string operand for
the “status” operator. The base interpreter may be configured (see the documentation on building Ghostscript for
how to configure it) by adding any combination of the following:

• The ability to process PostScript Type 1 fonts. This facility is normally included in the interpreter.

• The CMYK color extensions listed in section A.1.4 of the Second Edition (including colorimage). These
facilities are available only if the color, dps, or level2 feature was selected when Ghostscript was built.

• The Display PostScript extensions listed in section A.1.3 of the Second Edition, but excluding the operators
listed in section A.1.2. These facilities are available only if the dps feature or the level2 feature was selected
when Ghostscript was built.

• The composite font extensions listed in section A.1.5 of the Second Edition, and the ability to handle Type 0
fonts. These facilities are available only if the compfont feature or the level2 feature was selected when
Ghostscript was built.

• The ability to load TrueType fonts and to handle PostScript Type 42 (encapsulated TrueType) fonts. These
facilities are available only if the ttfont feature was selected when Ghostscript was built.

• The PostScript Level 2 “filter” facilities except the DCTEncode and DCTDecode filters. These facilities are
available only if the filter, dps, or level2 feature was selected when Ghostscript was built.

• The PostScript Level 2 DCTEncode and DCTDecode filters. These facilities are available only if the dct or
level2 feature was selected when Ghostscript was built.

• All the other PostScript Level 2 operators and facilities listed in section A.1.1 of the Second Edition and not
listed in any of the other A.1.n sections. These facilities are available only if the level2 feature was selected
when Ghostscript was built.

• All PostScript LanguageLevel 3 operators and facilities listed in the Third Edition, except as noted below. These
facilities are available only if the psl3 feature was selected when Ghostscript was built.

• The ability to recognize DOS EPSF files and process only the PostScript part, ignoring bitmap previews or other
information. This facility is available only if the epsf feature was selected when Ghostscript was built.

Ghostscript currently does not implement the following PostScript LanguageLevel 3 facilities:

• Settable ProcessColorModel for page devices, except for a very few special devices.

• IODevices other than %stdin, %stdout, %stderr, %lineedit, %statementedit, %os%, and (if
configured) %pipe% and %disk0% through %disk0%.

Ghostscript can also interpret files in the Portable Document Format (PDF) 1.7 format defined in the PDF Reference
Version 1.7, distributed by Adobe Systems Incorporated, except as noted below. This facility can be disabled by
deselecting the pdf feature when Ghostscript is built.

Ghostscript currently implements the majority of non-interactive features defined in the PDF reference.

Ghostscript also includes a number of additional operators defined below that are not in the PostScript language
defined by Adobe.

Implementation limits
The implementation limits show here correspond to those in Tables B.1 and B.2 of the Second and Third Editions,
which describe the quantities fully. Where Ghostscript’s limits are different from those of Adobe’s implementations
(as shown in the Third Edition), Adobe’s limits are also shown.

Ghostscript and the PostScript Language

225

Architectural limits

Architectural limits (corresponds to Adobe table B.1)

Quantity Limit Type Adobe

integer 32-bit twos complement integer

real single-precision IEEE float

array 16777216 elements 65535

dictionary 16777215 elements 65535

string 16777216 characters 65535

name 16383 characters 127

filename 128 * characters

save level none (capacity of memory) 15

gsave level none (capacity of memory) 13

* The limit on the length of a file name is 128 characters if the name starts with a %...% IODevice designation, or
124 characters if it does not.

Typical memory limits in LanguageLevel 1

Memory limits (corresponds to Adobe table B.2)

Quantity Limit Type Adobe

userdict 200

FontDirectory 100

operand stack 800 500

dictionary stack 20

execution stack 250

interpreter level none (capacity of memory) 10

path none (capacity of memory) 1500

dash 11

VM none (capacity of memory) 240000

file none (determined by operating
system)

6

image 65535 values (samples ×
components)
for 1-, 2-, 4-, or 8-bit
samples

3300

32767 values for 12-bit samples 3300

Other differences in VM consumption

In 32-bit builds packed array elements occupy either 2 bytes or 12 bytes. The average element size is probably
about 7 bytes. Names occupy 16 bytes plus the space for the string.

In 64-bit builds packed array elements occupy either 2 bytes or 16 bytes. The average element size is probably
about 9 bytes. Names occupy 24 bytes plus the space for the string.

The garbage collector doesn’t reclaim portions of arrays obtained with getinterval, rather it collects entire arrays.

Ghostscript and the PostScript Language

226

Additional operators in Ghostscript

Graphics and text operators

Transparency

Note

The following paragraphs describe non-standard operators for accessing the PDF 1.4 and later transparent
imaging model through Postscript. If used incorrectly, they can have unexpected side effects and result in
undefined behavior. As a result, these operators are disabled when SAFER is in force (as it is by default from
version 9.50 onwards). To utilise these operators you will either have to disable SAFER (-dNOSAFER) or use the
command line parameter -dALLOWPSTRANSPARENCY. The latter will make the custom operators available, but
leave the file access controls active.

Ghostscript provides a set of operators for implementing the transparency and compositing facilities of PDF 1.4.
These are defined only if the transpar option was selected when Ghostscript was built. We do not attempt to
explain the underlying graphics model here: for details, see Adobe Technical Note #5407, “Transparency in PDF”.
Previously (in 9.52 and earlier), Ghostscript’s model maintained separate alpha and mask values for opacity and
shape. This model has been changed (as of 9.53) and instead Ghostscript maintains separate float values for stroke
and fill alpha values with a boolean that indicates if these should be interpreted as shape or alpha values to be more
in line with the PDF specification.

What follows is a subset of all the custom operators related to transparency, but covers the most useful, most
common requirements.

Graphics state operators

Pushing the compositor device must be done before any other marking operations are made on the current page,
and must be done per page. Popping the compositor should be done after the last marking operation of the page,
and before the call to showpage. Any marking operations made after the compositor is popped will bypass the
transparent imaging model, and may produce unexpected output.

<depth> .pushpdf14devicefilter -

Installs the transparency compositor device into the graphics state. At present the depth parameter should
always be zero (Subject To Change.)

- .popdf14devicefilter -

Removes (or, more accuracately, disables) the transparency compositor in graphics state.

<modename> .setblendmode -

Sets the blending mode in the graphics state. If the mode name is not recognized, causes a rangecheck error.
The initial value of the blending mode is /Compatible.

- .currentblendmode <modename>

Returns the graphics state blend mode on the stack.

[Deprecated as of 9.53] <0..1> .setopacityalpha -

Sets the opacity alpha value in the graphics state. The initial opacity alpha value is 1. Note, it is strongly
suggested that this method not be used as it currently may give inconsistent results when mixed with methods
that set stroke and fill alpha values.

[Deprecated as of 9.53] - .currentopacityalpha <0..1>

Returns the graphics state opacity alpha on the stack. Note, it is strongly suggested that this method not be
used as it currently may give inconsistent results when mixed with methods that set stroke and fill alpha values.

[Deprecated as of 9.53] <0..1> .setshapealpha -

Sets the shape alpha value in the graphics state. The initial shape alpha value is 1. Note, it is strongly suggested
that this method not be used as it currently may give inconsistent results when mixed with methods that set
stroke and fill alpha values.

Ghostscript and the PostScript Language

227

[Deprecated as of 9.53] - .currentshapealpha <0..1>

Returns the graphics state shape alpha on the stack. Note, it is strongly suggested that this method not be used
as it currently may give inconsistent results when mixed with methods that set stroke and fill alpha values.

<0..1> .setstrokeconstantalpha -

Sets the stroke alpha value in the graphics state. The initial stroke alpha value is 1.

- .currentstrokeconstantalpha <0..1>

Returns the graphics state stroke alpha value on the stack.

<0..1> .setfillconstantalpha -

Sets the fill alpha value in the graphics state. The initial fill alpha value is 1.

- .currentfillconstantalpha <0..1>

Returns the graphics state fill alpha value on the stack.

<bool> .setalphaisshape -

If true, the values set by setstrokeconstantalpha and setfillconstantalpha are interpreted as shape
values. The initial value of the AIS flag is false.

- .currentalphaisshape <0..1>

Returns the graphics state alpha is shape (AIS) on the stack.

<bool> .settextknockout -

Sets the text knockout flag in the graphics state. The initial value of the text knockout flag is true.

- .currenttextknockout <bool>

Returns the graphics state text knockout on the stack.

Rendering stack operators

The interpreter state is extended to include a (per-context) rendering stack for handling transparency groups and
masks (generically, “layers”). Groups accumulate a full value for each pixel (paint plus transparency); masks
accumulate only a coverage value. Layers must be properly nested, i.e., the ‘end’ or ‘discard’ operator must match
the corresponding ‘begin’ operator.

Beginning and ending groups must nest properly with respect to save and restore: save and restore do not save and
restore the layer stack. Currently, layers are not required to nest with respect to gsave and grestore, except that the
device that is current in the graphics state when ending a layer must be the same as the device that was current
when beginning the layer.

Warning

THIS AREA IS SUBJECT TO CHANGE.

<paramdict> <llx> <lly> <urx> <ury> .begintransparencygroup -

Begins a new transparency group. The ll/ur coordinates are the bounding box of the group in the current user
coordinate system. paramdict has the following keys:

/Isolated

(optional) Boolean; default value = false.

/Knockout

(optional) Boolean; default value = false.

- .endtransparencygroup -

Ends the current transparency group, compositing the group being ended onto the group that now becomes
current.

<cs_set?> <paramdict> <llx> <lly> <urx> <ury> .begintransparencymaskgroup -

Begins a new transparency mask, which is represented as a group. The ll/ur coordinates are the bounding
box of the mask in the current user coordinate system. paramdict has the following keys:

/Subtype

Ghostscript and the PostScript Language

228

(required) Name, either /Alpha or /Luminosity.

/Background

(optional) Array of number.

/TransferFunction

(optional) Function object (produced by applying .buildfunction to a Function dictionary).

The cs_set parameter is a boolean indicating whether the color space for the mask group is the current color
space in the graphics state, or whether mask group color space should be inherited from the previous group in
the transparency group stack. In general, for the most consistent results, it is recommended that this be set to
true, and the intended color space set in the graphics state prior to the .begintransparencymaskgroup call.

<mask#> .endtransparencymask -

Ends the current transparency mask group, compositing the mask group being ended and setting it as the
current soft mask in the graphics state. The mask# parameter indicates whether the mask should be treated as
as opacity mask (0) or shape (1).

New ImageType

The transparency extension defines a new ImageType 103, similar to ImageType 3 with the following differences:

• The required MaskDict is replaced by two optional dictionaries, OpacityMaskDict and ShapeMaskDict. If
present, these dictionaries must have a BitsPerComponent entry, whose value may be greater than 1. Note
that in contrast to ImageType 3, where any non-zero chunky mask value is equivalent to 1, ImageType 103
simply takes the low-order bits of chunky mask values.

• A Matte entry may be present in one or both mask dictionaries, indicating premultiplication of the data values.
If both MaskDicts have a Matte entry and the values of the two Matte entries are different, a rangecheck
error occurs.

• InterleaveType appears in the MaskDicts, not the DataDict, because each mask has its own
InterleaveType. InterleaveType 2 (interlaced scan lines) is not supported.

Other graphics state operators

<int> .setoverprintmode -

Sets the overprint mode in the graphics state. Legal values are 0 or 1. Per the PDF 1.3 specification, if the
overprint mode is 1, then when the current color space is DeviceCMYK, color components whose value is 0 do
not write into the target, rather than writing a 0 value. THIS BEHAVIOR IS NOT IMPLEMENTED YET. The initial
value of the overprint mode is 0.

- .currentoverprintmode <int>

Returns the current overprint mode.

Character operators

 <charcode> %Type1BuildChar -

This is not a new operator: rather, it is a name known specially to the interpreter. Whenever the interpreter
needs to render a character (during a ...show, stringwidth, or charpath), it looks up the name
BuildChar in the font dictionary to find a procedure to run. If it does not find this name, and if the FontType is
1, the interpreter instead uses the value (looked up on the dictionary stack in the usual way) of the name
%Type1BuildChar.

The standard definition of %Type1BuildChar is in the initialization file gs_type1.ps. Users should not need
to redefine %Type1BuildChar, except perhaps for tracing or debugging.

 <charname> %Type1BuildGlyph -

Provides the Type 1 implementation of BuildGlyph.

Ghostscript and the PostScript Language

229

Other operators

Mathematical operators

<number> arccos <number>

Computes the arc cosine of a number between -1 and 1.

<number> arcsin <number>

Computes the arc sine of a number between -1 and 1.

Dictionary operators

mark <key1> <value1> <key2> <value2>dicttomark <dict>

Creates and returns a dictionary with the given keys and values. This is the same as the PostScript Level 2 >>
operator, but is available even in Level 1 configurations.

<dict> <key> .knownget <value> true, <dict> <key> .knownget false

Combines known and get in the obvious way.

File operators

<file> .fileposition <integer> true

Returns the position of file. Unlike the standard fileposition operator, which causes an error if the file is not
positionable, .fileposition works on all files, including filters: for non-positionable files, it returns the total
number of bytes read or written since the file was opened.

<string> findlibfile <foundstring> <file> true, <string> findlibfile <string> false

Opens the file of the given name for reading, searching through directories as described in the usage
documentation. If the search fails, findlibfile simply pushes false on the stack and returns, rather than
causing an error.

<prefix_string|null> <access_string> .tempfile <string> <file>

Creates and opens a temporary file like the file operator, also returning the file name. There are three cases for
the <prefix_string|null> operand:

• null: create the file in the same directory and with the same name conventions as other temporary files
created by the Ghostscript implementation on this platform. E.g., the temporary file might be named
/tmp/gs_a1234.

• A string that contains only alphanumeric characters, underline, and dash: create the file in the standard
temporary directory, but use the <prefix_string> as the first part of the file name. E.g., if
<prefix_string> is xx, the temporary file might be named /tmp/xxa1234.

• A string that is the beginning of an absolute file name: use the <prefix_string> as the first part of the
file name. E.g., if <prefix_string> is /my/tmpdir/zz, the temporary file might be named
/my/tmpdir/zza1234.

When running in SAFER mode, the absolute path must be one of the strings on the permit file writing list
(see -dSAFER) .

Ghostscript also supports the following IODevice in addition to a subset of those defined in the Adobe
documentation:

• %pipe%command, which opens a pipe on the given command. This is supported only on operating systems that
provide popen (primarily Unix systems, and not all of those).

• %disk#%, which emulates the %disk0 through %disk9 devices on some Adobe PostScript printers. This
pseudo device provides a flat filenaming system with a user definable location for the files (/Root). These
devices will only be present if the diskn.dev feature is specified during the build.

This feature is intended to allow compatibility with font downloaders that expect to store fonts on the
%disk device of the printer.

Use of the %disk#% devices requires that the location of files be given by the user setting the /Root
device parameter. The syntax for setting the /Root parameter is:

Ghostscript and the PostScript Language

230

mark /Root (directory_specification) (%disk#) .putdevparams

For example, to store the files of the %disk0 device on the directory /tmp/disk0, use:

mark /Root (/tmp/disk0/) (%disk0) .putdevparams

The files will be stored in the specified directory with arbitrary names. A mapping file is used to store the
association between the file names given for the file operations on the %diskn# device and the file that
resides in the /Root directory.

Miscellaneous operators

<array> bind <array>

Depending on the command line parameters bind is redefined as:

Flag Definition

DELAYBIND Returns the argument, stores the argument for later
use by .bindnow

<array> .bind <array>

Performs standard bind operation as defined in PLRM regardless of the DELAYBIND flag.

- .bindnow -

Applies bind operator to all saved procedures after binding has been deferred through -dDELAYBIND. Note
that idiom recognition has no effect for the deferred binding because the value returned from bind is discarded.

Since v. 8.12 .bindnow undefines itself and restores standard definition of bind operator. In earlier versions
after calling .bindnow, the postscript bind operator needs to be rebound to the internal implementation
.bind, as in this fragment from the ps2ascii script:

DELAYBIND {
 .bindnow
 /bind /.bind load def
} if

This is necessary for correct behavior with later code that uses the bind operator.

<string> getenv <string> true, <string> getenv false

Looks up a name in the shell environment. If the name is found, returns the corresponding value and true; if the
name is not found, returns false.

<string> <boolean> .setdebug -

Sets or clears any subset of the debugging flags included in <string> based on the value of <boolean>.
These correspond to the debug flags set by -Z on the command line and enable debug and tracing output from
various internal modules.

Note

Most tracing output is only produced if the Ghostscript interpreter was built with the DEBUG preprocessor
symbol defined.

The zsetdebug() C function, which implements this operator, is a useful breakpoint for debuggers. Inserting
‘() true .setdebug’ in the interpreted code will trigger a breakpoint at that location without side effects. The
current flag state is available in C as the gs_debug[] array, indexed by character value. The zsetdebug
function will be entered, and gs_debug[] updated, whether or not Ghostscript is built with the DEBUG
preprocessor symbol defined, so this is useful even with release builds.

- .setsafe -

If Ghostscript is started with -dNOSAFER or -dDELAYSAFER, this operator can be used to enter SAFER mode
(see -dSAFER)

The following is deprecated, see -dSAFER.

Ghostscript and the PostScript Language

231

Since SAFER mode is implemented with userparameters and device parameters, it is possible to use save and
restore before and after .setsafe to return to NOSAFER mode, but note that such a save object is accessible
to any procedures or file run in SAFER mode. A malicious file with an unbalanced restore could potentially
restore back to a point where SAFER was not in operation.

Note

This uses setpagedevice to change .LockSafetyParams, so the page will be erased as a side effect of
this operator.

- .locksafe -

The following is deprecated, see -dSAFER.

This operator sets the current device’s .LockSafetyParams and the LockFilePermissions user
parameter true as well as adding the paths on LIBPATH and FONTPATH and the paths given by the system
params /GenericResourceDir and /FontResourceDir to the current PermitFileReading list of paths.

If Ghostscript is started with -dNOSAFER or -dDELAYSAFER, this operator can be used to enter SAFER mode
with the current set of PermitFile... user parameters in effect. Since .setsafe sets the PermitFile...
user parameters to empty arrays, a script or job server that needs to enable certain paths for file Reading,
Writing and/or Control can use this operator to perform the locking needed to enter SAFER mode.

For example, to enable reading everywhere, but disallow writing and file control (deleting and renaming files),
the following can be used:

{ << /PermitFileReading [(*)]
 /PermitFileWriting []
 /PermitFileControl []
 >> setuserparams
 .locksafe
} stopped pop

In the above example, use of stopped will allow the use of this sequence on older versions of Ghostscript where
.locksafe was not an operator.

Note

This uses setpagedevice to change .LockSafetyParams, so the page will be erased as a side effect of
this operator.

See also .LockSafetyParams and User Parameters.

<name> <string> .addcontrolpath

Adds a single path to the file access control lists.

The <name> parameter can be one of:

• /PermitFileReading

• /PermitFileWriting

• /PermitFileControl

Whilst the string parameter is the path to be added to the requested list.

Note

Any attempt to call this operator after .activatepathcontrol has been called will result in a Fatal error,
and the interpreter will immediately exit.

Ghostscript and the PostScript Language

232

.activatepathcontrol

Activates file access controls. Once activated, these access controls remain in place until the interpreter shuts
down.

.currentpathcontrolstate

Returns true on the operand stack if file access control has been activated, false if not.

<dict> .genordered <dict> (default: /OutputType /Type3).,
<dict> .genordered <string> (/OutputType /ThreshString).,
<dict> .genordered <array> (/OutputType /TOSArray).

This operator creates an ordered dither screening pattern with the parameters from the dictionary, returning (by
default) a PostScript HalftoneType 3 (threshold array based) dictionary suitable for use with sethalftone or as
a component Halftone of a HalftoneType 5 Halftone dictionary. The /OutputType parameter can also
select other than Halftone Type 3 as the return paramter, <dict> has the following keys (all are optional):

/Frequency

Integer; default value = 75

/Angle

Integer; default value = 0

/HResolution

Real or Integer; default value is device X resolution.

/VResolution

Real or Integer; default value is device Y resolution.

/DotShape

Integer; default value = 0 (CIRCLE). Other shapes available are:

1=REDBOOK, 2=INVERTED, 3=RHOMBOID, 4=LINE_X, 5=LINE_Y, 6=DIAMOND1, 7=DIAMOND2,
8=ROUNDSPOT

/SuperCellSize

Integer; default value = 1 – actual cell size determined by Frequency, Angle, H/V Resolution.

A larger value will allow more levels to be attained.

/Levels

Integer; default value = 1 – actual number of gray levels is determined by Frequency and H/V
Resolution.

SuperCellSize may need to be specified large enough to achieve the requested number of gray levels.

/OutputType

Name; default value = /Type3 (HalftoneType 3 dictionary).

/ThreshString

First two bytes are width (high byte first), next two bytes are height, followed by the threshold array
bytes (same as /Thresholds of the Type3 dictionary).

/TOSArray

First element is the width, next is the height, followed by pairs X, then Y, of the turn-on-sequence of the
threshold array. This information can be used to construct a threshold array with a transfer function
“pickled into” the threshold array, which is useful if the turn-on-sequence has more than 256 pairs.
Refer to toolbin/halftone/thresh_remap for more information.

.shellarguments

This operator is used to access the ARGUMENTS command line option.

Relies on Ghostscript being called with the “--” command line option - see Input Control.

See examples in lib for more information.

Device operators

<device> copydevice <device>

Ghostscript and the PostScript Language

233

Copies a device. The copy is writable and installable. The copy is created in the current VM (local or global),
usually local VM for executing ordinary PostScript files.

<devicename> finddevice <device>

Creates a default instance of a device specified by name. The instance is created in global VM. If finddevice
is called more than once with the same device name, it creates the default instance the first time, and returns the
same instance thereafter.

<devicename> findprotodevice <device>

Finds the prototype of a device specified by name. A prototype can be used with getdeviceprops or other
parameter-reading operators, but it is read-only and cannot be set with setdevice: it must be copied first.

<matrix> <width> <height> <palette> makeimagedevice <device>

Makes a new device that accumulates an image in memory. matrix is the initial transformation matrix: it must
be orthogonal (that is, [a 0 0 b x y] or [0 a b 0 x y]). palette is a string of 2^N or 3 × 2^N elements, specifying how
the 2^N possible pixel values will be interpreted. Each element is interpreted as a gray value, or as RGB values,
multiplied by 255. For example, if you want a monochrome image for which 0=white and 1=black, the palette
should be <ff 00>; if you want a 3-bit deep image with just the primary colors and their complements (ignoring
the fact that 3-bit images are not supported), the palette might be
<000000 0000ff 00ff00 00ffff ff0000 ff00ff ffff00 ffffff>. At present, the palette must
contain exactly 2, 4, 16, or 256 entries, and must contain an entry for black and an entry for white; if it contains
any entries that aren’t black, white, or gray, it must contain at least the six primary colors (red, green, blue, and
their complements cyan, magenta, and yellow); aside from this, its contents are arbitrary.

Alternatively, palette can be 16, 24, 32, or null (equivalent to 24). These are interpreted as:

Palette Bits allocated per color

16 5 red, 6 green, 5 blue

24 8 red, 8 green, 8 blue

32 8C, 8M, 8Y, 8K

Note

One can also make an image device (with the same palette as an existing image device) by copying a device
using the copydevice operator.

<device> <index> <string> copyscanlines <substring>

Copies one or more scan lines from an image device into a string, starting at a given scan line in the image. The
data is in the same format as for the image operator. It is an error if the device is not an image device or if the
string is too small to hold at least one complete scan line. Always copies an integral number of scan lines.

<device> setdevice -

Sets the current device to the specified device. Also resets the transformation and clipping path to the initial
values for the device. Signals an invalidaccess error if the device is a prototype or if .LockSafetyParams is
true for the current device.

Some device properties may need to be set with putdeviceprops before setdevice is called. For example,
the pdfwrite device will try to open its output file, causing an undefinedfilename error if OutputFile hasn’t
been set to a valid filename. Another method in such cases is to use the level 2 operator instead:
<< /OutputDevice /pdfwrite /OutputFile (MyPDF.pdf) >> setpagedevice.

- currentdevice <device>

Gets the current device from the graphics state.

<device> getdeviceprops <mark> <name1> <value1> ... <namen> <valuen>

Gets the properties of a device. See the section on device parameters below for details.

<mark> <name1> <value1> ... <namen> <valuen> <device> putdeviceprops <device>

Sets properties of a device. May cause undefined, invalidaccess, typecheck, rangecheck, or
limitcheck errors.

Ghostscript and the PostScript Language

234

Filters

Standard filters

In its usual configuration, Ghostscript supports all the standard PostScript LanguageLevel 3 filters, both encoding
and decoding, except that it does not currently support:

• the EarlyChange key in the LZWEncode filter.

Ghostscript also supports additional keys in the optional dictionary operands for some filters. For the LZWDecode
filter:

InitialCodeLength <integer> (default 8)

An integer between 2 and 11 specifying the initial number of data bits per code. Note that the actual initial code
length is 1 greater than this, to allow for the reset and end-of-data code values.

FirstBitLowOrder <boolean> (default false)

If true, codes appear with their low-order bit first.

BlockData <boolean> (default false)

If true, the data is broken into blocks in the manner specified for the GIF file format.

For the CCITTFaxEncode and CCITTFaxDecode filters:

DecodedByteAlign <integer> (default 1)

An integer N with the value 1, 2, 4, 8, or 16, specifying that decoded data scan lines are always a multiple of N
bytes. The encoding filter skips data in each scan line from Columns to the next multiple of N bytes; the
decoding filter pads each scan line to a multiple of N bytes.

Non-standard filters

In addition to the standard PostScript LanguageLevel 3 filters, Ghostscript supports the following non-standard filters.
Many of these filters are used internally to implement standard filters or facilities; they are almost certain to remain, in
their present form or a backward-compatible one, in future Ghostscript releases.

<target> /BCPEncode filter <file>, <source> /BCPDecode filter <file>

Create filters that implement the Adobe Binary Communications Protocol. See Adobe documentation for details.

<target> <seed_integer> /eexecEncode filter <file>

Creates a filter for encrypting data into the encrypted format described in the Adobe Type 1 Font Format
documentation. The seed_integer must be 55665 for the eexec section of a font, or 4330 for a CharString.
Note that for the eexec section of a font, this filter produces binary output and does not include the initial 4 (or
lenIV) garbage bytes.

<source> <seed_integer> /eexecDecode filter <file>,
<source> <dict> /eexecDecode filter <file>

Creates a filter for decrypting data encrypted as described in the Adobe Type 1 Font Format documentation. The
seed_integer must be 55665 or 4330 as described just above. PDF interpreters don’t skip space characters
after operator eexec. Use keep_spaces = true for decoding embedded PDF fonts. Recognized dictionary
keys are:

seed <16-bit integer> (required)
lenIV <non-negative integer> (default=4)
eexec <bool> (default=false)
keep_spaces <bool> (default=false)

<target> /MD5Encode filter <file>

Creates a filter that produces the 16-byte MD5 digest of the input. Note that no output is produced until the filter
is closed.

<source> <hex_boolean> /PFBDecode filter <file>

Creates a filter that decodes data in .PFB format, the usual semi-binary representation for Type 1 font files on
IBM PC and compatible systems. If hex_boolean is true, binary packets are converted to hex; if false, binary
packets are not converted.

Ghostscript and the PostScript Language

235

<target> <dict> /PixelDifferenceEncode filter <file>,
<source> <dict> /PixelDifferenceDecode filter <file>

Implements the Predictor=2 pixel-differencing option of the LZW filters. Recognized keys are:

Colors <integer> (1 to 4, default=1)
BitsPerComponent <integer> (1, 2, 4, or 8, default=8)
Columns <integer> (>= 0, required)

See the Adobe PDF Reference Manual for details.

<target> <dict> /PNGPredictorEncode filter <file>,
<source> <dict> /PNGPredictorDecode filter <file>

Implements the “filter” algorithms of the Portable Network Graphics (PNG) graphics format. Recognized keys
are:

Key Range Default

Colors <integer> 1 to 16 16

BitsPerComponent <integer> 1, 2, 4, 8, or 16 8

Columns <integer> >= 0 1

Predictor <integer> 10 to 15 15

The Predictor is the PNG algorithm number + 10 for the Encoding filter; the Decoding filter ignores
Predictor. 15 means the encoder attempts to optimize the choice of algorithm. For more details see the PNG
specification.

<target> /TBCPEncode filter <file>, <source> /TBCPDecode filter <file>

Create filters that implement the Adobe Tagged Binary Communications Protocol. See Adobe documentation for
details.

<target> /zlibEncode filter <file>, <source> /zlibDecode filter <file>

Creates filters that use the data compression method variously known as ‘zlib’ (the name of a popular library that
implements it), ‘Deflate’ (as in RFC 1951, which is a detailed specification for the method), ‘gzip’ (the name of a
popular compression application that uses it), or ‘Flate’ (Adobe’s name). Note that the PostScript Flate filters
are actually a combination of this filter with an optional predictor filter.

Unstable filters

Some versions of Ghostscript may also support other non-standard filters for experimental purposes. The current
version includes the following such filters, which are not documented further. No code should assume that these
filters will exist in compatible form, or at all, in future versions.

<target/source> <string> ByteTranslateEncode/Decode filter <file>

string must be a string of exactly 256 bytes. Creates a filter that converts each input byte b to string[b].
Note that the Encode and Decode filters operate identically: the client must provide a string for the Decode filter
that is the inverse mapping of the string for the Encode filter.

<target/source> <dict> BoundedHuffmanEncode/Decode filter <file>

These filters encode and decode data using Huffman codes. Since these filters aren’t used anywhere, we don’t
document them further, except to note the recognized dictionary keys, which must be set identically for encoding
and decoding:

FirstBitLowOrder <bool> (default=false)
MaxCodeLength <int> (default=16)
EndOfData <bool> (default=true)
EncodeZeroRuns <int> (default=256)
Tables <int_array>

<target/source> <dict> BWBlockSortEncode/Decode filter <file>

This filter implements the Burroughs-Wheeler block sorting compression method, which we’ve heard is also
used in the popular bzip2 compression application. The only recognized dictionary key is:

BlockSize <integer> (default=16384)

Ghostscript and the PostScript Language

236

http://www.w3.org/TR/WD-png-960128.html
http://www.w3.org/TR/WD-png-960128.html
http://www.ietf.org/rfc/rfc1951.txt

Device parameters
Ghostscript supports the concept of device parameters for all devices, not just page devices. (For non-page devices,
these are accessible through getdeviceprops and putdeviceprops, as indicated above.) Here are the currently
defined parameters for all devices:

.LockSafetyParams <boolean>

This parameter allows for improved system security by preventing PostScript programs from being able to
change potentially dangerous device parameters such as OutputFile. This parameter cannot be set false if it
is already true.

If this parameter is true for the current device, attempt to set a new device that has .LockSafetyParams false
will signal an invalidaccess error.

BitsPerPixel <integer> (usually read-only)

Number of bits per pixel.

.HWMargins [<four floats>]

Size of non-imageable regions around the edges of the page, in points (units of 1/72in; see the notes on
measurements in the documentation on devices).

HWSize [<integer> <integer>]

X and Y size in pixels.

%MediaSource <integer>

The input tray key as determined by setpagedevice. PostScript language programs don’t set this parameter
directly; they can request a particular tray through the MediaPosition setpagedevice parameter, but the
setpagedevice logic need not necessarily honor the request. Devices which support switchable trays should
implement %MediaSource in their put_params device procedure, but (unlike most other such parameters)
need not implement corresponding reading logic in get_params.

%MediaDestination <integer>

The output tray key as determined by setpagedevice. Handling by devices should be parallel to
%MediaSource.

.IgnoreNumCopies <boolean>

Some page description languages support a NumCopies parameter. This parameter instructs the device to
ignore this, producing only one copy of the document on output. Note that some devices ignore NumCopies
regardless because of limitation of the output format or the implementation.

Name <string> (read-only)

The device name. Currently the same as OutputDevice.

Colors, GrayValues, RedValues, GreenValues, BlueValues, ColorValues (usually read-onl
y)

As for the deviceinfo operator of Display PostScript. Red, Green, Blue, and ColorValues are only defined
if Colors > 1.

TextAlphaBits, GraphicsAlphaBits (usually read-only)

The number of bits of anti-aliasing information for text or graphics respectively. Legal values are 1 (no
anti-aliasing, the default for most devices), 2, or 4.

Because this feature relies upon rendering the input it is incompatible, and will generate an error on attempted
use, with any of the vector output devices.

Ghostscript also supports the following read-only parameter that is not a true device parameter:

.EmbedFontObjects <integer>

If non-zero, indicates that the device may embed font objects (as opposed to bitmaps for individual characters)
in the output. The purpose of this parameter is to disable third-party font renderers for such devices. (This is
zero for almost all devices.)

In addition, the following are defined per Adobe’s documentation for the setpagedevice operator:

Duplex (if supported)
HWResolution
ImagingBBox
Margins

Ghostscript and the PostScript Language

237

LeadingEdge
MediaPosition
NumCopies (for printers only)
Orientation (if supported)
OutputDevice
PageOffset (write-only)
PageSize
ProcessColorModel (usually read-only)

Some devices may only allow certain values for HWResolution and PageSize. The null device ignores attempts to
set PageSize; its size is always [0 0].

It should be noted that calling setpagedevice with one of the above keys may reset the effects of any pdfmark
commands up to that point. In particular this is true of HWResolution, a behavior that differs from Adobe Distiller.

For raster printers and image format (jpeg*, tiff*, png* …) devices these page device parameters are also defined:

MaxBitmap <integer>

Maximum space for a full page raster image (bitmap) in memory. This value includes the space for padding
raster lines and for an array of pointers for each raster line, thus the MaxBitmap value to allow a given
PageSize of a specific number of bits per pixel to be rendered in a full page buffer may be somewhat larger
than the bitmap size alone.

BandListStorage <file|memory>

The default is determined by the make file macro BAND_LIST_STORAGE. Since memory is always included,
specifying -sBandListStorage=memory when the default is file will use memory based storage for the band
list of the page. This is primarily intended for testing, but if the disk I/O is slow, band list storage in memory may
be faster.

BufferSpace <integer>

Size of the buffer space for band lists, if the full page raster image (bitmap) is larger than MaxBitmap (see
above.)

The buffer space is used to collect display list (clist) commands for the bands and then to consolidate those
commands when writing the clist to the selected BAND_LIST_STORAGE device (memory or file) set when
Ghostscript is compiled.

If MaxBitmap (above) forces banding mode, and if BufferSpace is large enough, the display list (clist) will
consist of a single band.

The BufferSpace will determine the size of the ‘consolidation’ buffer (above) even if the MaxBitmap value is
low enough to force banding/clist mode.

BGPrint <boolean>

With many printer devices, when the display list (clist) banding mode is being used, the page rendering and
output can be performed in a background thread. The default value, false, causes the rendering and printing to
be done in the same thread as the parser. When -dBGPrint=true, the page output will be overlapped with
parsing and writing the clist for the next page.

If the device does not support background printing, rendering and printing will be performed as if
-dBGPrint=false.

Note

The background printing thread will allocate a band buffer (size determined by the BufferSpace or
BandBufferSpace values) in addition to the band buffer in the ‘main’ parsing thread.

If NumRenderingThreads is > 0, then the background printing thread will use the specified number of
rendering threads as children of the background printing thread. The background printing thread will perform any
processing of the raster data delivered by the rendering threads. Note that BGPrint is disabled for vector
devices such as pdfwrite and NumRenderingThreads has no effect on these devices either.

GrayDetection <boolean>

Ghostscript and the PostScript Language

238

When true, and when the display list (clist) banding mode is being used, during writing of the clist, the color
processing logic collects information about the colors used before the device color profile is applied. This allows
special devices that examine dev->icc_struct->pageneutralcolor with the information that all colors on
the page are near neutral, i.e. monochrome, and converting the rendered raster to gray may be used to reduce
the use of color toners/inks.

Since the determination of whether or not the page uses colors is determined before the conversion to device
colors, this information is independent of the device output profile. The determination has a small delta
(DEV_NEUTRAL and AB_NEUTRAL in base/gscms.h) to allow colors close to neutral to be detected as neutral.
Changing this value requires rebuilding.

Among the devices distributed with the source, currently only the pnmcmyk device supports this parameter and
will produce either a P7 PAM CMYK output or a P5 PGM Gray output depending on the use of color on the
page.

Also, the pageneutralcolor status can be interrogated as a device parameter of the same name. Using
PostScript there are several methods:

currentpagedevice /pageneutralcolor get

mark currentdevice getdeviceprops .dicttomark /pageneutralcolor get

/pageneutralcolor /GetDeviceParam .special_op { exch pop }{ //false } ifelse

Note that the pageneutralcolor state is reset to false after the page is output, so this parameter is only valid
immediately before showpage is executed, although the setpagedevice EndPage procedure can be used to
check the state just prior to the actual output of the page that resets pagenuetralcolor. For example:

<< /EndPage {
 exch pop 2 ne dup {
 currentpagedevice /pageneutralcolor get (pageneutralcolor:) print = flush
 } if
}
>> setpagedevice

Note

Since -dGrayDetection=true requires extra checking during writing of the clist, this option should
only be used for devices that support the optimization of pages to monochrome, otherwise performance may
be degraded for no benefit.

Since GrayDetection=true is only effective when in clist (banding) mode, it is recommended to also
force banding. For example: -dGrayDetection=true -dMaxBitmap=0.

NumRenderingThreads <integer>

When the display list (clist) banding mode is being used, bands can be rendered in separate threads. The
default value, 0, causes the rendering of bands to be done in the same thread as the parser and device driver.
NumRenderingThreads of 1 or higher results in bands rendering in the specified number of ‘background’
threads.

The number of threads should generally be set to the number of available processor cores for best throughput.

Note that each thread will allocate a band buffer (size determined by the BufferSpace or BandBufferSpace
values) in addition to the band buffer in the ‘main’ thread.

Additionally note that this parameter has no effect with devices which do not generally render to a bitmap output,
such as the vector devices (e.g. pdfwrite) and has no effect when rendering, but not using a clist. See
Improving performance.

OutputFile <string>

An empty string means “send to printer directly”, otherwise specifies the file name for output; %d is replaced by
the page number for page-oriented output devices; on Unix systems %pipe% command writes to a pipe. (|
command also writes to a pipe, but is now deprecated). Also see the -o parameter.

Attempts to set this parameter if .LockSafetyParams is true will signal an invalidaccess error.

Ghostscript and the PostScript Language

239

OpenOutputFile <boolean>

If true, open the device’s output file when the device is opened, rather than waiting until the first page is ready to
print.

PageCount <integer> (read-only)

Counts the number of pages printed on the device.

The following parameters are for use only by very specialized applications that separate band construction from band
rasterization. Improper use may cause unpredictable errors. In particular, if you only want to allocate more memory
for banding, to increase band size and improve performance, use the BufferSpace parameter, not
BandBufferSpace.

BandHeight <integer>

The height of bands when banding. 0 means use the largest band height that will fit within the
BandBufferSpace (or BufferSpace, if BandBufferSpace is not specified). If BandHeight is larger than
the number of lines that will fit in the buffer, opening the device will fail. If the value is -1, the BandHeight will
automatically be set to the page height (1 band for the entire page). This is primarily for developers debugging
clist issues.

BandWidth <integer>

The width of bands in the rasterizing pass, in pixels. 0 means use the actual page width. A BandWidth value
smaller than the width of the page will be ignored, and the actual page width will be used instead.

BandBufferSpace <integer>

The size of the band buffer in the rasterizing pass, in bytes. 0 means use the same buffer size as for the
interpretation pass.

Ghostscript supports the following parameter for setpagedevice and currentpagedevice that is not a device
parameter per se:

ViewerPreProcess <procedure>

Specifies a procedure to be applied to the page device dictionary before any other processing is done. The
procedure may not alter the dictionary, but it may return a modified copy. This “hook” is provided for use by
viewing programs such as GSview.

User parameters
Ghostscript supports the following non-standard user parameters:

ProcessDSCComment <procedure|null>

If not null, this procedure is called whenever the scanner detects a DSC comment (comment beginning with %%
or %!). There are two operands, the file and the comment (minus any terminating EOL), which the procedure
must consume.

ProcessComment <procedure|null>

If not null, this procedure is called whenever the scanner detects a comment (or, if ProcessDSCComment is
also not null, a comment other than a DSC comment). The operands are the same as for ProcessDSCComment.

LockFilePermissions <boolean>

If true, this parameter and the three PermitFile... parameters cannot be changed. Attempts to change any
of the values when LockFilePermissions is true will signal invalidaccess. Also, when this value is true,
the file operator will give invalidaccess when attempting to open files (processes) using the %pipe device.

Also when LockFilePermissions is true, strings cannot reference the parent directory (platform specific). For
example (../../xyz) is illegal on unix, Windows and Macintosh, and ([.#.#.XYZ]) is illegal on VMS.

This parameter is set true by the .setsafe and .locksafe operators.

PermitFileReading <array of strings>, PermitFileWriting <array of strings>,
PermitFileControl <array of strings>

These parameters specify paths where file reading, writing and the ‘control’ operations are permitted,
respectively. File control operations are deletefile and renamefile. For renamefile, the filename for the
current filename must match one of the paths on the PermitFileControl list, and the new filename must be
on both the PermitFileControl and the PermitFileWriting lists of paths.

Ghostscript and the PostScript Language

240

The strings can contain wildcard characters as for the filenameforall operator and unless specifying a
single file, will end with a * for directories (folders) to allow access to all files and sub-directories in that directory.

Note

The strings are used for stringmatch operations similar to filenameforall, thus on MS Windows
platforms, use the ‘/’ character to separate directories and filenames or use ‘\\’ to have the string contain ‘\’
which will match a single ‘\’ in the target filename (use of ‘/’ is strongly recommended).

The SAFER mode and the .setsafe operator set all three lists to empty arrays, thus the only files that can be
read are the %stdin device and on LIBPATH or FONTPATH or the Resource paths specified by the
/FontResourceDir or /GenericResourceDir system params. Files cannot be opened for writing
anywhere and cannot be deleted or renamed except for files created with the .tempfile operator).

AlignToPixels <integer>

Control sub-pixel positioning of character glyphs (where applicable). A value of 1 specifies alignment of text
characters to pixels boundaries. A value of 0 to subpixels where the division factor is set by the device
parameter TextAlphaBits. If the latter is 1, the same rendering results regardless of the value of
AlignToPixels. The initial value defaults to 1, but this may be overridden by the command line argument
-dAlignToPixels.

GridFitTT <integer>

Control the use of True Type grid fitting. Ghostscript, by default, uses Freetype for rendering Truetype (and most
other) glyphs (but other scaler/renderer libraries can be used), thus has access to a complete Truetype bytecode
interpreter.

This parameter controls the hinting of Truetype glyphs.

• A value of 0 disables grid fitting for all True Type fonts (not generally recommended).

• A value of 1 enables the grid fitting using the native Truetype hinting bytecode program(s). Fonts or glyphs
with faulty bytecode program(s) will be rendered unhinted.

• A value 2 is scaler/renderer dependent (generally, if no alternative hinting engine is available this will be
equivalent to 1). With the Freetype (our default) this enables Freetype’s built-in autohinter.

• With Freetype, a value of 3 is effectively equivalent to 1.

This parameter defaults to 1, but this may be overridden on the command line with -dGridFitTT=n.

Miscellaneous additions

Extended semantics of ‘run’

The operator run can take either a string or a file as its argument. In the latter case, it just runs the file, closing it at
the end, and trapping errors just as for the string case.

Decoding resources

Decoding is a Ghostscript-specific resource category. It contains various resources for emulating PostScript fonts
with other font technologies. Instances of the Decoding category are tables which map PostScript glyph names to
character codes used with TrueType, Intellifont, Microtype and other font formats.

Currently Ghostscript is capable of PostScript font emulation in 2 ways :

1. Through FAPI plugins.

2. With TrueType font files, using the native font renderer, by specifying TrueType font names or files in
Resource/Init/Fontmap.GS.

Decoding resources are not currently used by the native font renderer.

An instance of the Decoding resource category is a dictionary. The dictionary keys are PostScript glyph names and
the values are either character codes, or arrays of character codes. Arrays are used when a single name may be

Ghostscript and the PostScript Language

241

mapped to various character codes - in this case Ghostscript tries all alternatives until a success. The name of the
resource instance should reflect the character set for which it maps. For example, /Unicode /Decoding resource
maps to Unicode UTF-16.

The rules for using Decoding resources in particular cases are specified in the configuration file
Resource/Init/xlatmap. See the file itself for more information.

The file format for Decoding resource files is generic PostScript. Users may want to define custom Decoding
resources. The ParseDecoding procset defined in Resource/Init/gs_ciddc.ps allows representation of the
table in a comfortable form.

CIDDecoding resources

CIDDecoding resources are similar to Decoding resources, except they map
Character Identifiers (CIDs) rather than glyph names. Another difference is that the native Ghostscript font
renderer uses CIDDecoding resources while emulate CID fonts with TrueType or OpenType fonts.

An instance of the CIDDecoding resource category is a dictionary of arrays. Keys in the dictionary are integers,
which correspond to high order byte of a CID. Values are 256-element arrays, and their indices correspond to the
low order byte of a CID. Each elemet of an array is either null, or character code (integer), or an array of character
codes (integers). The zero code represents mapping to the default character.

The dictionary includes the additional key CIDCount. Its value is the maximal CID defined, plus one.

The Ghostscript library is capable of generating some CIDDecoding instances automatically, using the appropriate
CMap (character map) resources. This covers most of practical cases if the neccessary CMap resources are
provided. See the table .CMapChooser in Resource/Init/gs_ciddc.ps for the names of automatically
generated resources and associated CMaps. They allow to mapping CNS1, GB1, Japan1, Japan2 and Korea1 CID
sets to TrueType character sets known as Unicode (exactly UTF-16), Big5, GB1213, ShiftJIS, Johab and Wansung.

The file format for CIDDecoding resource file is generic PostScript. Users may want to define custom resources to
CIDDecoding resource category.

GlyphNames2Unicode

GlyphNames2Unicode is an undocumented dictionary which Adobe PostScript printer driver uses to communicate
with Adobe Distiller. In this dictionary the keys are glyph names, the values are Unicode UTF-16 codes for them. The
dictionaly is stored in the FontInfo dictionary under the key GlyphNames2Unicode. Ghostscript recognises it and
uses to generate ToUnicode CMaps with pdfwrite.

Multiple Resource directories

Since 8.10 release Ghostscript maintains multiple resource directories.

Ghostscript does not distinguish lib and Resource directories. There is no file name conflicts because lib does
not contain subdirectories, but Resource always store files in subdirectories.

The search method with multiple resource directories appears not fully conforming to PLRM. We cannot
unconditionally call ResourceFileName while executing findresource or resourcestatus,
resourceforall, because per PLRM it always returns a single path. Therefore Ghostscript implements an
extended search method in findresource, resourcestatus and resourceforall, which first calls
ResourceFileName and checks whether the returned path points to an existing file. If yes, the file is used,
otherwise Ghostscript searches all directories specified in LIB_PATH. With a single resource directory it appears
conforming to PLRM and equivalent to Adobe implementations.

ResourceFileName may be used for obtaining a path where a resource file to be installed. In this case Ghostscript
to be invoked with -sGenericResourceDir=path, specifying an absolute path. The default value for
GenericResourceDir is a relative path. Therefore a default invocation with a PostScript installer will install
resource files into /gs/Resource.

Ghostscript and the PostScript Language

242

Scripting the PDF interpreter

PostScript functions

We have not previously documented the internals of the Ghostscript PDF interpreter, but we have, on occasion,
provided solutions that rely upon scripting the interpreter from PostScript. This was possible because the interpreter
was written in PostScript.

From release 9.55.0 Ghostscript comes supplied with two PDF interpreters, the original written in PostScript and a
brand-new interpreter written in C. While the new interpreter can be run as part of the GhostPDL family it has also
been integrated into Ghostscript, and can be run from the PostScript environment in a similar fashion to the old
interpreter. We plan to deprecate, and eventually remove, the old interpreter and carry on with the new one.

Because we have supplied solutions in the past based on the old interpreter, we have had to implement the same
capabilities in the integration of the new interpreter. Since this has meant discovering which internal portions were
being used, working out how those function, and duplicating them anew, it seemed a good time to document these
officially, so that in future the functionality would be available to all.

The following functions existed in the original PDF interpreter and have been replicated for the new interpreter. It
should be possible to use these for the forseeable future.

<file> runpdf -

Called from the modified PostScript run operator (which copies stdin to a temp file if required). Checks for PDF
collections, processes all requested pages.

<file> runpdfbegin -

This must be called before performing any further operations. Its exact action depends on which interpreter is
being used, but it essentially sets up the environment to process the file as a PDF.

<int> pdfgetpage <pagedict> | <null>

int is a number from 1 to N indicating the desired page number from the PDF file. Returns the a dictionary
containing various informational key/value pairs. If this fails, returns a null object.

- pdfshowpage_init -

In the PostScript PDF interpreter this simply adds 1 to the /DSCPageCount value in a dictionary. It has no effect
in the new PDF interpreter but is maintained for backwards compatibility.

<pagedict> pdfshowpage_setpage <pagedict>

Takes a dictionary as returned from pdfgetpage, extracts various parameters from it, and sets the media size
for the page, taking into account the boxes, and requested Box, Rotate value and PDFFitPage.

<pagedict> pdfshowpage_finish -

Takes a dictionary as returned from pdfgetpage, renders the page content executes showpage to transfer the
rendered content to the device.

- runpdfend -

Terminates the PDF processing, executes restore and various cleanup activities.

<file> pdfopen <dict>

Open a PDF file and read the header, trailer and cross-reference.

<dict> pdfclose -

Terminates processing the original PDF file object. The dictionary parameter should be the one returned from
pdfopen.

<pagedict> pdfshowpage -

Takes a dictionary returned from pdfgetpage and calls the pdfshowpage_init, pdfshowpage_setpage,
pdfshowpage_finish trio to start the page, set up the media and render the page.

<int> <int> dopdfpages -

The integers are the first and last pages to be run from the file. Runs a loop from the fist integer to the last.

Ghostscript and the PostScript Language

243

Note

If the current dictionary contains a PDFPageList array the two values on the stack are ignored and we use
the range triples from that array (even/odd, start, end) to determine the pages to process. Page numbers for
start and end are 1..lastpage and even/odd is 1 for odd, 2 for even, otherwise 0. Uses pdfshowpage to
actually render the page.

- runpdfpagerange <int> <int>

Processes the PostScript /FirstPage, /LastPage and /PageList parameters. These are used together to
build an internal array of page numbers to run, which is used by dopdfpages to actually process the pages if
PageList is present, and a FirstPage and LastPage value.

Despite the name this function does not actually ‘run’ any pages at all.

Normal operation simply calls runpdf with an opened-for-read PostScript file object. The table below shows the
normal calling sequence:

Function Calls Calls Calls

runpdf runpdfbegin pdfopen

process_trailer_attrs

runpdfpagerange

dopdfpages pdfgetpage

pdfshowpage pdfshowpage_init

pdfshowpage_setpage

pdfshowpage_finish

runpdfend pdfclose

It is important to get the number of spots and the presence of transparency correct when rendering. Failure to do
so will lead to odd output, and potentially crahses. This can be important in situations such as N-up ordering.

As an example, if we have 2 A4 pages and want to render them side-by-side on A3 media, we might set up the
media size to A3, draw the first page contents, translate the origin, draw the second page contents and then
render the final content. If the first PDF page did not contain transparency, but the second did, it would be
necessary to set /PageHasTransparency before drawing the first PDF page.

PostScript operators interfacing to the PDF interpreter

The PostScript functions documented above must somehow interface with the actual PDF interpreter, and this is
done using a small number of custom PostScript operators. These operators do not exist in standard PostScript; they
are specific to the Ghostscript implementation. These operators are documented here for the benefit of any
developers wishing to use them directly.

dict .PDFInit <PDFContext>

Initialises an instance of the PDF interpreter. dict is an optional dictionary that contains any interpreter-level
switches, such as PDFDEBUG, this is used to set the initial state of the PDF interpreter. The return value is a
PDFContext object which is an opaque object to be used with the other PDF operators.

filename PDFContext .PDFFile -

Opens a named file and associates it with the instance of the PDF interpreter. Filename is a string containing a
fully qualified path to the PDF file to open, this file must have been made accesible by setting
--permit-file-read.

file PDFContext .PDFStream -

Takes an already open (disk-based) file and associates it with the instance of the PDF interpreter.

PDFcontext .PDFClose -

Ghostscript and the PostScript Language

244

If the context contains an open PDF file which was opened via the .PDFfile operator, this closes the file. Files
associated with the context by the .PDFStream operator are unaffected. Regardless of the source it then shuts
down the PDF interpreter and frees the associated memory.

PDFContext .PDFInfo dict

PDFContext is a PDFContext object returned from a previous call to .PDFInit. The returned dictionary
contains various key/value pairs with useful file level information:

/NumPages int
/Creator string
/Producer string
/IsEncrypted boolean

PDFContext .PDFMetadata -

PDFContext is a PDFContext object returned from a previous call to .PDFInit. For the benefit of high level
devices, this is a replacement for ‘process_trailer_attrs’ which is a seriously misnamed function now. This
function needs to write any required output intents, load and send Outlines to the device, copy the Author,
Creator, Title, Subject and Keywords from the Info dict to the output device, copy Optional Content Properties
(OCProperties) to the output device. If an AcroForm is present send all its fields and link widget annotations to
fields, and finally copy the PageLabels. If we add support for anything else, it will be here too.

PDFContext int .PDFPageInfo -

The integer argument is the page number to retrieve information for. This value starts from zero for the first
page. Returns a dictionary with the following key/value pairs:

/UsesTransparency true|false
/NumSpots integer containing the number of spot inks on this page
/MediaBox [llx lly urx ury]
/HasAnnots true|false

May also contain (if they are present in the Page dictionary):

/ArtBox [llx lly urx ury]
/CropBox [llx lly urx ury]
/BleedBox [llx lly urx ury]
/TrimBox [llx lly urx ury]
/UserUnit int
/Rotate number

PDFcontext int .PDFPageInfoExt -

As per .PDFPageInfo above but returns ‘Extended’ information. This consists of two additional arrays in the returned dictionary:

/Spots array of names, may be empty
/Fonts array of dictionaries, one dictionary per font used on the page.

Each font dictionary contains:

/BaseFont string containing the name of the font.
/Subtype string containing the type of the font, as per the PDF Reference.
/ObjectNum if present, the object number of the font in the file (fonts may be defined inline and have no object number).
/Embedded boolean indicating if the font's FontDescriptor includes a FontFile and is therefore embedded.

Type 0 fonts also contain:

/Descendants an array containing a single font dictionary, contents as above.

PDFContext int .PDFDrawPage -

PDFContext is a PDFContext object returned from a previous call to .PDFInit. The integer argument is the
page number to be processed. Interprets the page content stream(s) of the specified page using the current
graphics state.

PDFContext int .PDFDrawAnnots -

PDFContext is a PDFContext object returned from a previous call to .PDFInit. The integer argument is the
page number to be processed.

Ghostscript and the PostScript Language

245

Renders the Annotations (if any) of the specified page using the current graphics state For correct results, the
graphics state when this operator is run should be the same as when PDFDrawPage is executed.

Note

The PDFContext object created by PDFInit must (clearly) have a PDF file associated with it before you
can usefully use it. Attempting to use a PDFContext with any of the processing operators (e.g.
.PDFDrawPage) before using either .PDFStream of .PDFFile to associate a file with the context will
result in an error.

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

Ghostscript and the PostScript Language

246

https://www.artifex.com

The Ghostscript Library
This document describes the Ghostscript library, a set of procedures to implement the graphics and filtering
capabilities that are primitive operations in the PostScript language and in Adobe Portable Document Format (PDF).

Ghostscript is actually two programs: a language interpreter, and a graphics library. The library provides, in the form
of C procedures, all the graphics functions of the language, that is, approximately those facilities listed in section 8.1
of the PostScript Language Reference Manual, starting with the graphics state operators. In addition, the library
provides some lower-level graphics facilities that offer higher performance in exchange for less generality.

PostScript operator API
The highest level of the library, which is the one that most clients will use, directly implements the PostScript
graphics operators with procedures named gs_XXX, for instance gs_moveto and gs_fill. Nearly all of these
procedures take graphics state objects as their first arguments, such as:

int gs_moveto(gs_state *, double, double);

Nearly every procedure returns an integer code which is >= 0 for a successful return or <0 for a failure. The failure
codes correspond directly to PostScript errors, and are defined in gserrors.h.

The library implements all the operators in the following sections of the PostScript Language Reference Manual, with
the indicated omissions and with the APIs defined in the indicated .h files. A header of the form A.h``(``B.h)
indicates that A.h is included in B.h, so A.h need not be included explicitly if B.h is included. Operators marked
with * in the “omissions” column are not implemented directly; the library provides lower-level procedures that can be
used to implement the operator.

There are slight differences in the operators that return multiple values, since C’s provisions for this are awkward.
Also, the control structure for the operators involving callback procedures (pathforall, image, colorimage,
imagemask) is partly inverted: the client calls a procedure to set up an enumerator object, and then calls another
procedure for each iteration. The ...show operators, charpath, and stringwidth also use an inverted control
structure.

Section (operators) Headers Omissions

Graphics state –
device-independent

gscolor.h (gsstate.h)
gscolor1.h
gscolor2.h
gscspace.h
gshsb.h
gsline.h (gsstate.h)
gsstate.h

Graphics state –
device-dependent

gscolor.h (gsstate.h)
gscolor1.h
gscolor2.h
gsht.h (gsht1.h,
gsstate.h)
gsht1.h
gsline.h (gsstate.h)

Coordinate system and matrix gscoord.h
gsmatrix.h

*matrix, *identmatrix,
*concatmatrix, *invertmatrix

Path construction gspath.h
gspath2.h

*arct, *pathforall, ustrokepath,
uappend, upath, ucache

Painting gsimage.h
gspaint.h
gspath2.h

*image, *colorimage, *imagemask,
ufill, ueofill, ustroke

Form and pattern gscolor2.h execform

Device setup and output gsdevice.h *showpage, *set/currentpagedevice

The Ghostscript Library

247

Character and font gschar.h
gsfont.h

* (all the show operators), definefont,
undefinefont,
findfont, *scalefont, *makefont,
selectfont,
[Global]FontDirectory,
Standard/ISOLatin1Encoding,
findencoding

The following procedures from the list above operate differently from their PostScript operator counterparts, as
explained here:

gs_makepattern (gscolor2.h)

Takes an explicit current color, rather than using the current color in the graphics state. Takes an explicit
allocator for allocating the pattern implementation. See below for more details on gs_makepattern.

gs_setpattern (gscolor2.h), gs_setcolor (gscolor2.h), gs_currentcolor (gscolor2.h)

Use gs_client_color rather than a set of color parameter values. See below for more details on
gs_setpattern.

gs_currentdash_length/pattern/offset (gsline.h)

Splits up currentdash into three separate procedures.

gs_screen_init/currentpoint/next/install (gsht.h)

Provide an “enumeration style” interface to setscreen. (gs_setscreen is also implemented.)

gs_rotate/scale/translate (gscoord.h), gs_[i][d]transform (gscoord.h)

These always operate on the graphics state CTM. The corresponding operations on free-standing matrices are
in gsmatrix.h and have different names.

gs_path_enum_alloc/init/next/cleanup (gspath.h)

Provide an “enumeration style” implementation of pathforall.

gs_image_enum_alloc (gsimage.h), gs_image_init/next/cleanup (gsimage.h)

Provide an “enumeration style” interface to the equivalent of image, imagemask, and colorimage. In the
gs_image_t, ColorSpace provides an explicit color space, rather than using the current color space in the
graphics state; ImageMask distinguishes imagemask from [color]image.

gs_get/putdeviceparams (gsdevice.h)

Take a gs_param_list for specifying or receiving the parameter values. See gsparam.h for more details.

gs_show_enum_alloc/release (gschar.h), gs_xxxshow_[n_]init (gschar.h), gs_show_next
(gschar.h)

Provide an “enumeration style” interface to writing text. Note that control returns to the caller if the character
must be rasterized.

This level of the library also implements the following operators from other sections of the Manual:

Section (operators) Headers Operators

Interpreter parameter gsfont.h cachestatus, setcachelimit,
*set/currentcacheparams

Display PostScript gsstate.h set/currenthalftonephase

In order to obtain the full PostScript Level 2 functionality listed above, FEATURE_DEVS must be set in the makefile
to include at least the following:

The *lib.mak makefiles mentioned below do not always include all of these features.

Files named gs*.c implement the higher level of the graphics library. As might be expected, all procedures,
variables, and structures available at this level begin with “gs_”. Structures that appear in these interfaces, but
whose definitions may be hidden from clients, also have names beginning with “gs_”, that is, the prefix, not the
implementation, reflects at what level the abstraction is made available.

The Ghostscript Library

248

Patterns

Patterns are the most complicated PostScript language objects that the library API deals with. As in PostScript,
defining a pattern color and using the color are two separate operations.

gs_makepattern defines a pattern color. Its arguments are as follows:

gs_client_color * The resulting Pattern color is stored here.
This is different from PostScript, which has no color objects per se,
and hence returns a modified copy of the dictionary.

const gs_client_pat
tern *

The analogue of the original Pattern dictionary, described in detail just below.

const gs_matrix * Corresponds to the matrix argument of the makepattern operator.

gs_state * The current graphics state.

gs_memory_t * The allocator to use for allocating the saved data for the Pattern color.
If this is NULL, gs_makepattern uses the same allocator that allocated
the graphics state. Library clients should probably always use NULL.

The gs_client_pattern structure defined in gscolor2.h corresponds to the Pattern dictionary that is the
argument to the PostScript language makepattern operator. This structure has one extra member,
void *client_data, which is a place for clients to store a pointer to additional data for the PaintProc; this
provides the same functionality as putting additional keys in the Pattern dictionary at the PostScript language level.
The PaintProc is an ordinary C procedure that takes as parameters a gs_client_color *, which is the
Pattern color that is being used for painting, and a gs_state *, which is the same graphics state that would be
presented to the PaintProc in PostScript. Currently the gs_client_color * is always the current color in the
graphics state, but the PaintProc should not rely on this. The PaintProc can retrieve the
gs_client_pattern * from the gs_client_color * with the gs_getpattern procedure, also defined in
gscolor2.h, and from there, it can retrieve the client_data pointer.

The normal way to set a Pattern color is to call gs_setpattern with the graphics state and with the
gs_client_color returned by gs_makepattern. After that, one can use gs_setcolor to set further Pattern
colors (colored, or uncolored with the same underlying color space); the rules are the same as those in PostScript.
Note that for gs_setpattern, the paint.values in the gs_client_color must be filled in for uncolored
patterns; this corresponds to the additional arguments for the PostScript setpattern operator in the uncolored
case.

There is a special procedure gs_makebitmappattern for creating bitmap-based patterns. Its API is documented
in gscolor2.h; its implementation, in gspcolor.c, may be useful as an example of a pattern using a particularly
simple PaintProc.

Lower-level API

Files named gx*.c implement the lower level of the graphics library. The interfaces at the gx level are less stable,
and expose more of the implementation detail, than those at the gs level: in particular, the gx interfaces generally
use device coordinates in an internal fixed-point representation, as opposed to the gs interfaces that use floating
point user coordinates. Named entities at this level begin with gx_.

Files named gz*.c and gz*.h are internal to the Ghostscript implementation, and are not designed to be called by
clients.

Visual Trace instructions
Visual Trace instructions may be inserted in code to provide debug output in a graphical form. Graphics Library
doesn’t provide a rasterisation of the output, because it is platform dependent. Instead this, client application shpuld
set vd_trace0 external variable to Graphics Library, passing a set of callbacks which provide the rasterization.

Visual Trace instructions are defined in vdtrace.h. Debug output must be opened with vd_get_dc instruction,
which obtains a drawing context for the debug output, and must be closed with vd_release_dc instruction. After
opening the output, scale, origin and shift to be set for mapping the debugee coordinate space to window coordinate
space. Than painting instructions to be used. Painting may be either immediate or indirect.

The Ghostscript Library

249

Indirect painting uses vd_beg_path before line output and vd_end_path after line output, to store a path into a
temporary storage. After this vd_stroke may be used for stroking the path, or vd_fill may be used for filling the
region inside the path.

Immediate painting happens when path construction instructions are involved without vd_beg_path and
vd_end_path. In this case lines and curves are being drawed immediately, when a path construction instruction is
executed.

The following table explains the semantics of Visual Trace instructions.

Visual Trace instructions semantics

Instruction Function Parameters

vd_get_dc Obtain drawing context -T option flag value, for which the
subsequent output is enabled.

vd_release_dc Release drawing context

vd_enabled Is trace currently enabled ?

vd_get_size_unscaled_x Get the horizontal size of the output
window in pixels.

vd_get_size_unscaled_y Get the vertical size of the output
window in pixels.

vd_get_size_caled_x Get the horizontal size of the output
window in debuggee coordinate
units.

vd_get_size_caled_y Get the vertical size of the output
window in debuggee coordinate
units.

vd_get_scale_x Get the horizontal scale.

vd_get_scale_y Get the vertical scale.

vd_get_origin_x Get the horizontal position of the
draft origin in debuggee coordinate
space.

vd_get_origin_y Get the vertical position of the draft
origin in debuggee coordinate
space.

vd_set_scale(s) Set isotripic scale. Debugee space to window space
mapping scale, same for both
dimentions.

vd_set_scaleXY(sx,sy) Set anisotripic scale. Debugee space to window space
mapping scale, one for each
dimention.

vd_set_origin(x,y) Set the draft origin. Origin of the draft in debugee
space.

vd_set_shift(x,y) Set the draft position. Position of the draft origin in window
space (in pixels).

vd_set_central_shift Set the draft position to window
center.

vd_erase(c) Fill entire window. Color to fill.

vd_beg_path Begin path construction.

vd_end_path End path construction.

The Ghostscript Library

250

vd_moveto(x,y) Path construction : Set the draft
current point.

Debugee coordinates.

vd_lineto(x,y) Path construction : Line from
current point to specified point.

Debugee coordinates.

vd_lineto_mupti(p,n) Path construction : Polyline from
current point to specified points.

Array of points and its size,
debugee coordinates.

vd_curveto(x0,y0,x1,y1,x2,
y2)

Path construction : Curve (3rd-order
Bezier) from current point to
specified point, with specified poles.

2 poles and the curve ending point,
debuggee coordinates.

vd_closepath Path construction : Close the path
(is necessary for filling an area).

vd_bar(x0,y0,x1,y1,w,c) Bar from point to point. 2 points (debugee coordinates),
width (in pixels) and color.

vd_square(x0,y0,w,c) Square with specified center and
size.

The center (debugee coordinates),
size (in pixels) and color.

vd_rect(x0,y0,x1,y1,w,c) Canonic rectangle with specified
coordinites.

Coordinates of boundaries
(debugee coordinates),
line width (in pixels) and color.

vd_quad(x0,y0,x1,y1,x2,y2,
x3,y3,w,c)

Quadrangle with specified
coordinites.

Coordinates of vertices (debugee
coordinates),
line width (in pixels) and color.

vd_curve(x0,y0,x1,y1,x2,y2
,x3,y3,c,w)

Curve with width. 4 curve poles (debugee
coordinates), color, and width (in
pixels).

vd_circle(x,y,r,c) Circle. Center (debugee coordinates),
radius (in pixels) and color.

vd_round(x,y,r,c) Filled circle. Center (debugee coordinates),
radius (in pixels) and color.

vd_stroke Stroke a path constructed with:
vd_beg_path, vd_moveto,
vd_lineto,
vd_curveto, vd_closepath,
vd_end_path.

vd_fill Fill a path constructed with:
vd_beg_path, vd_moveto,
vd_lineto,
vd_curveto, vd_closepath,
vd_end_path.

vd_setcolor(c) Set a color. Color (an integer consisting of red,
green, blue bytes).

vd_setlinewidth(w) Set line width. Width (in pixels).

vd_text(x,y,s,c) Paint a text. Origin point (debugee coordinates),
a string, and a color.

vd_wait Delay execution until a resuming
command is entered through user
interface.

Graphics Library doesn’t provide a rasterization of the debug output. Instead it calls callbacks, which are specified by
a client, and which may have a platform dependent implementation. The implementation must not use Graphics
Library to exclude recursive calls to it from Visual Trace instructions. The callbacks and auxiliary data are collected in
the structure vd_trace_interface, explained in the table below.

The Ghostscript Library

251

vd_trace_interface structure

Field Purpose Parameters

host A pointer to the rasterizer control
block -
to be provided by client application.
The type of the field is client
dependent.

scale_x, scale_y Scale of debugee coordinate to
window coordinate mapping -
internal work data, don’t change.

orig_x, orig_y Draft origin in debugee coordinates
-
internal work data, don’t change.

shift_x, shift_y Draft shift in window coordinates -
internal work data, don’t change.

get_size_x(I) Get window width in pixels.

get_size_y(I) Get window height in pixels.

get_dc(I,I1) Obtain drawing context. Pointer to interface block,
and pointer to copy of the pointer.
Implementation must set *I1 if it
succeeds
to get a drawing context.

release_dc(I,I1) Release drawing context. Pointer to interface block,
and pointer to copy of the pointer.
Implementation must reset *I1 if it
succeeds
to release the drawing context.

erase(I,c) Erase entire window. Background color.

beg_path(I) Begin path construction.

end_path(I) End path construction.

moveto(I,x,y) Set current point. A point in window coordinates.

lineto(I,x,y) Line from current point to specified
point.

A point in window coordinates.

curveto(I,x0,y0,x1,y1,x2,y
2)

Curve from current point with
specified
poles to specified point.

3 points in window coordinates.

closepath(I) Close the path.

circle(I,x,y,r) Circle. Center and radius, window
coordinates.

round(I,x,y,r) Filled circle. Center and radius, window
coordinates.

fill(I) Fill the path.

stroke(I) Stroke the path.

setcolor(I,c) Set color. An integer, consisting of red, green,
blue bytes.

setlinewidth(I,w) Set line width. Line width in pixels.

text(I,x,y,s) Draw a text. Coordinates in pixels, and a string.

The Ghostscript Library

252

wait(I) Delay execution until resume
command is
inputted from user.

A full example
The file gslib.c in the Ghostscript fileset is a complete example program that initializes the library and produces
output using it; files named *lib.mak (such as ugcclib.mak and bclib.mak) are makefiles using gslib.c
as the main program. The following annotated excerpts from this file are intended to provide a roadmap for
applications that call the library.

/* Capture stdin/out/err before gs.h redefines them. */
#include <stdio.h>
static FILE *real_stdin, *real_stdout, *real_stderr;
static void
get_real(void)
{ real_stdin = stdin, real_stdout = stdout, real_stderr = stderr;
}

Any application using Ghostscript should include the fragment above at the very beginning of the main program.

#include "gx.h"

The gx.h header includes a wealth of declarations related to the Ghostscript memory manager, portability
machinery, debugging framework, and other substrate facilities. Any application file that calls any Ghostscript API
functions should probably include gx.h.

/* Configuration information imported from gconfig.c. */
extern gx_device *gx_device_list[];

/* Other imported procedures */
/* from gsinit.c */
extern void gs_lib_init(P1(FILE *));
extern void gs_lib_finit(P2(int, int));
/* from gsalloc.c */
extern gs_ref_memory_t *ialloc_alloc_state(P2(gs_memory_t *, uint));

The externs above are needed for initializing the library.

gs_ref_memory_t *imem;
#define mem ((gs_memory_t *)imem)
gs_state *pgs;
gx_device *dev = gx_device_list[0];

gp_init();
get_real();
gs_stdin = real_stdin;
gs_stdout = real_stdout;
gs_stderr = real_stderr;
gs_lib_init(stdout);
....
imem = ialloc_alloc_state(&gs_memory_default, 20000);
imem->space = 0;
....
pgs = gs_state_alloc(mem);

The code above initializes the library and its memory manager. pgs now points to the graphics state that will be
passed to the drawing routines in the library.

gs_setdevice_no_erase(pgs, dev); /* can't erase yet */
{ gs_point dpi;
 gs_screen_halftone ht;
 gs_dtransform(pgs, 72.0, 72.0, &dpi);

The Ghostscript Library

253

 ht.frequency = min(fabs(dpi.x), fabs(dpi.y)) / 16.001;
 ht.angle = 0;
 ht.spot_function = odsf;
 gs_setscreen(pgs, &ht);
}

The code above initializes the default device and sets a default halftone screen. (For brevity, we have omitted the
definition of odsf, the spot function.)

/* gsave and grestore (among other places) assume that */
/* there are at least 2 gstates on the graphics stack. */
/* Ensure that now. */
gs_gsave(pgs);

The call above completes initializing the graphics state. When the program is finished, it should execute:

gs_lib_finit(0, 0);

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

The Ghostscript Library

254

https://www.artifex.com

Information for Ghostscript Developers

Introduction
This document provides a wealth of information about Ghostscript’s internals, primarily for developers actively
working on Ghostscript. It is primarily descriptive, documenting the way things are; the companion C style guide is
primarily prescriptive, documenting what developers should do when writing new code.

Architecture

Design Goals

Ghostscript has the following high-level design goals (not listed in order of importance):

Functionality

• Ability to interpret the current PostScript and PDF languages, as defined (and occasionally, in the case of
conflict, as implemented) by Adobe.

• Ability to convert PostScript to and from PDF, comparable to Adobe products.

• Ability to produce output for a wide range of resolutions (from TV-resolution displays to imagesetters) and
color models (black and white, multilevel gray, bilevel or multi-level RGB and CMYK, 6- or 8-color inkjet
printers, spot color).

Performance

• Ability to render PostScript and PDF with commercial-quality performance (memory usage, speed, and
output quality) on all platforms.

• Specifically, ability to render PostScript effectively in embedded environments with constrained RAM,
including the ability to put the code and supporting data in ROM.

Licensing

• Licensing that supports both the Open Source / Free software communities and a commercial licensing
business.

• Freedom from licensing restrictions or fees imposed by third parties.

Other

• Easy source portability to any platform (CPU, operating system, and development tools) that has an ANSI
C compiler.

• Support for writing new interpreters and new drivers with no change to any existing code; specifically,
ability to support PCL 5e, PCL 5c, and PCL XL interpreters, and the ever-changing roster of inkjet printers.

These goals often conflict: part of Ghostscript’s claim to quality is that the conflicts have been resolved well.

Design principles
Part of what has kept Ghostscript healthy through many years of major code revisions and functional expansion is
consistent and conscientious adherence to a set of design principles. We hope the following list captures the most
important ones.

Information for Ghostscript Developers

255

Non-preemption

Ghostscript is designed to be used as a component. As such, it must share its environment with other components.
Therefore, it must not require ownership of, or make decisions about, inherently shared resources. Specifically, it
must not assume that it can “own” either the locus of control or the management of the address space.

Not owning control means that whenever Ghostscript passes control to its caller, it must do so in a way that doesn’t
constrain what the caller can do next. The caller must be able to call any other piece of software, wait for an external
event, execute another task, etc., without having to worry about Ghostscript being in an unknown state. While this is
easy to arrange in a multi-threaded environment (by running Ghostscript in a separate thread), multi-threading APIs
are not well standardized at this time (December 2000), and may not be implemented efficiently, or at all, on some
platforms. Therefore, Ghostscript must choose between only two options for interacting with its caller: to return,
preserving its own state in data structures, or to call back through a caller-supplied procedure. Calling back
constrains the client program unacceptably: the callback procedure only has the options of either returning, or
aborting Ghostscript. In particular, if it wants (for whatever reason) to multi-task Ghostscript with another program, it
cannot do so in general, especially if the other program also uses callback rather than suspension. Therefore,
Ghostscript tries extremely hard to return, rather than calling back, for all caller interaction. In particular:

• For callers that want to pass input to Ghostscript piece by piece, Ghostscript returns with an
gs_error_NeedInput code rather than using a callback. This allows the caller complete flexibility in its
control structure for managing the source of input. (It might, for example, be generating the input dynamically).

• In the future, the same arrangement should be used for input from stdin and output to stdout and stderr.

• Likewise, scheduling of Ghostscript’s own threads (contexts), currently done with a callback, should be done
with suspension. The Display Ghostscript project (GNU DGS) is working on this.

The one area where suspension is not feasible with Ghostscript’s current architecture is device output. Device
drivers are called from deep within the graphics library. (If Ghostscript were being redesigned from scratch, we might
try to do this with suspension as well, or at least optional suspension.)

Not owning management of the address space means that even though Ghostscript supports garbage collection for
its own data, it must not do any of the things that garbage collection schemes for C often require: it must not replace
‘malloc’ and ‘free’, must not require its clients to use its own allocator, must not rely on manipulating the read/write
status of memory pages, must not require special compiler or run-time support (e.g., APIs for scanning the C stack),
must not depend on the availability of multi-threading, and must not take possession of one of a limited number of
timer interrupts. However, in order not to constrain its own code unduly, it must also not require using special macros
or calls to enter or leave procedures or assign pointers, and must not constrain the variety of C data structures any
more than absolutely necessary. It achieves all of these goals, at the expense of some complexity, some
performance cost (mostly for garbage collection), and some extra manual work required for each structure type
allocated by its allocator. The details appear in the Memory management section below.

Multi-instantiability

From many years of experience with the benefits of object-oriented design, we have learned that when the word “the”
appears in a software design – “the” process scheduler, “the” memory manager, “the” output device, “the” interpreter,
“the” stack – it often flags an area in which the software will have difficulty adapting to future needs. For this reason,
Ghostscript attempts to make every internal structure capable of existing in multiple instances. For example,
Ghostscript’s memory manager is not a one-of-a-kind entity with global state and procedures: it is (or rather they are,
since Ghostscript has multiple memory managers, some of which have multiple instances) objects with their own
state and (virtual) procedures. Ghostscript’s PostScript interpreter has no writable non-local data (necessary, but not
sufficient, to allow multiple instances), and in the future will be extended to be completely reentrant and instantiable.
The device driver API is designed to make this easy for drivers as well. The graphics library is currently not
completely reentrant or instantiable: we hope this will occur in the future.

Late configuration binding

Ghostscript is designed to make configuration choices as late as possible, subject to simplicity and performance
considerations. The major binding times for such choices are compilation, linking, startup, and dynamic.

• Compilation binds only CPU and compiler characteristics (including data type size, presence of floating point
hardware, and data alignment), and whether the code will be used for production, debugging, or profiling.

• Linking binds the choice of what features and device drivers will be included in the executable. (Work is
underway to make the choice of drivers dynamic).

Information for Ghostscript Developers

256

• Startup binds essentially nothing. Almost every option and parameter that can appear on the command line can
also be changed dynamically.

• The selection of output device, all parameters associated with the device, the selection of debugging printout
and self-checking (in debugging configurations), the macro-allocation of memory, and almost all other
operational parameters are dynamic.

In addition, a number of major implementation decisions are made dynamically depending on the availability of
resources. For example, Ghostscript chooses between banded and non-banded rendering depending on memory
availability.

Large-scale structure

At the largest design scale, Ghostscript consists of 4 layers. Layer N is allowed to use the facilities of all layers M <=
N.

1. The bottom layer is called the substrate. It includes facilities like memory management, streams, fixed-point
arithmetic, and low-level interfaces to the operating system. The substrate is written in C, with a little C++ and/or
assembler code for some platforms.

2. The layer above the substrate is the graphics layer. It consists of two separate sub-parts. The graphics layer is
written in C.

• The graphics library manages graphics state information for, and decomposes and renders 2-D images
described using, a graphics model that is approximately the union of those of PostScript, PDF, and PCL
5e/5c/XL.

• The device drivers are called by the graphics library to produce actual output. The graphics library, and all
higher layers, call device driver procedures only through virtual functions.

3. The principal clients of the graphics layer are language interpreters. Ghostscript as distributed includes the
PostScript interpreter; there are also interpreters for PCL 5e, PCL 5c, and PCL XL, which are not currently
freely redistributable and are not included in the standard Ghostscript package. The PostScript interpreter is
written partly in C and partly in PostScript.

4. The PDF interpreter is actually a client of the PostScript interpreter: it is written entirely in PostScript.

The most important interface in Ghostscript is the API between the graphics library and the device drivers: new
printers (and, to a lesser extent, window systems, displays, plotters, film recorders, and graphics file formats) come
on the scene frequently, and it must be possible to produce output for them with a minimum of effort and distruption.
This API is the only one that is extensively documented (see Drivers) and kept stringently backward-compatible
through successive releases.

Object-oriented constructs

Ghostscript makes heavy use of object-oriented constructs, including analogues of classes, instances, subclassing,
and class-associated procedures. Since Ghostscript is written in C, not C++, implementing these constructs requires
following coding conventions. The “Objects” section of the C style guide explains these.

The memory manager API provides run-time type information about each class, but this information does not include
anything about subclassing. See under Structure descriptors below.

File roadmap
This section of the document provides a roadmap to all of the Ghostscript source files.

Substrate

Runtime Context

The libctx provides pointers to memory, stdio, and various other runtime portablility services:

base/gslibctx.h, base/gslibctx.c

Information for Ghostscript Developers

257

Memory manager

See Memory Management

Streams

Framework, file and string streams:

base/gsdsrc.c, base/gsdsrc.h, base/scommon.h, base/strmio.c, base/strmio.h, base/sfxboth.c, base/sfxfd.c,
base/sfxstdio.c, base/sfxcommon.c, base/stream.h, base/stream.c, base/strimpl.h.

Standard filters:

CCITTFax:

base/scf.h, base/scfd.c, base/scfdgen.c, base/scfdtab.c, base/scfe.c, base/scfetab.c, base/scfparam.c,
base/scfx.h.

DCT (JPEG):

base/gsjconf.h, base/gsjmorec.h, base/sdcparam.c, base/sdcparam.h, base/sdct.h, base/sdctc.c,
base/sdctd.c, base/sdcte.c, base/sddparam.c, base/sdeparam.c, base/sjpeg.h, base/sjpegc.c,
base/sjpegd.c, base/sjpege.c.

JBIG2:

base/sjbig2.h, base/sjbig2.c

JPX (JPEG 2000):

base/sjpx_openjpeg.h, base/sjpx_openjpeg.c

Other compression/decompression:

base/slzwc.c, base/slzwd.c, base/slzwe.c, base/slzwx.h, base/srld.c, base/srle.c, base/srlx.h.

Other:

base/sa85d.c, base/sa85d.h, base/sa85x.h, psi/sfilter1.c, base/sfilter2.c, base/sstring.c, base/sstring.h.

Non-standard filters used to implement standard filters:

base/seexec.c, base/sfilter.h, base/shc.c, base/shc.h, base/spdiff.c, base/spdiffx.h, base/spngp.c,
base/spngpx.h, base/szlibc.c, base/szlibd.c, base/szlibe.c, base/szlibx.h, base/szlibxx.h.

Non-standard filters:

base/sbcp.c, base/sbcp.h, base/sbtx.h, base/smd5.c, base/smd5.h, base/saes.c, base/saes.h, base/sarc4.c,
base/sarc4.h,

Internal filters:

base/siinterp.c, base/siinterp.h, base/siscale.c, base/siscale.h, base/sidscale.c, base/sidscale.h,
base/sisparam.h.

Higher-level stream support:

base/spprint.c, base/spprint.h, base/spsdf.c, base/spsdf.h, base/srdline.h.

Platform-specific code

See Cross-platform APIs.

Miscellaneous

Library top level:

base/gsinit.c, base/gslib.h.

Configuration-related:

base/gconf.c, base/gconf.h, base/gscdef.c, base/gscdefs.h, base/gsromfs0.c.

Arithmetic:

base/gxarith.h, base/gxdda.h, base/gxfarith.h, base/gxfixed.h, base/gxfrac.h.

Operating system interface:

base/gserrors.h, base/gsexit.h, base/gxstdio.h, base/gxsync.c, base/gxsync.h.

Other:

Information for Ghostscript Developers

258

base/gsargs.c, base/gsargs.h, base/gserrors.h, base/gsnotify.c, base/gsnotify.h, base/gsrect.h, base/gstypes.h,
base/gsuid.h, base/gsutil.h, base/gsutil.c, base/gx.h, base/gsmd5.c, base/gsmd5.h, base/aes.c, base/aes.h.

Graphics library

Support

Bitmap processing:

base/gsbitcom.c, base/gsbitmap.h, base/gsbitops.c, base/gsbitops.h, base/gsbittab.c, base/gsbittab.h,
base/gsflip.c, base/gsflip.h, base/gxbitmap.h, base/gxbitops.h, base/gxsample.c, base/gxsample.h.
base/gxsamplp.h.

Functions:

base/gsfunc.c, base/gsfunc.h, base/gsfunc0.c, base/gsfunc0.h, base/gsfunc3.c, base/gsfunc3.h,
base/gsfunc4.c, base/gsfunc4.h, base/gxfunc.h.

Parameter lists:

base/gscparam.c, base/gsparam.c, base/gsparam.h, base/gsparam2.c (not used), base/gsparams.c,
base/gsparams.h, base/gsparamx.c, base/gsparamx.h.

I/O-related:

base/gdevpipe.c, base/gsfname.c, base/gsfname.h, base/gsio.h, base/gsiodev.c, base/gsiodevs.c,
base/gsiodisk.c, base/gsiorom.c. base/gsiorom.h. base/gxiodev.h.

Paths

Coordinate transformation:

base/gscoord.c, base/gscoord.h, base/gsmatrix.c, base/gsmatrix.h, base/gxcoord.h, base/gxmatrix.h.

Path building:

base/gsdps1.c, base/gspath.c, base/gspath.h, base/gspath1.c, base/gspath2.h, base/gxpath.c, base/gxpath.h,
base/gxpath2.c, base/gxpcopy.c, base/gxpdash.c, base/gxpflat.c, base/gzpath.h.

Path rendering:

base/gdevddrw.c, base/gdevddrw.h, base/gxdtfill.h, base/gsdps1.c, base/gspaint.c, base/gspaint.h,
base/gspenum.h, base/gxfill.c, base/gxfill.h, base/gxfillsl.h, base/gxfilltr.h, base/gxfillts.h, base/gximask.c,
base/gximask.h, base/gxfdrop.c, base/gxfdrop.h, base/gxpaint.c, base/gxpaint.h, base/gxstroke.c,
base/gzspotan.c, base/gzspotan.h.

Clipping:

See under Clipping below.

Text

Fonts, generic:

base/gsfont.c, base/gsfont.h, devices/gxfcopy.c, devices/gxfcopy.h, base/gxfont.h.

Fonts, specific FontTypes:

base/gsfcid.c, base/gsfcid.c, base/gsfcmap.c, base/gsfcmap1.c, base/gsfcmap.h, base/gsfont0.c,
base/gsfont0c.c, base/gxcid.h, base/gxfcid.h, base/gxfcmap.h, base/gxfcmap1.h, base/gxfont0.h,
base/gxfont0c.h, base/gxfont1.h, base/gxfont42.h, base/gxftype.h, base/gxttf.h.

Character rendering + font cache, generic:

base/gsccode.h, base/gschar.c, base/gschar.h, base/gscpm.h, base/gsgdata.c, base/gsgdata.h,
base/gsgcache.c, base/gsgcache.h, base/gstext.c, base/gstext.h, base/gxbcache.c, base/gxbcache.h,
base/gxccache.c, base/gxccman.c, base/gxchar.c, base/gxchar.h, base/gxfcache.h, base/gxtext.h.

Character rendering, specific FontTypes:

base/gschar0.c, base/gscrypt1.c, base/gscrypt1.h, base/gstype1.c, base/gstype1.h, base/gstype2.c,
base/gstype42.c, base/gxchrout.c, base/gxchrout.h, base/gxhintn.h, base/gxhintn.c, base/gxhintn1.c,
base/gxtype1.c, base/gxtype1.h.

Information for Ghostscript Developers

259

Images

Buffered API (mostly for PostScript interpreter):

base/gsimage.c, base/gsimage.h.

Generic support:

base/gsiparam.h, base/gxiclass.h, base/gximage.c, base/gximage.h, base/gxiparam.h.

Type 1 and 4 images:

Setup:

base/gsiparm4.h, base/gximage1.c, base/gximage4.c.

Rendering:

base/gxi12bit.c, base/gxi16bit.c, base/gxicolor.c, base/gxidata.c, base/gxifast.c, base/gximono.c,
base/gxino12b.c, base/gxino16b.c, base/gxipixel.c, base/gxiscale.c.

Type 2 images (Display PostScript):

base/gsiparm2.h, base/gximage2.c.

Type 3 images:

base/gsipar3x.h, base/gsiparm3.h, base/gximag3x.c, base/gximag3x.h, base/gximage3.c, base/gximage3.h.

Other:

base/gsimpath.c, base/simscale.c, base/simscale.h.

Paint

Ghostscript uses 4 internal representations of color. We list them here in the order in which they occur in the
rendering pipeline.

1. Clients of the graphics library normally specify colors using the client color structure (gs_client_color,
defined in psi/gs.color.h), consisting of one or more numeric values and/or a pointer to a Pattern instance. This
corresponds directly to the values that would be passed to the PostScript setcolor operator: one or more
(floating-point) numeric components and/or a Pattern. Client colors are interpreted relative to a color space
(gs_color_space, defined in base/gscspace.h and base/gxcspace.h, with specific color spaces defined in
other files). Client colors do not explicitly reference the color space in which they are are interpreted: setcolor
uses the color space in the graphics state, while images and shadings explicitly specify the color space to be
used.

2. For ordinary non-Pattern colors, the first step in color rendering reduces a client color to a concrete color – a set
of values in a color space that corresponds to the device’s color model (except for possible conversions
between DeviceGray, DeviceRGB, and DeviceCMYK), together with an identification of the associated color
space. (The confusion here between color spaces and color models will have to be cleaned up when we
implement native Separation/DeviceN colors.) Concrete colors are like the numeric values in a client color,
except that they are represented by arrays of frac values (defined in base/gxfrac.h) rather than floats. The
procedure for this step is the virtual concretize_color and concrete_space procedures in the (original)
color space. This step reduces Indexed colors, CIEBased colors, and Separation and DeviceN colors that use
the alternate space.

3. The final step requires mapping a concrete color to the device’s color model, done by procedures in
base/gxcmap.c. These procedures combine the following three conceptual sub-steps:

• A possible mapping between Device color spaces, possibly involving black generation and undercolor
removal. The non-trivial cases are implemented in base/gxdcconv.c.

• Application of the transfer function(s) (done in-line).

• Halftoning if necessary: see below.

The result is called (inappropriately) a device color (gx_device_color, defined in psi/gs.color.h and
base/gxdcolor.h). For ordinary non-Pattern colors, a device color is either a pure color, or a halftone. The device
and color model associated with a device color are implicit. The procedure for this step is the virtual
remap_concrete_color procedure in the color space.

4. The pure colors that underlie a device color are opaque pixel values defined by the device (misnamed
gx_color_index, defined in base/gscindex.h). The device with which they are associated is implicit.

Information for Ghostscript Developers

260

Although the format and interpretation of a pixel value are known only to the device, the device’s color model
and color representation capabilities are public, defined by a gx_color_info structure stored in the device
(defined in base/gxdevcli.h). Virtual procedures of the device driver map between pixel values and RGB or
CMYK. (This area is untidy and will need to be cleaned up when we implement native Separation/DeviceN
colors).

Steps 2 and 3 are normally combined into a single step for efficiency, as the remap_color virtual procedure in a
color space.

Using a device color to actually paint pixels requires a further step called color loading, implemented by the load
virtual procedure in the device color. This does nothing for pure colors, but loads the caches for halftones and
Patterns.

All of the above steps – concretizing, mapping to a device color, and color loading – are done as late as possible,
normally not until the color is actually needed for painting.

All painting operations (fill, stroke, imagemask/show) eventually call a virtual procedure in the device color, either
fill_rectangle or fill_mask to actually paint pixels. For rectangle fills, pure colors call the device’s
fill_rectangle procedure; halftones and tiled Patterns call the device’s strip_tile_rectangle; shaded Patterns,
and painting operations that involve a RasterOp, do something more complicated.

Color specification:

base/gsdcolor.h, base/gscolor.c, base/gscolor.h, base/gscolor1.c, base/gscolor1.h, base/gscolor2.c,
base/gscolor2.h, base/gscolor3.c, base/gscolor3.h, base/gshsb.c, base/gshsb.h, base/gxcolor2.h,
base/gxcvalue.h.

Color spaces:

base/gscdevn.c, base/gscdevn.h, base/gscie.c, base/gscie.h, base/gscpixel.c, base/gscpixel.h, base/gscscie.c,
base/gscsepr.c, base/gscsepr.h, base/gscspace.c, base/gscspace.h, base/gscssub.c, base/gscssub.h,
base/gxcdevn.h, base/gxcie.h, base/gxcspace.h.

Color mapping:

base/gsciemap.c, base/gscindex.h, base/gscrd.c, base/gscrd.h, base/gscrdp.c, base/gscrdp.h, base/gscsel.h,
base/gxcindex.h, base/gxcmap.c, base/gxcmap.h, base/gxctable.c, base/gxctable.h, base/gxdcconv.c,
base/gxdcconv.h, base/gxdcolor.c, base/gxdcolor.h, base/gxdevndi.c, base/gxdevndi.h, base/gxdither.h,
base/gxfmap.h, base/gxlum.h, base/gxtmap.h.

ICC profiles are in some ways a special case of color mapping, but are not standard in PostScript.

base/gsicc.c, base/gsicc.h,

The following files provide a callback mechanism to allow a client program to specify a special case alternate tint
transforms for Separation and DeviceN color spaces. Among other uses this can be used to provide special
handling for PANTONE colors.

base/gsnamecl.c, base/gsnamecl.h, base/gsncdummy.c, base/gsncdummy.h, psi/zncdummy.c

Ghostscript represents halftones internally by “whitening orders” – essentially, arrays of arrays of bit coordinates
within a halftone cell, specifying which bits are inverted to get from halftone level K to level K+1. The code does
support all of the PostScript halftone types, but they are all ultimately reduced to whitening orders.

Threshold arrays, the more conventional representation of halftones, can be mapped to whitening orders
straightforwardly; however, whitening orders can represent non-monotonic halftones (halftones where the bits turned
on for level K+1 don’t necessarily include all the bits turned on for level K), while threshold arrays cannot. On the
other hand, threshold arrays allow rapid conversion of images (using a threshold comparison for each pixel) with no
additional space, while whitening orders do not: they require storing the rendered halftone cell for each possible level
as a bitmap.

Ghostscript uses two distinct types of rendered halftones – that is, the bitmap(s) that represent a particular level.

• Binary halftones. The rendered halftone is a single bit plane; each bit selects one of two pure colors. These are
fast but limited: they are used for monochrome output devices, or for color devices in those cases where only
two distinct colors are involved in a halftone (e.g., a pure cyan shade on a CMYK device). The device color for a
binary halftone stores a pointer to the halftone bitmap, and the two pure colors.

• Multi-plane halftones. Internally, each plane is rendered individually. Since there isn’t enough room to store all
2^N pure colors, multi-plane halftones only store the scaled values for the individual components; the halftone

Information for Ghostscript Developers

261

renderer maps these to the pure colors on the fly, then combines the planes to assemble an N-bit index into the
list of colors for each pixel, and stores the color into the fully rendered halftone.

The halftone level for rendering a color is computed in base/gxdevndi.c; the actual halftone mask or tile is computed
either in base/gxcht.c (for multi-plane halftones), or in base/gxht.c and base/gxhtbit.c (for binary halftones).

Halftoning:

base/gsht.c, base/gsht.h, base/gsht1.c, base/gsht1.h, base/gshtscr.c, base/gshtx.c, base/gshtx.h, base/gxcht.c,
base/gxdht.h, base/gxdhtres.h, base/gxht.c, base/gxht.h, base/gxhtbit.c, base/gxhttile.h, base/gxhttype.h,
base/gzht.h.

Pattern colors (tiled patterns and shadings) each use a slightly different approach from solid colors.

The device color for a tiled (PatternType 1) pattern contains a pointer to a pattern instance, plus (for uncolored
patterns) the device color to be masked. The pattern instance includes a procedure that actually paints the pattern if
the pattern is not in the cache. For the PostScript interpreter, this procedure returns an gs_error_RemapColor
exception code: this eventually causes the interpreter to run the pattern’s PaintProc, loading the rendering into the
cache, and then re-execute the original drawing operator.

Patterns:

base/gs.color.c, base/gs.color.h, base/gsptype1.c, base/gsptype1.h, base/gxp1fill.c, base/gxp1impl.h,
base/gxpcache.h, base/gxpcmap.c, base/gxpcolor.h.

The device color for a shading (PatternType 2) pattern also contains a pointer to a pattern instance. Shadings are not
cached: painting with a shading runs the shading algorithm every time.

Shading:

base/gsptype2.c, base/gsptype2.h, base/gsshade.c, base/gsshade.h, base/gxshade.c, base/gxshade.h,
base/gxshade1.c, base/gxshade4.c, base/gxshade4.h, base/gxshade6.c, base/gscicach.h, base/gscicach.c.

In addition to the PostScript graphics model, Ghostscript supports RasterOp, a weak form of alpha channel, and
eventually the full PDF 1.4 transparency model. The implemention of these facilities is quite slipshod and scattered:
only RasterOp is really implemented fully. There is a general compositing architecture, but it is hardly used at all, and
in particular is not used for RasterOp. It is used for implementation of the general support for overprint and overprint
mode.

Compositing architecture:

base/gscompt.h, base/gxcomp.h.

RasterOp:

base/gdevdrop.c, base/gdevrops.c, base/gsrop.c, base/gsrop.h, base/gsropt.h, base/gsroptab.c,
base/gxdevrop.h.

Alpha channel and compositing:

base/gsalpha.c, base/gsalpha.h, base/gsdpnext.h, base/gxalpha.h.

Advanced transparency:

base/gstparam.h, base/gstrans.c, base/gstrans.h, base/gxblend.c, base/gxblend.h, base/gdevp14.c,
base/gdevp14.h.

Overprint and Overprint mode:

base/gsovrc.c, base/gsovrc.h, base/gxoprect.c, base/gxoprect.h. There is support for both overprint and
overprint mode. There is a general compositor based implementation of these features for all devices. In
addition, the memory devices implement a higher speed set of special fill routines to improve performance for
printer based devices.

Clipping

The Ghostscript graphics library implements clipping by inserting a clipping device in the device pipeline. The
clipping device modifies all drawing operations to confine them to the clipping region.

The library supports three different kinds of clipping:

• Region/path clipping

This corresponds to the PostScript concept of a clipping path. The clipping region is specified either by a
list of rectangles (subject to the constraints documented in base/gxcpath.h), or by a path that is converted
to such a list of rectangles.

Information for Ghostscript Developers

262

• Stationary mask clipping

This corresponds to the mask operand of a PostScript ImageType 3 image. The clipping region is specified
by a bitmap and an (X,Y) offset in the coordinate space.

• Tiled mask clipping

This corresponds to the region painted by a PostScript Pattern, for the case where the Pattern does not
completely cover its bounding box but the combined transformation matrix has no skew or non-orthogonal
rotation (i.e., XStep and YStep map respectively to (X,0) and (0,Y) or vice versa). The clipping region is
specified by a bitmap and an (X,Y) offset in the coordinate space, and is replicated indefinitely in both X
and Y.

Note that simply scan-converting a clipping path in the usual way does not produce a succession of rectangles that
can simply be stored as the list for region-based clipping: in general, the rectangles do not satisfy the constraint for
rectangle lists specified in base/gxcpath.h, since they may overlap in X, Y, or both. A non-trivial “clipping list
accumulator” device is needed to produce a rectangle list that does satisfy the constraint.

Clipping support:

base/gxclip.c, base/gxclip.h.

Region/path clipping:

base/gxcpath.c, base/gxcpath.h, base/gzcpath.h.

Clipping list accumulator:

base/gxacpath.c, base/gzacpath.h.

Mask clipping support:

base/gxmclip.c, base/gxmclip.h.

Stationary mask clipping:

base/gxclipm.c, base/gxclipm.h.

Tiled mask clipping:

base/gxclip2.c, base/gxclip2.h.

Other graphics

Miscellaneous graphics state:

base/gsclipsr.c, base/gsclipsr.h, base/gsdps.c, base/gsdps.h, base/gsdps1.c, base/gsistate.c, base/gsline.c,
base/gsline.h, base/gslparam.h, base/gsstate.c, base/gsstate.h, base/gstrap.c, base/gstrap.h, base/gxclipsr.h,
base/gxistate.h, base/gxline.h, base/gxstate.h, base/gzline.h, base/gzstate.h.

Font API support

UFST bridge:

base/gxfapiu.c, base/gxfapiu.h.

Driver support

Generic driver support:

base/gdevdcrd.c, base/gdevdcrd.h, base/gdevdsha.c, base/gdevemap.c, base/gsdevice.c, base/gsdevice.h,
base/gsdparam.c, base/gsxfont.h, base/gxdevbuf.h, base/gxdevcli.h, base/gxdevice.h, base/gxrplane.h,
base/gxxfont.h.

Accessing rendered bits:

base/gdevdbit.c, base/gdevdgbr.c, base/gxbitfmt.h, base/gxgetbit.h.

“Printer” driver support:

devices/gdevmeds.c, devices/gdevmeds.h, base/gdevppla.c, base/gdevppla.h, base/gdevprn.c, base/gdevprn.h,
base/gdevprna.c, base/gdevprna.h, base/gxband.h, base/gxpageq.c, base/gxpageq.h.

High-level device support:

base/gdevvec.c, base/gdevvec.h, base/gxhldevc.c, base/gxhldevc.h.

Banding:

Information for Ghostscript Developers

263

base/gxclbits.c, base/gxcldev.h, base/gxclfile.c, base/gxclimag.c, base/gxclio.h, base/gxclist.c, base/gxclist.h,
base/gxcllzw.c, base/gxclmem.c, base/gxclmem.h, base/gxclpage.c, base/gxclpage.h, base/gxclpath.c,
base/gxclpath.h, base/gxclrast.c, base/gxclread.c, base/gxclrect.c, base/gxclthrd.c, base/gxclthrd.h,
base/gxclutil.c, base/gxclzlib.c, base/gxdhtserial.c, base/gxdhtserial.h, base/gsserial.c, base/gsserial.h.

Visual Trace

Visual Trace support :

base/vdtrace.h, base/vdtrace.c.

See Visual Trace instructions for extensive documentation.

Device drivers

See Drivers for extensive documentation on the interface between the core code and drivers.

The driver API includes high-level (path / image / text), mid-level (polygon), and low-level (rectangle / raster)
operations. Most devices implement only the low-level operations, and let generic code break down the high-level
operations. However, some devices produce high-level output, and therefore must implement the high-level
operations.

Internal devices

There are a number of “devices” that serve internal purposes. Some of these are meant to be real rendering targets;
others are intended for use in device pipelines. The rendering targets are:

Memory devices, depth-independent:

base/gdevmem.c, base/gdevmem.h, base/gdevmpla.c, base/gdevmpla.h, base/gdevmrop.h, base/gsdevmem.c,
base/gxdevmem.h.

Memory devices, specific depths:

base/gdevm1.c, base/gdevm2.c, base/gdevm4.c, base/gdevm8.c, base/gdevm16.c, base/gdevm24.c,
base/gdevm32.c, base/gdevm40.c, base/gdevm48.c, base/gdevm56.c, base/gdevm64.c, base/gdevmr1.c,
base/gdevmr2n.c, base/gdevmr8n.c.

Alpha-related devices:

base/gdevabuf.c.

Other devices:

base/gdevdflt.c, base/gdevhit.c, base/gdevmrun.c, base/gdevmrun.h, base/gdevplnx.c, base/gdevplnx.h.

The forwarding devices meant for use in pipelines are:

The bounding box device:

base/gdevbbox.h, base/gdevbbox.c.

Clipping devices:

See under Clipping above.

Other devices:

base/gdevnfwd.c.

PostScript and PDF writers

Because PostScript and PDF have the same graphics model, lexical syntax, and stack-based execution model, the
drivers that produce PostScript and PDF output share a significant amount of support code. In the future, the
PostScript output driver should be replaced with a slightly modified version of the PDF driver, since the latter is far
more sophisticated (in particular, it has extensive facilities for image compression and for handling text and fonts).

The PDF code for handling text and fonts is complex and fragile. A major rewrite in June 2002 was intended to make
it more robust and somewhat easier to understand, but also increased its size by about 40%, contrary to the
expectation that it would shrink. Currently both sets of code are in the code base, with compatible APIs, selected by
a line in devices/devs.mak.

Information for Ghostscript Developers

264

Shared support

Writing fonts:

devices/vector/gdevpsf.h, devices/vector/gdevpsf1.c, devices/vector/gdevpsf2.c, devices/vector/gdevpsfm.c,
devices/vector/gdevpsft.c, devices/vector/gdevpsfu.c, devices/vector/gdevpsfx.c, base/gscedata.c,
base/gscedata.h, base/gscencs.c, base/gscencs.h.

Other:

devices/vector/gdevpsdf.h, devices/vector/gdevpsdi.c, devices/vector/gdevpsdp.c, devices/vector/gdevpsds.c,
devices/vector/gdevpsds.h, devices/vector/gdevpsdu.c.

Encapsulated PostScript output driver (epswrite):

devices/vector/gdevpsu.c, devices/vector/gdevpsu.h.

PDF output driver (pdfwrite)

Substrate:

devices/vector/gdevpdfo.c, devices/vector/gdevpdfo.h, devices/vector/gdevpdfr.c, devices/vector/gdevpdfu.c.

Old text and fonts:

devices/vector/gdevpdfe.c, devices/vector/gdevpdft.c.

New text and fonts:

devices/vector/gdevpdt.c, devices/vector/gdevpdt.h, devices/vector/gdevpdtb.c, devices/vector/gdevpdtb.h,
devices/vector/gdevpdtc.c, devices/vector/gdevpdtd.c, devices/vector/gdevpdtd.h, devices/vector/gdevpdte.c,
devices/vector/gdevpdtf.c, devices/vector/gdevpdtf.h, devices/vector/gdevpdti.c, devices/vector/gdevpdti.h,
devices/vector/gdevpdts.c, devices/vector/gdevpdts.h, devices/vector/gdevpdtt.c, devices/vector/gdevpdtt.h,
devices/vector/gdevpdtv.c, devices/vector/gdevpdtv.h, devices/vector/gdevpdtw.c, devices/vector/gdevpdtw.h,
devices/vector/gdevpdtx.h. base/ConvertUTF.h, base/ConvertUTF.c,

Graphics:

devices/vector/gdevpdfc.c, devices/vector/gdevpdfc.h, devices/vector/gdevpdfd.c, devices/vector/gdevpdfg.c,
devices/vector/gdevpdfg.h, devices/vector/gdevpdfk.c, devices/vector/gdevpdft.c. devices/vector/gdevpdfv.c.

Images:

devices/vector/gdevpdfb.c, devices/vector/gdevpdfi.c, devices/vector/gdevpdfj.c.

Other:

devices/vector/gdevpdf.c, devices/vector/gdevpdfm.c, devices/vector/gdevpdfp.c, devices/vector/gdevpdfx.h.
devices/vector/gdevpdfb.h.

Other high-level devices

PCL XL output device (pxlmono, pxlcolor):

devices/vector/gdevpx.c, base/gdevpxat.h, base/gdevpxen.h, base/gdevpxop.h, devices/gdevpxut.c,
devices/gdevpxut.h.

Text extraction:

devices/vector/gdevtxtw.c.

Other:

devices/gdevtrac.c.

Other maintained drivers

The standard Ghostscript distribution includes a collection of drivers, mostly written by Aladdin Enterprises, that are
“maintained” in the same sense as the Ghostscript core code.

Display drivers:

devices/gdev8bcm.c, devices/gdev8bcm.h, devices/gdevevga.c, devices/gdevl256.c, base/gdevpccm.c,
base/gdevpccm.h, devices/gdevpcfb.c, devices/gdevpcfb.h, devices/gdevs3ga.c, devices/gdevsco.c,
devices/gdevsvga.c, devices/gdevsvga.h, devices/gdevvglb.c.

Information for Ghostscript Developers

265

Window system drivers

X Windows:

devices/gdevx.c, devices/gdevx.h, devices/gdevxalt.c, devices/gdevxcmp.c, devices/gdevxcmp.h,
devices/gdevxini.c, devices/gdevxres.c.

Microsoft Windows:

devices/gdevmswn.c, devices/gdevmswn.h, devices/gdevmsxf.c, devices/gdevwddb.c, devices/gdevwdib.c.

OS/2 Presentation Manager:

devices/gdevpm.h, base/gspmdrv.c, base/gspmdrv.h.

Raster file output drivers

Fax and TIFF:

devices/gdevfax.c, devices/gdevfax.h, devices/gdevtfax.c, devices/gdevtfax.h, devices/gdevtifs.c,
devices/gdevtifs.h, devices/gdevtfnx.c. devices/gdevtsep.c.

Example DeviceN devices:

base/gdevdevn.c, base/gdevdevn.h, devices/gdevxcf.c, devices/gdevpsd.c, devices/gdevperm.c.

Other raster file formats:

devices/gdevbit.c, devices/gdevbmp.c, devices/gdevbmp.h, devices/gdevbmpa.c, devices/gdevbmpc.c,
devices/gdevjpeg.c, devices/gdevmiff.c, devices/gdevp2up.c, devices/gdevpcx.c, devices/gdevpbm.c,
devices/gdevpng.c, devices/gdevpsim.c.

Printer drivers

Operating system printer services:

devices/gdevos2p.c, devices/gdevwpr2.c, devices/gdevwprn.c.

H-P monochrome printers:

devices/gdevdljm.c, devices/gdevdljm.h, devices/gdevdjet.c, devices/gdevlj56.c.

Other printers:

devices/gdevatx.c.

Contributed drivers

This list is likely to be incomplete and inaccurate: see devices/contrib.mak and contrib/contrib.mak.

Display and window system drivers:

devices/gdev3b1.c, devices/gdevherc.c, devices/gdevpe.c, devices/gdevsnfb.c, devices/gdevsun.c.

Raster file output drivers:

devices/gdevcfax.c, devices/gdevcif.c, devices/gdevdfax.c, devices/gdevifno.c, devices/gdevmgr.c,
devices/gdevmgr.h, devices/gdevsgi.c, devices/gdevsgi.h, devices/gdevsunr.c, devices/gdevjbig2.c,
devices/gdevjpx.c.

Printer drivers:

lib/bj8.rpd, lib/cbjc600.ppd, lib/cbjc800.ppd, devices/gdev3852.c, devices/gdev4081.c, devices/gdev4693.c,
devices/gdev8510.c, devices/gdevadmp.c, devices/gdevbj10.c, devices/gdevbjc.h, devices/gdevbjcl.c,
devices/gdevbjcl.h, devices/gdevccr.c, devices/gdevcdj.c, devices/gdevclj.c, devices/gdevcljc.c,
devices/gdevcslw.c, devices/gdevdjtc.c, devices/gdevdm24.c, devices/gdevepsc.c, devices/gdevepsn.c,
devices/gdevescp.c, devices/gdevhl7x.c, devices/gdevijs.c, devices/gdevimgn.c, devices/gdevl31s.c,
devices/gdevlbp8.c, devices/gdevlp8k.c, devices/gdevlxm.c, devices/gdevn533.c, devices/gdevo182.c,
devices/gdevokii.c, devices/gdevpcl.c, devices/gdevpcl.h, devices/gdevphex.c, devices/gdevpjet.c,
devices/gdevsj48.c, devices/gdevsppr.c, devices/gdevstc.c, devices/gdevstc.h, devices/gdevstc1.c,
devices/gdevstc2.c, devices/gdevstc3.c, devices/gdevstc4.c, devices/gdevtknk.c, devices/gdevupd.c.

The special rinkj high-quality inkjet driver:

devices/gdevrinkj.c, base/gsequivc.c, base/gsequivc.h, devices/rinkj/evenbetter-rll.c,
devices/rinkj/evenbetter-rll.h, devices/rinkj/rinkj-byte-stream.c, devices/rinkj/rinkj-byte-stream.h,
devices/rinkj/rinkj-config.c, devices/rinkj/rinkj-config.h, devices/rinkj/rinkj-device.c, devices/rinkj/rinkj-device.h,
devices/rinkj/rinkj-dither.c, devices/rinkj/rinkj-dither.h, devices/rinkj/rinkj-epson870.c,

Information for Ghostscript Developers

266

devices/rinkj/rinkj-epson870.h, devices/rinkj/rinkj-screen-eb.c, devices/rinkj/rinkj-screen-eb.h,
lib/rinkj-2200-setup.

PostScript interpreter

The PostScript interpreter is conceptually simple: in fact, an interpreter that could execute “3 4 add =” and print “7”
was running 3 weeks after the first line of Ghostscript code was written. However, a number of considerations make
the code large and complex.

The interpreter is designed to run in environments with very limited memory. The main consequence of this is that it
cannot allocate its stacks (dictionary, execution, operand) as ordinary arrays, since the user-specified stack size limit
may be very large. Instead, it allocates them as a linked list of blocks. See below for more details.

The interpreter must never cause a C runtime error that it cannot trap. Unfortunately, C implementations almost
never provide the ability to trap stack overflow. In order to put a fixed bound on the C stack size, the interpreter never
implements PostScript recursion by C recursion. This means that any C code that logically needs to call the
interpreter must instead push a continuation (including all necessary state information) on the PostScript execution
stack, followed by the PostScript object to be executed, and then return to the interpreter. (See psi/estack.h for more
details about continuations.) Unfortunately, since PostScript Level 2 introduces streams whose data source can be a
PostScript procedure, any code that reads or writes stream data must be prepared to suspend itself, storing all
necessary state in a continuation. There are some places where this is extremely awkward, such as the
scanner/parser.

The use of continuations affects many places in the interpreter, and even some places in the graphics library. For
example, when processing an image, one may need to call a PostScript procedure as part of mapping a CIE color to
a device color. Ghostscript uses a variety of dodges to handle this: for example, in the case of CIE color mapping, all
of the PostScript procedures are pre-sampled and the results cached. The Adobe implementation limits this kind of
recursion to a fixed number of levels (5?): this would be another acceptable approach, but at this point it would
require far more code restructuring than it would be worth.

A significant amount of the PostScript language implementation is in fact written in PostScript. Writing in PostScript
leverages the C code for multi-threading, garbage collection, error handling, continuations for streams, etc., etc.;
also, we have found PostScript in general more concise and easier to debug than C, mostly because of memory
management issues. So given the choice, we tended to implement a feature in PostScript if it worked primarily with
PostScript data structures, wasn’t heavily used (example: font loading), or if it interacted with the stream or other
callback machinery (examples: ReusableFileDecode streams, resourceforall). Often we would add non-standard
PostScript operators for functions that had to run faster or that did more C-like things, such as the media matching
algorithm for setpagedevice.

Main program

The main program of the interpreter is normally invoked from the command line, but it has an API as well. In fact, it
has two APIs: one that recognizes the existence of multiple “interpreter instances” (although it currently provides a
default instance, which almost all clients use), and a completely different one designed for Windows DLLs. These
should be unified as soon as possible, since there are two steadily growing incompatible bodies of client code.

Files:

psi/gs.c, psi/gserver.c, psi/iinit.c, psi/iinit.h, psi/imain.c, psi/imain.h, psi/imainarg.c, psi/imainarg.h, psi/iminst.h,
psi/main.h.

Data structures

The main data structures visible to the PostScript programmers are arrays, contexts, dictionaries, names, and
stacks.

Arrays have no unusual properties. See under Refs below for more information about how array elements are stored.

Contexts are used to hold the interpreter state even in configurations that don’t include the Display PostScript
multiple context extension. Context switching is implemented by a complex cooperation of C and PostScript code.

Dictionaries have two special properties worth noting:

They use an optimized storage representation if all the keys are names, which is almost always the case.

They interact with a caching scheme used to accelerate name lookup in the interpreter.

Information for Ghostscript Developers

267

Names are allocated in blocks. The characters and hash chains are stored separately from the lookup cache
information, so that in the future, most of the former can be compiled into the executable and shared or put in ROM.
(This is not actually done yet.)

Contexts:

psi/icontext.c, psi/icontext.h, psi/icstate.h.

Dictionaries:

psi/iddict.h, psi/idict.h, psi/idict.c, psi/idictdef.h, psi/idicttpl.h.

Names:

psi/iname.c, psi/iname.h, psi/inamedef.h, psi/inameidx.h, psi/inames.h, psi/inamestr.h.

Stacks

As mentioned above, each stack is allocated as a linked list of blocks. However, for reasonable performance,
operators must normally be able to access their operands and produce their results using indexing rather than an
access procedure. This is implemented by ensuring that all the operands of an operator are in the topmost block of
the stack, using guard entries that cause an internal error if the condition isn’t met. See psi/iostack.h for more details.

Generic stacks:

psi/isdata.h, psi/istack.c, psi/istack.h, psi/istkparm.h.

Specific stacks:

Dictionary stack:

psi/dstack.h, psi/iddstack.h, psi/idsdata.h, psi/idstack.c, psi/idstack.h.

Execution stack:

psi/estack.h, psi/iesdata.h, psi/iestack.h.

Operand stack:

psi/iosdata.h, psi/iostack.h, psi/ostack.h.

Interpreter loop

Files:

psi/interp.c, psi/interp.h.

Scanning/parsing

PostScript parsing consists essentially of token scanning, and is simple in principle. The scanner is complex because
it must be able to suspend its operation at any time (i.e., between any two input characters) to allow an interpreter
callout, if its input is coming from a procedure-based stream and the procedure must be called to provide more input
data.

Main scanner:

psi/iscan.c, psi/iscan.h, psi/iscannum.c, psi/iscannum.h, base/scanchar.h, base/scantab.c.

Binary tokens:

psi/btoken.h, psi/ibnum.c, psi/ibnum.h, psi/inobtokn.c, psi/iscanbin.c, psi/iscanbin.h.

DSC parsing:

psi/dscparse.c, psi/dscparse.h.

Standard operators

Non-output-related:

Filters:

psi/ifilter.h, psi/ifilter2.h, psi/ifrpred.h, psi/ifwpred.h, psi/istream.h, psi/zfbcp.c, psi/zfdctd.c, psi/zfdcte.c,
psi/zfdecode.c, psi/zfilter.c, psi/zfilter2.c, psi/zfjbig2.c, psi/zfjpx.c, psi/zfmd5.c, psi/zfarc4.c, psi/zfproc.c,
psi/zfrsd.c, psi/zfzlib.c.

File and stream I/O:

Information for Ghostscript Developers

268

psi/files.h, psi/itoken.h, psi/zbseq.c, psi/zdscpars.c, psi/zfile.h, psi/zfile.c, psi/zfile1.c, psi/zfileio.c,
psi/ztoken.c.

Data structures:

psi/zarray.c, psi/zdict.c, psi/zgeneric.c, psi/zpacked.c, psi/zstring.c.

Functions:

psi/ifunc.h, psi/zfunc.c, psi/zfunc0.c, psi/zfunc3.c, psi/zfunc4.c,

Other:

psi/ivmem2.h, psi/zalg.c, psi/zarith.c, psi/zcontext.c, psi/zcontrol.c, psi/zmath.c, psi/zmatrix.c, psi/zmisc.c,
psi/zmisc1.c, psi/zmisc2.c, psi/zmisc3.c, psi/zrelbit.c, psi/zstack.c, psi/ztype.c, psi/zusparam.c,
psi/zvmem.c, psi/zvmem2.c.

Output-related:

Device management:

psi/zdevcal.c, psi/zdevice.c, psi/zdevice2.c, psi/ziodev.c, psi/ziodev2.c, psi/ziodevs.c, psi/zmedia2.c,

Fonts and text:

psi/bfont.h, psi/ichar.h, psi/ichar1.h, psi/icharout.h, psi/icid.h, psi/ifcid.h, psi/ifont.h, psi/ifont1.h, psi/ifont2.h,
psi/ifont42.h, psi/zbfont.c, psi/zcfont.c, psi/zchar.c, psi/zchar1.c, psi/zchar2.c, psi/zchar32.c, psi/zchar42.c,
psi/zchar42.h, psi/zcharout.c, psi/zcharx.c, psi/zcid.c, psi/zfcid.c, psi/zfcid0.c, psi/zfcid1.c, psi/zfcmap.c,
psi/zfont.c, psi/zfont0.c, psi/zfont1.c, psi/zfont2.c, psi/zfont32.c, psi/zfont42.c, psi/zfontenum.c.

A bridge to the True Type bytecode interpreter:

base/gxttfb.c, base/gxttfb.h, base/ttfoutl.h, base/ttfmain.c, base/ttfmemd.c, base/ttfmemd.h, base/ttfinp.c,
base/ttfinp.h.

A reduced True Type bytecode interpreter:

(this is based in part on the work of the Freetype Team and incorporates some code from the FreeType 1
project) base/ttfsfnt.h, base/ttcalc.c, base/ttcalc.h, base/ttcommon.h, base/ttconf.h, base/ttconfig.h,
base/ttinterp.c, base/ttinterp.h, base/ttload.c, base/ttload.h, base/ttmisc.h, base/ttobjs.c, base/ttobjs.h,
base/tttables.h, base/tttype.h, base/tttypes.h.

Color, pattern, and halftone:

psi/icie.h, psi/icolor.h, psi/icremap.h, psi/icsmap.h, psi/iht.h, psi/ipcolor.h, psi/zcie.c, psi/zcolor.c,
psi/zcolor1.c, psi/zcolor2.c, psi/zcolor3.c, psi/zcrd.c, psi/zcsindex.c, psi/zcspixel.c, psi/zcssepr.c, psi/zicc.c,
psi/zht.c, psi/zht1.c, psi/zht2.h, psi/zht2.c, psi/zpcolor.c, psi/zshade.c, psi/ztrans.c.

Images:

psi/iimage.h, psi/zimage.c, psi/zimage3.c, psi/zfimscale.c.

Other graphics:

psi/igstate.h, psi/zdpnext.c, psi/zdps.c, psi/zdps1.c, psi/zgstate.c, psi/zpaint.c, psi/zpath.c, psi/zpath1.c,
psi/ztrap.c, psi/zupath.c.

Operator support:

psi/oparc.h, psi/opcheck.h, psi/opdef.h, psi/oper.h, psi/opextern.h.

Non-standard operators

The interpreter includes many non-standard operators. Most of these provide some part of the function of a standard
operator, so that the standard operator itself can be implemented in PostScript: these are not of interest to users, and
their function is usually obvious from the way they are used. However, some non-standard operators provide access
to additional, non-standard facilities that users might want to know about, such as transparency, RasterOp, and
in-memory rendering. These are documented at Additional Operators.

We don’t document the complete set of non-standard operators here, because the set changes frequently. However,
all non-standard operators are supposed to have names that begin with ‘.’, so you can find them all by executing the
following (Unix) command:

grep '{".[.]' psi/[zi]*.c

In addition to individual non-standard operators implemented in the same files as standard ones, there are several
independent optional packages of non-standard operators. As with other non-standard operators, the names of all
the operators in these packages begin with ‘.’. We list those packages here.

Information for Ghostscript Developers

269

psi/zdouble.c

Provides “double” floating point arithmetic, using 8-byte strings to hold values. Developed under a contract;
probably used only by the group that funded the development.

psi/zfsample.c,

Provides a special operator to sample a given function and create a new type 0 function.

psi/zsysvm.c

Provides operators for allocating objects in specific VM spaces, disregarding the current VM mode.

Interpreter support

Memory management (refs, GC, save/restore) – see Postscript Interpreter Extensions.

Font API :

psi/ifapi.h, psi/zfapi.c, base/fapiufst.c, base/fapi_ft.c, base/wrfont.h, base/wrfont.c, base/write_t1.h,
base/write_t1.c, base/write_t2.h, base/write_t2.c,

Miscellaneous support:

psi/ierrors.h, base/gserrors.h, psi/ghost.h, psi/iconf.c, psi/iconf.h, psi/idparam.c, psi/idparam.h, psi/ilevel.h,
psi/inouparm.c, psi/iparam.c, psi/iparam.h, psi/iparray.h, psi/iutil.c, psi/iutil.h, psi/iutil2.c, psi/iutil2.h, psi/iplugin.c,
psi/iplugin.h.

PostScript code

Initialization and language support:

All configurations:

Resource/Init/gs_init.ps, Resource/Init/gs_statd.ps.

Level 2:

Resource/Init/gs_btokn.ps, Resource/Init/gs_dps1.ps, Resource/Init/gs_dps2.ps,
Resource/Init/gs_lev2.ps, Resource/Init/gs_res.ps, Resource/Init/gs_resmp.ps,
Resource/Init/gs_setpd.ps.

LanguageLevel 3:

Resource/Init/gs_frsd.ps, Resource/Init/gs_ll3.ps, Resource/Init/gs_trap.ps.

Display PostScript:

Resource/Init/gs_dpnxt.ps, Resource/Init/gs_dps.ps.

Emulation of other interpreters:

Resource/Init/gs_cet.ps (Adobe CPSI).

Color Spaces and support:

Color Space Loading:

Resource/Init/gs_cspace.ps,

ICC color profiles:

Resource/Init/gs_icc.ps.

Font loading and support:

Font name mapping:

Resource/Init/Fontmap, lib/Fontmap.ATB, lib/Fontmap.ATM, Resource/Init/Fontmap.GS, lib/Fontmap.OS2,
lib/Fontmap.OSF, lib/Fontmap.SGI, lib/Fontmap.Sol, lib/Fontmap.Ult, lib/Fontmap.VMS,
lib/Fontmap.URW-136.T1, lib/Fontmap.URW-136.TT, Resource/Init/cidfmap, Resource/Init/FAPIcidfmap,
Resource/Init/FAPIfontmap, Resource/Init/FCOfontmap-PCLPS2.

Generic:

Resource/Init/gs_fonts.ps, Resource/Init/gs_fntem.ps.

Type 1 and CFF:

Resource/Init/gs_cff.ps, Resource/Init/gs_diskf.ps, Resource/Init/gs_type1.ps.

TrueType:

Resource/Init/gs_ttf.ps, Resource/Init/gs_typ42.ps.

Information for Ghostscript Developers

270

CID-keyed:

Resource/Init/gs_cidcm.ps, Resource/Init/gs_cidfn.ps, Resource/Init/gs_cmap.ps,
Resource/Init/gs_ciddc.ps, Resource/Init/gs_cidfm.ps, Resource/Init/gs_cidtt.ps.

Font API:

Resource/Init/gs_fapi.ps, Resource/Init/FAPIconfig, lib/FAPIconfig-FCO, Resource/Init/xlatmap.
Resource/Init/FCOfontmap-PCLPS2. lib/FCOfontmap-PCLPS3. lib/FCOfontmap-PS3.

Other:

lib/gs_kanji.ps, lib/gs_pfile.ps, Resource/Init/gs_typ32.ps.

Encodings:

Adobe-specified:

lib/gs_ce_e.ps, Resource/Init/gs_dbt_e.ps, Resource/Init/gs_il1_e.ps, Resource/Init/gs_mex_e.ps,
Resource/Init/gs_mro_e.ps, Resource/Init/gs_pdf_e.ps, Resource/Init/gs_std_e.ps,
Resource/Init/gs_sym_e.ps, Resource/Init/gs_wan_e.ps.

Additional:

lib/gs_il2_e.ps, lib/gs_ksb_e.ps, lib/gs_wl1_e.ps, lib/gs_wl2_e.ps, lib/gs_wl5_e.ps.

Pseudo-encodings for internal use:

lib/gs_lgo_e.ps, lib/gs_lgx_e.ps, Resource/Init/gs_mgl_e.ps.

Miscellaneous:

Image support:

Resource/Init/gs_img.ps,

Emulation of %disk IODevice:

Resource/Init/gs_diskn.ps,

Other support:

Resource/Init/gs_agl.ps, Resource/Init/gs_dscp.ps, Resource/Init/gs_epsf.ps, Resource/Init/gs_pdfwr.ps,
lib/gs_rdlin.ps.

X Windows icon bitmaps:

lib/gs_l.xbm, lib/gs_l.xpm, lib/gs_l_m.xbm, lib/gs_m.xbm, lib/gs_m.xpm, lib/gs_m_m.xbm, lib/gs_s.xbm,
lib/gs_s.xpm, lib/gs_s_m.xbm, lib/gs_t.xbm, lib/gs_t.xpm, lib/gs_t_m.xbm.

PDF/X-3 definition file sample:

lib/PDFX_def.ps

PDF interpreter

Ghostscript’s PDF interpreter is written entirely in PostScript, because its data structures are the same as
PostScript’s, and it is much more convenient to manipulate PostScript-like data structures in PostScript than in C.
There is definitely a performance cost, but apparently not a substantial one: we considered moving the main
interpreter loop (read a token using slightly different syntax than PostScript, push it on the stack if literal, look it up in
a special dictionary for execution if not) into C, but we did some profiling and discovered that this wasn’t accounting
for enough of the time to be worthwhile.

Until recently, there was essentially no C code specifically for the purpose of supporting PDF interpretation. The one
major exception is the PDF 1.4 transparency features, which we (but not Adobe) have made available to PostScript
code.

In addition to patching the run operator to detect PDF files, the interpreter provides some procedures in
Resource/Init/pdf_main.ps that are meant to be called from applications such as previewers.

Files:

Resource/Init/pdf_base.ps, Resource/Init/pdf_draw.ps, Resource/Init/pdf_font.ps, Resource/Init/pdf_main.ps,
Resource/Init/pdf_rbld.ps, Resource/Init/pdf_ops.ps, Resource/Init/pdf_sec.ps.

Information for Ghostscript Developers

271

PostScript Printer Description

A PostScript Printer Description tells a generic PostScript printer driver how to generate PostScript for a particular
printer. Ghostscript includes a PPD file for generating PostScript intended to be converted to PDF. A Windows INF
file for installing the PPD on Windows 2000 and XP is included.

Files:

lib/ghostpdf.ppd, lib/ghostpdf.inf, lib/ghostpdf.cat, lib/ghostpdf.README.

Build process

Makefile structure

Ghostscript’s makefiles embody a number of design decisions and assumptions that may not be obvious from a
casual reading of the code.

• All files are stored in subdirectories. The names of all subdirectories used in the build process are defined in the
top-level makefiles for the various platforms: there are no “hard wired” directory names in any makefile rule.
Subdirectory names in the makefiles are relative to the directory that is current at build time: normally this
directory is the parent of the various subdirectories, and holds only a makefile, which in turn simply references
the real top-level makefile in the source subdirectory.

• All compiler and linker switches are likewise defined by macros, again preferably in the top-level platform
makefile.

• There is an absolute distinction between “source-like” subdirectories, which are read-only during the build
process, and “object-like” subdirectories, all of whose contents are generated by the build process and which
can be emptied (rm *) at any time with no bad effects. The source subdirectories are defined by macros
named xxxSRCDIR.

• Object subdirectories may distinguish further between those that hold the results of the build process that are
needed at run time (i.e., that should be included in a run-time distribution), defined by BINDIR, and those that
are not needed at run time, defined by xxxGENDIR and xxxOBJDIR. (The distinction between these is historical
and probably no longer relevant).

• There may be multiple object subdirectories for different build configurations. On Unix, the obj and bin
directories are used for normal production builds, the debugobj directory for debugging builds, and the pgobj
directory for profiling builds; other platforms may use different conventions. The Unix makefiles support targets
named debug and pg for debugging and profiling builds respectively; other platforms generally do not.

• Makefiles will be maintained by hand. This requires editing the following makefile elements whenever the
relevant source files changes:

• Every header (.h) file must have a corresponding macro definition in a makefile. If abc.h
#includes def.h and xyz.h, the definition must have the form:

xyz_h=$(xxxSRCD)xyz.h $(def_h) $(xyz_h)

where xxxSRCD is the macro defining the relevant source directory (including a trailing ‘/’). Note
that the ‘.’ in the file name has been replaced by an underscore. Note also that the definition
must follow all definitions it references, since some make programs expand macros in definitions
at the time of definition rather than at the time of use.

• Every .c file must have a corresponding rule in a makefile. If abc.c #includes def.h and lmn.h, the rule
must have approximately the form:

$(xxxOBJD)abc.$(OBJ) : $(xxxSRCD)abc.c $(def_h) $(lmn_h)
$(xxCC) $(xxO_)abc.$(OBJ) $(C_) $(xxxSRCD)abc.c

where xxxSRCD is as before; xxxOBJD is the relevant object directory; xxCC defines the name of
the C compiler plus the relevant compilation switches; and xxO_ and C_ are macros used to
bridge syntactic differences between different make programs.

The requirement to keep makefiles up to date by hand has been controversial. Two alternatives are generally
proposed.

Information for Ghostscript Developers

272

• Programs like makedeps, which generate build rules automatically from the #include lists in C files. We have
found such programs useless: they “wire in” specific, concrete directory names, not only for our own code but
even for the system header files; they have to be run manually whenever code files are added, renamed, or
deleted, or whenever the list of #includes in any file changes; and they cannot deal with different source files
requiring different compilation switches.

• MSVC-style “project” files. These are equally useless: they are not portable across different vendors’ tools – in
fact, there may not even be a usable import/export facility to convert their data to or from text form – and they
cannot combine configuration-independent data with configuration-specific data.

We have seriously considered writing our own build program in Tcl or Python that would eliminate these problems, or
perhaps porting the tools developed by Digital’s Vesta research project (if we can get access to them); however,
either of these approaches would create potential portability problems of its own, not to mention difficulties in
integrating with others’ build systems.

For more information about makefiles:

• For a detailed list of makefiles, and a discussion of makefile issues related to portability, see the Makefiles
section below.

• For more detailed information about editing configuration information in makefiles, see Makefiles Overview.

• For a complete example of adding a new driver to a makefile, see Drivers.

• For a few more notes on makefile coding conventions, see C-Style Makefiles.

.dev files

On top of the general conventions just described, Ghostscript’s makefiles add a further layer of structure in order to
support an open-ended set of fine-grained, flexible configuration options. Selecting an option (usually called a
“module”) for inclusion in the build may affect the build in many ways:

• Almost always, it requires linking in some compiled code files.

• It may require running some additional initialization procedures at startup.

• It may require reading in some additional PostScript files at startup. For example, a Level 2 PostScript build
requires support for PostScript resources and for setpagedevice, which are implemented in PostScript code.

• It may require adding entries to a variety of internal tables that catalogue such things as drivers, IODevices,
Function types, etc.

• It may require that other particular modules be included. For example, the “PostScript Level 2” module requires
the modules for various filters, color spaces, etc.

• It may require removing some other (default) module from the build. For example, the core (Level 1) PostScript
build has a “stub” for binary tokens, which are a Level 2 feature but are referenced by the core scanner: a Level
2 build must remove the stub. For more information about this, look for the string -replace in the makefiles
and in base/genconf.c.

Each module is defined in the makefiles by rules that create a file named xxx.dev. The dependencies of the rule
include all the files that make up the module (compiled code files, PostScript files, etc.); the body of the rule creates
the .dev file by writing the description of the module into it. A program called genconf, described in the next section,
merges all the relevant .dev files together. For examples of .dev rules, see any of the Ghostscript makefiles.

Ultimately, a person must specify the root set of modules to include in a build (which of course may require other
modules, recursively). Ghostscript’s makefiles do this with a set of macros called FEATURE_DEVS and
DEVICE_DEVSn, defined in each top-level makefile, but nothing in the module machinery depends on this.

Generators

Ghostscript’s build procedure is somewhat unusual in that it compiles and then executes some support programs
during the build process. These programs then generate data or source code that is used later on in the build.

The most important and complex of the generator programs is genconf. genconf merges all the .dev files that make
up the build, and creates three or more output files used in later stages:

• gconfig.h, consisting mainly of macro calls, one call per “resource” making up the build, other than
“resources” listed in the other output files.

Information for Ghostscript Developers

273

• gconfigf.h, produced only for PostScript builds with compiled-in fonts, consisting of one macro call per font.

• A linker control file whose name varies from one platform to another, containing the list of compiled code files to
be linked.

• If necessary, another linker control file, also varying between platforms, that contains other information for the
linker such as the list of system libraries to be searched. (On Unix platforms, the two linker control functions are
combined in a single file).

Source generators:

base/genarch.c

Creates a header file containing a variety of information about the hardware and compiler that isn’t provided
in any standard system header file. Always used.

base/genconf.c (also generates non-source)

Constructs header files and linker control files from the collection of options and modules that make up the
build. See above. Always used.

base/genht.c

Converts a PostScript halftone (in a particular constrained format) to a C data structure that can be
compiled into an executable. Only used if any such halftones are included in the build.

base/mkromfs.c

Takes a set of directories, and creates a compressed filesystem image that can be compiled into the
executable as static data and accessed through the %rom% iodevice prefix. This is used to implement the
COMPILE_INITS=1 feature (a compressed init fileset is more efficient than the current ‘gsinit.c’ produced
by ‘geninit.c’). This IODevice is more versatile since other files can be encapsulated such as fonts, helper
PostScript files and Resources. The list of files is defined in part in psi/psromfs.mak.

Other generators:

base/echogs.c

Implements a variety of shell-like functions to get around quirks, limitations, and omissions in the shells on
various platforms. Always used.

base/genconf.c (also generates source)

See above.

base/gendev.c (not used)

Was intended as a replacement for genconf, but was never completed.

Support

There are a number of programs, scripts, and configuration files that exist only for the sake of the build process.

Files for PC environments:

base/gswin.icx, base/gswin16.icx, base/bcc32.cfg, base/cp.bat, base/cp.cmd, psi/dw32c.def, psi/dwmain.rc,
psi/dwmain32.def, psi/dwsetup.def, psi/dwsetup_x86.manifest, psi/dwsetup_x64.manifest, psi/dwuninst.def,
psi/dwuninst_x86.manifest, psi/dwuninst_x64.manifest, psi/gsdll2.def, psi/gsdll2.rc, psi/gsdll32.def,
psi/gsdll32.rc, psi/gsdll32w.lnk, psi/gsos2.def, psi/gsos2.icx, psi/gsos2.rc, base/gspmdrv.def, base/gspmdrv.icx,
base/gspmdrv.rc, base/gswin.rc, base/gswin32.rc, base/mv.bat, base/mv.cmd, base/rm.bat, base/rm.cmd,

Files for MacOS:

lib/Info-macos.plist.

Files for OpenVMS:

base/append_l.com, base/copy_one.com, base/rm_all.com, base/rm_one.com.

Other files:

base/bench.c, base/catmake, base/instcopy.

Utilities

Ghostscript comes with many utilities for doing things like viewing bitmap files and converting between file formats.
Some of these are written in PostScript, some as scripts, and some as scripts that invoke special PostScript code.

Information for Ghostscript Developers

274

Utilities in PostScript

These are all documented in doc/Psfiles.htm, q.v.

Utility scripts

Many of these scripts come in both Unix and MS-DOS (.bat versions; some also have an OS/2 (.cmd) version. The
choice of which versions are provided is historical and irregular. These scripts should all be documented somewhere,
but currently, many of them have man pages, a few have their own documentation in the doc directory, and some
aren’t documented at all.

Script files without PC versions:

lib/afmdiff.awk, lib/dvipdf, lib/lprsetup.sh, lib/pphs, lib/printafm, lib/unix-lpr.sh, lib/wftopfa.

Script files with PC versions:

lib/eps2eps, lib/eps2eps.bat, lib/eps2eps.cmd, lib/ps2ps2, lib/ps2ps2.bat, lib/ps2ps2.cmd, lib/font2c,
lib/font2c.bat, lib/font2c.cmd, lib/gsbj, lib/gsbj.bat, lib/gsdj, lib/gsdj.bat, lib/gsdj500, lib/gsdj500.bat, lib/gslj,
lib/gslj.bat, lib/gslp, lib/gslp.bat, lib/gsnd, lib/gsnd.bat, lib/pdf2dsc, lib/pdf2dsc.bat, lib/pdf2ps, lib/pdf2ps.bat,
lib/pdf2ps.cmd, lib/pf2afm, lib/pf2afm.bat, lib/pf2afm.cmd, lib/pfbtopfa, lib/pfbtopfa.bat, lib/ps2ascii,
lib/ps2ascii.bat, lib/ps2ascii.cmd, lib/ps2epsi, lib/ps2epsi.bat, lib/ps2epsi.cmd, lib/ps2pdf, lib/ps2pdf.bat,
lib/ps2pdf.cmd, lib/ps2pdf12, lib/ps2pdf12.bat, lib/ps2pdf12.cmd, lib/ps2pdf13, lib/ps2pdf13.bat,
lib/ps2pdf13.cmd, lib/ps2pdf14, lib/ps2pdf14.bat, lib/ps2pdf14.cmd, lib/ps2pdfwr, lib/ps2pdfxx.bat, lib/ps2ps,
lib/ps2ps.bat, lib/ps2ps.cmd.

Script files with only PC versions:

lib/gsndt.bat, lib/gssetgs.bat, lib/gssetgs32.bat, lib/gssetgs64.bat, lib/gst.bat, lib/gstt.bat, lib/lp386.bat,
lib/lp386r2.bat, lib/lpgs.bat, lib/lpr2.bat, lib/pftogsf.bat, lib/wmakebat.bat.

Memory management

Memory manager architecture

In many environments, the memory manager is a set of library facilities that implicitly manage the entire address
space in a homogenous manner. Ghostscript’s memory manager architecture has none of these properties:

• Rather than a single library accessed as procedures, Ghostscript includes multiple allocator types, each of
which in turn may have multiple instances (allocators). Allocators are ‘objects’ with a substantial set of virtual
functions.

• Rather than managing the entire address space, each allocator manages a storage pool, which it may or may
not be able to expand or reduce by calling on a ‘parent’ allocator.

• Rather than a single genus of untyped storage blocks, Ghostscript’s allocators provide two genera –
type-tagged ‘objects’, and ‘strings’ – with substantially different properties.

Objects vs strings

As noted above, allocators provide two different storage genera.

Objects:

• Are aligned in storage to satisfy the most stringent alignment requirement imposed by the CPU or compiler;

• Can be referenced only by pointers to their start, not to any internal location, unless special arrangements are
made;

• May contain pointers to other objects, or to strings;

• Have an associated structure descriptor that specifies their size (usually) and the location of any pointers
contained within them.

Given a pointer to an object, the allocator that allocated it must be able to return the object’s size and the pointer to
its structure descriptor. (It is up to the client to know what allocator allocated an object.)

Strings:

• Are not aligned in storage;

Information for Ghostscript Developers

275

• Can be referenced by pointers (consisting of a starting address and a length) to any substring, starting
anywhere within the string;

• May not contain pointers;

• Do not have a structure descriptor.

The object/string distinction reflects a space/capability tradeoff. The per-object space overhead of the standard type
of allocator is typically 12 bytes; this is too much to impose on every string of a few bytes. On the other hand,
restricting object pointers to reference the start of the object currently makes object garbage collection and
compaction more space-efficient. If we were to redesign the standard allocator, we would probably opt for a different
design in which strings were allocated within container objects of a few hundred bytes, and pointers into the middle
of all objects were allowed.

Structure descriptors

Every object allocated by a Ghostscript allocator has an associated structure descriptor, which the caller provides
when allocating the object. The structure descriptor serves several purposes:

• Specifying the size of the object for allocation;

• Providing pointer-enumeration and pointer-relocation procedures for the garbage collector;

• Providing an optional finalization procedure to be called when the object is freed (either explicitly or
automatically).

Structure descriptors are read-only, and are normally defined statically using one of the large set of
gs_private_st_ or gs_public_st_ macros in base/gsstruct.h.

While the structure descriptor normally specifies the size of the object, one can also allocate an array of bytes or
objects, whose size is a multiple of the size in the descriptor. For this reason, every object stores its size as well as a
reference to its descriptor.

Because the standard Ghostscript garbage collector is non-conservative and can move objects, every object
allocated by a Ghostscript allocator must have an accurate structure descriptor. If you define a new type of object
(structure) that will be allocated in storage managed by Ghostscript, you must create an accurate descriptor for it,
and use that descriptor to allocate it. The process of creating accurate descriptors for all structures was long and
painful, and accounted for many hard-to-diagnose bugs.

By convention, the structure descriptor for structure type xxx_t is named st_xxx (this is preferred), or occasionally
st_xxx_t.

Note that a structure descriptor is only required for objects allocated by the Ghostscript allocator. A structure type
xxx_t does not require a structure descriptor if instances of that type are used only in the following ways:

• Instances are allocated only on the C stack, e.g., as xxx_t, xxx1, xxx2;, or on the C heap, with malloc or
through the Ghostscript “wrapper” defined in base/gsmalloc.h.

• Pointers to instances are not stored in places where the garbage collector will try to trace the pointer.

• Code never attempts to get the structure type or size of an instance through the allocator API.

In general, structures without descriptors are problem-prone, and are deprecated; in new code, they should only be
used if the structure is confined to a single .c file and its instances are only allocated on the C stack.

Files:

base/gsstruct.h, base/gsstype.h.

Garbage collection

The allocator architecture is designed to support compacting garbage collection. Every object must be able to
enumerate all the pointers it contains, both for tracing and for relocation. As noted just above, the structure descriptor
provides procedures that do this.

Whether or not a particular allocator type actually provides a garbage collector is up to the allocator: garbage
collection is invoked through a virtual procedure. In practice, however, there are only two useful garbage collectors
for Ghostscript’s own allocator:

• The “real” garbage collector associated with the PostScript interpreter, described below;

Information for Ghostscript Developers

276

• A “non” garbage collector that only merges adjacent free blocks.

As noted above, because the architecture supports compacting garbage collection, a “real” garbage collector cannot
be run at arbitrary times, because it cannot reliably find and relocate pointers that are on the C stack. In general, it is
only safe to run a “real” garbage collector when control is at the top level of the program, when there are no pointers
to garbage collectable objects from the stack (other than designated roots).

Files:

base/gsgc.h, base/gsnogc.c, base/gsnogc.h.

Movability

As just noted, objects are normally movable by the garbage collector. However, some objects must be immovable,
usually because some other piece of software must retain pointers to them. The allocator API includes procedures
for allocating both movable (default) and immovable objects. Note, however, that even immovable objects must be
traceable (have a structure descriptor), and may be freed, by the garbage collector.

Parent hierarchy

When an allocator needs to add memory to the pool that it manages, it requests the memory from its parent allocator.
Every allocator has a pointer to its parent; multiple allocators may share a single parent. The ultimate ancestor of all
allocators that can expand their pool dynamically is an allocator that calls malloc, described below. However,
especially in embedded environments, an allocator may be limited to a fixed-size pool assigned to it when it is
created.

Allocator API

In summary, the allocator API provides the following principal operations:

• Allocate and free movable (default) or immovable objects and strings.

• Return the structure type and size of an object.

• Resize (shrink or grow) movable objects and strings, preserving the contents insofar as possible.

• Report the size of the managed pool, and how much of it is in use.

• Register and unregister root pointers for the garbage collector.

• Free the allocator itself.

• Consolidate adjacent free blocks to reduce fragmentation.

For details, see base/gsmemory.h.

The allocator API also includes one special hook for the PostScript interpreter: the concept of stable allocators. See
the section on “save and restore” below for details.

Files:

base/gsmemraw.h, base/gsmemory.c, base/gsmemory.h, base/gsstruct.h, base/gsstype.h.

Freeing storage

Ghostscript’s memory management architecture provides three different ways to free objects: explicitly, by reference
counting, or by garbage collection. They provide different safety / performance / convenience tradeoffs; we believe
that all three are necessary.

Objects are always freed as a whole; strings may be freed piecemeal.

An object may have an associated finalization procedure, defined in the structure descriptor. This procedure is called
just before the object is freed, independent of which method is being used to free the object. A few types of objects
have a virtual finalization procedure as well: the finalization procedure defined in the descriptor simply calls the one
in the object.

Explicit freeing

Objects and strings may be freed explicitly, using the gs_free_ virtual procedures in the allocator API. It is up to the
client to ensure that all allocated objects are freed at most once, and that there are no dangling pointers.

Information for Ghostscript Developers

277

Explicit freeing is the fastest method, but is the least convenient and least safe. It is most appropriate when storage
is freed in the same procedure where it is allocated, or for storage that is known to be referenced by only one pointer.

Reference counting

Objects may be managed by reference counting. When an object is allocated, its reference count may be set to 0 or
1. Subsequently, when the reference count is decremented to 0, the object is freed.

The reference counting machinery provides its own virtual finalization procedure for all reference-counted objects.
The machinery calls this procedure when it is about to free the object (but not when the object is freed in any other
way, which is probably a design bug). This is in addition to (and called before) any finalization procedure associated
with the object type.

Reference counting is as fast as explicit freeing, but takes more space in the object. It is most appropriate for
relatively large objects which are referenced only from a small set of pointers. Note that reference counting cannot
free objects that are involved in a pointer cycle (e.g., A -> B -> C -> A).

Files:

base/gsrefct.h.

(Real) garbage collection

Objects and strings may be freed automatically by a garbage collector. See below.

Special implementations

malloc

As mentioned above, the ultimate ancestor of all allocators with an expandable pool is one that calls malloc.

Note that the default gsmalloc.c allocator for malloc/free now uses a mutex so that allocators that use this can be
assured of thread safe behavior.

Files:

base/gsmalloc.h, base/gsmalloc.c.

Locking

In a multi-threaded environment, if an allocator must be callable from multiple threads (for example, if it is used to
allocate structures in one thread that are passed to, and freed by, another thread), the allocator must provide mutex
protection. Ghostscript provides this capability in the form of a wrapper allocator, that simply forwards all calls to a
target allocator under protection of a mutex. Using the wrapper technique, any allocator can be made thread-safe.

Files:

base/gsmemlok.h, base/gsmemlok.c.

Retrying

In an embedded environment, job failure due to memory exhaustion is very undesirable. Ghostscript provides a
wrapper allocator that, when an allocation attempt fails, calls a client-provided procedure that can attempt to free
memory, then ask for the original allocation to be retried. For example, such a procedure can wait for a queue to
empty, or can free memory occupied by caches.

Files:

base/gsmemret.h, base/gsmemret.c.

Chunk

When multiple threads are used and there may be frequent memory allocator requests, mutex contention is a
problem and can cause severe performance degradation. The chunk memory wrapper can provide each thread with
its own instance of an allocator that only makes requests on the underlying (non-GC) alloctor when large blocks are
needed. Small object allocations are managed within chunks.

Information for Ghostscript Developers

278

This allocator is intended to be used on top of the basic ‘gsmalloc’ allocator (malloc/free) which is NOT garbage
collected or relocated and which MUST be mutex protected.

Files:

base/gsmchunk.h, base/gsmchunk.c.

Standard implementation

The standard Ghostscript allocator gets storage from its parent (normally the malloc allocator) in large blocks called
clumps, and then allocates objects up from the low end and strings down from the high end. Large objects or strings
are allocated in their own clump.

The standard allocator maintains a set of free-block lists for small object sizes, one list per size (rounded up to the
word size), plus a free-block list for large objects (but not for objects so large that they get their own clump: when
such an object is freed, its chunk is returned to the parent). The lists are not sorted; adjacent blocks are only merged
if needed.

While the standard allocator implements the generic allocator API, and is usable with the library alone, it includes a
special hook for the PostScript interpreter to aid in the efficient allocation of PostScript composite objects (arrays and
dictionaries). See the section on Refs below for details.

Files:

base/gsalloc.c, base/gsalloc.h, base/gxalloc.h, base/gxobj.h.

PostScript interpreter extensions

The PostScript interpreter uses an allocator that extends the graphic library’s standard allocator to handle PostScript
objects, save and restore, and real garbage collection.

Refs (PostScript “objects”)

Ghostscript represents what the PLRM calls PostScript “objects” using a structure called a ref, defined in psi/iref.h;
packed refs, used for the elements of packed arrays, are defined in psi/ipacked.h. See those files for detailed
information.

Files:

psi/ipacked.h, psi/iref.h.

The PLRM calls for two types of “virtual memory” (VM) space: global and local. Ghostscript adds a third space,
system VM, whose lifetime is an entire session – i.e., it is effectively “permanent”. All three spaces are subject to
garbage collection. There is a separate allocator instance for each VM space (actually, two instances each for global
and local spaces; see below). In a system with multiple contexts and multiple global or local VMs, each global or
local VM has its own allocator instance(s).

Refs that represent PostScript composite objects, and therefore include pointers to stored data, include a 2-bit VM
space tag to indicate in which VM the object data are stored. In addition to system, global, and local VM, there is a
tag for “foreign” VM, which means that the memory is not managed by a Ghostscript allocator at all. Every store into
a composite object must check for invalidaccess: the VM space tag values are chosen to help make this check
efficient. See psi/ivmspace.h, psi/iref.h, and psi/store.h for details.

Files:

psi/ivmspace.h.

PostScript composite objects (arrays and dictionaries) are usually small. Using a separate memory manager object
for each composite object would waste a lot of space for object headers. Therefore, the interpreter’s memory
manager packs multiple composite objects (also called “ref-containing objects”) into a single memory manager
object, similar to the way the memory manager packs multiple objects into a clump (see above). See base/gxalloc.h
for details. This memory manager object has a structure descriptor, like all other memory manager objects.

Note that the value.pdict, value.refs, or value.packed member of a ref must point to a PostScript composite object,
and therefore can point into the middle of a memory manager object. This requires special handling by the garbage
collector (q.v.).

Files:

psi/ialloc.c, psi/ialloc.h, psi/iastate.h, psi/iastruct.h, psi/ilocate.c, psi/imemory.h, psi/istruct.h.
save/.forgetsave/restore

Information for Ghostscript Developers

279

In addition to save and restore, Ghostscript provides a .forgetsave operator that makes things as though a given
save had never happened. (In data base terminology, save is “begin transaction”, restore is “abort transaction”, and
.forgetsave is “end/commit transaction”). .forgetsave was implemented for a specific commercial customer (who may
no longer even be using it): it was a pain to make work, but it’s in the code now, and should be maintained. See the
extensive comments in psi/isave.c for more information about how these operations work.

Files:

psi/idosave.h, psi/isave.c, psi/isave.h, psi/isstate.h, psi/store.h.

Stable allocators

Even though save and restore are concepts from the PostScript interpreter, the generic allocator architecture and
API include a feature to support them, called stable allocators. Every allocator has an associated stable allocator,
which tags pointers with the same VM space number but which is not subject to save and restore. System VM is
intrinsically stable (its associated stable allocator is the same allocator), so there are only 5 allocators in ordinary
single-context usage: system VM, stable global VM, ordinary global VM, stable local VM, ordinary local VM.

The reason that we cannot simply allocate all stable objects in system VM is that their refs must still be tagged with
the correct VM space number, so that the check against storing pointers from global VM to local VM can be enforced
properly.

All PostScript objects are normally allocated with the non-stable allocators. The stable allocators should be used with
care, since using them can easily create dangling pointers: if storage allocated with a stable allocator contains any
references to PostScript objects, the client is responsible for ensuring that the references don’t outlive the referenced
objects, normally by ensuring that any such referenced objects are allocated at the outermost save level.

The original reason for wanting stable allocators was the PostScript stacks, which are essentially PostScript arrays
but are not subject to save and restore. Some other uses of stable allocators are:

• Several per-context structures for DPS.

• Paths (see gstate_path_memory in base/gsstate.c.

• Row buffers for images (see gs_image_row_memory in base/gsimage.c), because the data-reading
procedure for an image can invoke save and restore.

• Notification lists for fonts, to handle the sequence allocate .. save .. register .. restore.

• The parameter lists for pdfwrite and epswrite devices (in devices/vector/gdevpsdp.c), because the whole issue
of local vs. global VM for setpagedevice is, in the words of Ed Taft of Adobe, “a mess”.

• Many places in the pdfwrite driver, because many of its bookkeeping structures must not be restorable.

For more specific examples, search the sources for references to gs_memory_stable.

Garbage collection

The interpreter’s garbage collector is a compacting, non-conservative, mark-and-sweep collector.

• It compacts storage because that is the only way to avoid permanent sandbars, which is essential in
limited-memory environments.

• It is non-conservative because conservative collectors (which attempt to determine whether arbitrary bit
patterns are pointers) cannot compact.

• It uses mark-and-sweep, rather than a more modern copying approach, because it cannot afford the extra
memory required for copying.

Because the garbage collector is non-conservative, it cannot be run if there are any pointers to movable storage from
the C stack. Thus it cannot be run automatically when the allocator is unable to allocate requested space. Instead,
when the allocator has allocated a given amount of storage (the vm_threshold amount, corresponding to the
PostScript VMThreshold parameter), it sets a flag that the interpreter checks in the main loop. When the interpreter
sees that this flag is set, it calls the garbage collector: at that point, there are no problematic pointers from the stack.

Roots for tracing must be registered with the allocator. Most roots are registered during initialization.

“Mark-and-sweep” is a bit of a misnomer. The garbage collector actually has 5 main phases:

• Sweep to clear marks;

Information for Ghostscript Developers

280

• Trace and mark;

• Sweep to compute relocation;

• Sweep to relocate pointers;

• Sweep and compact.

There is some extra complexity to handle collecting local VM only. In this case, all pointers in global VM are treated
as roots, and global VM is not compacted.

As noted above, PostScript arrays and strings can have refs that point within them (because of getinterval).
Thus the garbage collector must mark each element of an array, and even each byte of a string, individually.
Specifically, it marks objects, refs, and strings using 3 different mechanisms:

• Objects have a mark bit in their header: see base/gxobj.h,

• Refs and packed refs have a reserved mark bit: see psi/iref.h and psi/ipacked.h.

• Strings use a separate bit table, with one bit per string byte: see base/gxalloc.h,

Similarly, it records the relocation information for objects, refs, and strings differently:

• Objects record relocation in the object header.

• Refs record relocation in unused fields of refs such as nulls that don’t use their value field. Every memory
manager object that stores ref-containing objects as described above has an extra, unused ref at the end for
this purpose.

• Strings use a separate relocation table.
Files:

psi/igc.c, psi/igc.h, psi/igcref.c, psi/igcstr.c, psi/igcstr.h, psi/ireclaim.c.

Portability

One of Ghostscript’s most important features is its great portability across platforms (CPUs, operating systems,
compilers, and build tools). The code supports portability through two mechanisms:

• Structural mechanisms – segregating platform-dependent information into files in a particular way.

• Coding standards – avoiding relying on byte order, scalar size, and platform-specific compiler or library
features.

Structural mechanisms

CPU and compiler

Ghostscript attempts to discover characteristics of the CPU and compiler automatically during the build process, by
compiling and then executing a program called genarch. genarch generates a file obj/arch.h, which almost all
Ghostscript files then include. This works well for things like word size, byte order, and floating point representation,
but it can’t determine whether or not a compiler supports a particular feature, because if a feature is absent, the
compilation may fail.

Files:

base/genarch.c, obj/arch.h.

Library headers

Despite the supposed standardization of ANSI C, platforms vary considerably in where (and whether) they provide
various standard library facilities. Currently, Ghostscript’s build process doesn’t attempt to sort this out automatically.
Instead, for each library header file <xxx.h> there is a corresponding Ghostscript source file base/xxx_.h,
containing a set of compile-time conditionals that attempt to select the correct platform header file, or in some cases
substitute Ghostscript’s own code for a missing facility. You may need to edit these files when moving to platforms
with unusually non-standard libraries.

Files:

Information for Ghostscript Developers

281

base/ctype_.h, base/dirent_.h, base/dos_.h, base/errno_.h, base/fcntl_.h,
base/jerror_.h, base/malloc_.h, base/math_.h, base/memory_.h, base/pipe_.h, base/png_.h,
base/setjmp_.h, base/stat_.h, base/stdint_.h, base/stdio_.h, base/string_.h,
base/time_.h, base/unistd_.h, base/vmsmath.h, base/windows_.h, base/x_.h

It has been suggested that the GNU configure scripts do the above better, for Unix systems, than Ghostscript’s
current methods. While this may be true, we have found configure scripts difficult to write, understand, and maintain;
and the autoconf tool for generating configure scripts, which we found easy to use, doesn’t cover much of the ground
that Ghostscript requires.

Cross-platform APIs

For a few library facilities that are available on all platforms but are not well standardized, or that may need to be
changed for special environments, Ghostscript defines its own APIs. It is an architectural property of Ghostscript that
the implementations of these APIs are the only .c files for which the choice of platform (as opposed to choices of
drivers or optional features) determines whether they are compiled and linked into an executable.

API:

base/gp.h, base/gpcheck.h, base/gpgetenv.h, base/gpmisc.h, base/gpsync.h.

Implementation files shared among multiple platforms:

base/gp_getnv.c, base/gp_mktmp.c, base/gp_nsync.c, base/gp_paper.c, base/gp_psync.c, base/gp_strdl.c,
base/gpmisc.c.

Platform-specific implementation files:

base/gp_dosfe.c, base/gp_dosfs.c, base/gp_dvx.c, base/gp_msdos.c, base/gp_mshdl.c, base/gp_mslib.c,
base/gp_mswin.c, base/gp_mswin.h, base/gp_ntfs.c, base/gp_os2.c, base/gp_os2.h, base/gp_os2fs.c,
base/gp_os9.c, base/gp_stdia.c, base/gp_stdin.c, base/gp_unifn.c, base/gp_unifs.c, base/gp_unix.c,
base/gp_unix_cache.c, base/gp_upapr.c, base/gp_vms.c, base/gp_wgetv.c, base/gp_win32.c,
base/gp_wpapr.c, base/gp_wsync.c, base/gs_dll_call.h.

Makefiles

For information on the structure and conventions used within makefiles, see the Makefile structure section above.

Ghostscript’s makefiles are structured very similarly to the cross-platform library files. The great majority of the
makefiles are portable across all platforms and all versions of make. To achieve this, the platform-independent
makefiles must obey two constraints beyond those of the POSIX make program:

• No conditionals or includes are allowed. While most make programs now provide some form of conditional
execution and some form of inclusion, there is no agreement on the syntax. (Conditionals and includes are
allowed in platform-dependent makefiles; in fact, an inclusion facility is required.)

• There must be a space on both sides of the : that separates the target of a rule from its dependencies. This is
required for compatibility with the OpenVMS MMS and MMK programs.

The top-level makefile for each platform (where “platform” includes the OS, the compiler, and the flavor of make)
contains all the build options, plus includes for the generic makefiles and any platform-dependent makefiles that are
shared among multiple platforms.

While most of the top-level makefiles build a PostScript and/or PDF interpreter configuration, there are also a few
makefiles that build a test program that only uses the graphics library without any language interpreter. Among other
things, this can be helpful in verifying that no accidental dependencies on the interpreter have crept into the library or
drivers.

For families of similar platforms, the question arises whether to use multiple top-level makefiles, or whether to use a
single top-level makefile that may require minor editing for some (or all) platforms. Ghostscript currently uses the
following top-level makefiles for building interpreter configurations:

• POSIX systems (inluding Linux and Unix):

• GNU Autoconf source script for automatic build configuration.

• Makefile.in, source for the top-level makefile used in the Autoconf build.

• base/unix-gcc.mak, for Unix with gcc.

• base/unixansi.mak, for Unix with an ANSI C compiler other than gcc.

Information for Ghostscript Developers

282

• PC:

• ghostscript.vcproj, Visual Studio project file used to build Ghostscript.

• psi/msvc32.mak, for MS Windows with Microsoft Visual C (MSVC).

• psi/os2.mak, for MS-DOS or OS/2 GCC/EMX environment.

• Macintosh:

• base/macosx.mak, commandline makefile for MacOS X.

• base/macos-mcp.mak, dummy makefile to generate an xml project file for Metrowerks Codewarrior.

• Other:

• base/all-arch.mak, for building on many Unix systems in a networked test environment.

• base/openvms.mak, for OpenVMS with Digital’s CC compiler and the MMS build program.

• base/openvms.mmk, for OpenVMS with Digital’s CC compiler and the MMK build program.
The following top-level makefiles build the library test program:

• base/ugcclib.mak, on Unix with gcc.

• base/msvclib.mak, on MS Windows with MSVC.

The MSVC makefiles may require editing to select between different versions of MSVC, since different versions may
have slightly incompatible command line switches or customary installation path names. The Unix makefiles often
require editing to deal with differing library path names and/or library names. For details, see the Unix section of the
documentation for building Ghostscript.

Library test program:

base/gslib.c.

Platform-independent makefiles:

Graphics library and support:

devices/contrib.mak, devices/devs.mak, base/gs.mak, base/lib.mak, base/version.mak.

PostScript interpreter and fonts:

psi/int.mak.

Third-party libraries:

base/expat.mak, base/ijs.mak, base/jbig2.mak, base/ldf_jb2.mak, base/lwf_jp2.mak, base/jpeg.mak,
base/png.mak, base/zlib.mak.

Shared platform-dependent makefiles:

Unix:

base/unix-aux.mak, base/unix-dll.mak, base/unix-end.mak, base/unixhead.mak, base/unixinst.mak,
base/unixlink.mak.

Microsoft Windows and MS-DOS:

base/msvccmd.mak, base/msvctail.mak, base/pcwin.mak, psi/winint.mak, base/winlib.mak,
base/winplat.mak.

Coding standards

Coding for portability requires avoiding both explicit dependencies, such as platform-dependent #ifdefs, and
implicit dependencies, such as dependencies on byte order or the size of the integral types.

Explicit dependencies

The platform-independent .c files never, ever, use #ifdef or #if to select code for specific platforms. Instead, we
always try to characterize some abstract property that is being tested. For example, rather than checking for macros
that are defined on those specific platforms that have 64-bit long values, we define a macro ARCH_SIZEOF_LONG
that can then be tested. Such macros are always defined in a .h file, either automatically in arch.h, or explicitly in a
xxx_.h file, as described in earlier sections.

Files:

Information for Ghostscript Developers

283

base/std.h, base/stdpn.h, base/stdpre.h.

Implicit dependencies

The most common source of byte ordering dependencies is casting between types (T1 *) and (T2 *) where T1 and
T2 are numeric types that aren’t merely signed/unsigned variants of each other. To avoid this, the only casts allowed
in the code are between numeric types, from a pointer type to a long integral type, and between pointer types.

Ghostscript’s code assumes the following about the sizes of various types:

char

8 bits

short

16 bits

int

32 or 64 bits

long

32 or 64 bits

float

32 bits (may work with 64 bits)

double

64 bits (may work with 128 bits)

The code does not assume that the char type is signed (or unsigned); except for places where the value is always a
literal string, or for interfacing to library procedures, the code uses byte (a Ghostscript synonym for
unsigned char) almost everywhere.

Pointers are signed on some platforms and unsigned on others. In the few places in the memory manager where it’s
necessary to reliably order-compare (as opposed to equality-compare) pointers that aren’t known to point to the
same allocated block of memory, the code uses the PTR_relation macros rather than direct comparisons.

See the files listed above for other situations where a macro provides platform-independence or a workaround for
bugs in specific compilers or libraries (of which there are a distressing number).

Platform-specific code

There are some features that are inherently platform-specific:

• Microsoft Windows requires a lot of special top-level code, and also has an installer and uninstaller.

• OS/2 requires a little special code.

• MacOS also requires special top-level code (now distributed with the standard Ghostscript package).

• All platforms supporting DLLs (currently all three of the above) share some special top-level code.
MS Windows files:

psi/dpmain.c, psi/dwdll.c, psi/dwdll.h, psi/dwimg.c, psi/dwimg.h, psi/dwmain.c, psi/dwmainc.c, psi/dwnodll.c,
psi/dwreg.c, psi/dwreg.h, psi/dwres.h, psi/dwtext.c, psi/dwtext.h, psi/dwtrace.c, psi/dwtrace.h, base/gp_msdll.c,
base/gp_mspol.c, base/gp_msprn.c, base/gsdllwin.h.

OS/2 files:

base/gp_os2pr.c,

Unix files:

psi/dxmain.c, psi/dxmainc.c.

Macintosh files:

devices/gdevmac.c, devices/gdevmac.h, devices/gdevmacpictop.h, devices/gdevmacttf.h, base/gp_mac.c,
base/gp_mac.h, base/gp_macio.c, base/gp_macpoll.c, base/gsiomacres.c, base/macgenmcpxml.sh,
base/macsystypes.h, base/macos_carbon_pre.h, base/macos_carbon_d_pre.h, base/macos_classic_d_pre.h,
psi/dmmain.c, psi/dmmain.r.

VMS files:

Information for Ghostscript Developers

284

base/vms_x_fix.h.

DLL files:

psi/gsdll.c, base/gsdll.h, devices/gdevdsp.c, devices/gdevdsp.h, devices/gdevdsp2.h, psi/iapi.c, psi/iapi.h,
psi/idisp.c, psi/idisp.h. The new DLL interface (new as of 7.0) is especially useful with the new display device, so
it is included here. Both are due to Russell Lang.

Troubleshooting
The Ghostscript code has many tracing and debugging features that can be enabled at run time using the -Z
command line switch, if the executable was compiled with DEBUG defined. One particularly useful combination is
-Z@\?, which fills free memory blocks with a pattern and also turns on run-time memory consistency checking. For
more information, see doc/Use.htm#Debugging; you can also search for occurrences of if_debug or gs_debug_c
in the source code. Note that many of these features are in the graphics library and do not require a PostScript
interpreter.

The code also contains many run-time procedures whose only purpose is to be called from the debugger to print out
various data structures, including all the procedures in psi/idebug.c (for the PostScript interpreter) and the
debug_dump_ procedures in base/gsmisc.c.

Files:

doc/Use.htm#Debugging, base/gdebug.h, base/gsmdebug.h, psi/idebug.h, psi/idebug.c.

Profiling

Profiling with Microsoft Developer Studio 6

The Microsoft profiling tool is included into Microsoft Developer Studio 6 Enterprise Edition only. Standard Edition
and Professional Edition do not include it.

Microsoft profiler tool requires the application to be linked with a special linker option. To provide it you need the
following change to gs/base/msvccmd.mak:

*** SVN-GS\HEAD\gs\src\msvccmd.mak Tue Jan 9 21:41:07 2007
--- gs\src\msvccmd.mak Mon May 7 11:29:35 2007

*** 159,163 ****
 # Note that it must be followed by a space.
 CT=/Od /Fd$(GLOBJDIR) $(NULL) $(CDCC) $(CPCH)
! LCT=/DEBUG /INCREMENTAL:YES
 COMPILE_FULL_OPTIMIZED= # no optimization when debugging
 COMPILE_WITH_FRAMES= # no optimization when debugging
--- 159,164 ----
 # Note that it must be followed by a space.
 CT=/Od /Fd$(GLOBJDIR) $(NULL) $(CDCC) $(CPCH)
! # LCT=/DEBUG /INCREMENTAL:YES
! LCT=/DEBUG /PROFILE
 COMPILE_FULL_OPTIMIZED= # no optimization when debugging
 COMPILE_WITH_FRAMES= # no optimization when debugging

*** 167,175 ****
 !if $(DEBUGSYM)==0
 CT=
! LCT=
 CMT=/MT
 !else
 CT=/Zi /Fd$(GLOBJDIR) $(NULL)
! LCT=/DEBUG
 CMT=/MTd
 !endif
--- 168,178 ----
 !if $(DEBUGSYM)==0

Information for Ghostscript Developers

285

 CT=
! # LCT=
! LCT=/PROFILE
 CMT=/MT
 !else
 CT=/Zi /Fd$(GLOBJDIR) $(NULL)
! # LCT=/DEBUG
! LCT=/DEBUG /PROFILE
 CMT=/MTd
 !endif

Note

Any of debug and release build may be profiled.

Microsoft Profiler tool can’t profile a dynamically loaded DLLs. When building Ghostscript with makefiles you need to
specify MAKEDLL=0 to nmake command line.

The Integrated Development Environment of Microsoft Developer Studio 6 cannot profile a makefile-based project.
Therefore the profiling tool to be started from command line.

The profiling from command line is a 4 step procedure. The following batch file provides a sample for it :

set DEVSTUDIO=G:\Program Files\Microsoft Visual Studio
set GS_HOME=..\..\gs-hdp
set GS_COMMAND_LINE=%GS_HOME%\bin\gswin32c.exe -I%GS_HOME%\lib;f:\afpl\fonts -r144 -dBATCH -dNOPAUSE -d/DEBUG attachment.pdf
set START_FUNCTION=_main
set Path=%DEVSTUDIO%\Common\MSDev98\Bin;%DEVSTUDIO%\VC98\Bin
PREP.EXE /OM /SF %START_FUNCTION% /FT %GS_HOME%\bin\gswin32c.exe
If ERRORLEVEL 1 echo step 1 fails&exit
PROFILE /I %GS_HOME%\bin\gswin32c.pbi %GS_COMMAND_LINE%
If ERRORLEVEL 1 echo step 2 fails&exit
PREP /M %GS_HOME%\bin\gswin32c /OT xxx.pbt
If ERRORLEVEL 1 echo step 3 fails&exit
PLIST /ST xxx.pbt >profile.txt
If ERRORLEVEL 1 echo step 4 fails&exit

This batch file to be adopted to your configuration :

• Edit the path to developer studio in the line 1.

• Edit the Ghostscript home directory in the line 2.

• Edit Ghostscript command line in line 3. Note that profiling without /NOPAUSE is a bad idea.

• In the line 4 edit the function name to start the profiling from. The sample code specifies _main as the starting
function. Note it is the linker’s function name, which starts with underscore.

• Edit the output file name in the line 5.

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

Information for Ghostscript Developers

286

https://www.artifex.com

Ghostscript C Coding Guidelines
This document describes Ghostscript’s C coding conventions. It is primarily prescriptive, documenting what
developers should do when writing new code; the companion developer documentation is primarily descriptive,
documenting the way things are.

We encourage following the general language usage and stylistic rules for any code that will be integrated with
Ghostscript, even if the code doesn’t use Ghostscript’s run-time facilities or have anything to do with PostScript,
PDF, or page description languages. Ghostscript itself follows some additional conventions; these are documented
separately under Ghostscript conventions below.

C language do’s and don’ts
There are several different versions of the C language, and even of the ANSI C standard. Ghostscript versions
through 7.0 were designed to compile on pre-ANSI compilers as well as on many compilers that implemented the
ANSI standard with varying faithfulness. Ghostscript versions since 7.0 do not cater for pre-ANSI compilers: they
must conform to the ANSI 1989 standard (ANS X3.159-1989), with certain restrictions and a few conventional
additions.

Preprocessor

Conditionals

Restrictions:

• Don’t assume that #if will treat undefined names as 0. While the ANSI standard requires this, it may produce a
warning.

• In .c files, don’t use preprocessor conditionals that test for individual platforms or compilers. Use them only in
header files named xxx_.h.

Macros

Restrictions:

• Don’t redefine a macro, even with the same definition, without using #undef.

• CAPITALIZE macro names unless there is a good reason not to.

• Even though the legacy code contains some macros which contain control flow statments, avoid the use of this
in new code and do not create macros which contain hidden control flow, especially ‘return’. The use of control
flow in macros complicates debug significantly requiring tedious expansion of macros to build a module to be
debugged or resorting to disassembly windows to set breakpoints or to trace flow.

• Don’t use a macro call within a macro argument if the call expands to a token sequence that includes any
commas not within parentheses: this produces different results depending on whether the compiler expands the
inner call before or after the argument is substituted into the macro body. (The ANSI standard says that calls
must be expanded after substitution, but some compilers do it the other way.)

• Don’t use macro names, even inadvertently, in string constants. Some compilers erroneously try to expand
them.

• Don’t use macros to define shorthands for casted pointers. For instance, avoid:

#define fdev ((gx_device_fubar *)dev)

and instead use:

gx_device_fubar * const fdev = (gx_device_fubar *)dev;

The use of const alerts the reader that this is effectively a synonym.

Ghostscript C Coding Guidelines

287

• If a macro generates anything larger than a single expression (that is, one or more statements), surround it with
BEGIN and END. These work around the fact that simple statements and compound statements in C can’t be
substituted for each other syntactically.

• If a macro introduces local variables, only use names that end with an underscore (_), such as code_. This
avoids clashes both with ordinary variable names (which should never end with an underscore) and with
system-defined names (which may begin with an underscore).

Other

Restrictions:

Only use #pragma in files that are explicitly identified as being platform-dependent. Many compilers complain if this
is used at all, and some complain if they don’t recognize the specific pragma being requested (both incorrect
according to the ANSI standard).

Lexical elements

Do not use:

• ANSI trigraphs (??x).

• Nested comments (/* /* */ */) (not ANSI compliant, but often accepted).

• Multi-character character constants (‘abc’).

• Wide-character character or string constants (L'x', L"x").

Restrictions:

• Procedure and static variable names must be 31 characters or less.

• Externally visible procedure and variable names must be unique in the first 23 characters.

Scoping (extern, static, …)

Do not use:

• register

Restrictions:

• Do not allow a global variable (constant) to have more than one non-extern definition, even though some
ANSI C compilers allow this. Every global constant should have exactly one definition, in a .c file, and
preferably just one extern declaration, in a header file.

• static or variables must be const and initialized: non-const statically allocated variables are incompatible
with reentrancy, and we’re in the process of eliminating all of them.

• Do not use extern in .c files, only in .h files, unless you have a very good reason for it (e.g., as in iconf.c).
There are too many such externs in the code now: we are eliminating them over time.

• Do not declare the same name as both static and non-static within the same compilation. (Some
compilers complain, some do not.) This is especially a problem for procedures: it is easy to declare a procedure
as static near the beginning of a file and accidentally not declare it static where it is defined later in the file.

• Even though the ANSI standard allows initialized external declarations (extern int x = 0), don’t use them.

Scalars

Restrictions:

• Avoid using char, except for char * for a pointer to a string. Don’t assume that char is signed; also don’t
assume it is unsigned.

• Never cast a float to a double explicitly. ANSI compilers in their default mode do all floating point
computations in double precision, and handle such casts automatically.

• Don’t use long long: even though it is in the ANSI standard, not all compilers support it. Use the
(u)int64_t types from stdint_.h instead.

Ghostscript C Coding Guidelines

288

• Don’t assume anything about whether sizeof(long) is less than, equal to, or greater than sizeof(ptr).
(However, you can make such comparisons in preprocessor conditionals using ARCH_SIZEOF_LONG and
ARCH_SIZEOF_PTR).

Arrays

Restrictions:

• Don’t declare arrays of size 0. (The newer ANSI standard allows this, but the older one doesn’t).

• Don’t declare an array of size 1 at the end of a structure to indicate that a variable-size array follows.

• Don’t declare initialized auto arrays.

Typedefs

Restrictions:

• Don’t use typedef for function types, such as:

typedef int proc_xyz_t(double, int *);

Many compilers don’t handle this correctly – they will give errors, or do the wrong thing, when declaring variables of
type proc_xyz_t and/or proc_xyz_t *. Instead, do this:

#define PROC_XYZ(proc) int proc(double, int *)
PROC_XYZ(some_proc); /* declare a procedure of this type */
typedef PROC_XYZ((*proc_xyz_ptr_t)); /* define a type for procedure ptrs */

proc_xyz_ptr_t pp; /* pointer to procedure */

Don’t redefine typedef’ed names, even with the same definition. Some compilers complain about this, and the
standard doesn’t allow it.

Structures

Restrictions:

• Don’t use anonymous structures if you can possibly avoid it, except occasionally as components of other
structures. Ideally, use the struct keyword only for declaring named structure types, like this:

typedef struct xxx_s {
 ... members ...
} xxx_t;

• Use struct only when declaring structure types, never for referring to them (e.g., never declare a variable as
type struct xxx_s *).

• Don’t assume that the compiler will (or won’t) insert padding in structures to align members for best
performance. To preserve alignment, only declare structure members that are narrower than an int if there will
be a lot of instances of that structure in memory. For such structures, insert byte and/or short padding
members as necessary to re-establish int alignment.

• Don’t declare initialized auto structures.

Unions

Restrictions:

• Use unions only as components of structures, not as typedefs in their own right.

• Don’t attempt to initialize unions: not all compilers support this, even though it is in the 1989 ANSI standard.

Expressions

Restrictions:

Ghostscript C Coding Guidelines

289

• Don’t assign a larger integer data type to a smaller one without a cast (int_x = long_y).

• It’s OK to use the address of a structure or array element (&p->e, &a[i]) locally, or pass it to a procedure
that won’t store it, but don’t store such an address in allocated storage unless you’re very sure of what you’re
doing.

• Don’t use conditional expressions with structure or union values. (Pointers to structures or unions are OK).

• For calling a variable or parameter procedure, use ptr->func(...). Some old code uses explicit indirection,
(*ptr->func)(...): don’t use this in new code.

• Don’t write expressions that depend on order of evaluation, unless the order is created explicitly by use of ||,
&&, ?:, ,, or function nesting (the arguments of a function must be evaluated before the function is called). In
particular, don’t assume that the arguments of a function will be evaluated left-to-right, or that the left side of an
assignment will be evaluated before the right.

• Don’t mix integer and enumerated types ad lib: treat enumerated types as distinct from integer types, and use
casts to convert between the two. (- Some compilers generate warnings if you do not do this).

Statements

Restrictions:

• If you use an expression as a statement, other than an assignment or a function call with void return value,
enclose it explicitly in DISCARD().

• The type of the operand of a switch must match the type of the case labels, whether the labels are ints or
the members of an enum type. (Use a cast if necessary).

• It is OK for one case of a switch to “fall through” into another (i.e., for the statement just before a case label not
to be a control transfer), but a comment /* falls through */ is required.

• If you are returning an error code specified explicitly (e.g., return gs_error_rangecheck), use
return_error() rather than plain return. However, if the program is simply propagating an error code
generated elsewhere, as opposed to generating the error, use return (e.g., if (code < 0) return code).

Procedures

Restrictions:

• Provide a prototype for every procedure, and make sure the prototype is available at every call site. If the
procedure is local to a file (static), the prototype should precede the procedure, in the same file; if the procedure
is global, the prototype should be in a header file.

• If a procedure parameter is itself a procedure, do list its parameter types rather than just using (). For example:

int foo(int (*callback)(int, int));

rather than just:

int foo(int (*callback)());

• Don’t use the P* macros in new code. (See the Procedures section of Language extensions below for more
information.)

• Always provide an explicit return type for procedures, in both the prototype and the definition: don’t rely on the
implicit declaration as int.

• Don’t use float as the return type of a procedure, unless there’s a special reason. Floating point hardware
typically does everything in double precision internally and has to do extra work to convert between double and
single precision.

• Don’t declare parameters as being of type float, short, or char. If you do this and forget to include the
prototype at a call site, ANSI compilers will generate incompatible calling sequences. Use double instead of
float, and use int or uint instead of short or char.

Ghostscript C Coding Guidelines

290

Standard library

Restrictions:

• Only use library features that are documented in the established ANSI standard (e.g., Harbison & Steele’s
book). Do not use procedures that are “standards” promulgated by Microsoft (e.g., stricmp), or originate in
BSD Unix (e.g., strcasecmp), or were added in later versions of the standard such as C 9X.

• Do not use any features from stdio.h that assume the existence of stdin, stdout, or stderr. See gsio.h
for the full list. Instead, use gs_stdin et al.

Language extensions

Scoping

static

Ghostscript assumes the compiler supports the static keyword for declaring variables and procedures as local
to a particular source file.

inline

inline is available even if the compiler does not support it. Be aware, however, that it may have no effect. In
particular, do not use inline in header files. Instead, use the extern_inline facility described just below.

extern_inline

Compilers that do support inline vary in how they decide whether to (also) compile a closed-code copy of the
procedure. Because of this, putting an inline procedure in a header file may produce multiple closed copies,
causing duplicate name errors at link time. extern_inline provides a safe way to put inline procedures in
header files, regardless of compiler. Unfortunately, the only way we’ve found to make this fully portable involves
a fair amount of boilerplate. For details, please see stdpre.h.

Scalar types

bool, true, false

bool is intended as a Boolean type, with canonical values true and false. In a more reasonable language,
such as Java, bool is an enumerated type requiring an explicit cast to or from int; however, because C’s
conditionals are defined as producing int values, we can’t even define bool as a C enum without provoking
compiler warnings.

Even though bool is a synonym for int, treat them as conceptually different types:

• Initialize or set bool variables to true or false, not 0 or 1.

• Use the Boolean operators !, &&, and || only with Booleans. Don’t use the idiom !!x to create a
Boolean that is true iff x != 0: use x != 0.

• Use an explicit (int) cast to convert a Boolean to an integer.
byte, ushort, uint, ulong

These types are simply shorthands for unsigned char, short, int, long.

In addition, the use of byte * indicates a Ghostscript-style string, with explicit length given separately, as
opposed to a null terminated C-style string, which is char *.

bits8, bits16, bits32

These are unsigned integer types of the given width. Use them wherever the actual width matters: do not, for
example, use short assuming that it is 16 bits wide. New code can use the C99 fixed-width types from
stdint_.h.

Stylistic conventions
Ghostscript’s coding rules cover not only the use of the language, but also many stylistic issues like the choice of
names and the use of whitespace. The stylistic rules are meant to produce code that is easy to read. It’s important to
observe them as much as possible in order to maintain a consistent style, but if you find these rules getting in your
way or producing ugly-looking results once in a while, it’s OK to break it.

Ghostscript C Coding Guidelines

291

Formatting

Indentation

We’ve formatted all of our code using the GNU indent program.

indent -bad -nbap -nsob -br -ce -cli4 -npcs -ncs \
-i4 -di0 -psl -lp -lps -nut somefile.c

does a 98% accurate job of producing our preferred style. Unfortunately, there are bugs in all versions of GNU
indent, requiring both pre- and post-processing of the code.

Put indentation points every 4 spaces. Never use tab stops!

Don’t indent the initial # of preprocessor commands. However, for nested preprocessor commands, do use
indentation between the # and the command itself. Use 2 spaces per level of nesting, e.g.:

#ifndef xyz
define xyz 0
#endif

For assignments (including chain assignments), put the entire statement on one line if it will fit; if not, break it after a
= and indent all the following lines. I.e., format like this:

var1 = value;
var1 = var2 = value;
var1 =
 value;
var1 =
 var2 = value;
var1 = var2 =
 value;

But not like this:

var1 =
var2 = value;

Indent in-line blocks thus:

{
 ... declarations ...
 {{ blank line if any declarations above }}
 ... statements ...
}

Similarly, indent procedures thus:

return_type
proc_name(... arguments ...)
{
 ... declarations ...
 {{ blank line if any declarations above }}
 ... statements ...
}

If a control construct (if, do, while, or for) has a one-line body, use this:

... control construct ...
 ... subordinate simple statement ...

This is considered particularly important so that a breakpoint can be set inside the conditional easily.

If it has a multi-line body, use this:

Ghostscript C Coding Guidelines

292

... control construct ... {
 ... subordinate code ...
}

If the subordinate code has declarations, see blocks above.

For if-else statements, do this:

if (...) {
 ... subordinate code ...
} else if (...) {
 ... subordinate code ...
} else {
 ... subordinate code ...
}

When there are more than two alternatives, as in the example above, use the above (“parallel”) syntax rather than
the following (“nested”) syntax:

if (...) {
 ... subordinate code ...
} else {
 if (...) {
 ... subordinate code ...
 } else {
 ... subordinate code ...
 }
}

Similarly, for do-while statements, do this:

do {
 ... body ...
} while (... condition ...);

Spaces

Do put a space:

• After every comma and semicolon, unless it ends a line.

• Around every binary operator other than “->” and “.”, although you can omit the spaces around the innermost
operator in a nested expression if you like.

• On both sides of the parentheses of an if, for, or while.

Don’t put a space:

• At the end of a line.

• Before a comma or semicolon.

• After unary prefix operators.

• Before the parenthesis of a macro or procedure call.

Parentheses

Parentheses are important in only a few places:

• Around the inner subexpressions in expressions that mix && and ||, even if they are not required by
precedence, for example:

(xx && yy) || zz

• Similarly around inner subexpressions in expressions that mix &, |, or shifts, especially if mixing these
with other operators, for instance:

Ghostscript C Coding Guidelines

293

(x << 3) | (y >> 5)

• In macro definitions around every use of an argument that logically could be an expression, for
example:

((x) * (x) + (y) * (y))

Anywhere else, given the choice, use fewer parentheses.

For stylistic consistency with the existing Ghostscript code, put parentheses around conditional expressions even if
they aren’t syntactically required, unless you really dislike doing this. Note that the parentheses should go around the
entire expression, not the condition. For instance, instead of:

hpgl_add_point_to_path(pgls, arccoord_x, arccoord_y,
 (pgls->g.pen_down) ? gs_lineto : gs_moveto);

use:

hpgl_add_point_to_path(pgls, arccoord_x, arccoord_y,
 (pgls->g.pen_down ? gs_lineto : gs_moveto));

Preprocessor

Conditionals

Using preprocessor conditionals can easily lead to unreadable code, since the eye really wants to read linearly rather
than having to parse the conditionals just to figure out what code is relevant. It’s OK to use conditionals that have
small scope and that don’t change the structure or logic of the program (typically, they select between different sets
of values depending on some configuration parameter), but where possible, break up source modules rather than
use conditionals that affect the structure or logic.

Macros

Ghostscript code uses macros heavily to effectively extend the rather weak abstraction capabilities of the C
language, specifically in the area of memory management and garbage collection: in order to read Ghostscript code
effectively, you simply have to learn some of these macros as though they were part of the language. The current
code also uses macros heavily for other purposes, but we are trying to phase these out as rapidly as possible,
because they make the code harder to read and debug, and to use the rules that follow consistently in new code.

Define macros in the smallest scope you can manage (procedure, file, or .h file), and #undef them at the end of
that scope: that way, someone reading the code can see the definitions easily when reading the uses. If that isn’t
appropriate, define them in as large a scope as possible, so that they effectively become part of the language. This
places an additional burden on the reader, but it can be amortized over reading larger amounts of code.

Try hard to use procedures instead of macros. Use “inline” if you really think the extra speed is needed, but only
within a .c file: don’t put inline procedures in .h files, because most compilers don’t honor “inline” and you’ll wind
up with a copy of the procedure in every .c file that includes the .h file.

If you define a macro that looks like a procedure, make sure it will work wherever a procedure will work. In particular,
put parentheses around every use of an argument within the macro body, so that the macro will parse correctly if
some of the arguments are expressions, and put parentheses around the entire macro body. (This is still subject to
the problem that an argument may be evaluated more than once, but there is no way around this in C, since C
doesn’t provide for local variables within expressions.)

If you define macros for special loop control structures, make their uses look somewhat like ordinary loops, for
instance:

BEGIN_RECT(xx, yy) {
 ... body indented one position ...
} END_RECT(xx, yy);

If at all possible, don’t use free variables in macros – that is, variables that aren’t apparent as arguments of the
macro. If you must use free variables, list them all in a comment at the point where the macro is defined.

Ghostscript C Coding Guidelines

294

If you define new macros or groups of macros, especially if they aren’t simply inline procedures or named constant
values, put some extra effort into documenting them, to compensate for the fact that macros are intrinsically harder
to understand than procedures.

Comments

The most important descriptive comments are ones in header files that describe structures, including invariants; but
every procedure or structure declaration, or group of other declarations, should have a comment. Don’t spend a lot of
time commenting executable code unless something unusual or subtle is going on.

Naming

Use fully spelled-out English words in names, rather than contractions. This is most important for procedure and
macro names, global variables and constants, values of #define and enum, struct and other typedef names,
and structure member names, and for argument and variable names which have uninformative types like int. It’s
not very important for arguments or local variables of distinctive types, or for local index or count variables.

Avoid names that run English words together: “hpgl_compute_arc_center” is better than
“hpgl_compute_arccenter”. However, for terms drawn from some predefined source, like the names of
PostScript operators, use a term in its well-known form (for instance, gs_setlinewidth rather than
gs_set_line_width).

Procedures, variables, and structures visible outside a single .c file should generally have prefixes that indicate what
subsystem they belong to (in the case of Ghostscript, gs_ or gx_). This rule isn’t followed very consistently.

Types

Many older structure names don’t have _t on the end, but this suffix should be used in all new code. (The _s
structure name is needed only to satisfy some debuggers. No code other than the structure declaration should refer
to it.)

Declare structure types that contain pointers to other instances of themselves like this:

typedef struct xxx_s xxx_t;
struct xxx_s {
 ... members ...
 xxx_t *ptr_member_name;
 ... members ...
};

If, to maintain data abstraction and avoid including otherwise unnecessary header files, you find that you want the
type xxx_t to be available in a header file that doesn’t include the definition of the structure xxx_s, use this
approach:

#ifndef xxx_DEFINED
define xxx_DEFINED
typedef struct xxx_s xxx_t;
#endif
struct xxx_s {
 ... members ...
};

You can then copy the first 4 lines in other header files. (Don’t ever include them in an executable code file.)

Don’t bother using const for anything other than with pointers as described below. However, in those places where
it is necessary to cast a pointer of type const T * to type T *, always include a comment that explains why you
are “breaking const”.

Pointers

Use const for pointer referents (that is, const T *) wherever possible and appropriate.

If you find yourself wanting to use void *, try to find an alternative using unions or (in the case of super- and
subclasses) casts, unless you’re writing something like a memory manager that really treats memory as opaque.

Ghostscript C Coding Guidelines

295

Procedures

In general, don’t create procedures that are private and only called from one place. However, if a compound
statement (especially an arm of a conditional) is too long for the eye easily to match its enclosing braces “{...}” –
that is, longer than 10 or 15 lines – and it doesn’t use or set a lot of state held in outer local variables, it may be more
readable if you put it in a procedure.

Miscellany

Local variables

Don’t assign new values to procedure parameters. It makes debugging very confusing when the parameter values
printed for a procedure are not the ones actually supplied by the caller. Instead use a separate local variable
initialized to the value of the parameter.

If a local variable is only assigned a value once, assign it that value at its declaration, if possible. For example,

int x = some expression ;

rather than:

int x;
...
x = some expression ;

Use a local pointer variable like this to “narrow” pointer types:

int
someproc(... gx_device *dev ...)
{
 gx_device_printer *const pdev = (gx_device_printer *)dev;
 ...
}

Don’t “shadow” a local variable or procedure parameter with an inner local variable of the same name. I.e., don’t do
this:

int
someproc(... int x ...)
{
 ...
 int x;
 ...
}

Compiler warnings

We want Ghostscript to compile with no warnings. This is a constant battle as compilers change and new code is
added. Work hard to eliminate warnings by improving the code structure instead of patching over them. If the
compiler can’t figure out that a variable is always initialized, a future reader will probably have trouble as well.

File structuring

All files

Keep file names within the “8.3” format for portability:

• Use only letters, digits, dash, and underscore in file names.

• Don’t assume upper and lower case letters are distinct.

• Put no more than 8 characters before the “.”, if any.

• If there is a “.”, put between 1 and 3 characters after the “.”.

Ghostscript C Coding Guidelines

296

For files other than documentation files, use only lower case letters in the names; for HTML documentation files,
capitalize the first letter.

Every code file should start with comments containing:

1. A copyright notice.

2. The name of the file in the form of an RCS Id:

/* $Id: filename.ext $*/

(using the comment convention appropriate to the language of the file), and

3. A summary, no more than one line, of what the file contains.

If you create a file by copying the beginning of another file, be sure to update the copyright year and change the file
name.

Makefiles

Use the extension .mak for makefiles.

For each:

#include "xxx.h"

make sure there is a dependency on $(xxx_h) in the makefile. If xxx ends with a “_”, this rule still holds, so that if
you code:

#include "math_.h"

the makefile must contain a dependency on “$(math__h)” (note the two underscores “__”).

List the dependencies bottom-to-top, like the #include statements themselves; within each level, list them
alphabetically. Do this also with #include statements themselves whenever possible (but sometimes there are
inter-header dependencies that require bending this rule).

For compatibility with the build utilities on OpenVMS, always put a space before the colon that separates the
target(s) of a rule from the dependents.

General C code

List #include statements from “bottom” to “top”, that is, in the following order:

1. System includes (”xxx_.h”).

2. gs*.h

3. gx*.h (yes, gs and gx are in the wrong order).

4. s*.h

5. i*.h (or other interpreter headers that don’t start with “i”).

Headers (.h files)

In header files, always use the following at the beginning of a header file to prevent double inclusion:

{{ Copyright notice etc. }}

#ifndef <filename>_INCLUDED
#define <filename>_INCLUDED

{{ The contents of the file }}

#endif /* <filename>_INCLUDED */

The header file is the first place that a reader goes for information about procedures, structures, constants, etc., so
ensure that every procedure and structure has a comment that says what it does. Divide procedures into meaningful
groups set off by some distinguished form of comment.

Ghostscript C Coding Guidelines

297

Source (.c files)

After the initial comments, arrange C files in the following order:

1. #include statements.

2. Exported data declarations.

3. Explicit externs (if necessary).

4. Forward declarations of procedures.

5. Private data declarations.

6. Exported procedures.

7. Private procedures.

Be flexible about the order of the declarations if necessary to improve readability. Many older files don’t follow this
order, often without good reason.

Ghostscript conventions

Specific names

The Ghostscript code uses certain names consistently for certain kinds of values. Some of the commonest and least
obvious are these two:

code

A value to be returned from a procedure.

< 0 An error code defined in gserrors.h (or ierrors.h)

0 Normal return

> 0 A non-standard but successful return (which must be
documented, preferably with the procedure’s prototype)

status

A value returned from a stream procedure.

< 0 An exceptional condition as defined in scommon.h

0 Normal return (or, from the “process” procedure, means
that more input is needed)

1 More output space is needed (from the “process”
procedure)

Structure type descriptors

The Ghostscript memory manager requires run-time type information for every structure. (We don’t document this in
detail here: see the Structure descriptors section of the developer documentation for details.) Putting the descriptor
for a structure next to the structure definition will help keep the two consistent, so immediately after the definition of a
structure xxx_s, define its structure descriptor:

struct xxx_s {
 ... members ...
};
#define private_st_xxx() /* in <filename>.c */\
 gs_private_st_<whatever>(st_xxx, xxx_t,\
 "xxx_t", xxx_enum_ptrs, xxx_reloc_ptrs,\
 ... additional parameters as needed ...)

Ghostscript C Coding Guidelines

298

The file that implements operations on this structure (<filename>.c) should then include, near the beginning, the
line:

private_st_xxx();

In much existing code, structure descriptors are declared as public, which allows clients to allocate instances of the
structure directly. We now consider this bad design. Instead, structure descriptors should always be static; the
implementation file should provide one or more procedures for allocating instances, e.g.,

xxx_t *gs_xxx_alloc(P1(gs_memory_t *mem));

If it is necessary to make a structure descriptor public, it should be declared in its clients as:

extern_st(st_xxx);

“Objects”

Ghostscript makes heavy use of object-oriented constructs, including analogues of classes, instances, subclassing,
and class-associated procedures. However, these constructs are implemented in C rather than C++, for two reasons:

The first Ghostscript code was written in 1986, long before C++ was codified or was well supported by tools. Even
today, C++ tools rarely support C++ as well as C tools support C.

C++ imposes its own implementations for virtual procedures, inheritance, run-time type information, and (to some
extent) memory management. Ghostscript requires use of its own memory manager, and also sometimes requires
the ability to change the virtual procedures of an object dynamically.

Classes

The source code representation of a class is simply a typedef for a C struct. See Structures, above, for details.

Procedures

Ghostscript has no special construct for non-virtual procedures associated with a class. In some cases, the typedef
for the class is in a header file but the struct declaration is in the implementation code file: this provides an extra level
of opaqueness, since clients then can’t see the representation and must make all accesses through procedures. You
should use this approach in new code, if it doesn’t increase the size of the code too much or require procedure calls
for very heavily used accesses.

Ghostscript uses three different approaches for storing and accessing virtual procedures, plus a fourth one that is
recommended but not currently used. For exposition, we assume the class (type) is named xxx_t, it has a virtual
procedure void (*virtu)(P1(xxx_t *)), and we have a variable declared as xxx_t *pxx.

1. The procedures are stored in a separate, constant structure of type xxx_procs, of which virtu is a member.
The structure definition of xxx_t includes a member defined as const xxx_procs *procs (always named
procs). The construct for calling the virtual procedure is pxx->procs->virtu(pxx).

2. The procedures are defined in a structure of type xxx_procs as above. The structure definition of xxx_t
includes a member defined as xxx_procs procs (always named procs). The construct for calling the virtual
procedure is pxx->procs.virtu(pxx).

3. The procedures are not defined in a separate structure: each procedure is a separate member of xxx_t. The
construct for calling the virtual procedure is pxx->virtu(pxx).

4. The procedures are defined in a structure of type xxx_procs as above. The structure definition of xxx_t
includes a member defined as xxx_procs procs[1] (always named procs). The construct for calling the
virtual procedure is again pxx->procs->virtu(pxx).

Note that in approach 1, the procedures are in a shared constant structure; in approaches 2 - 4, they are in a
per-instance structure that can be changed dynamically, which is sometimes important.

In the present Ghostscript code, approach 1 is most common, followed by 2 and 3; 4 is not used at all. For new code,
you should use 1 or 4: that way, all virtual procedure calls have the same form, regardless of whether the procedures
are shared and constant or per-instance and mutable.

Ghostscript C Coding Guidelines

299

Subclassing

Ghostscript’s class mechanism allows for subclasses that can add data members, or can add procedure members if
approach 1 or 3 (above) is used. Since C doesn’t support subclassing, we use a convention to accomplish it. In the
example below, gx_device is the root class; it has a subclass gx_device_forward, which in turn has a subclass
gx_device_null. First we define a macro for all the members of the root class, and the root class type. (As for
structures in general, classes need a structure descriptor, as discussed in Structures above: we include these in the
examples below.)

#define gx_device_common\
 type1 member1;\
 ...
 typeN memberN

typedef struct gx_device_s {
 gx_device_common;
} gx_device;

#define private_st_gx_device() /* in gsdevice.c */\
 gs_private_st_<whatever>(st_gx_device, gx_device,\
 "gx_device", device_enum_ptrs, device_reloc_ptrs,\
 ... additional parameters as needed ...)

We then define a similar macro and type for the subclass.

#define gx_device_forward_common\
 gx_device_common;\
 gx_device *target

typedef struct gx_device_forward_s {
 gx_device_forward_common;
} gx_device_forward;

#define private_st_device_forward() /* in gsdevice.c */\
 gs_private_st_suffix_add1(st_device_forward, gx_device_forward,\
 "gx_device_forward", device_forward_enum_ptrs, device_forward_reloc_ptrs,\
 gx_device, target)

Finally, we define a leaf class, which doesn’t need a macro because we don’t currently subclass it. (We can create
the macro later if needed, with no changes anywhere else.) In this particular case, the leaf class has no additional
data members, but it could have some.

typedef struct gx_device_null_s {
 gx_device_forward_common;
};

#define private_st_device_null() /* in gsdevice.c */\
 gs_private_st_suffix_add0_local(st_device_null, gx_device_null,\
 "gx_device_null", device_null_enum_ptrs, device_null_reloc_ptrs,\
 gx_device_forward)

Note

The above example is not the actual definition of the gx_device structure type: the actual type has some
additional complications because it has a finalization procedure. See base/gxdevcli.h for the details.

If you add members to a root class (such as gx_device in this example), or change existing members, do this in the
gx_device_common macro, not the gx_device structure definition. Similarly, to change the
gx_device_forward class, modify the gx_device_forward_common macro, not the structure definition. Only

Ghostscript C Coding Guidelines

300

change the structure definition if the class is a leaf class (one with no _common macro and no possibility of
subclassing), like gx_device_null.

Error handling

Every caller should check for error returns and, in general, propagate them to its callers. By convention, nearly every
procedure returns an int to indicate the outcome of the call:

< 0 Error return

0 Normal return

> 0 Non-error return other than the normal case

To make a procedure generate an error and return it, as opposed to propagating an error generated by a lower
procedure, you should use:

return_error(error_number);

Sometimes it is more convenient to generate the error in one place and return it in another. In this case, you should
use:

code = gs_note_error(error_number);
...
return code;

In executables built for debugging, the -E (or -Z#) command line switch causes return_error and
gs_note_error to print the error number and the source file and line: this is often helpful for identifying the original
cause of an error.

See the file base/gserrors.h for the error return codes used by the graphics library, most of which correspond
directly to PostScript error conditions.

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

Ghostscript C Coding Guidelines

301

https://www.artifex.com

Ghostscript PostScript Coding Guidelines

Summary of the coding guidelines

• Don’t store into literals.

• Use loop to create a block with multiple exits.

• Use a dictionary or an array for multi-way switches.

• Start every file with a copyright notice, the file name, and a one-line summary.

• Comment every procedure with the arguments and result, and with the function of the procedure unless it’s
obvious.

• Comment the stack contents ad lib, and particularly at the beginning of every loop body.

• Indent every 2 spaces.

• Always put { at the end of a line, and } at the beginning of a line, unless the contents are very short.

• Always put spaces between adjacent tokens.

• Use only lower-case letters and digits for names, or Vienna style names, except for an initial “.” for names only
used within a single file.

• Don’t allocate objects in heavily used code.

• Consider factoring out code into a procedure if it is used more than once.

The many rules that Ghostscript’s code follows almost everywhere are meant to produce code that is easy to read.
It’s important to observe them as much as possible in order to maintain a consistent style, but if you find a rule
getting in your way or producing ugly-looking results once in a while, it’s OK to break it.

Use of PostScript language features

Restrictions

If you need to store a value temporarily, don’t write into a literal in the code, as in this fragment to show a character
given the character code:

() dup 0 4 -1 roll put show

Instead, allocate storage for it:

1 string dup 0 4 -1 roll put show

Protection

If an object is never supposed to change, use readonly to make it read-only. This applies especially to permanently
allocated objects such as constant strings or dictionaries.

During initialization, and occasionally afterwards, it may be necessary to store into a read-only dictionary, or to store
a pointer to a dictionary in local VM into a dictionary in global VM. The operators .forceput and .forceundef are
available for this purpose. To make these operators inaccessible to ordinary programs, they are removed from
systemdict at the end of initialization: system code that uses them should always use bind and odef (or
executeonly) to make uses of them inaccessible as well.

Standard constructions

Multi-way conditionals

If you write a block of code with more than about 3 exit points, the usual way to do it would be like this:

{
 ... {

Ghostscript PostScript Coding Guidelines

303

 ...1
 } {
 ... {
 ...2
 } {
 ... {
 ...3
 } {
 ...4
 } ifelse
 } ifelse
 } ifelse
}

However, this causes the 4 logically somewhat parallel code blocks to be indented differently, and as the indentation
increases, it becomes harder to see the structure visually. As an alternative, you can do it this way:

{ % The loop doesn't actually loop: it just provides a common exit.
 ... {
 ...1
 exit
 } if
 ... {
 ...2
 exit
 } if
 ... {
 ...3
 exit
 } if
 ...4
 exit
} loop

Don’t forget the final exit, to prevent the loop from actually looping.

Switches

Use a dictionary or an array of procedures to implement a ‘switch’, rather than a series of conditionals, if there are
more than about 3 cases. For example, rather than:

dup /a eq {
 pop ...a
} {
 dup /b eq {
 pop ...b
 } {
 dup /c eq {
 pop ...c
 } {
 ...x
 } ifelse
 } ifelse
} ifelse

(or using the loop/exit construct suggested above), consider:

/xyzdict mark
 /a {...a} bind
 /b {...b} bind
 /c {...c} bind
.dicttomark readonly def

Ghostscript PostScript Coding Guidelines

304

...
//xyzdict 1 index .knownget {
 exch pop exec
} {
 ...x
} ifelse

File structuring

Every code file should start with comments containing

1. A copyright notice.

2. The name of the file in the form of an RCS Id:

% $Id: filename.ps $

3. A very brief summary (preferably only one line) of what the file contains.

If you create a file by copying the beginning of another file, be sure to update the copyright year and change the file
name.

Commenting
If a file has well-defined functional sections, put a comment at the beginning of each section to describe its purpose
or function.

Put a comment before every procedure to describe what the procedure does, unless it’s obvious or the procedure’s
function is defined by the PLRM. In case of doubt, don’t assume it’s obvious. If the procedure may execute a
deliberate ‘stop’ or ‘exit’ not enclosed in ‘stopped’ or a loop respectively, that should be mentioned. However,
information about the arguments and results should go in the argument and result comment (described just below) if
possible, not the functional comment.

Put a comment on every procedure to describe the arguments and results:

/hypot { % <num1> <num2> hypot <real>
 dup mul exch dup mul add sqrt
} def

There is another commenting style that some people prefer to the above:

/hypot { % num1 num2 --> realnum
 dup mul exch dup mul add sqrt
} def

We have adopted the first style for consistency with Adobe’s documentation, but we recognize that there are
technical arguments for and against both styles, and might consider switching some time in the future. If you have
strong feelings either way, please make your opinion known to us.

Put comments describing the stack contents wherever you think they will be helpful; put such a comment at the
beginning of every loop body unless you have a good reason not to.

When you change a piece of code, do not include a comment with your name or initials. Also, do not retain the old
code in a comment, unless you consider it essential to explain something about the new code; in that case, retain as
little as possible. (CVS logs do both of these things better than manual editing.) However, if you make major changes
in a procedure or a file, you may put your initials, the date, and a brief comment at the head of the procedure or file
respectively.

Formatting

Indentation

Indent 2 spaces per indentation level. You may use tabs at the left margin for indentation, with 1 tab = 8 spaces, but
you should not use tabs anywhere else, except to place comments.

Ghostscript PostScript Coding Guidelines

305

Indent { } constructs like this:

... {
 ...
} {
 ...
} ...

If the body of a conditional or loop is no more than about 20 characters, you can put the entire construct on a single
line if you want:

... { ... } if

rather than:

... {
 ...
} if

There is another indentation style that many people prefer to the above:

...
{ ...
}
{ ...
} ...

We have adopted the first style for consistency with our C code, but we recognize that there are technical arguments
for and against both styles, and might consider switching some time in the future. If you have strong feelings either
way, please make your opinion known to us.

Spaces

Always put spaces between two adjacent tokens, even if this isn’t strictly required. E.g.,

/Halftone /Category findresource

not:

/Halftone/Category findresource

Naming
All names should consist only of letters and digits, possibly with an initial “.”, except for names drawn from the
PostScript or PDF reference manual, which must be capitalized as in the manual. In general, an initial “.” should be
used for those and only those names that are not defined in a private dictionary but that are meant to be used only in
the file where they are defined.

For edits to existing code, names made up of multiple words should not use any punctuation, or capitalization, to
separate the words, again except for names that must match a specification. For new code, you may use this
convention, or you may use the “Vienna” convention of capitalizing the first letter of words, e.g., readSubrs rather
than readsubrs. If you use the Vienna convention, function names should start with an upper case letter, variable
names with a lower case letter. Using the first letter of a variable name to indicate the variable’s type is optional, but if
you do it, you should follow existing codified usage.

Miscellany

Some useful non-standard operators

<obj1> <obj2> ... <objn> <n> .execn ...

This executes obj1 through objn in that order, essentially equivalent to:
<obj1> <obj2> ... <objn> <n> array astore {exec} forall except that it doesn’t actually create
the array.

<dict> <key> .knownget <value> true, <dict> <key> .knownget false

Ghostscript PostScript Coding Guidelines

306

This combines known and get in the obvious way.

<name> <proc> odef -

This defines name as a “pseudo-operator”. The value of name will be executable, will have type
operatortype, and will be executed if it appears directly in the body of a procedure (like an operator, unlike a
procedure), but what will actually be executed will be proc. In addition, if the execution of proc is ended
prematurely (by stop, including the stop that is normally executed when an error occurs, or exit) and the
operand and dictionary stacks are at least as deep as they were when the “operator” was invoked, the stacks
will be cut back to their original depths before the error is processed. Thus, if pseudo-operator procedures are
careful not to remove any of their operands until they reach a point in execution beyond which they cannot
possibly cause an error, they will behave just like operators in that the stacks will appear to be unchanged if an
error occurs.

Some useful procedures

<object> <errorname> signalerror -

Signal an error with the given name and the given “current object”. This does exactly what the interpreter does
when an error occurs.

Other

If you can avoid it, don’t allocate objects (strings, arrays, dictionaries, gstates, etc.) in commonly used operators or
procedures: these will need to be garbage collected later, slowing down execution. Instead, keep values on the
stack, if you can. The .execn operator discussed above may be helpful in doing this.

If you find yourself writing the same stretch of code (more than about half a dozen tokens) more than once, ask
yourself whether it performs a function that could be made into a procedure.

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

Ghostscript PostScript Coding Guidelines

307

https://www.artifex.com

Convert PostScript to Encapsulated PostScript Interchange Format
The information in this document was contributed by George Cameron; please direct any questions about it to him.
Because the software described here is no longer being maintained, this document may be obsolete, or inconsistent
with ps2epsi.1.

For other information, see the Ghostscript overview.

Overview
ps2epsi is a utility based on Ghostscript, which takes as input a PostScript file and generates as output a new file
which conforms to Adobe’s Encapsulated PostScript Interchange (EPSI) format, a special form of Encapsulated
PostScript (EPS) which adds to the beginning of the file, as PostScript comments, a low-resolution monochrome
bitmap image of the final displayed page. Programs which understand EPSI can use this bitmap as a preview on
screen of the full PostScript page. The displayed quality is often not very good, but the final printed version uses the
“real” PostScript, and thus has the normal full PostScript quality. Framemaker can use EPSI.

The Adobe Framemaker DTP system is one application which understands EPSI files, and ps2epsi has been
tested using Framemaker 3.0 on a Sun workstation with a number of PostScript diagrams from a variety of sources.
Framemaker on other platforms may also be able to use files made with ps2epsi, although this has not been tested.

Usage

MS-DOS

Using the supplied batch file ps2epsi.bat, the command is:

ps2epsi infile.ps outfile.epi

where infile.ps is the original PostScript file, and outfile.epi is the output EPSI file to be created.

Unix

Using the supplied shell script ps2epsi, the command is:

ps2epsi infile.ps [outfile.epsi]

where infile.ps is the input file and outfile.epsi is the output EPSI file to be created. If the output filename is
omitted, ps2epsi generates one from the input filename; and any standard extension (.ps, .cps, .eps or .epsf)
of the input file is replaced in the output file with the extension .epsi.

Limitations
Not all PostScript files can be encapsulated, because there are restrictions in what is permitted in a PostScript file for
it to be properly encapsulated. ps2epsi does a little extra work to try to help encapsulation, and it automatically
calculates the bounding box required for all encapsulated PostScript files, so most of the time it does a pretty good
job. There are certain to be cases, however, when encapsulation fails because of the nature of the original PostScript
file.

Files

File Contents

ps2epsi.bat MS-DOS batch file

ps2epsi Unix shell script

ps2epsi.ps Ghostscript program which does the work

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

Convert PostScript to Encapsulated PostScript Interchange Format

309

mailto:george@bio-medical-physics.aberdeen.ac.uk
http://www.adobe.com/products/framemaker/main.html
https://www.artifex.com

PostScript Files Distributed with Ghostscript

Generally used system files

gs_*_e.ps

These files define the Encodings known to Ghostscript. All of them except gs_std_e.ps and gs_il1_e.ps
are loaded only if referred to. However some are additionally built into gscencs.c.

PostScript Encodings

These files are found in the lib subdirectory of the Ghostscript source distribution.

gs_ce_e.ps

These files are found in the Resource/Init subdirectory of the Ghostscript source distribution.

gs_il1_e.ps, gs_std_e.ps, gs_sym_e.ps

PDF Encodings

These files are found in the Resource/Init subdirectory of the Ghostscript source distribution.

gs_mex_e.ps, gs_mro_e.ps, gs_pdf_e.ps, gs_wan_e.ps

Non-standard Encodings

These files are found in the Resource/Init subdirectory of the Ghostscript source distribution.

gs_dbt_e.ps

These files are found in the lib subdirectory of the Ghostscript source distribution.

gs_il2_e.ps, gs_ksb_e.ps, gs_lgo_e.ps, gs_lgx_e.ps, gs_wl1_e.ps, gs_wl2_e.ps, gs_wl5_e.ps

Pseudo-encodings

These files are found in the Resource/Init subdirectory of the Ghostscript source distribution.

gs_mgl_e.ps

These files are found in the lib subdirectory of the Ghostscript source distribution.

gs_lgo_e.ps, gs_lgx_e.ps

Other files

These files are found in the Resource/Init subdirectory of the Ghostscript source distribution.

gs_btokn.ps

gs_init.ps reads this in if the btoken feature is included in the configuration. It provides support for binary
tokens.

gs_cff.ps

Load CFF (compressed) fonts.

gs_fntem.ps

Code for emulating PostScript fonts with non-PostScript font technologies.

gs_cidtt.ps

Code for emulating CID fonts with TrueType fonts.

gs_cidcm.ps

Code for recognizing font names of the form CIDFont-CMap (or CIDFont--CMap) and creating the font
automatically.

gs_ciddc.ps

PostScript Files Distributed with Ghostscript

311

Defines Decoding and CIDDecoding resource categories and related procsets. Used for for emulating
PostScript fonts with non-PostScript font technologies.

gs_cidfm.ps

Provides resource mapping for CIDFont category.

gs_cidfn.ps

ProcSet for implementing CIDFont and CIDMap resources.

gs_cmap.ps

ProcSet for implementing CMap resources.

gs_cspace.ps

PostScript portion of the basic color space handling; see the extensive comment at the head of the file for
information.

gs_dscp.ps

Code to compensate for badly written PostScript files by setting Orientation according to the DSC
comments.

gs_epsf.ps

Allow the interpreter to recognize DOS EPSF file headers, and skip to the PostScript section of the file.

gs_fapi.ps

Font API support.

gs_fonts.ps

gs_init.ps reads this in. It initializes Ghostscript’s font machinery and provides some utility procedures that
work with fonts.

gs_frsd.ps

Support for the PostScript LanguageLevel 3 ReusableStreamDecode filter.

gs_img.ps

Implementation of the traditional (non-dictionary) form of the image and imagemask operators, and the
colorimage operator (including the Next alphaimage facility).

gs_init.ps

Ghostscript reads this automatically when it starts up. It contains definitions of many standard procedures and
initialization for a wide variety of things.

gs_lev2.ps

gs_init.ps reads this in if the Ghostscript interpreter includes Level 2 PostScript functions. It contains
definitions of procedures and miscellaneous initialization for the Level 2 functions.

gs_ll3.ps

Initialize PostScript LanguageLevel 3 functions.

gs_resmp.ps

A procset for redefining resource categories with a resource map.

gs_res.ps

gs_init.ps reads this in if the Level 2 resource machinery is included. Currently, this is the case for all Level 2
configurations.

gs_setpd.ps

Implementation of the setpagedevice operator.

gs_statd.ps

gs_init.ps reads this in. It creates a dummy statusdict and some other environmental odds and ends for
the benefit of PostScript files that really want to be printed on a LaserWriter.

gs_trap.ps

Stub support for the PostScript LanguageLevel 3 “In-RIP trapping” feature.

gs_ttf.ps

Support code for direct use of TrueType fonts.

gs_typ32.ps

PostScript Files Distributed with Ghostscript

312

Initialization file for Type 32 fonts.

gs_typ42.ps

Support code for Type 42 fonts (TrueType font in a PostScript “wrapper”).

gs_type1.ps

gs_init.ps reads this in if the Ghostscript interpreter includes Type 1 font capability (which it normally does).

Configuration files
These files are found in the Resource/Init subdirectory of the Ghostscript source distribution. Users are allowed
to modify them to configure Ghostscript.

Fontmap

Font mapping table.

cidfmap

CID font mapping table. Allows substitution of a CID font for another CID font or a TrueType font for a CID font.

FAPIconfig

A configuration file for Font API client.

FAPIfontmap

Font mapping table for Font-API-handled fonts.

FAPIcidfmap

Font mapping table for Font-API-handled CID fonts.

More obscure system files
Unless otherwise stated, these files are found in the Resource/Init subdirectory of the Ghostscript source
distribution.

gs_agl.ps

Contains the mapping from Adobe glyph names to Unicode values, used to support TrueType fonts and
disk-based Type 1 fonts.

gs_cet.ps

Sets a number of alternate defaults to make Ghostscript behave more like Adobe CPSI. Useful for running the
CET conformance test suite.

gs_diskn.ps

This file implements the %disk IODevice (diskn.dev feature). See the language documentation for
information on the use of the %disk# devices. These PostScript modifications primarily perform the searching of
all Searchable file systems in a defined SearchOrder when a file reference does not contain an explicit
%device% specifier (such as %os% or %disk0%). This is required to emulate undocumented behaviour of Adobe
PostScript printers that have a disk and was experimentally determined.

gs_kanji.ps

This file provides support for the Wadalab free Kanji font. It is not included automatically in any configuration.
This file is stored in the lib subdirectory.

gs_pdfwr.ps

This file contains some patches for providing information to the pdfwrite driver. It is included only if the pdfwrite
driver is included.

ht_ccsto.ps

A default stochastic CMYK halftone. This file is in the public domain. This file is stored in the lib subdirectory.

stcolor.ps

Configure the (Epson) stcolor driver. This file is stored in the lib subdirectory.

PDF-specific system files
These files are found in the Resource/Init subdirectory of the Ghostscript source distribution.

PostScript Files Distributed with Ghostscript

313

pdf_base.ps

Utilities for interpreting PDF objects and streams.

pdf_draw.ps

The interpreter for drawing-related PDF operations.

pdf_font.ps

Code for handling fonts in PDF files.

pdf_main.ps

Document- and page-level control for interpreting PDF files.

pdf_ops.ps

Definitions for most of the PDF operators.

pdf_rbld.ps

Contains procedures for bebuilding damaged PDF files.

pdf_sec.ps

PDF security (encryption) code.

gs_icc.ps

Support for ICC color profiles. These are not a standard PostScript feature, but are used in the PDF interpreter,
as ICC profiles may be embedded in PDF files.

These files are found in the lib subdirectory of the Ghostscript source distribution. These files are templates and
should not be used without modification.

PDFX_def.ps

This is a sample prefix file for creating a PDF/X-3 document with the pdfwrite device.

PDFA_def.ps

This is a sample prefix file for creating a PDF/A document with the pdfwrite device.

Display PostScript-specific system files
These files are found in the Resource/Init subdirectory of the Ghostscript source distribution.

gs_dpnxt.ps

NeXT Display PostScript extensions.

gs_dps.ps, gs_dps1.ps, gs_dps2.ps

gs_init.ps reads these in if the dps feature is included in the configuration. They provide support for various
Display PostScript and Level 2 features.

Art and examples
These files are found in the examples subdirectory of the Ghostscript source distribution.

alphabet.ps

Prints a sample alphabet at several different sizes.

annots.pdf

A sample file with a wide variety of PDF “annotations”.

colorcir.ps

A set of nested ellipses made up of colored bars.

doretree.ps

A 3-D image produced by a modeling program. This file is in the public domain.

escher.ps

A colored version of a hexagonally symmetric Escher drawing of interlocking butterflies. Can be printed on
monochrome devices, with somewhat less dramatic results.

golfer.eps

A gray-scale picture of a stylishly dressed woman swinging a golf club.

PostScript Files Distributed with Ghostscript

314

grayalph.ps

Grayscaled text test pattern.

ridt91.eps

The RIDT ‘91 logo. Note that since this is an EPS file, you will have to add -c showpage at the end of the
command line to print it or convert it to a raster file.

snowflak.ps

A rectangular grid of intricate colored snowflakes. (May render very slowly.)

text_graph_image_cmyk_rgb.pdf

A simple PDF containing text and graphics in both RGB and CMYK spaces.

text_graphic_image.pdf

A simple PDF containing text and graphics in RGB space.

tiger.eps

A dramatic colored picture of a tiger’s head.

transparency_example.ps

A simple example of transparency.

vasarely.ps

Colored rectangles and ellipses inspired by Victor Vasarely’s experiments with tilting circles and squares.

waterfal.ps

Prints text in a variety of different sizes, to help evaluate the quality of text rendering.

Utilities
For more information on these utility programs, see the comments at the start of each file . The ones marked (*)
have batch files or shell scripts of the same name (like bdftops and bdftops.bat) to invoke them conveniently.

These files are found in the lib subdirectory of the Ghostscript source distribution.

align.ps

A test page for determining the proper margin and offset parameters for your printer.

caption.ps

A file for putting a caption in a box at the bottom of each page, useful for trade show demos.

cat.ps`

Appends one file to another. Primarily used to overcome the ‘copy’ limitation of Windows command shell for
ps2epsi.

cid2code.ps

A utility for creating maps from CIDs to Unicode, useful when substituting a TrueType font for an Adobe font.

docie.ps

An emulation of the CIE color mapping algorithms.

font2pcl.ps

A utility to write a font as a PCL bitmap font.

gslp.ps

A utility for doing “line printing” of plain text files.

gsnup.ps

A file that you can concatenate in front of (very well-behaved) PostScript files to do N-up printing. It is
deliberately simple and naive: for more generality, use psnup (which, however, requires DSC comments).

jispaper.ps

A file that makes the b0 through b6 procedures refer to JIS B paper sizes rather than ISO B.

landscap.ps

A file that you can put in front of your own files to get them rendered in landscape mode.

mkcidfm.ps

PostScript Files Distributed with Ghostscript

315

A utility for creating a CID font mapping table cidfmap from fonts found in a specified directory.

pdf2dsc.ps

A utility to read a PDF file and produce a DSC “index” file.

pf2afm.ps

A utility for producing AFM files from PFA, PFB, and optionally PFM files.

pfbtopfa.ps

A utility to convert PFB (binary) font files to PFA (text) format.

prfont.ps

A utility to print a font catalog.

printafm.ps

A utility to print an AFM file on standard output.

ps2ai.ps

A utility for converting an arbitrary PostScript file into a form compatible with Adobe Illustrator. NOTE: ps2ai
doesn’t work properly with Adobe’s Helvetica-Oblique font, and other fonts whose original FontMatrix involves
skewing or rotation.

ps2epsi.ps

A utility for converting an arbitrary PostScript file into EPSI form.

rollconv.ps

A utility for converting files produced by Macromedia’s Rollup program to a Type 0 form directly usable by
Ghostscript.

stocht.ps

A file that installs the StochasticDefault halftone as the default, which may improve output quality on inkjet
printers. See the file for more information.

viewcmyk.ps

A utility for displaying CMYK files.

viewgif.ps

A utility for displaying GIF files.

viewjpeg.ps

A utility for displaying JPEG files.

viewmiff.ps

A utility for displaying MIFF files.

viewpbm.ps

A utility for displaying PBM/PGM/PPM files.

viewpcx.ps

A utility for displaying PCX files.

viewrgb.ps

A utility for displaying files created by -sDEVICE=bitrgb.

viewraw.ps

An extended utility for displaying files created by -sDEVICE=bitrgb.

Development tools
These files are found in the lib subdirectory of the Ghostscript source distribution.

acctest.ps

A utility that checks whether the interpreter enforces access restrictions.

image-qa.ps

A comprehensive test of the image display operators.

ppath.ps

PostScript Files Distributed with Ghostscript

316

A couple of utilities for printing out the current path, for debugging.

pphs.ps

A utility to print the Primary Hint Stream of a linearized PDF file.

traceimg.ps

Trace the data supplied to the image operator.

traceop.ps

A utility for tracing uses of any procedure or operator for debugging.

uninfo.ps

Some utilities for printing out PostScript data structures.

viewps2a.ps

A utility for displaying the output of ps2ascii.ps.

winmaps.ps

A utility for creating mappings between the Adobe encodings and the Microsoft Windows character sets.

zeroline.ps

A utility for testing how interpreters handle zero-width lines.

Odds and ends
These files are found in the lib subdirectory of the Ghostscript source distribution.

jobseparator.ps

Convenience file containing a job separator sequence for use when passing files with -dJOBSERVER.

lines.

A test program for line joins and caps.

stcinfo.ps

Print and show parameters of the (Epson) stcolor driver.

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

PostScript Files Distributed with Ghostscript

317

https://www.artifex.com

Fonts and Font Facilities Supplied with Ghostscript

About Ghostscript fonts
Ghostscript is distributed with two kinds of files related to fonts:

• The fonts themselves in individual files.

• A file “Fontmap” that defines for Ghostscript which file represents which font.

Additionally, the file cidfmap can be used to create substitutes for CIDFonts referenced by name in Postscript and
PDF jobs. See the section on CID Font Substitution for details.

Note

Care must be exercised since poor or incorrect output may result from inappropriate CIDFont substitution. We
therefore strongly recommend embedding CIDFonts in your Postscript and PDF files if at all possible.

The “base 35” fonts required for Postscript (and “base 14” required for PDF) are Postscript Type 1 font files.

When Ghostscript needs a font, it must have some way to know where to look for it: that’s the purpose of the
Fontmap file, which associates the names of fonts such as /Times-Roman with the names of font files, such as
n021003l.pfb. Fontmap can also create aliases for font names, so that for instance, /NimbusNo9L-Regu means
the same font as /Times-Roman.

Where a mapping in Fontmap maps a font name to a path/file, the directory containing the font file is
automatically added to the permit file read list. For example:

/Arial (/usr/share/fonts/truetype/msttcorefonts/arial.ttf) ;

will result in the path /usr/share/fonts/truetype/msttcorefonts/ being added to the permit file read list.
This is done on the basis that font files are often grouped in common directories, and rather than risk the file
permissions lists being swamped with (potentially) hundreds of individual files, it makes sense to add the directories.

Note

Fontmap is processed (and the paths added to the file permissions list) during initialisation of the Postscript
interpreter, so any attempt by a Postscript job to change the font map cannot influence the file permissions list.

Ghostscript’s free fonts
35 commercial-quality Type 1 basic PostScript fonts – Times, Helvetica, Courier, Symbol, etc. – contributed by
URW++ Design and Development Incorporated, of Hamburg, Germany. Fontmap names them all.

How Ghostscript gets fonts when it runs
Fonts occupy about 50KB each, so Ghostscript doesn’t load them all automatically when it runs. Instead, as part of
normal initialization Ghostscript runs a file gs_fonts.ps, which arranges to load fonts on demand using information
from the font map. To preload all of the known fonts, invoke the procedure:

loadallfonts

The file lib/prfont.ps contains code to print a sample page of a font. Load this program by including it in the gs
command line or by invoking:

(prfont.ps) run

Then to produce a sampler of a particular font XYZ, invoke:

/XYZ DoFont

Fonts and Font Facilities Supplied with Ghostscript

319

http://www.urwpp.de/

For example,

/Times-Roman DoFont

For more information about how Ghostscript loads fonts during execution, see Font lookup.

Adding your own fonts
Ghostscript can use any Type 0, 1, 3, 4, or 42 font acceptable to other PostScript language interpreters or to ATM,
including MultiMaster fonts. Ghostscript can also use TrueType font files.

To add fonts of your own, you must edit Fontmap to include at the end an entry for your new font; the format for
entries is documented in Fontmap itself. Since later entries in Fontmap override earlier entries, a font you add at the
end supersedes any corresponding fonts supplied with Ghostscript and defined earlier in the file. To ensure correct
output, it is vital that entries for the “base 35” fonts remain intact in the Fontmap file.

In the PC world, Type 1 fonts are customarily given names ending in .PFA or .PFB. Ghostscript can use these
directly: you just need to make the entry in Fontmap. If you want to use with Ghostscript a commercial Type 1 font
(such as fonts obtained in conjunction with Adobe Type Manager), please read carefully the license that
accompanies the font to satisfy yourself that you may do so legally; we take no responsibility for any possible
violations of such licenses. The same applies to TrueType fonts.

Converting BDF fonts

Note

This is deprecated.

Ghostscript provides a way to construct a (low-quality) Type 1 font from a bitmap font in the BDF format popular in
the Unix world. The shell script bdftops (Unix) or the command file bdftops.bat (DOS) converts a BDF file to a
scalable outline using bdftops.ps . Run the shell command:

bdftops BDF_filename [AFM_file1_name ...] gsf_filename fontname
 UniqueID [XUID] [encodingname]

The arguments have these meanings:

BDF_filename Input bitmap file in BDF format

AFM_file1_name AFM files giving metrics (Optional)

gsf_filename Output file

fontname Name of the font

UniqueID UniqueID (as described below)

XUID XUID, in the form n1.n2.n3… (as
described below)

(Optional)

encodingname “StandardEncoding” (the default),
“ISOLatin1Encoding”,
“SymbolEncoding”,
“DingbatsEncoding”

(Optional)

For instance:

bdftops pzdr.bdf ZapfDingbats.afm pzdr.gsf ZapfDingbats 4100000 1000000.1.41

Then make an entry in Fontmap for the .gsf file (pzdr.gsf in the example) as described above.

For developers only
The rest of this document is very unlikely to be of value to ordinary users.

Fonts and Font Facilities Supplied with Ghostscript

320

Contents of fonts

As noted above, Ghostscript accepts fonts in the same formats as PostScript interpreters. Type 0, 1, and 3 fonts are
documented in the PostScript Language Reference Manual (Second Edition); detailed documentation for Type 1
fonts appears in a separate Adobe book. Type 2 (compressed format) fonts are documented in separate Adobe
publications. Type 4 fonts are not documented anywhere; they are essentially Type 1 fonts with a BuildChar or
BuildGlyph procedure. Types 9, 10, and 11 (CIDFontType 0, 1, and 2) and Type 32 (downloaded bitmap) fonts are
documented in Adobe supplements. Type 42 (encapsulated TrueType) fonts are documented in an Adobe
supplement; the TrueType format is documented in publications available from Apple and Microsoft. Ghostscript
does not support Type 14 (Chameleon) fonts, which use a proprietary Adobe format.

Font names and unique IDs

If you create your own fonts and will use them only within your own organization, you should use UniqueID values
between 4000000 and 4999999.

If you plan to distribute fonts, ask Adobe to assign you some UniqueIDs and also an XUID for your organization.
Contact:

Unique ID Coordinator
Adobe Developers Association
Adobe Systems, Inc.
345 Park Avenue
San Jose, CA 95110-2704
+1-408-536-9000 telephone (ADA)
+1-408-536-6883 fax
fontdev-person@adobe.com

The XUID is a Level 2 PostScript feature that serves the same function as the UniqueID, but is not limited to a
single 24-bit integer. The bdftops program creates XUIDs of the form “[-X- 0 -U-]” where “-X-” is the
organization XUID and “-U-” is the UniqueID. (Aladdin Enterprises’ organization XUID, which appears in a few
places in various font-related files distributed with Ghostscript, is 107; do not use this for your own fonts that you
distribute.)

Running Ghostscript with third-party font renderers

Font API (FAPI) is a feature which allows to attach third-party font renderers to Ghostscript. This section explains
how to run Ghostscript with third-party font renderers, such as UFST.

Note

FreeType is now the default font renderer for Ghostscript.

Note

To run Ghostscript with UFST you need a license from Monotype Imaging. Please ignore issues about UFST if
you haven’t got it.

Important

Third-party font renderers may be incompatible with devices that can embed fonts in their output (such as
pdfwrite), because such renderers may store fonts in a form from which Ghostscript cannot get the necessary
information for embedding, for example, the Microtype fonts supplied with the UFST. Ghostscript can be
configured to disable such renderers when such a device is being used.

As of Ghostscript version 9.0, Ghostscript uses Freetype 2.4.x as the default font scaler/renderer.

Fonts and Font Facilities Supplied with Ghostscript

321

With this change, we added a new switch:-dDisableFAPI=true to revert to the older behavior, just in case
serious regression happens that cannot be resolved in a timely manner. It is intended that this switch will be removed
once the FAPI/Freetype implementation has proven itself robust and reliable in the “real world”.

With version 9.18 released we have, for some time, regarded FAPI/Freetype as being the canonical glyph rendering
solution for Ghostscript and associated products, and the non-FAPI rendering to be deprecated. As such, the
-dDisableFAPI=true option is also considered deprecated, and should be expected to be removed shortly after
the next release.

To run Ghostscript with UFST, you first need to build Ghostscript with the UFST bridge. Both bridges may run
together.

There are 2 ways to handle fonts with a third-party font renderer (FAPI). First, you can substitute any FAPI-handled
font to a resident PostScript font, using special map files FAPIfontmap and FAPIcidfmap. Second, you can
redirect PostScript fonts to FAPI, setting entries in FAPIconfig file.

Names FAPIfontmap, FAPIcidfmap, FAPIconfig in this text actually are placeholders, which may be substituted
with command line arguments : -sFAPIfontmap=name1 -sFAPIcidfmap=name2 -sFAPIconfig=name3.
Ghostscript searches the specified file names as explained in How Ghostscript finds files. Default values for these
arguments are equal to argument names. When building Ghostscript with COMPILE_INITS=1, only default values
are used.

Font files, which are being handled with FAPI, may reside in any directory in your hard disk. Paths to them to be
specified in FAPIfontmap and with special command line arguments, explained below. The path may be either
absolute or relative. Relative ones are being resolved from the path, which is specified in FAPIconfig file.

The file FAPIfontmap is actually special PostScript code. It may include records of 2 types : general records and
FCO records (see below).

A general record describes a font, which is being rendered with FAPI. They must end with semicolon. Each general
record is a pair. The first element of the pair is the font name (the name that PostScript documents use to access the
font, which may differ from real name of the font which the font file defines). The second element is a dictionary with
entries:

Key Type Description

Path string Absolute path to font file, or relative path to font file from the
FontPath value, being specified in FAPIconfig.

FontType integer PostScript type for this font. Only 1 and 42 are currently allowed.
Note that this is unrelated to the real type of the font file - the bridge
will perform a format conversion.

FAPI name Name of the renderer to be used with the font. Only /UFST and
/FreeType are now allowed.

SubfontId integer (optional) Index of the font in font collection, such as FCO or TTC.
It is being ignored if Path doesn’t specify a collection.
Note that Free Type can’t handle FCO. Default value is 0.

Decoding name (optional) The name of a Decoding resource to be used with the
font.
If specified, lib/xlatmap (see below) doesn’t work for this font.

Example of a general FAPI font map record :

/FCO1 << /Path (/AFPL/UFST/fontdata/MTFONTS/PCLPS3/MT1/PCLP3__F.fco) /FontType 1 /FAPI /UFST >> ;

FCO records work for UFST only. A group of FCO records start with a line name ReadFCOfontmap:, where name
is a name of a command line argument, which specify a path to an FCO file. The group of FCO records must end
with the line EndFCOfontmap. Each record of a group occupy a single line, and contains a number and 1, 2 or 3
names. The number is the font index in the FCO file, the first name is the Postscript font name, the secong is an
Encoding resource name, and the third is a decoding resource name.

Fonts and Font Facilities Supplied with Ghostscript

322

Note

FAPIfontmap specifies only instances of Font category. CID fonts to be listed in another map file.

Ghostscript distribution includes sample map files gs/lib/FAPIfontmap, gs/lib/FCOfontmap-PCLPS2, gs
/lib/FCOfontmap-PCLPS3, gs/lib/FCOfontmap-PS3, which may be customized by the user. The last 3 ones
include an information about UFST FCO files.

The file FAPIcidfmap defines a mapping table for CIDFont resources. It contains records for each CID font being
rendered with FAPI. The format is similar to FAPIfontmap, but dictionaries must contain few different entries:

Key Type Description

Path string Absolute path to font file, or relative path to font file from the
CIDFontPath value, being specified in FAPIconfig.

CIDFontType integer PostScript type for this CID font.
Only 0, 1 and 2 are currently allowed.
Note that this is unrelated to the real type of the font file - the bridge
will perform format conversion.

FAPI name Name of the renderer to be used with the font.
Only /UFST and /FreeType are now allowed.

SubfontId integer (optional) Index of the font in font collection, such as FCO or TTC.
It is being ignored if Path doesn’t specify a collection.
Default value is 0.

CSI array of 2 elements (required) Information for building CIDSystemInfo.
The first element is a string, which specifies Ordering.
The second element is a number, which specifies Supplement.

Example of FAPI CID font map record:

/HeiseiKakuGo-W5 << /Path (/WIN2000/Fonts/PMINGLIU.TTF) /CIDFontType 0 /FAPI /UFST /CSI [(Japan1) 2] >> ;

The control file FAPIconfig defines 4 entries:

Key Type Description

FontPath string Absolute path to a directory, which contains fonts.
Used to resolve relative paths in FAPIfontmap.

CIDFontPath string Absolute path to a directory, which contains fonts to substitute to
CID fonts.
Used to resolve relative paths in FAPIcidfmap.
It may be same or different than FontPath.

HookDiskFonts array of integers List of PS font types to be handled with FAPI.
This controls other fonts that ones listed in FAPIfontmap and
FAPIcidfmap -
such ones are PS fonts installed to Ghostscript with lib/fontmap
or
with GS_FONTPATH, or regular CID font resources.
Unlisted font types will be rendered with the native Ghostscript font
renderer.
Only allowed values now are 1,9,11,42.
Note that 9 and 11 correspond to CIDFontType 0 and 2.

Fonts and Font Facilities Supplied with Ghostscript

323

HookEmbeddedFon
ts

array of integers List of PS font types to be handled with FAPI.
This controls fonts being embedded into a document - either fonts
or CID font resources.
Unlisted font types will be rendered with the native Ghostscript font
renderer.
Only allowed values now are 1,9,11,42.
Note that 9 and 11 correspond to CIDFontType 0 and 2.

Ghostscript distribution includes sample config files gs/lib/FAPIconfig, gs/lib/FAPIconfig-FCO. which may
be customized by the user. The last ones defines the configuration for handling resident UFST fonts only.

In special cases you may need to customize the file lib/xlatmap. Follow instructions in it.

Some UFST font collections need a path for finding an UFST plugin. If you run UFST with such font collection, you
should run Ghostscript with a special command line argument -sUFST_PlugIn=path, where path specifies a disk
path to the UFST plugin file, which Monotype Imaging distributes in
ufst/fontdata/MTFONTS/PCL45/MT3/plug__xi.fco. If UFST needs it and the command line argument is not
specified, Ghostscript prints a warning and searches plugin file in the current directory.

If you want to run UFST with resident UFST fonts only (and allow Ghostscript font renderer to handle fonts, which
may be downloaded or embedded into documents), you should run Ghostscript with these command line arguments
: -sFCOfontfile=path1 -sFCOfontfile2=path2 -sUFST_PlugIn=path3 -sFAPIfontmap=map-name
-sFAPIconfig=FAPIconfig-FCO where path1 specifies a disk path to the main FCO file, path2 specifies a disk
path to the Wingdings FCO file, path3 a disk path the FCO plugin file, path1 is either
gs/lib/FCOfontmap-PCLPS2, gs/lib/FCOfontmap-PCLPS3, or gs/lib/FCOfontmap-PS3. FAPIcidfmap
works as usual, but probably you want to leave it empty because FCO doesn’t emulate CID fonts.

Some configurations of UFST need a path for finding symbol set files. If you compiled UFST with such configuration,
you should run Ghostscript with a special command line argument -sUFST_SSdir=path, where path specifies a
disk path to the UFST support directory, which Monotype Imaging distributes in ufst/fontdata/SUPPORT. If
UFST needs it and the command line argument is not specified, Ghostscript prints a warning and searches symbol
set files in the current directory.

Note

UFST and Free Type cannot handle some Ghostscript fonts because they do not include a PostScript interpreter
and therefore have stronger restrictions on font formats than Ghostscript itself does - in particular, Type 3 fonts. If
their font types are listed in HookDiskFonts or in HookEmbeddedFonts, Ghostscript interprets them as PS
files, then serializes font data into a RAM buffer and passes it to FAPI as PCLEOs. (see the FAPI-related source
code for details).

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

Fonts and Font Facilities Supplied with Ghostscript

324

https://www.artifex.com

Setting Up a Unix lpr Filter for Ghostscript
“How do I set up Ghostscript to provide PostScript queues in a standard lpr environment on Unix systems?” is a
Frequently Asked Question amongst Ghostscript users. The two shell scripts described by this document are
designed to make this task a little easier. They are:

unix-lpr.sh

a flexible, multi-option print filter.

lprsetup.sh

A shell script which sets up soft links and creates a template insert for the printcap file.

What it can do
The print filter resides in the Ghostscript installation directory (often /usr/local/share/ghostscript, but may
be something else at your installation), together with a dummy filter directory containing various soft links which point
to the filter. It offers the following features:

• Multiple devices supported by a single filter.

• Multiple bit-depths for the same device.

• Multiple number of colours for the same device.

• Direct (single-queue) and indirect (two-queue) setup.

• Support for the standard preprocessing filters if you have the corresponding (whatever)-to-PostScript
translators.

• Redirection of diagnostic and programmed output to a logfile in the spooling directory.

• Maintaining of printer accounting records of the numbers of pages printed by each user (compatible with the
pac command).

• Straightforward editing for further customisation.

Setting it up
The lprsetup.sh script needs to have two lines edited before running, to set the printer devices to use and the list
of filters available. With this information, it:

• Creates a “filt” subdirectory under the Ghostscript installation directory.

• Creates the links in this directory which enable the filter to determine the parameters for running Ghostscript.

• Automatically generates printcap entries which should need only a little editing before adding to your system
printcap file.

Editing the device list DEVICES

At the top of lprsetup.sh is a line of the form DEVICES={list}. Replace the example list with your own list of
devices. Each entry is the name of a device, followed by three more optional fields, separated by dots “.”.

Field 1: bits per pixel

The first field is required only if the printer device understands the -dBitsPerPixel= switch, which applies only to
colour devices. For a particular number N of bits per pixel, add the suffix .N to the device name, for instance
cdj500.3, cdj500.24, etc.

Field 2: colours

The second field is required only if the printer device understands the setting of the Colors device parameter (as in
-dColors=), which applies only to colour devices (and at present is only supported by the bjc* family of drivers).
For a particular number N of colours, suffix .N to the device name, such as bjc600.24.3, bjc600.8.1 etc.

Setting Up a Unix lpr Filter for Ghostscript

325

Field 3: dual queues

The third field is required in order to use two separate queues for the device, a “raw” queue and a PostScript queue
(see Single or dual queues below). If you want dual queues, add the suffix .dq (“dual queue”) to the name, whether
or not a bits-per-pixel suffix has already been added.

Example definition of DEVICES

Thus the following list supports a cdj550 device at three different bit depths (24 bpp, 3 bpp and 1 bpp), with a dual
queue (that is, a separate queue for the raw data); a monochrome deskjet device with a single queue; and a djet500
device using a separate queue:

DEVICES="cdj550.24.dq cdj550.3.dq cdj550.1.dq deskjet djet500.dq"

Editing the filter list

The standard list contains only the generic “if” filter, but a commented-out list shows other filters which may be
available. If you wish to use the support for these filters, you may need to edit the bsd-if file to add to the PATH the
directories where the translators are stored, or to change the names of the filters if yours are different. The bsd-if
script is supplied with an example setup using Transcript (a commercial package from Adobe), and PBMPLUS, a
freeware package by Jef Poskanzer and others.

Editing the printer port and type

You can set the port and port type (parallel or printer) for an attached printer, but for remote printers you’ll have to
modify the printcap.insert file yourself.

Modifying printcap.insert

Running lprsetup.sh generates a file printcap.insert which has a template setup for your printer queues. It
cannot guarantee to do the whole job, and you will probably need to consult your system documentation and edit this
file before you add it to your printcap file. The file has good defaults for serial printers, as these often cause
problems in getting binary data to the printer. However, you may need to change the baud rate, or the handshaking
method. Only a small change is required in the printcap file to use a networked remote printer instead of an
attached printer, and an example is given in printcap.insert.

Single or dual queues

If you wish to provide a PostScript-only queue (for example, so that all pages printed go through accounting), and the
printer port is local to the host machine, a single queue is appropriate – Ghostscript simply converts PostScript into
the printer’s native data format and sends it to the port. But if the printer is on a remote networked machine, or if you
need to send raw printer data to the printer, you must use two queues. Simply specify the dq option above.

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

Setting Up a Unix lpr Filter for Ghostscript

326

https://www.artifex.com

News

News

327

Guide to Ghostscript Source Code

Conceptual overview
The Ghostscript source code is divided conceptually as follows:

PostScript interpreter

PostScript operators z*.h and z*.c

Other interpreter code i*.h and i*.c

PostScript code gs_*.ps

PDF interpreter

PostScript code pdf_*.ps

Graphics library

Main library code g*.h and g*.c

Streams s*.h and s*.c

Device drivers gdev*.h and gdev*.c

Platform-specific code gp*.h and gp*.c

PostScript interpreter
gs.c is the main program for the interactive language interpreter; gserver.c is an alternative main program that is
a rudimentary server. If you configure Ghostscript as a server rather than an interactive program, you will use
gserver.c instead of gs.c.

Files named z*.c are Ghostscript operator files. The names of the files generally follow the section headings of the
operator summary in section 6.2 (Second Edition) or 8.2 (Third Edition) of the PostScript Language Reference
Manual. Each operator XXX is implemented by a procedure named zXXX, for example, zfill and zarray.

Files named i*.c, and *.h other than g*.h, are the rest of the interpreter. See the makefile for a little more
information on how the files are divided functionally.

The main loop of the PostScript interpreter is the interp procedure in interp.c. When the interpreter is reading from
an input file, it calls the token scanner in iscan*.c.

idebug.c contains a lot of debugger-callable routines useful for printing PostScript objects when debugging.

PDF interpreter
The PDF interpreter is written entirely in PostScript. Its main loop is the .pdfrun procedure in pdf_base.ps. When
the PDF interpreter is configured into the build, it redefines the “run” operator to test whether the file is a PDF file.
This redefinition is near the beginning of pdf_main.ps.

Graphics library
Files beginning with gs, gx, or gz (both .c and .h), other than gs.c and gserver.c, are the Ghostscript library.
Files beginning with gdev are device drivers or related code, also part of the library. Other files beginning with g are
library files that don’t fall neatly into either the kernel or the driver category.

Files named s*.c and s*.h are a flexible stream package, including the Level 2 PostScript “filters” supported by
Ghostscript. See stream.h, scommon.h, and strimpl.h for all the details.

Device drivers

The interface between the graphics library and device drivers is the only really well documented one in all of
Ghostscript: see the documentation on drivers.

Guide to Ghostscript Source Code

329

In addition to many real device and file format drivers listed in devs.mak and contrib.mak, a number of drivers
are used for internal purposes. You can search lib.mak for files named gdev*.c to find almost all of them.

Drivers are divided into “printer” drivers, which support banding, and non-printer drivers, which don’t. The decision
whether banding is required is made (by default on the basis of how much memory is available) in the procedure
gdev_prn_alloc in gdevprn.c: it implements this decision by filling the virtual procedure table for the printer
device in one of two different ways.

A good simple “printer” (bandable) driver to read is gdevmiff.c: it’s less than 100 lines, of which much is
boilerplate. There are no simple non-printer drivers that actually drive devices: probably the simplest non-printer
driver for reading is gdevm8.c, which implements 8-bit-deep devices that only store the bits in memory.

Platform-specific code

There are very few platform dependencies in Ghostscript. Ghostscript deals with them in three ways:

Files named *_.h substitute for the corresponding <*.h> file by adding conditionals that provide a uniform set of
system interfaces on all platforms.

The file arch.h contains a set of mechanically-discovered platform properties like byte order, size of int, etc. These
properties, not the names of specific platforms, are used to select between different algorithms or parameters at
compile time.

Files named gp*.h define interfaces that are intended to be implemented differently on each platform, but whose
specification is common to all platforms.

The platform-specific implementations of the gp*.h interfaces have names of the form gp_{platform}.c,
specifically (this list may be out of date):

Platform-specific interfaces

Routine Platform

gp_dosfb.c DOS

gp_dosfs.c DOS and MS Windows

gp_itbc.c DOS, Borland compilers

gp_iwatc.c DOS, Watcom or Microsoft compiler

gp_msdos.c DOS and MS Windows

gp_ntfs.c MS Windows NT

gp_os2.c OS/2

gp_os9.c OS-9

gp_unifs.c Unix, OS-9, and QNX

gp_unix.c Unix and QNX

gp_vms.c VMS

gp_win32.c MS Windows NT

If you are going to extend Ghostscript to new machines or operating systems, check the *_.h files for ifdef on
things other than DEBUG. You should probably plan to make a new makefile and a new gp_XXX.c file.

Makefiles
This section is only for advanced developers who need to integrate Ghostscript into a larger program at build time.

Note

THIS SECTION IS INCOMPLETE. IT WILL BE IMPROVED IN A LATER REVISION.

The Ghostscript makefiles are meant to be organized according to the following two principles:

Guide to Ghostscript Source Code

330

1. All the parameters that vary from platform to platform appear in the top-level makefile for a given platform.
(“Platform” = OS + compiler + choice of interpreter vs. library).

2. All the rules and definitions that can meaningfully be shared among more than 1 platform appear in a
makefile that is “included” by a makefile (normally the top-level makefile) for those platforms.

Thus, for example:

• Rules and definitions shared by all builds are in gs.mak.

• Rules and definitions specific to the library (on all platforms) are in lib.mak. In principle this could be merged
with gs.mak, but we wanted to leave open the possibility that gs.mak might be useful with hypothetical
interpreter-only products.

• Stuff specific to interpreters (on all platforms) is in int.mak.

• Stuff specific to all Unix platforms should be in a single unix.mak file, but because make sometimes cares
about the order of definitions, and because some of it is shared with DV/X, it got split between unix-aux.mak,
unix-end.mak, unixhead.mak, unixinst.mak, and unixlink.mak.

For MS-DOS and MS Windows builds, there should be:

• A makefile for all MS OS (DOS or Windows) builds, for all compilers and products.

Perhaps a makefile for all MS-DOS builds, for all compilers and products, although since Watcom is the
only such compiler we’re likely to support this may be overkill.

• A makefile for all MS Windows builds, for all compilers and products.

• A makefile for all Watcom builds (DOS or Windows), for all products.

• A top-level makefile for the Watcom DOS interpreter product.

• A top-level makefile for the Watcom Windows interpreter product.

• A top-level makefile for the Watcom DOS library “product”.

• A top-level makefile for the Watcom Windows library “product”.

• A makefile for all Borland builds (DOS or Windows), for all products.

and so on.

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

Guide to Ghostscript Source Code

331

https://www.artifex.com

Third Party Libraries Used by Ghostscript and GhostPDL
The table below details the third party libraries that Ghostscript and/or GhostPDL include, the versions QA tested and
shipped with our releases, the relevant license, and the “upstream” URL.

Library Name Version Function License URL

CUPS
(AGPL Release
Only)

2.8.0 CUPS raster format
output

GPL Version 3 http://www.cups.org/

eXpat 2.4.1 XML parsing for XPS
interpreter

MIT/eXpat License http://expat.sourcefo
rge.net/

FreeType 2.12.1 Font scaling and
rendering
for Ghostscript

FreeType License
(BSD-style license
with a credit clause)

http://www.freetype.
org/

jbig2dec 0.19 JBIG2 decoding for the
PDF interpreter

Licensed with
Ghostscript/GhostPDL
(copyright owned by
Artifex)

http://www.ghostscri
pt.com/

libjpeg 9e with
patches

JPEG/DCT
decoding/encoding

“Free” Can be used in
commercial applications
without royalty,
with acknowledgement.

http://www.ijg.org/

LittleCMS2 mt
(lcms2mt - thread
safe fork of lcms2)

2.10mt ICC profile based color
conversion
and management

MIT LICENSE http://www.ghostscri
pt.com/

libpng 1.6.37 PNG image
encoding/decoding

libpng license - classified
as
“a permissive free
software license”

http://www.libpng.or
g/

OpenJPEG 2.4.0 JPEG2000 image
decoding for the
PDF interpreter

BSD-style http://www.openjpeg
.org/

zlib 1.2.12 (De)Flate compression zlib license - classified as
“a permissive free
software license”

http://www.zlib.net/

libtiff 4.3.0 TIFF image
encoding/decoding

BSD-style http://www.remotes
ensing.org/libtiff

The following are optional.

Library Name Version Function License URL

tesseract 4.1.0
with
patches

Optical Character
Recognition (OCR) library

Apache License 2.0 https://github.com/te
sseract-ocr/tesserac
t

leptonica 1.80.0
with
patches

Image processing toolkit -
support
library for tesseract OCR

Leptonica License
“a permissive free
software license”

http://www.leptonica
.org/

The following are no-cost, open source licensed, but not GPL compatible.

Library Name Version Function License URL

jpegxr (JPEG XR
reference software)

1.8 HDPhoto/JPEG-XR image
decoding for the XPS
interpreter

ITU/ISO/IEC “Free”
License
Reference implementation

http://www.itu.int/rec
/T-REC-T.835

The following is optional & relevant to Artifex Software commercial releases only.

Third Party Libraries Used by Ghostscript and GhostPDL

333

http://www.cups.org/
http://expat.sourceforge.net/
http://expat.sourceforge.net/
http://www.freetype.org/
http://www.freetype.org/
http://www.ghostscript.com/
http://www.ghostscript.com/
http://www.ijg.org/
http://www.ghostscript.com/
http://www.ghostscript.com/
http://www.libpng.org/
http://www.libpng.org/
http://www.openjpeg.org/
http://www.openjpeg.org/
http://www.zlib.net/
http://www.remotesensing.org/libtiff
http://www.remotesensing.org/libtiff
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
http://www.leptonica.org/
http://www.leptonica.org/
http://www.itu.int/rec/T-REC-T.835
http://www.itu.int/rec/T-REC-T.835

Library Name Version Function License URL

Monotype UFST 5.x/6.x
with
patches

Access, scale and render
Monotype MicroType
fonts

Commercial https://www.monoty
pe.com/

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

Third Party Libraries Used by Ghostscript and GhostPDL

334

https://www.monotype.com/
https://www.monotype.com/
https://www.artifex.com

Unsupported devices
These devices are no longer supported and/or superceeded by newer methods. The documentation is kept here for
reference. Be advised that these devices will be removed in future versions of Ghostscript.

Supported devices are descripted in Details of Ghostscript output devices.

For other information, see the Ghostscript overview. You may also be interested in how to build Ghostscript
and install it, as well as the description of the driver interface.

H-P 8xx, 1100, and 1600 color inkjet printers
This section, written by Uli Wortmann, deals with the DeskJet 670, 690, 850, 855, 870, 890, 1100, and 1600.

Drivers contained in gdevcd8.c

The source module gdevcd8.c contains four generic drivers:

cdj670 HP DeskJet 670 and 690

cdj850 HP DeskJet 850, 855, 870, and 1100

cdj890 HP DeskJet 890

cdj1600 HP DeskJet 1600

Further documentation

Credits: Much of the driver is based on ideas derived from the cdj550 driver of George Cameron. The support for the
hp670, hp690, hp890 and hp1600 was added by Martin Gerbershagen.

Date Version Comments

11.11.96 Version 1.0

25.08.97 Version 1.2 Resolved all but one of the known bugs,
introduced a couple of perfomance improvements.
Complete new color-transfer-function handling (see gamma).

01.06.98 Version 1.3 Due to the most welcome contribution of
Martin Gerbershagen, support for the
hp670, hp690 and hp890
and hp1600 has been added.
Martin has also resolved all known bugs.
Problems: Dark colors are still pale.

The hp690 is supported through the hp670 device, the hp855, hp870 and the hp1100 through the hp850 device. The
driver needs no longer special switches to be invoked except -sDEVICE=cdj850, -sDEVICE=CDJ890,
-sDEVICE=CDJ670, or -sDevice=CDJ1600. The following switches are supported:

-dPapertype= 0 plain paper [default]

1 bond paper

2 special paper

3 glossy film

4 transparency film

Currently the lookup tables are unsuited for printing on
special
paper or transparencies. For these please revert to the
gamma functions.

-dQuality= -1 draft

0 normal [default]

Unsupported devices

335

mailto:uliw@erdw.ethz.ch
mailto:ger@ulm.temic.de

1 presentation

-dRetStatus= 0 C-RET off

1 C-RET on [default]

-dMasterGamma= 3.0 [default = 1.0]

Note

To take advantage of the calibrated color-transfer functions, be sure not to have any gamma statements left! If
you need to (i.e., for overhead transparencies), you still can use the gamma functions, but they will override the
built-in calibration. To use gamma in the traditional way, set MasterGamma to any value greater than 1.0 and
less than 10.0. To adjust individual gamma values, you have to additionally set MasterGamma to a value greater
than 1.0 and less than 10.0. With the next release, gamma functions will be dropped.

When using the driver, be aware that printing at 600dpi involves processing large amounts of data (> 188MB !).
Therefore the driver is not what you would expect to be a fast driver ;-) This is no problem when printing a full-sized
color page (because printing itself is slow), but it’s really annoying if you print only text pages. Maybe I can optimize
the code for text-only pages in a later release. Right now, it is recommended to use the highest possible optimisation
level your compiler offers. For the time being, use the cdj550 device with -sBitsPerPixel=3 for fast proof prints. If
you simply want to print 600dpi BW data, use the cdj550 device with -sBitsPerPixel=8 (or 1).

Since the printer itself is slow, it may help to set the process priority of the gs process to “regular” or even less. On a
486/100MHz this is still sufficient to maintain a continuous data flow. Note to OS/2 users: simply put the gs window
into the background or minimize it. Also make sure that print01.sys is invoked without the /irq switch (great
speed improvement under Warp4).

The printer default settings compensate for dot-gain by a calibrated color-transfer function. If this appears to be too
light for your business graphs, or for overhead transparencies, feel free to set -dMasterGamma=1.7. Furthermore,
you may tweak the gamma values independently by setting -dGammaValC, -dGammaValM, -dGammaValY or
-dGammaValK (if not set, the values default to MasterGamma). This will only work when -dMasterGamma is set to a
value greater than 1.0.

Depending on how you transfer the files, under UNIX you may need to remove the CRs of the CR-LF sequence used
for end-of-line on DOS-based (MS Windows-based) systems. You can do this in unpacking the files with
unzip -a hp850.zip.

To compile with gs5.x or later, simply add to your makefile:

DEVICE_DEVS4=cdj850.dev cdj670.dev cdj890.dev cdj1600.dev

H-P 812, 815, 832, 880, 882, 895, and 970 color inkjet printers
This section, written by Matthew Gelhaus, deals with the DeskJet 812, 815, 832, 880, 882, 895, and 970.

This is a modified version of the HP8xx driver written by Uli Wortmann. More information and download are available
at gelhaus.net/hp880c.

Drivers contained in gdevcd8.c

The source module gdevcd8.c contains one generic driver:

cdj880 HP DeskJet 812, 815, 832, 880, 882, 895, and 970

Further documentation

Credits: This driver is based on the cdj850 driver by Uli Wortmann, and shares the same internal structure, although
the PCL3+ interpretation has changed.

Date Version Comments

15.03.99 Version 1.3 Initial version, based on Version 1.3 of Uli Wortmann’s driver.

Unsupported devices

336

mailto:hp880@gelhaus.net
mailto:uliw@erdw.ethz.ch
http://www.gelhaus.net/hp880c/

26.02.00 Version 1.4beta Greatly improved color handling & dithering, but not yet complete enough to
use for text.

All printers are supported through the cdj880 device. Invoke with -sDEVICE=cdj880. The following switches are
supported:

-dPapertype= 0 plain paper [default]

1 bond paper

2 special paper

3 glossy film

4 transparency film

Currently the lookup tables are unsuited for printing on
special
paper or transparencies. For these please revert to the
gamma functions.

-dQuality= -1 draft

0 normal [default]

1 presentation

-dMasterGamma= 3.0 [default = 1.0]

The printer default settings compensate for dot-gain by a pre-defined color-transfer function. If this appears to be too
light for your business graphs, or for overhead transparencies, feel free to set -dMasterGamma=1.7. Furthermore,
you may tweak the gamma values independently by setting -dGammaValC, -dGammaValM, -dGammaValY or
-dGammaValK (if not set, the values default to MasterGamma). This will only work when -dMasterGamma is set to a
value greater than 1.0.

To compile with gs6.x or later, simply add to your makefile:

DEVICE_DEVS4=$(DD)cdj880.dev

H-P color inkjet printers
This section, written by George Cameron, deals with the DeskJet 500C, DeskJet 550C, PaintJet, PaintJet XL,
PaintJet XL300, the DEC LJ250 operating in PaintJet-compatible mode.

Drivers contained in gdevcdj.c

The source module gdevcdj.c contains six generic drivers:

cdj500 HP DeskJet 500C and 540C

cdj550 HP DeskJet 550C, 560C, 660C, 660Cse

pjxl300 HP PaintJet XL300, DeskJet 1200C, and CopyJet

pjtest HP PaintJet

pjxltest HP PaintJet XL

declj250 DEC LJ250

All these drivers have 8-bit (monochrome), 16-bit and 24-bit (colour) and for the DJ 550C, 32-bit (colour, CMYK
mode) options in addition to standard colour and mono drivers. It is also possible to set various printer-specific
parameters from the command line, for example:

gs -sDEVICE=cDeskJet -dBitsPerPixel=16 -dDepletion=1 -dShingling=2 tiger.eps

Unsupported devices

337

Note

The old names cdeskjet, cdjcolor and cdjmono drivers have been retained; however, their functionality duplicates
that available using the drivers above (and cdeskjet is identical to cdj500). That is, we can use:

gs -sDEVICE=cdj500 -dBitsPerPixel=24 for cdjcolor, and
gs -sDEVICE=cdj500 -dBitsPerPixel=1 for cdjmono

Default paper size

If the preprocessor symbol A4 is defined, the default paper size is ISO A4; otherwise it is U.S. letter size (see about
paper sizes in the usage documentation). You can specify other paper sizes on the command line, including A3 for
the PaintJet XL and PaintJet XL300, as also explained in the usage documentation.

DeskJet physical limits

The DeskJet’s maximum printing width is 2400 dots, or 8 inches (20.32cm). The printer manuals say that the
maximum recommended printing height on the page is 10.3 inches (26.16cm), but since this is obviously not true for
A4 paper, and I have been unable to detect any problems in printing longer page lengths, this would seem to be a
rather artificial restriction.

All DeskJets have 0.5 inches (1.27cm) of unprintable bottom margin, due to the mechanical arrangement used to
grab the paper. Side margins are approximately 0.25 inches (0.64cm) for U.S. letter paper, and 0.15 inches (0.38cm)
for A4.

Printer properties (command-line parameters)

Several printer “properties” have been implemented for these printers. Those available so far are all integer
quantities, and thus may be specified, for instance, like

gs -dBitsPerPixel=32 -dShingling=1 ...

which sets the BitsPerPixel parameter to 32 and the Shingling parameter to 1.

Bits per pixel

If the preprocessor symbol BITSPERPIXEL is defined as an integer (see below for the range of allowable values),
that number defines the default bits per pixel (bit depth) for the generic drivers. If the symbol is undefined, the default
is 24 bits per pixel. It is, of course, still possible to specify the value from the command line as described below. Note
also that the cDeskJet, cdjcolor and cdjmono drivers are unaffected by setting this symbol, as their default settings
are predefined to be 1, 3 and 24 respectively.

All of the drivers in gdevcdj.c accept a command line option to set the BitsPerPixel property. This gives
considerable flexibility in choosing various tradeoffs among speed, quality, colour, etc. The valid numbers are:

BITSPERPIXEL Comments

1 A standard Ghostscript monochrome driver, using black
ink (by installing the separate mono cartridge in the
case of the DeskJet 500C, or automatically for the other printers).

3 A standard Ghostscript colour driver, using internal dithering.
This is fast to compute and to print, but the clustered
dithering can lose some detail and colour fidelity.

8 An “error-diffusion” monochrome driver which uses Floyd-Steinberg
dithering to print greyscale images.
The patterns are much more randomised than with the normal
clustered dithering, but the data files can be much larger
and somewhat slower to print.

Unsupported devices

338

16 A “cheaper” version of the 24-bit driver, which generates
Floyd-Steinberg colour dithered output using the minimum
memory (this may be helpful when using Ghostscript has not
been compiled using a 16-bit build environment).
The quality can be almost as good as the 24-bit version.

24 A high-quality colour driver using Floyd-Steinberg
dithering for maximum detail and colour range.
However, it is very memory-intensive, and thus can
be slow to compute. It tends to produce rather
larger raw data files, so they can also take longer to print.

32 Only for the DeskJet 550C, which uses the black cartridge
and the colour cartridge simultaneously (that is, CMYK printing).
This printer can both be faster and give higher quality than
the DeskJet 500C, because of the true black ink.
(Note that the 24-bit mode also permits CMYK printing on
this printer, and uses less memory). Any differences
between 24-bit and 32-bit should be small.

DeskJet properties

Name Type Comments

BlackCorrect int Colour correction to give better blacks when using
the DJ500C in colour mode. For example, the
default of 4 reduces the cyan component to 4/5.
Range accepted: 0 - 9 (0 = none).

Shingling int Interlaced, multi-pass printing:
0 = none, 1 = 50%, 2 = 25%, 2 is best and slowest.

Depletion int “Intelligent” dot-removal:
0 = none, 1 = 25%, 2 = 50%, 1 best for graphics?
Use 0 for transparencies.

PaintJet XL300 / PaintJet XL properties

Name Type Comments

PrintQuality int Mechanical print quality: -1 = fast, 0 = normal, 1 = presentation.
Fast mode reduces ink usage and uses single-pass operation for
some media types. Presentation uses more ink and the maximum
number
of passes, giving slowest printing for highest quality.

RenderType int 0 driver does dithering
1 snap to primaries
2 snap black to white, others to black
3 ordered dither
4 error diffusion
5 monochrome ordered dither
6 monochrome error diffusion
7 cluster ordered dither
8 monochrome cluster ordered dither
9 user-defined dither (not supported)
10 monochrome user-defined dither ns.

The PaintJet (non-XL) has no additional properties.

Unsupported devices

339

Gamma correction

One consequence of using Floyd-Steinberg dithering rather than Ghostscript’s default clustered ordered dither is that
it is much more obvious that the ink dots are rather larger on the page than their nominal 1/180-inch or 1/300-inch
size (clustering the dots tends to minimise this effect). Thus it is often the case that the printed result is rather too
dark. A simple empirical correction for this may be achieved by preceding the actual PostScript file to be printed by a
short file which effectively sets the gamma for the device, such as:

gs ... gamma.ps colorpic.ps -c quit

where gamma.ps is:

%!
/.fixtransfer {
 currentcolortransfer 4 {
 mark exch
 dup type dup /arraytype eq exch /packedarraytype eq or
 1 index xcheck and { /exec load } if
 0.333 /exp load
] cvx 4 1 roll
 } repeat setcolortransfer
} bind odef
.fixtransfer
/setpagedevice { setpagedevice .fixtransfer } bind odef

This does the gamma correction after whatever correction the device might be doing already. To do the correction
before the current correction:

%!
/.fixtransfer {
 currentcolortransfer 4 {
 mark 0.333 /exp load 4 -1 roll
 dup type dup /arraytype eq exch /packedarraytype eq or
 1 index xcheck and { /exec load } if
] cvx 4 1 roll
 } repeat setcolortransfer
} bind odef
.fixtransfer
/setpagedevice { setpagedevice .fixtransfer } bind odef

This example sets the gamma for R, G, and B to 3, which seems to work reasonably well in practice.

HP’s resolution-enhanced mode for Inkjet printers

This feature is available on HP’s more recent inkjet printers, including the DeskJet 520 (mono), 540 (mono or colour)
and 560C (mono and colour). The colour and monochrome drivers for the HP DeskJet 550c are (probably) the best
you will get for use with Ghostscript, for the following reasons.

These printers do not offer true 600×300dpi resolution. Those that print in colour are strictly 300×300dpi in colour
mode, while in mono mode there is a pseudo 600×300dpi mode with the restriction that you can’t print two adjacent
dots. In effect what you have is 600dpi dot positioning, but on average you don’t get more dots per line. This provides
the possibility, for instance, to have sharper character outlines, because you can place dots on the edges nearer to
their ideal positions. This is why it is worth doing.

However, HP will not support user-level programming of this resolution-enhanced mode, one reason being that (I
understand) all the dot spacing has to be done by the driver, and if you get it wrong, you can actually damage the
print head.

To summarise, you may lose a smidgin of (potential) text clarity using the 550c drivers (cdj550, cdjcolor, cdjmono
etc.), but other than that, they are the ones for the job.

Unsupported devices

340

General tips

For all the printers above, the choice of paper is critically important to the final results. The printer manuals suggest
type of paper, but in general, smoother, less fibrous types give better results. In particular, the special ink-jet paper
can make a big difference: colours are brighter, but most importantly, there is almost no colour bleed, even with
adjacent areas of very heavy inking. Similarly the special coated transparencies also work well (and ordinary
transparencies do not work at all!).

The Unix procedure unix-lpr.sh provides one example of setting up a multi-option colour PostScript lpr queue on Unix
systems, and includes the ability to choose a range of different colour options and printer accounting and error
logging.

Caveat emptor! It is not always easy for me to test all of these drivers, as the only colour printer I have here is the
DeskJet 500C. I rely on others to test drivers for the additional machines and report their findings back to me.

Canon BJC-8200 printer
This section was contributed by the author of the uniprint configuration files for the Canon BJC-8200, Stephan C.
Buchert. These files also handle the Japanese Canon F850 printer.

Warning

Usage of this program is neither supported nor endorsed by the Canon corporation. Please see the Ghostscript
license regarding warranty.

Introduction

The Canon Bubble Jet printer BJC-8200 is designed for printing digital photos and halftone images. Software drivers
for Windows 95-2000 and Mac are usually included and can be downloaded from the Canon web sites for the US
market. If these drivers cannot be used for some reason, then at present Ghostscript is probably the alternative
giving the best results.

The BJC-8200 has features not found among the specs of earlier bubble jet models (except the even more advanced
BJC-8500) and is advertised to offer:

1. Microfine droplet technology.

2. Support for printing on a new type of paper, Photo Paper Pro.

3. A printhead capable of printing up to 1200 DpI.

4. Individual ink tanks for 6 colors.

5. An internal status monitor reporting low ink back to a driver.

6. An optional color scanner cartridge for up to 600 DpI resolution.

Access to features 5 and 6 requires use of the original Canon drivers for the foreseeable future. This README is
about getting the printer features 1-3 working with Ghostscript. No (re)compilation of Ghostscript is normally
required.

Ghostscript comes with a relatively highly configurable driver, called uniprint, for printers which understand raster
images in various propriety formats. Most options for this driver are usually organized into files having the suffix
.upp. Ghostscript versions >= 5.10 (or even earlier) include such uniprint control files for the Canon BJC-610. They
work also well for some other Canon Bubble Jet models, for example for my BJC-35vII. But when using them for a
BJC-8200 the result is unsatisfactory.

The uniprint control files for the BJC-8200

After some experimenting with the options for uniprint I have obtained quite satisfactory prints with my printer. This
distribution includes six new uniprint control files:

• bj8pp12f.upp

• bj8hg12f.upp

Unsupported devices

341

mailto:scb@stelab.nagoya-u.ac.jp
mailto:scb@stelab.nagoya-u.ac.jp

• bj8gc12f.upp

• bj8oh06n.upp

• bj8ts06n.upp

• bj8pa06n.upp

They are included in Ghostscript >=6.21. For older versions you can put them anywhere in the Ghostscript search
path (type gs -h to see the path), but should perhaps add the files to the directory with the other *.upp files. This is
/usr/share/ghostscript/gs6.01/lib in my RedHat 6.1 Linux box with Aladdin Ghostscript 6.01.

Here is an explanation of my file name convention: the prefix “bj8” should perhaps be used for the Canon BJC-8200
and compatible (like the Japanese F850 and perhaps the non-Japanese BJC-8500) models. The next two letters
indicate the print media:

• pp - “Photo Paper Pro”.

• hg - “High Gloss Photo Film”.

• gc - “Glossy Photo Cards”.

• oh - “OHP transparencies”.

• ts - “T-shirt transfer”.

• pa - “Plain Paper”.

The numbers at positions 6 and 7 indicate the resolution

• 12 - 1200x1200 DpIxDpI.

• 06 - 600x600 DpIxDpI.

The last letter stands for a quality factor that effects also the print speed (presumably related to the number of
passes that the printhead makes).

• f - highest quality.

• n - normal quality.

Printing a postcard size (~10x15 cm^2) image at 1200x1200 DpI^2 takes about 3 minutes. The output of Ghostscript
is then typically 4-5 MByte. The bootleneck seems to be the transfer of the raster image in run-length encoded
Canon format to the printer (via the parallel port on my system) or the printer’s speed, not Ghostscript or the uniprint
renderer.

Further Optimization for the Canon BJC-8200

So far I have only experimented with the printer initialization code at the beginning of each page
(-dupBeginPageCommand) and the resolution (-r). Other options, particularly the transfer arrays
(-dupBlackTransfer, -dupCyanTransfer, -dupMagentaTransfer, -dupYellowTransfer) and the
margins (-dupMargins) were simply copied from the files for the BJC-610, but they may need to be changed for
optimized performance.

Here is information useful for changing or adding uniprint control files for the BJC-8200:

In -dupBeginPageCommand=... use the line:

1b28 64 0400 04b0 04b0

for 1200x1200 resolution, and:

1b28 64 0400 0258 0258

for 600x600. The -r option in the control file must of course match this line. Other resolutions might work as well, but
I didn’t try.

Crucial are the numbers in the lines like:

Unsupported devices

342

 1b28 63 0300 3005 04
 ^ ^
 Plain Paper 0 4 Highest quality
 OHP transparency 2 .
 T-shirt transfer 3 .
Glossy Photo Film 5 .
 High Gloss Paper 6 0 Lowest quality
 Photo Paper Pro 9

Outlook

Presently uniprint can use the black (K), cyan (C), magenta (M), and yellow (Y) colors in the BJC-8200. The unused
colors are photo (or light) cyan (c) and magenta (m). Also the Canon driver seems to use only CMYK, for example
when printing on Photo Paper Pro in “Camera” or “SuperPhoto” mode. These modes supposedly produce prints of
the best quality that the Canon driver can offer. Other modes of Canon driver do use up to all six color cartridges
(CMYKcm). Therefore expanding uniprint’s capabilities for six colors would be interesting, but it may not increase the
output quality of 6-color printers such as the BJC-8200 drastically.

More control files for uniprint could be added in order to offer more versatility for controlling the BJC-8200 within a
Ghostscript installation. The number of possible combinations for media type, resolution and print quality factor is
very large, many combinations would not make much sense, many might be used here and there, but relatively
rarely. The user would have to remember a name for each combination that is used.

A better way would be to let the user patch optionally a user owned or system wide uniprint control file before each
print via some print tool. This is similar to the approach taken by Canon with their driver for Windows. Similarly a
uniprint tool could also incorporate other functions such as printing test and demo pages and the low ink warning
once the protocol for this is known. Clearly it would be difficult to code such a uniprint tool for all the platforms where
Ghostscript is running.

Usage on RedHat Linux

In order to install a BJC-8200 printer on a RedHat Linux system with RedHat’s printtool, you need also to insert with
a text editor the contents of the file bj8.rpd into the RedHat printer database
/usr/lib/rhs/rhs-printfilters/printerdb. Insert it most appropriately after the section:

StartEntry: U_CanonBJC610
.
.
.
EndEntry

< --- insert here "bj8.rpd" from this distribution:
< --- StartEntry: U_CanonBJC8200
 .
 .
 .

Note

Actually I have a F850, not a BJC-8200. That model is sold for the Japanese market only. The specs and also the
external look are the same as those of the BJC-8200 models for the American and European markets. I expect
that the raster image mode which is used exclusively by Ghostscript is entirely compatible for both models.

Other Canon BubbleJet (BJC) printers
This section was contributed by the author of the drivers, Yves Arrouye. The drivers handle Canon BJC-600,
BJC-4xxx, BJC-70, Stylewriter 2x00, and BJC-800 printers.

Unsupported devices

343

History

The BJC-600 driver was written in the first place by Yoshio Kuniyoshi and later modified by Yves Arrouye. We tried to
make it evolve synchronously, though Yoshio cannot be reached since a long time ago. The drivers are based on
code for the HP printers by George Cameron (in fact, they are in the same file!), so he’s the first person to thank.

The 2.00 version of the drivers was a complete rewrite of the driver (arguments, optimization, colour handling, in
short: everything!) by Yves Arrouye. That release was also the first one to be able to use the full width of an A3 paper
size. PostScript Printer Description (PPD) files for the drivers were released with version 2.15. They are incomplete,
but they can be used to drive the printers’ main features.

Configuring and building the BJC drivers

Modify values in gdevbjc.h.

Configure the drivers by modifying the default values in the file gdevbjc.h or on the compilation line. If you don’t do
that, the drivers use reasonable defaults that make them work “as expected”. All default values shown here are
defined in that file.

CMYK-to-RGB color conversion

By default, the drivers use the same algorithm as Ghostscript to convert CMYK colors to RGB. If you prefer to use
Adobe formulas, define USE_ADOBE_CMYK_RGB when compiling. (See the top of the file gdevcdj.c to see the
difference between the two.)

Vertical centering of the printable area

The drivers center the imageable area horizontally but not vertically, so that what can be printed does use the most
of the output media. If you define BJC_DEFAULT_CENTEREDAREA when compiling, then the top and bottom margins
will be the same, resulting in a (smaller) vertically centered imageable area also.

Page margins

If you define USE_RECOMMENDED_MARGINS, then the top and bottom margins will be the same (that is,
BJC_DEFAULT_CENTEREDAREA will be defined for you) and the margins will be the 12.4mm recommended by
Canon. Since margins are complicated (because one must rely on the mechanical precision of the printer), the
drivers do something about the bottom margin: by default the bottom margin is 9.54mm for the BJC-600 driver and
7mm for the BJC-800. If you define USE_TIGHT_MARGINS, then the bottom margin is 7mm for both drivers (but I
never managed to get my own BJC-600 to print a line on this low bound, hence the larger default). Regardless of the
presence of this definition, USE_FIXED_MARGINS will not allow the BJC-800 to use the lower 7mm bottom margin,
so if you have a problem with the bottom margin on a BJC-800, just define that (without defining
USE_TIGHT_MARGINS, of course).

A quick way to be sure the margins you selected is to print a file whose contents are:

%!
clippath stroke showpage

If the margins are okay, you will get a rectangle visibly surrounding the printable area. If they’re not correct, one or
more of the sides will be either incomplete or completely unprinted.

Makefile and compilation

Make sure the bjc600 or bjc800 devices are in DEVICE_DEVS in the makefile; that is, look in the makefile for your
platform and add them if necessary – they may already be there. As of Ghostscript 5.10, for instance, one makefile
has:

DEVICE_DEVS6=bj10e.dev bj200.dev bjc600.dev bjc800.dev

Use of the drivers

There are two drivers here. The bjc600 one supports the BJC-600 and BJC-4xxx (maybe the BJC-70 as well) and
the bjc800 one supports the BJC-800 series. Remarks here that apply to both drivers use the name bjc.

Unsupported devices

344

Supported Options and Defaults

Note

“options”, “properties”, and “parameters” designate the same thing: device parameters that you can change.

Giving an option an incorrect value causes an error. Unless stated otherwise, this error will be a rangecheckerror.
Options may be set from the Ghostscript command line (using the -d and -s switches or other predetermined
switches if they have an effect on the driver) or using the PostScript Level 2 setpagedevice operator if Ghostscript
has been compiled with the level2 or level3 device (which it should ;-)). There are no special-purpose operators
such as one was able to find in Level 1 printers.

The bjc uses 24 bits per pixel by default (unless you change the value of BJC_BITSPERPIXEL), corresponding to
CMYK printing. Supported modes are 1 bpp and 4 bpp (gray levels), 8 bpp, 16 bpp, 24 bpp and 32 bpp (colours).
Colours are preferably stored in the CMYK model (which means, for example, that with 16 bpp there are only 16
different shades of each color) but it is possible to store them as RGB color for some depths. Some modes do
Floyd-Steinberg dithering and some don’t, but use the default Ghostscript halftoning (in fact, when halftoning is used,
dithering takes also place but because of the low point density it is usually not efficient, and thus invisible).

Descriptions of printing modes by bpp and Colors

bpp Colors Mode

32 4 CMYK colour printing, Floyd-Steinberg dithering

24 4 The same. (But each primary colour is stored on 6 bits instead of 8.)

24 3 RGB colour printing, Floyd-Steinberg dithering. This mode does not use the black
cartridge (that’s why it exists, for when you don’t want to use it ;-)).
Each primary colour is stored in 8 bits as in the 32/4 mode, but black generation
and under-color removal are done on the driver side and not by Ghostscript,
so you have no control over it. (This mode is no longer supported in this driver.)

16 4 CMYK colour printing, halftoned by Ghostscript. F-S dithering is still
visible here (but the halftone patterns are visible too!).

8 4 The same.(But each primary colour is stored in 2 bits instead of 4.)

8 3 RGB colour printing. This mode is not intended for use. What I mean is
that it should be used only if you want to use custom halftone screens
and the halftoning is broken using the 8/4 mode (some versions of
Ghostscript have this problem).

8 1 Gray-level printing, Floyd-Steinberg dithering

1 1 Gray-level printing halftoned by Ghostscript

These modes are selected using the BitsPerPixel and Colors integer options (either from the command line or
in a PostScript program using setpagedevice). See below.

A note about darkness of what is printed: Canon printers do print dark, really. And the Floyd-Steinberg dithering may
eventually darken your image too. So you may need to apply gamma correction by calling Ghostscript as in:

gs -sDEVICE=bjc600 gamma.ps myfile.ps

where gamma.ps changes the gamma correction (here to 3 for all colors); 0.45 gives me good results, but your
mileage may vary. The bigger the value the lighter the output:

{ 0.45 exp } dup dup currenttransfer setcolortransfer

The drivers support printing at 90dpi, 180dpi and 360dpi. Horizontal and vertical resolutions must be the same or a
limitcheck error will happen. A rangecheck will happen too if the resolution is not 90 ×2^N. If the driver is compiled
with -DBJC_STRICT a rangecheck also happens if the resolution is not one of those supported. This is not the
case, as we expect that there may be a 720dpi bjc some day.

Unsupported devices

345

Here are the various options supported by the bjc drivers, along with their types, supported values, effects, and
usage:

BitsPerPixel (int)

Choose the depth of the page. Valid values are 1, 8, 16, 24 (the default) and 32. Note that when this is set for
the first time, the Colors property is automatically adjusted unless it is also specified. The table here shows the
corresponding color models and the rendering method visible: “GS” for Ghostscript halftoning and “F-S” for
Floyd-Steinberg dithering. When both are present it means that the dithering of halftones is visible. Default
choices are indicated by asterisk “*”.

Valid colors values for allowed BitsPerPixel values

bpp Colors Default Color model Dithering

32 4 CMYK F-S

24 4 * CMYK F-S

3 RGB F-S

16 4 CMYK GS, F-S

8 4 * CMYK GS

3 RGB GS

1 K (CMYK) F-S

1 1 * K (CMYK) GS

Also note that automagical change of one parameter depending on the other one does not work in a
setpagedevice call. This means that if you want to change BitsPerPixel to a value whose valid Colors
values do not include the actual Colors value, you must change Colors too.

Colors (int)

Choose the number of color components from among 1, 3 and 4 (the default). This setting cannot be used in a PostScript program, only on Ghostscript’s command line. See ProcessColorModel
below for what to use to change the number of colors with PostScript code. Note that setting this property does limit the choices of BitsPerPixel. As for the previous property, its first setting may
induce a setting of the “other value” (BitsPerPixel here). The table here indicates valid combinations with “V”, default values with asterisk “*”.

Valid BitsPerPixel values for allowed Colors values

BitsPerPixel OK values

Colors Type 32 24 16 8 1

4 CMYK V V V

3 RGB * V

1 K V *

Also note that automagical change of one parameter depending on the other one does not work in a setpagedevice call. This means that if you want to change Colors to a value whose valid
BitsPerPixel values don’t include the actual BitsPerPixel value, you must change BitsPerPixel too.

ProcessColorModel (symbol)

A symbol taken from /DeviceGray, /DeviceRGB or /DeviceCMYK which can be used to select 1, 3 or 4
colors respectively. Note that this parameter takes precedence over Colors, and that both affect the same
variable of the driver. (See Colors above for values combined with BitsPerPixel.)

HWResolution (floats array)

An array of two floats giving the horizontal and vertical resolution in dots per inch from among 90, 180 and 360
(the default). Both values must be the same. On the Ghostscript command line, the resolution may be changed
with the -r switch.

ManualFeed (bool)

Indicate that the sheets won’t be fed automatically by the printer, false by default. (Not meaningful on the
BJC-600, I fear.)

MediaType (string)

Unsupported devices

346

The media to print on, chosen from among “PlainPaper”, “CoatedPaper”, “TransparencyFilm”, “Envelope”,
“Card” and “Other”. Default is “PlainPaper”. For “Envelope”, “Card” or “Other” the driver puts the printer into thick
mode automatically regardless of the actual media weight.

MediaWeight (int or null)

The weight of the media in grams per square meter. Null (the default) indicates that the weight is of no
importance. If the specified media weight is greater than 105 (that is, the value of the compilation default
BJC???_MEDIAWEIGHT_THICKLIMIT) then the printer will be set to use thick paper.

PrintQuality (string)

The quality of printing.

Value bjc600 bjc800 Comments

Low X Has the effect of making
only two printing passes
instead of four,
so should be twice the
speed; known as “CN”
(Color Normal) mode

Draft X X Unlights the “HQ” light on
a BJC-600

Normal X X Default for both drivers;
lights the “HQ” light on a
BJC-600

High X X Means 200% black and
100% C

DitheringType (string)

Dithering algorithm from between “Floyd-Steinberg” and “None”. “None” is the default for 1/1 print mode,
“Floyd-Steinberg” for other modes. At the moment this parameter is read-only, though no error is generated if
one tries to change it. This parameter is not of much value at the moment and is here mainly to reserve the
name for future addition of dithering algorithms.

PrintColors (int)

Mask for printing color. If 0, use black for any color; otherwise the value must be the sum of any of 1 (cyan), 2
(magenta), 4 (yellow) and 8 (black), indicating which colors will be used for printing. When printing colour, only
colours specified will be printed (this means that some planes will be missing if a color’s value above is omitted).
When printing grays, black is used if it is present in the PrintColors; otherwise, the image is printed by
superimposing each requested color.

MonochromePrint (bool)

For bjc600 only, false by default. Substitute black for Cyan, Magenta and Yellow when printing – useful, for
example, to get some monochrome output of a dithered printing This is a hardware mechanism as opposed to
the previous software one. I think that using this or setting PrintColors to 0 will give the same results.

Note

The MediaType and ThickMedia options will be replaced by the use of the device InputAttributes and
OutputAttributes as soon as possible. Please note too that the print mode may be reset at the start of
printing, not at the end. This is the expected behaviour. If you need to reset the printer to its default state, simply
print a file that does just a showpage.

Device information

Here is other information published by the driver that you will find in the deviceinfo dictionary.

OutputFaceUp (bool)

This has the boolean value true, indicating that the sheets are stacked face up.

Unsupported devices

347

Version (float)

In the form M.mmpp, where M is the major version, mm the bjc driver’s minor version, and pp the specific driver
minor version (that is, M.mm will always be the same for the bjc600 and bjc800 drivers).

VersionString (string)

A string showing the driver version and other indications. At the moment, things like “a” or “b” may follow the
version to indicate alpha or beta versions. The date of the last change to this version is given in the form
MM/DD/YY (no, it won’t adapt to your locale).

Hardware margins

The BJC printers have top and bottom hardware margins of 3mm and 7.1mm respectively (Canon says 7mm, but
this is unusable because of the rounding of paper sizes to PostScript points). The left margin is 3.4mm for A4 and
smaller paper sizes, 6.4mm for U.S. paper sizes, envelopes and cards. It is 4.0mm for A3 paper on the BJC-800.

The maximum printing width of a BJC-600 printer is 203mm. The maximum printing width of a BJC-800 printer is
289mm on A3 paper, 203mm on U.S. letter and ISO A4 paper.

PostScript printer description (PPD) files

The files CBJC600.PPD and CBJC800.PPD (whose long names are, respectively,
Canon_BubbleJetColor_600.ppd and Canon_BubbleJetColor_800.ppd) are PPD files to drive the features
of the bjc600 and bjc800 drivers. They can be used, for example, on NextStep systems (presumably on OpenStep
systems too) and on Unix systems with Adobe’s TranScript and pslpr (not tested). The files are not complete at the
moment. Please note that NextStep’s printing interface does not correctly enforce constraints specified in these files
(in UIConstraints descriptions): you must force yourself to use valid combinations of options.

Customizing the PPD files

By default the PPD files are set for U.S. letter size paper, and they use a normalized transfer function. If you choose
to use A4 printing by default, you must replace “Letter” with “A4” in these (noncontiguous) lines:

[...]
*DefaultPageSize: Letter
[...]
*DefaultRegion: Letter
[...]
*DefaultImageableArea: Letter
[...]

Some versions of Ghostscript have problems with normalized colors, which makes them add magenta in gray levels.
If you experience this problem, in the PPD file replace the line:

*DefaultTransfer: Normalized

with the alternate line:

*DefaultTransfer: Null

The “thick media” option is implemented by choosing a value of 120 or 80 (for thick and thin media respectively) for
the MediaWeight feature of the drivers. If you ever change the threshold for thick media in the driver code, you may
need to change the values in the PPD files too.

All customization should be done using the “*Include:” feature of PPD files so that your local changes will be
retained if you update the PPD files.

How to report problems

Yves Arrouye no longer maintains this driver, and will not answer questions about it. If you are posting a question
about it in a public form, please be as descriptive as possible, and please send information that can be used to
reproduce the problem. Don’t forget to say which driver you use, and in what version. Version information can be
found in the source code of the driver or by issuing the following command in a shell:

echo "currentpagedevice /VersionString get ==" | gs -q -sDEVICE=bjc600 -

Unsupported devices

348

Acknowledgements

I am particularly grateful to Yoshio Kuniyoshi without whom I’d never make these drivers, and also to L. Peter
Deutsch, who answered all my (often silly) questions about Ghostscript’s driver interface.

Thanks also to the people who volunteered to beta-test the v2.x BJC drivers: David Gaudine, Robert M. Kenney,
James McPherson and Ian Thurlbeck (listed alphabetically) were particularly helpful by discovering bugs and helping
find out exact paper margins on printers I don’t have access to.

And many thanks to Klaus-Gunther Hess for looking at the dithering code and devising a good CMYK dithering
algorithm for the Epson Stylus Color, which I then adapted to the code of these drivers.

Epson Stylus color printer (see also uniprint)
This section was contributed by Gunther Hess, who also wrote uniprint, a later set of drivers. You should probably
see the section on uniprint for whether it might be better for your uses than this driver.

Usage

This driver is selected with -sDEVICE=stcolor, producing output for an Epson Stylus Color at 360dpi resolution by
default. But it can do much more with this printer, and with significantly better quality, than with the default mode; and
it can also produce code for monochrome versions of the printer. This can be achieved via either command-line
options or Ghostscript input. For convenience a PostScript file is supplied for use as an initial input file. Try the
following command:

gs -sDEVICE=stcolor -r{Xdpi}x{Ydpi} stcolor.ps {YourFile.ps}

where {Xdpi} is one of 180, 360, or 720 and {Ydpi} is one of 90, 180, 360, or 720. The result should be significantly
better. You may use stcolor.ps with other devices too, but I do not recommend this, since it does nothing then.
stcolor.ps should be available with binary distributions and should reside in the same directory as other Ghostscript
initialization files or in the same directory as the files to be printed. Thus if Ghostscript is part of your printer-spooler,
you can insert:

(stcolor.ps) findlibfile { pop run } if pop

in files you want to use the improved algorithms. You may want to adapt stcolor.ps file to your specific needs.
The methods and options for this are described here, but this description is restricted to Ghostscript options, while
their manipulation at the PostScript level is documented in the material on the relationship of Ghostscript and
PostScript and in stcolor.ps.

Options

Now to explain the options (as written on my UNIX system). The order is somehow related to their use during the
printing process:

-dUnidirectional

Force unidirectional printing, recommended for transparencies

-dMicroweave

Enable the printer’s “microweave” feature; see “What is weaving?” below.

-dnoWeave

Disable any Weaving (overrides -dMicroweave)

-dSoftweave

Enable the driver’s internal weaving. Note that Softweave works only with the original Stylus Color and the
PRO-Series.

-sDithering= {name}

Select another dithering algorithm (name) from among:

Dithering name Comments

gscmyk fast color output, CMYK process color model (default)

gsmono fast monochrome output

Unsupported devices

349

mailto:yoshio@nak.math.keio.ac.jp
mailto:david@donald.concordia.ca
mailto:rmk@unh.edu
mailto:someone@erols.com
mailto:ian@stams.strath.ac.uk
mailto:ghess@elmos.de
mailto:ghess@elmos.de

gsrgb fast color output, RGB process color model

fsmono Floyd-Steinberg, monochrome

fsrgb Floyd-Steinberg, RGB process color model (almost identical to
the cdj550/bjc algorithm)

fsx4 Floyd-Steinberg, CMYK process color model (shares code with fsmono and
fsrgb, but is algorithmically really bad)

fscmyk Floyd-Steinberg, CMYK process color model and proper modifications for CMYK

hscmyk modified Floyd-Steinberg with CMYK model (“hs” stands for “hess” not
for “high speed”, but the major difference from fscmyk is speed)

fs2 algorithm by Steven Singer (RGB) should be identical to escp2cfs2.

-dBitsPerPixel={1...32}

number of bits used for pixel storage; the larger the value, the better the quality – at least in theory. In fsrgb
one can gain some speed by restricting to 24 bits rather than the default 30.

-dFlag0

causes some algorithms to select a uniform initialisation rather than a set of random values. May yield a sharper
image impression at the cost of dithering artifacts. (Applies to hscmyk and all fs modes, except for fs2, which
always uses a constant initialization.)

-dFlag1 ... -dFlag4

Available for future algorithms.

-dColorAdjustMatrix='{three, nine, or sixteen floating-point values}'

This is a matrix to adjust the colors. Values should be between -1.0 and 1.0, and the number of values depends
on the color model the selected algorithm uses. In RGB and CMYK modes a matrix with 1.0 on the diagonal
produces no transformation. This feature is really required, but I could not identify a similar feature at the
language level, so I implemented it, but I don’t know reasonable values yet.

-dCtransfer='{float float ...}' or -dMtransfer=..., -dY..., -dK... or
-dRtransfer='{float float ...}' or -dG..., -dB... or -dKtransfer='{float float ...}'

Which you use depends on the algorithm, which may be either either CMYK, RGB or monochrome. The values
are arrays of floats in the range from 0 to 1.0, representing the visible color intensity for the device. One may
achieve similar effects with setcolortransfer at the language level, but this takes more time and the
underlying code for the driver-specific parameters is still required. The size of the arrays is arbitrary and the
defaults are “{0.0 1.0}”, which is a linear characteristic. Most of the code in stcolor.ps are better transfer arrays.

-dKcoding='{float...}' , -dC..., -dM... etc.

Arrays between 0.0 and 1.0, controlling the internal coding of the color values. Clever use of these arrays may
yield further enhancements, but I have no experience yet. (To be discontinued with version 2.x.)

-sModel=st800

Causes output to be suitable for the monochrome Stylus 800 (no weaving, no color).

-sOutputCode= {name}

Can be either “plain”, “runlength” or “deltarow” and changes the ESC/P2 coding technique used by the
driver. The default is to use runlength encoding. “plain” selects uncompressed encoding and generates
enormous amounts of data.

-descp_Band= 1/8/15/24

Number of nozzles of scanlines used in printing, Useful only with -dnoWeave. Larger Values yield smaller code,
but this doesn’t increase the printing speed.

-descp_Width= N

Number of pixels Printed in each scan Line. (Useful only when tuning margins; see below)

-descp_Height= pixels

Length of the entire page in pixels. (Parameter of “ESC(C” in default initialization.)

-descp_Top= scan lines

Top margin in scan lines. (First parameter of “ESC(c” in default initialization.)

Unsupported devices

350

-descp_Bottom= scan lines

Bottom margin in scan lines. (Second parameter of “ESC(c” in default initialization.)

-sescp_Init= “string”

Override for the initialization sequence. (Must set graphics mode 1 and units.)

-sescp_Release= “string”

Overrides the release sequence, “ESC @ FF” by default.

ESC/P2 allows any resolutions to be valid in theory, but only -r360x360 (the default) and -r720x720 (not on
STC-IIs ? and st800) are known to work with most printers.

Valid option combinations – Stylus I & Pro-Series only

Resolution escp_Band Weave usable
escp_Band & number of

passes

180x90 15 noWeave

180x180 1, 8, 24 noWeave, Microweave 15/2 SoftWeave

180x360 15/4 SoftWeave

180x720 15/8 SoftWeave

360x90 15 noWeave

360x180 1, 8, 24 noWeave, Microweave 15/2 SoftWeave

360x360 1, 8, 24 noWeave, Microweave 15/4 SoftWeave

360x720 15/8 SoftWeave

720x90 15 noWeave

720x180 15/2 SoftWeave

720x360 15/4 SoftWeave

720x720 1 noWeave,
Microweave

1 noWeave, Microweave 15/8 SoftWeave

Warning

Beware: there are only few validity checks for parameters. A good example is escp_Band: if you set this, the
driver uses your value even if the value is not supported by the printer. You asked for it and you got it!

Application note and FAQ

Quite a bunch of parameters. Hopefully you never need any of them, besides feeding stcolor.ps to Ghostscript in
front of your input.

After answering some questions over fifty times I prepared a FAQ. Here is version 1.3 of the FAQ, as of stcolor
version 1.20 (for Ghostscript 3.50).

Support for A3 paper

Yes, this driver supports the A3-size printer: merely set the required pagesize and margins. A simple way to do this
is to specify the command-line switch -sPAPERSIZE=a3 or include the procedure call a3 in the PostScript prolog
section. To optimize the printable area or set the proper margins, see the next paragraph.

Margins, PageSize

I refuse to add code to stcolor that tries to guess the proper margins or page size, because I found that such
guessing is usually wrong and needs correction in either the source or the parameters. You can modify stcolor.ps
to do that, however. After the line:

Unsupported devices

351

mark % prepare stack for "putdeviceprops"

insert these lines, which define page size and margins in points:

/.HWMargins [9.0 39.96 12.6 9.0] % Left, bottom, right, top (1/72")
/PageSize [597.6 842.4] % Paper, including margins (1/72")
/Margins [% neg. Offset to Left/Top in Pixels
 4 index 0 get STCold /HWResolution get 0 get mul 72 div neg
 5 index 3 get STCold /HWResolution get 1 get mul 72 div neg
]

Feel free to change the values of .HWMargins and PageSize to match your needs; the values given are the
defaults when the driver is compiled with “-DA4”. This option or its omission may cause trouble: the Stylus Color can
print up to exactly 8 inches (2880 pixels) at 360dpi. The remaining paper is the margin, where the left margin varies
only slightly with the paper size, while the right margin is significantly increased for wider paper, such as U.S. letter
size.

Note

If you are using an ISO paper size with a version of stcolor after 1.20 and compiled without “-DA4”, then the
default margin is too large, and you need to add the proper “.HWMargins” to the command line or to
stcolor.ps.

Stylus Color II / IIs and 1500

First the good news: the driver can print on the Stylus Color II. Now the bad news:

• According to Epson support the driver “abuses” the color capabilities. (See “Future Plans” for details).

• You need some parameters on the command line (or in stcolor.ps).

• I doubted that it would be usable with the Stylus Color IIs, but it is usable and suffers from mixing problems!

To make things work, you MUST disable the driver’s internal weaving (Softweave), in one of these two ways:

gs -dMicroweave ...
gs -dnoWeave -descp_Band=1 ...

Version 1.90, current as of Ghostscript 5.10, fixes this bug by new default behaviour. I experienced significantly
increased printing speed with the second variant on the old Stylus Color, when printing mostly monochrome data.

Recommendations

The next section is a contribution from Jason Patterson who evaluated a previous version (1.17). Ghostscript was
invoked as follows:

gs -sDEVICE=stcolor -r720x720 -sDithering=... -sOutputFile=escp.out stcolor.ps whatsoever.ps

where “...” is the name of the desired algorithm. stcolor.ps was omitted for the gs-algorithms (gsmono, gsrgb
and gscmyk), for which it is useless and would not allow the selection of “gscmyk”.

Color dithering experiments with gdevstc 1.21

Here are data about the EPSON Stylus Color driver’s different dithering methods, based on a little experiment using
four good quality scanned images of quite varied nature, to begin with, a summary of the results of the four
experiments. Sanity note: the results here are from only four images and a total of 24 printouts (eight on 720dpi
paper, sixteen on plain paper). Your results will almost certainly vary, and your standards might not be the same as
mine, so use these results only as a guide, not as a formal evaluation.

Quality of output by method

gsmono Pretty much what you’d expect from a mono ordered pattern. Looks like what a lot of mono laser
printers produce.

Unsupported devices

352

mailto:jason@reflections.com.au

fsmono Excellent for monochrome.

gscmyk Not very good, but expected from an ordered pattern.

gsrgb A little better than gscmyk. More consistent looking.

fs2 Good, but not quite as good as fsrgb. Gets the brightness wrong: too light at 720dpi, too dark at
360dpi.

fsrgb Very good, but a little too dark and has a slight blue tint.

hscmyk Excellent. Slightly better than fsrgb and fs2. Better than fscmyk on some images, almost the
same on most.

fscmyk Best. Very, very slightly better than hscmyk. On some images nearly as good as the EPSON
demos done with the MS Windows driver.

Overall visual quality (1-10), best to worst

0 1 2 3 4 5 6 7 8 9 10

Monochrome

fsmono ******************

gsmono **********

Colour

fscmyk *******************

hscmyk *******************

fsrgb ******************

fs2 *****************

gsrgb **********

gscmyk *********

Color transformation

In the initial version of the driver distributed with Ghostscript 3.33, the parameter SpotSize was the only way to
manipulate the colors at the driver level. According to the parameters enumerated above, this has changed
significantly with version 1.16 and above as a result an ongoing discussion about dithering algorithms and “false
color” on the Epson Stylus Color. This initiated the transformation of the stcolor driver into a framework for different
dithering algorithms, providing a generalized interface to the internal Ghostscript color models and the other data
structures related to Ghostscript drivers.

The main thing such a framework should be able to do is to deliver the values the dithering algorithm needs; and
since this directly influences the optical image impression, this transformation should be adjustable without the need
for recompilation and relinking.

Due to the limitations on raster storage, information is lost in the first transformation step, except for the 16-bit
monochrome mode. So any color adjustment should take place before this step and this is where the optional
ColorAdjustMatrix works.

The first transformation step, called “coding”, is controlled by the ?coding arrays. The decoding process expands
the range of values expontentially to a larger range than that provided by the initial Ghostscript color model, and is
therefore a reasonable place to make device- or algorithm-specific adjustments. This is where the ?transfer
arrays are used. Array access might be not the fastest method, but its generality is superior, so this step is always
based upon internally algorithm-specific array access. If 8 bits are stored per color component and if the algorithm
uses bytes too, the second transformation is included within the first, which saves significant computation time when
printing the data.

ColorAdjustMatrix

The driver supports different values for ProcessColorModel, which raises the need for different color adjustments.
Here “CAM” stands for “ColorAdjustMatrix”.

Unsupported devices

353

DeviceGray (three floats)
if ((r == g) && (g == b))
 K' = 1.0 - R;
else
 K' = 1.0 - CAM[0] * R + CAM[1] * G + CAM[2] * B;

According to the documentation on drivers, the latter (the “else” clause) should never happen.

DeviceRGB (nine floats)
if((r == g) && (g == b))
 R' = B' = G' = R;
else
 R' = CAM[0]*R + CAM[1]*G + CAM[2]*B;
 G' = CAM[3]*R + CAM[4]*G + CAM[5]*B;
 B' = CAM[6]*R + CAM[7]*G + CAM[8]*B;

The printer always uses four inks, so a special treatment of black is provided. Algorithms may take special action if R,
G, and B are all equal.

DeviceCMYK (sixteen floats)
if((c == m) && (m == y))
 K' = max(C,K);
 C' = M' = Y' = 0;
else
 K = min(C,M,Y);
 if((K > 0) && ColorAdjustMatrix_present) { => UCR
 C -= K;
 M -= K;
 Y -= K;
 }

 C' = CAM[0]*C + CAM[1]*M + CAM[2]*Y + CAM[3]*K;
 M' = CAM[4]*C + CAM[5]*M + CAM[6]*Y + CAM[7]*K;
 Y' = CAM[8]*C + CAM[9]*M + CAM[10]*Y + CAM[11]*K;
 K' = CAM[12]*C + CAM[13]*M + CAM[14]*Y + CAM[15]*K;

Again we have a special black treatment. “max(C,K)” was introduced because of a slight misbehaviour of
Ghostscript, which delivers black under certain circumstances as (1,1,1,0). Normally, when no special black
separation and undercolor removal procedures are defined at the PostScript level, either (C,M,Y,0) or (0,0,0,K)
values are mapped. This would make the extended ColorAdjustMatrix quite tedious, and so during mapping,
black separation is done for (C,M,Y,0) requests; and if there is a ColorAdjustMatrix, undercolor removal is used
too. In other words the default matrix is:

1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 1

and it is applied to CMYK values with separated and removed black. Raising the CMY coefficients while lowering the
K coefficients reduces black and intensifies color. But be careful, because even small deviations from the default
cause drastic changes.

If no ColorAdjustMatrix is set, the matrix computations are skipped. Thus the transformation reduces to range
inversion in monochrome mode and black separation in CMYK mode.

RGB / CMYK coding and transfer, and BitsPerPixel

These two (groups of) parameters are arrays of floating-point numbers in the range 0.0 to 1.0. They control the
truncation to the desired number of bits stored in raster memory (BitsPerPixel) and the ink density. The
“truncation” may become a nonlinear function if any of the ?coding arrays is set. Assume the following Ghostscript
invocation:

Unsupported devices

354

gs -sDEVICE=stcolor -sDithering=fscmyk -dBitsPerPixel=16 \
 -dKcoding='{ 0.0 0.09 0.9 1.0 }' \
 -dMcoding='{ 0.0 0.09 0.9 1.0 }' \
 -dKtransfer='{ 0.0 0.09 0.9 1.0 }' \
 -dYtransfer='{ 0.0 0.09 0.9 1.0 }'

We may have either or both of ?coding and ?transfer, giving four possible combinations. (These four
combinations appear in the given example.) The resulting mapping appears in the following tables, where except for
the internal Indices (4 components × 4 bits = 16 BitsPerPixel), all values are normalized to the range 0 to 1. The
actual range is 0 to 65535 for the Ghostscript color and 0 to 16777215 for the ink values delivered to the fscmyk
algorithm. Sorry for the bunch of numbers following, but you may try this example in conjunction with stcinfo.ps,
which should give you a graphical printout of the following numbers when you issue a showpage command.

The difference between cyan and magenta is the presence of a coding array. The coding process must map a range
of color values to each of the sixteen component indices. If no coding array is given, this is accomplished by dividing
by 4096, equivalent to a right shift by 12 bits. The final ink density resides in the given interval and moves from the
left to the right side from 0 to 15. For magenta there is a coding array and the ink value matches the center of the
intervals. But the distribution of the mapped intervals follows the given coding array and is nonlinear in the linear
color space of Ghostscript.

Now let us take a look at the case with transfer arrays:

Yellow uses a transfer array. There is no linear correspondence between the color and the ink values: this
correspondence is defined through the given array. In other words, the transfer arrays define a nonlinear ink
characteristic, which is exactly the same functionality that PostScript’s “(color)transfer” function provides.

While for yellow the intervals match the intervals used with cyan, for black the intervals match the magenta intervals.
But watch the correspondence between the CI/15 values and the ink density for black: this is a linear distribution in
the ink domain.

Not a bad idea, I think. Consider the fs2 algorithm: it uses values in the range 0 to 255. If any transfer array were
alone, some of the 256 possible values would never be used and others would be used for adjacent intervals several
times. Establishing an identical coding array solves this problem, so the full potential of the algorithm is used.

Another useful feature of the coding arrays is that they are internally normalized to the range 0-1. In 720x720dpi
mode the transfer arrays in stcolor.ps limit the dot density to about 50%, so these arrays end at 0.5 (and begin at
0.5 for RGB). Because of automatic normalization, these arrays can also be used as coding arrays. But of course in
the fs2 case mentioned above, values from 0 to 127 will never be delivered to the algorithm, while values 128-255
are delivered for adjacent intervals.

To clarify the intended use of the three parameters (parameter groups), keep this in mind:

• ColorAdjustMatrix is never used when transferring gray values. This restricts it to what the name says:
adjustment of colors, that is, correction for miscolored ink. Do not use it for saturation or brightness control.

• ?transfer arrays control the values delivered to the driver, which in turn controls the ink quantity. Use these
arrays to control saturation and brightness. In general these arrays are identical for all inks. If they differ they
provide a simpler scheme for color correction, which is not necessarily faster than the ColorAdjustMatrix.

• ?coding arrays control the color value intervals mapped to the internal color indices.

What is weaving?

The Epson Stylus Color has a head assembly that contains two physically identifiable heads, one for black and one
for cyan, magenta, and yellow (CMY). This makes four “logical” heads, one for each color component. Each of these
four heads has several jets at some vertical (Y) distance from one another, so several horizontal lines can be printed
of a given color during one pass of the heads. From experience I think there are fifteen jets per color, spaced at
1/90in.

So the question arises of how to print at a Y resolution of 360dpi with 90dpi jets. Simply by division one gets
360dpi/90dpi = 4, which tells us that 4 passes of the head assembly are needed to achieve a Y resolution of 360dpi.

Unsupported devices

355

Weaving is the method of how the fifteen jets are used to print adjacent horizontal rows separated here by 1/360
inch:

Now let’s assume that the dot diameter is different for each individual jet, but the average among the jets matches
the desired resolution. With weaving, adjacent rows are printed by different jets, thus some averaging takes place.
Without weaving, adjacent rows are printed by the same jet and this makes the dot diameter deviations visible as
1/90in stripes on the paper.

Print mode parameters

The parameters “Unidirectional”, “Microweave”, “noWeave”, “OutputCode”, “Model” and the given resolution
control the data generated for the printer.

Unidirectional

Simply toggles the unidirectional mode of the printer. Setting “Unidirectional” definitely slows printing speed, but
may improve the quality. I use this for printing transparencies, where fast head movement could smear the ink.

Microweave, noWeave and OutputCode=deltarow

The first are two booleans, which implies that four combinations are possible. Actually only three exist (if you don’t
count for deltarow): Softweave, Microweave, and noWeave. The first and second are functionally identical, the
difference being whether the driver or the printer does the job.

In the default Softweave mode the driver sends the data properly arranged to the printer, while in Microweave
mode, it is the printer that arranges the data. But in general the host processor is much faster than the printer’s
processor, and thus it is faster for the host do the job. In addition to that, for 720dpi eight passes are required, and
the amount of buffer space needed to buffer the data for the passes is far beyond the printer’s memory. Softweave
requires an odd value of “escp_Band”; the Stylus Color provides fifteen for that.

“OutputCode” controls the encoding used. In the basic modes, the choice consists of “plain” and “runlength”. The
computation of runlength-encoded data does not take much time, less than the data tranfer to the printer; thus this is
the recommended mode, and of course the default. With the Stylus Color, Epson introduced some new encoding
principles, namely “tiff” and “deltarow”. While the first was omitted from this driver for lack of apparent advantages,
deltarow is available as an option. Softweave cannot be used with this encoding, so if OutputCode=deltarow
is set, Microweave becomes the default. Maybe that the size of the ESC/P2 code becomes smaller, but I have
never observed faster printing speed. Things tend to become slower with deltarow compared to Softweave.

Model

Some ESC/P2 printers such as the Stylus 800 do not offer Microweave or the commands required to do
Softweave. Setting Model just changes the defaults and omits some parts of the initialization sequence which are
not compatible with the given printer model. Currently only “st800” is supported besides the default stcolor.

Bugs and pitfalls

• The given ?coding and ?transfer arrays should be strictly monotonic.

• It is impossible to change WHITE: that’s your paper. Thus RGB transfer should end at 1.0 and CMYK transfer
should start at 0.0.

• Usually 8 bits per component yields fastest operation.

• The ColorAdjustMatrix is not used in the reverse transformation used when Ghostscript does the dithering
(gs* modes). Expect funny results.

• If BitsPerPixel is less than 6, the entire coding and transfer process does not work. This is always true for
the gs* modes and becomes true for the other modes if BitsPerPixel is forced to low values.

• 720×720dpi printing should never select the gs* modes and should always use stcolor.ps. (I prefer
360×720.)

Unsupported devices

356

Tests

This section gives an overview of performance in terms of processing and printing times, from tests run after version
1.13. Printing was done offline (simply copying a processed file to the printer) to measure real printing speed without
regard to speed of processing on the host, since at high resolutions, processing time is the same order of magnitude
and thus may become the limiting factor.

The various OutputCodes

I ran several files though Ghostscript and recorded the size of the resulting print code, the processing time, and the
printing time, at least for some of the files, always using these options:

gs -sDEVICE=stcolor -sPAPERSIZE=a4 stcolor.ps - < file.ps

(Actually “-sPAPERSIZE=a4” is in my gs_init.ps since I’m a germ.)

“deltarow” is the new encoding principle (”ESC . 3 10 10 1”) with Microweave on. It is activated with
“-sOutputCode=deltarow”.

“Softweave” actually means that nothing else was used: it is the default, and implies that odd v=40/h=10/m=15
mode (”ESC . 1 40 10 15”).

“Microweave” means “-dMicroweave”, equivalent to “ESC . 1 10 10 1”, with full skip optimization and
microweave activated.

Finally I wanted to see the plain Kathy Ireland, and used “-sOutputCode=plain”, which just replaces runlength
encoding (RLE) by no encoding, thus using “ESC . 0 40 10 15”. [So sorry ;-) Kathy was still dressed in blue in
front of the blue sea on a blue air cushion – nice to see but hard to dither.]

So here are the results.

It may be that I’ve not chosen the optimal deltarow code, but even if it saves at lot of bytes, printing-speed is not
increased.

At least the printer prefers plain Kathy. In other words, sending 1 Megabyte or 20% more data has no impact on
printing speed. drawing.ps is an exception to this rule: plain prints slower than RLE.

“Unclever” coding – especially with deltarow – can significantly slow down printing. But even if very significant
advantages in the size of the code are achieved, deltarow is not competitive. colorcir.ps shows savings with
deltarow, but printing is a mess.

Acknowledgments

This driver was copied from gdevcdj.c (Ghostscript 3.12), which was contributed by George Cameron, Koert
Zeilstra, and Eckhard Rueggeberg. Some of the ESC/P2 code was drawn from Richard Brown’s gdevescp.c. The
POSIX interrupt code (compilation option -DSTC_SIGNAL) is from Frederic Loyer. Several improvements are based
on discussions with Brian Converse, Bill Davidson, Gero Guenther, Jason Patterson, ? Rueschstroer, and Steven
Singer.

While I wish to thank everyone mentioned above, they are by no means responsible for bugs in the stcolor driver –
just for the features.

uniprint, a flexible unified printer driver
uniprint is a unified parametric driver by Gunther Hess for several kinds of printers and devices, including:

• Any Epson Stylus Color, Stylus, or Stylus Pro.

• HP PCL/RTL.

• Canon BubbleJet Color 610.

• NEC P2X.

• Sun raster file format.

Unsupported devices

357

mailto:ghess@elmos.de

This driver is intended to become a unified printer driver. If you consider it ugly, please send me your suggestions for
improvements. The driver will be updated with them. Thus the full explanation of the driver’s name is: Ugly- ->
Updated- -> Unified Printer Driver

But you probably want to know something about the functionality. At the time of this writing uniprint drives:

• NEC Pinwriter P2X (24-pin monochrome impact printer, ESC/P style).

• Several Epson Stylus Color models (ESC/P2 style).

• HP-DeskJet 550c (basic HP-RTL).

• Canon BJC 610.

It can be configured for various other printers without recompilation and offers uncompressed (ugly) Sun rasterfiles
as another format, but this format is intended for testing purposes rather than real use. The usage of this driver is
quite simple. The typical command line looks like this:

gs @{MODEL}.upp -sOutputFile={printable file} MyFile.ps -c quit

For example, from my Linux box:

gs @stc.upp -sOutputFile=/dev/lp1 tiger.eps -c quit

Thanks to Danilo Beuche, Guido Classen, Mark Goldberg and Hans-Heinrich Viehmann for providing the files for the
stc200, hp690, stc500 and the stc640. Thanks to Michael Lossin for the newer st640 parameter sets.

Note

• Changing the resolution with Ghostscript’s -r switch is usually not possible.

• For Epson Stylus Color models not listed above, the two stc500 variants are likely to work in addition to
stcany, but their gamma correction might be wrong.

The state of this driver

The coding of uniprint was triggered by the requirements of the various Stylus Color models and some personal
needs for HP and NEC drivers. Thus the Epson models are well represented among the distributed parameter files.
When this driver entered the beta test phase, three other drivers appeared on the scene that could be at least
partially integrated into uniprint: cdj850 by Uli Wortmann, hpdj by Martin Lottermoser, and bjc610 by Helmut
Riegler.

Uli addresses features of the more recent DeskJet models that will not be available in uniprint soon. Martin taught me
a lesson on HP-PCL3 headers that will be available in uniprint soon. Helmut in turn followed an almost similar idea,
but targetted primarily for printing on Canon printers from the pbmplus library. Starting with version 1.68 of uniprint,
BJC support is available. Work on the hpdj integration will start after the update of my website.

Notes on uniprint’s background

uniprint is actually an update of stcolor, but much more versatile than its predecessor; stcolor, in its turn, started as a
clone of the color DeskJet family of drivers (cdj*). Finally, cdj* can be considered an addition of features to the
simpler monochrome drivers of Ghostscript. This addition of features is useful to get an idea of the functionality of
uniprint:

Monochrome to advanced color (cdj*)

This adds color mapping and rendering functions to the driver. Error diffusion is especially important for the
quality of printing.

HP color to Epson Color (stcolor)

The Epson Stylus Color offered two features simultaneously: it could produce 720×720dpi output and it could
soak the paper. In other words, it required more color management features inside the driver. This is still the
major conceptual difference in the data generation for HP and Epson printers.

Unsupported devices

358

mailto:losse@germanymail.com

Weaving techniques (stcolor)

Besides the internal color management, the Stylus Color did not provide enough buffer space to operate the
printer fast at 720×720dpi. The use of weaving could yield triple the print speed. Weaving, also called
interleaving, is present in some monochrome drivers too. The new thing in stcolor was the combination with
error diffusion. Unfortunately the weaving was somehow hard-coded, as the problems with the newer members
of the Stylus Color family of printers demonstrated.

Generalized output format and weaving (uniprint)

The features mentioned above yield about 90% of stcolor’s source code; only 10% is related to the formatting of
the output. The idea to make the output format switchable came up soon after completing stcolor, but its final
design was triggered by the (personal) necessity to drive a NEC P2X and a Designjet 750c.

Thus uniprint accumulates almost any features that can be found among the other printer drivers, which clearly has
some disadvantage in processing speed – true in particular of version 1.75, since it was targetted for functionality,
and several speed-gaining features were (knowingly) omitted.

To summarize and to introduce the terms used in the description of the parameters, the features of uniprint that can
be parameterized are:

• Color mapping.

• Color rendering (error diffusion or Floyd-Steinberg).

• Output format, including weaving.

Godzilla’s guide to the creation of Unified Printer Parameter (.upp) files

Here is one of the distributed parameter files (stc_l.upp) with some added comments. Also see the section that
describes all uniprint’s parameters in brief.

-supModel="Epson Stylus Color I (and PRO Series), 360x360DpI, noWeave"
-sDEVICE=uniprint -- Select the driver
-dNOPAUSE -- Useful with printers
-dSAFER -- Provides some security
-dupColorModel=/DeviceCMYK -- Selects the color mapping
-dupRendering=/ErrorDiffusion -- Selects the color rendering
-dupOutputFormat=/EscP2 -- Selects the output format
-r360x360 -- Adjusts the resolution
-dupMargins="{ 9.0 39.96 9.0 9.0}" -- Establishes (L/B/R/T margins in points)
-dupComponentBits="{1 1 1 1}" -- Map: bits per component (default: 8)
-dupWeaveYPasses=4 -- Weave: Y-passes (default: 1)
-dupOutputPins=15 -- Format/weave: scans per Command
-dupBeginPageCommand="< -- Goes to the printer
 1b40 1b40 -- ESC '@' ESC '@' -> dual reset
 1b2847 0100 01 -- ESC '(' 'G' 1 0 1 -> graphics
 1b2869 0100 00 -- ESC '(' 'i' 1 0 1 -> no HW weave
 1b2855 0100 0A -- ESC '(' 'U' 1 0 10 -> 360dpi
 1b5500 -- ESC 'U' 0 -> bidir print
 1b2843 0200 0000 -- ESC '(' 'C' 2 0 xx -> page length
 1b2863 0400 0000 0000 -- ESC '(' 'c' 4 0 xxxx -> margins
>" -- as it is, unless:
-dupAdjustPageLengthCommand -- Adjust page length in BOP requested
-dupAdjustTopMarginCommand -- Adjust top margin in BOP
-dupAdjustBottomMarginCommand -- Adjust bottom margin in BOP
-dupEndPageCommand="(\033@\014)" -- Last (but one) data to the printer
-dupAbortCommand="(\033@\15\12\12\12\12 Printout-Aborted\15\014)"

That’s short, and if one removes upWeaveYPasses and upOutputPins it becomes shorter, almost stcany.upp.
This miniature size is because I am most familiar with ESC/P2, and was able to add defaults for the omitted
parameters. Now a few notes about the parameters used in this example:

• upModel is a string serving as a comment (and nothing else).

• DEVICE, NOPAUSE, SAFER are well-known Ghostscript parameters described in the usage documentation.

Unsupported devices

359

• upColorModel is one of the major uniprint parameters: it selects the color mapping and in turn the PostScript
color model. It supports the devices /DeviceGray, /DeviceRGBW, /DeviceRGB, /DeviceCMYK, and
/DeviceCMYKgenerate.

• upRendering selects the (color) rendering, supporting the values /ErrorDiffusion and /FSCMYK32.
/ErrorDiffusion is similar to fsmono, fsrgb and fsx4 of stcolor, while /FSCMYK32 is (almost) identical to
fscmyk and hscmyk, but is restricted to 32-bit data and should be used in conjunction with
/DeviceCMYKgenerate.

• upOutputFormat selects the output method, supporting the values /SunRaster, /Epson, /EscP2,
/EscP2XY, and /Pcl.

/SunRaster creates Sun raster files and requires no other
parameters

/Epson is used for the elderly ESC/P format (used by
many printers)

/EscP2 is used by more recent Epson printers (no X
weaving supported)

/EscP2XY supports X-Weaving, used with 1440dpi printers
and in stc2s_h

/Pcl HP PCL/RTL-style output formatter without
weaving

• -r360x360 is Ghostscript’s standard resolution switch.

• upMargins="{ 9.0 39.96 9.0 9.0}" has function similar to the Ghostscript parameter .HWMargins: it
sets the left, bottom, right, and top margins in points. uniprint provides this parameter to enable automatic
left-right exchange if upYFlip is active.

• upComponentBits is an array of integers that selects the bits stored in raster memory, by default 8 bits per
component. In this example, 1 bit is selected for each component, thus turning down the Floyd-Steinberg
algorithm (but still carrying out the time-consuming computation). The related parameter upComponentShift
controls positioning the components within raster memory. Each of the numbers given corresponds to a
component which depends on the selected upColorModel:

/DeviceGray /DeviceRGBW /DeviceRGB /DeviceCMYK /DeviceCMYKgenerate

0 White White Red Black Black

1 – Red Green Cyan Cyan

2 – Green Blue Magenta Magenta

3 – Blue – Yellow Yellow

This order may not be suitable for some printers, so another parameter upOutputComponentOrder, also an array of integers, selects the output order using the
numbers on the left.

One group of very important parameters not used in the example above deserves to be mentioned here: the transfer arrays, named up{color}Transfer, where
{color} is one of the names in the table above. These are arrays of floats in the range 0.0 - 1.0 representing the color transfer functions. They are used during mapping
and rendering. In the simplest case, these arrays ensure an equidistant distribution of the stored values within the device space (which means a nonlinear mapping from
Ghostscript’s point of view). If the given array does not cover the entire range from 0 to 1, which applies for the Stylus Color family at high resolution for some media, only
the relevant part gets mapped to raster memory (meaning that is’s fully utilized) and the rendering takes care of the “overhang” (in this case the post-diffusion of 1-bit
components makes sense).

Finally an important note on the transfer arrays: for monochrome devices the stored component is White, which is the way PostScript defines these devices, but most
printers require Black. Thus one has to provide a falling upWhiteTransfer for such printers.

• upWeaveYPasses is an integer that gives the number of print head passes required to achieve the requested
Ydpi. This makes sense only if upOutputPins is set to something greater than 1. Thus multiple pins or
nozzles are transferred with a single command, and of course such a command must be supported by the
device.

If no other weave parameters are given, uniprint computes several defaults which together do no weaving. The
/Epson and /EscP2XY formats take care of upWeaveXPasses too.

Unsupported devices

360

• upBeginPageCommand represents the data transferred to the printer whenever a new page begins. Before
that, upBeginJobCommand is written to the device only once per output file. (Intended for the HP PJL
sequences).

• upAdjustBottomMarginCommand, upAdjustMediaSize, upAdjustPageLengthCommand,
upAdjustPageWidthCommand, upAdjustResolutionCommand, and upAdjustTopMarginCommand.

Normally uniprint does not change the upBeginPageCommand, nor does it provide a default. However, if
the above boolean values are set, the corresponding values are changed (provided that the code of the
formatters supports this change and the commands to be adjusted are included in the BOP string).

• upEndPageCommand is the fixed termination sequence for each page, and of course there is an
upEndJobCommand too.

• upAbortCommand is written if uniprint’s interrupt detection is enabled and a signal is caught. It replaces
upEndPageCommand and upEndJobCommand, thus allowing the indication of an aborted job. (Ghostscript gets
an error return from uniprint in this case, and abandons further processing).

For the ESC/P(2) formats all commands represent binary data, while for the PCL/RTL formatter some of them are
formats for fprintf. These strings must explicitly have a trailing "\0'.

I should write more, but the only recommendation is to take a look at the various parameter files. Here are a few
more hints.

• If the Driver rejects a configuration, nothing happens until showpage; then an error is raised and a message
with CALL-REJECTED upd_print_page... is printed on stderr.

• uniprint has lots of messages that can be activated by setting bits in the preprocessor macro UPD_MESSAGES. I
usually use the compile-time option -DUPD_MESSAGES=0x17 for configuration development. (For the
semantics, check the UPD_M_ macros in the source).

• A program "uninfo.ps" distributed with Ghostscript displays interactively in alphabetical order the contents of
the current pagedevice dictionary. This includes any parameters generated or changed by uniprint.

All parameters in brief

This table gives a brief explanation of every parameter known to uniprint, listing them in alphabetical order. “[]”
denotes that a parameter is an array, and “(RO)” that it is read-only.

uniprint’s Roll of Honor

I should mention all of the people who were involved in stcolor’s evolution, but I’ve decided to start from scratch here
for uniprint:

John P. Beale

for testing the stc600 modes

Bill Davidson

who triggered some weaving research and tested stc2s_h

L. Peter Deutsch

who triggered ease of configuration

Mark Goldberg

who prepared the stc500 transfers

Scott F. Johnston and Scott J. Kramer

for testing the stc800 modes

Martin Lottermoser

for his great commented H-P DeskJet driver

Helmut Riegler

for the BJC extension

Hans-Gerd Straeter

for some measured transfer curves and more

Uli Wortmann

Unsupported devices

361

https://en.wikipedia.org/wiki/L._Peter_Deutsch

for discussions and his cdj850 driver

My family

for tolerating my printer-driver hacking

Gunther Hess Duesseldorfer Landstr. 16b, D-47249 Duisburg ,Germany, +49 203 376273 telephone (MET evening
hours)

Uniprint weaving parameters HowTo

This section was contributed by Glenn Ramsey.

I wrote this because the documentation was very brief and I really struggled with it for a while, but it is very simple
once you understand what is going on.

This only describes how to work out the Y parameters, I haven’t looked at the X parameters yet.

1. Determine the nozzle geometry (upOutputPins) You need to know how many nozzles the printer has and the
spacing between them. Usually you can find this out from the printer manual, or the printer supplier, but you
may have to dissect a couple of printer output files produced with the driver supplied with the printer. There is a
utility called escp2ras* that will help with that. Sometimes the term pin is used instead of nozzle but they
mean the same thing.

The number of nozzles will be the value assigned to the upOutputPins parameter.

Actually you don’t have to print with all the pins available but for the purpose of demonstration I’ll assume that
we are using them all.

2. Determine how many passes are required (upWeaveYPasses).

3. The number of passes required is going to depend on the required resolution and the nozzle spacing.

passes = resolution * nozzle spacing

This will be the value assigned to the upWeaveYPasses parameter.

For example if the desired resolution is 360 dpi and the nozzles are spaced at 1/90in then 360 * 1/90 = 4
passes are required. For 720 dpi 8 passes would be required. The printer would, of course, have to be capable
of moving the paper in increments of either 360 or 720 dpi too.

4. Determine the normal Y feed increment (upWeaveYFeeds)

You need to work out how much to feed the paper so that when the paper has moved by one head length in
however many passes you have then each row space on the paper has been passed over by at least one
nozzle. There will be one feed value for each pass and the feed values must comply with the following rules:

sum of feeds = passes * nozzles
feed%passes != 0 (feed is not exactly divisible by passes)
sum of (nozzles - feed) = 0

For example if passes=4 and nozzles=15, then sum of feeds=60. The feed values could be 1,1,1,57 or
15,15,15,15 or 14,15,18,13.

These values will be assigned to the upWeaveYFeeds parameter.

You would need to experiment to see what combination looks best on the printer.

I found it convenient to draw several lines of nozzles and then move them around to see how the different
combinations would fill the paper. A computer drawing tool makes this easier than pencil and paper (I used Dia,
a GNOME app). The number of nozzles would probably be be a good place to start.

Remember that if the number of passes is more than 1 then the feed increment will be less than the nozzle
spacing and passes × feed increment size must equal the physical distance between each nozzle.

5. Determine the beginning of page pins (upWeaveInitialPins).

These values will be assigned to the upWeaveInitialPins parameter and are the numbers of nozzles to
operate in each of the initial passes at the top of a page. The nozzles that the values refer to are the topmost
nozzles on the head, nearest the top margin. If the image doesn’t start at the top margin then uniprint doesn’t
use these feeds.

Unsupported devices

362

mailto:ghess@elmos.de

I don’t know a mathematical relation for this except that at least one of the values must be the number of
nozzles, but I’m sure that there must be one. I used a graphical method, the description that follows refers to the
ascii diagram in below.

Draw a line of nozzles for each pass arranged as they would be using the normal Y feed increment determined
in step 3. In the diagram below this would be passes 5-8.

Draw a line of nozzles that would print just before the first normal pass. The feed increment for this pass will be
close to and most likely 1 or 2 units less than the feed increment of the last normal pass. In the example below
this line is pass 4 and the feed increment is 13 whereas the normal feed increment is 15.

Draw each pass before that with a small feed increment so that if all of the nozzles appearing above the first
nozzle of the first normal pass operate then all of the spaces will be filled. This feed increment is usually 1
except in cases where some jiggery pokery is going on to make the printer print at an apparent higher resolution
than the nozzle diameter.

Now select the nozzles that will operate in each of theses initial passes so that the paper is filled. In each pass
the nozzles must be adjacent to each other and at least one of the passes will have all the nozzles operating. I
suspect that for each combination of normal Y feed increments there will only be one set of valid beginning of
page increments.

Example: stc.upp from Aladdin Ghostscript 6.01

15 nozzles spaced at 1/90 in, 360 dpi requires 4 passes.

-dupWeaveYPasses=4
-dupOutputPins=15
-dupWeaveYFeeds="{15 15 15 15}"
-dupWeaveInitialYFeeds="{1 1 1 13}"
-dupWeaveInitialPins="{ 4 15 11 7}"

The following diagram shows which nozzles operate during each pass.

Passes 1-4 are beginning of page passes and passes 5-8 are normal passes.

These parameters would also work:

-dupWeaveYPasses=4
-dupOutputPins=15
-dupWeaveYFeeds="{14 15 18 13}"
-dupWeaveInitialYFeeds="{1 1 1 13}"
-dupWeaveInitialPins="{ 4 11 7 15}"

Extension to uniprint for the Epson Stylus Color 300

This section was contributed by Glenn Ramsey.

The Epson Stylus Color 300 uses a different command set to other Epson Stylus Color printers that use the ESC/P2
language. As far as I can tell its commands are a subset of ESC/P2. In ESC/P2 the colour to be printed is selected
by a ‘set colour’ command and then the data sent is only printed in that colour until the colour is changed with
another ‘set colour’ command. The Stylus Color 300 lacks this functionality. The data sent to the printer maps directly
to the ink nozzles and colour of an output scan line in the printed output is determined by the position of the scan line
within the data. This means that the driver must know how the nozzles are arranged and must format the output
accordingly. The extension adds a format that I have called EscNozzleMap and adds some additional parameters to
uniprint.

• upOutputFormatselects the output method, and should be set to the value /EscNozzleMap to select this
format.

/EscNozzleMap

produces output for the Epson Stylus Color 300

A more detailed description of the new parameters

upNozzleMapRowsPerPass

The number of rows of data that are required to address all nozzles for a single pass of the head. There will
always be this number of rows of output data generated. I’d expect it to be the same as the total number of

Unsupported devices

363

nozzles but it wouldn’t break the formatter if it wasn’t. So if you wanted to print with only the 10th nozzle then row
10 would contain data corresponding to the bit pattern and all of the others would be padded with zeros.

upNozzleMapPatternRepeat

The number of nozzles in each repeated group on the printing head. This parameter must correspond with the
length of the upNozzleMapRowMask array.

upNozzleMapRowMask

An array of integers that defines the colour of the nozzles on the head and whether the nozzles will be used to
print. The array index defines the row index for the nozzle in the output data and the value defines the colour of
the nozzle. The mapping of colours to values is defined in the table below.

header-rows: 1

colour mask value

K 1

C 2

M 3

Y 4

no data 0

A value of 0 means that the nozzle is not used and the row in the output data will be padded with zeros.

upNozzleMapMaskScanOffset

An array of integers that defines the physical position of the nozzles relative to the first nozzle in the repeated
group. The relative distance is measured in printed line widths and will be different for different printing
resolutions. This parameter is used because the physical spacing of the nozzles may not correspond to their
mapping in the output data. For example the ESC300 has nozzles physically arranged something like this:

There is a one nozzle width space between the last two nozzles in each group. In the output data the data for the last
nozzle in the group would be in row 5 (numbering starts at 0) but the nozzle is physically positioned at 6 spaces from
the first nozzle.

Example 1 - Epson Stylus Color 300 - 360 dpi colour

-dupWeaveYPasses=6
-dupOutputPins=11
-dupWeaveYFeeds="{ 11 11 11 11 11 11 }"
-dupWeaveInitialYFeeds="{ 1 1 1 1 1 7 }"
-dupWeaveInitialPins="{ 2 11 9 7 5 3 }"
-dupNozzleMapRowsPerPass=64
-dupNozzleMapPatternRepeat=6
-dupNozzleMapRowMask="{ 2 4 1 3 0 0 }"
-dupNozzleMapMaskScanOffset="{ 0 1 2 3 0 0 }"

The weaving parameters are the same as for any other uniprint driver but they must be consistent with the nozzle
map parameters. In this printer the coloured nozzles are spaced at 1/60” so 6 passes are required for 360 dpi
resolution.

In the example there are 64 rows of data required for each head pass. Each row must be completely filled with data
for each pass so if certain nozzles do not print in the pass then the rows for those nozzles will be padded with
zeroes.

The row mask translates to “C Y K M 0 0” so in the output data rows 0,7,13,… will contain data for cyan, rows
1,8,14,… will contain data for yellow, etc. Rows 4,10,16,… and 5, 11,15,… will always be padded with zeroes. The
upNozzleMapPatternRepeat parameter defines the length of the mask.

The row mask is repeated for each group of upNozzleMapPatternRepeat rows in the output data. In this case
there are 64 rows so there will be 10 groups of “C Y K M 0 0” followed by “C Y K M” which is equivalent to 11 output
pins.

Unsupported devices

364

The upNozzleMaskScanOffset array indicates how the data from the scan buffer is mapped to the output data.
The data is presented to the formatter as a buffer of four colour scanlines. The index of the scanline being printed,
lets call it y, always corresponds, in this example, to the physical position of the cyan nozzle but since the nozzles
are not on the same horizontal line then the other colours for the current pass must come from other scanlines in the
scan buffer. The example is { 0 1 2 3 0 0 }, this means that when printing a 4 colour image the magenta data would
come from scanline y+3, the black from scanline y+2, etc. It would have been possible in this case to use the array
index instead of the upNozzleMaskScanOffset parameter however the parameter is necessary to be able to use
the full capability of the printer in black only mode.

Example 2 - Epson Stylus Color 300 - 180 dpi black only

-dupMargins="{ 9.0 39.96 9.0 9.0}"
-dupWeaveYPasses=1
-dupOutputPins=31
-dupNozzleMapRowsPerPass=64
-dupNozzleMapPatternRepeat=6
-dupNozzleMapRowMask="{ 0 0 1 0 1 1}"
-dupNozzleMapMaskScanOffset="{ 0 0 0 0 1 2 }"

In this example there is no weaving.

The ESC300 has black nozzles evenly physically arranged as K K K but the data must be sent to the printer as
00K0KK. This is handled by the upNozzleMapRowMask and upNozzleMaskScanOffset arrays. The
upNozzleMapRowMask array is { 0 0 1 0 1 1} which translates to { 0 0 K 0 K K } so rows 0, 1 and 3 will
always contain zeros and the other rows will contain data.

The upNozzleMaskScanOffset array in this case is { 0 0 0 0 1 2 } so if the data for the 1st nozzle comes
from row y in the scan buffer then the data for the 2nd and 3rd nozzles will come from rows y+1 and y+2.

Example 3 - Epson Stylus Color 300 - 360 dpi black only

-dupWeaveYPasses=2
-dupOutputPins=31
-dupWeaveYFeeds="{31 31}"
-dupWeaveInitialYFeeds="{1 31}"
-dupWeaveInitialPins="{16 31}"
-dupNozzleMapRowsPerPass=64
-dupNozzleMapPatternRepeat=6
-dupNozzleMapRowMask="{ 0 0 1 0 1 1}"
-dupNozzleMapMaskScanOffset="{ 0 0 0 0 2 4 }"

In this example 2 weave passes are required to achieve the desired resolution.

The upNozzleMaskScanOffset array in this case is { 0 0 0 0 2 4 } because there are two weave passes so
if the data for the first nozzle comes from row y in the scan buffer then the data for the 2nd and 3rd nozzles must
come from rows y+(1*2) and y+(2*2).

Glenn Ramsey

glennr at users.sourceforge.net

February 2001

This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license
and may not be copied, modified or distributed except as expressly authorized under the terms of that license. Refer
to licensing information at https://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200,
Novato, CA 94945, U.S.A., +1(415)492-9861, for further information.

Unsupported devices

365

https://www.artifex.com

Indices and tables
• genindex

• modindex

• search

Indices and tables

367

	Table of Contents
	Introduction
	What is Ghostscript?
	Ghostscript
	GhostPDF
	GhostPDL
	GhostPCL
	GhostXPS
	URW Font Information

	Document roadmap by theme
	What should I read if I’m a new user?
	GPL and commercial Ghostscript
	Before building Ghostscript
	What should I read if I’m not a new user?
	What if I’m a developer?
	What if I’m writing documentation?

	Presence on the World Wide Web
	Ghostscript’s home page
	Adobe PostScript, Encapsulated PostScript, and PDF reference documentation
	Other material on the WWW

	How to Build Ghostscript from Source Code
	General overview
	Built libraries
	How to acquire the source code
	How to acquire the development source code
	How to unpack the source code
	How to unpack compressed tar files generally
	How to unpack Ghostscript itself
	Ghostscript Core Source subdirectories
	Additional GhostPDL source subdirectories

	How to check for post-release bug fixes
	How to prepare the makefiles
	Platform-specific makefiles
	Changes for your environment
	Selecting features and devices
	Precompiled run-time data

	Setting up “makefile”
	Invoking “make”
	Cross-compiling

	How to build Ghostscript from source (PC version)
	Microsoft Visual Studio
	Using Microsoft Visual Studio
	Further details
	Using the command line

	Microsoft Environment for 64-bit
	Making self-extracting installers

	Microsoft Environment for WinRT
	Cygwin32 gcc
	MSys/Mingw

	How to build Ghostscript from source (MacOS version)
	MacOS X

	How to build Ghostscript from source (Unix version)
	make tools
	GNU make

	OS-specific issues
	MacOS or Linux / OpenBSD
	H-P RISC workstations
	IBM AIX
	Silicon Graphics

	Oracle/Sun
	Solaris

	Other environments
	Environments lacking multi-threading
	Plan 9

	How to build Ghostscript with UFST

	How to Install Ghostscript
	Overview of how to install Ghostscript
	Installing Ghostscript on Unix
	Fonts
	Ghostscript as a shared object
	Additional notes on Linux

	Installing Ghostscript on MS Windows
	Windows 3.1 (16-bit)
	Windows 95, 98, Me
	Windows NT4, 2000, XP, 2003 or Vista (32-bit)
	Windows XP x64 edition, 2003 or Vista (64-bit)
	Installing
	General Windows configuration
	Uninstalling Ghostscript on Windows

	Installing Ghostscript on OpenVMS

	Using Ghostscript
	Invoking Ghostscript
	Help at the command line: gs -h

	Selecting an output device
	Output resolution
	Output to files
	One page per file
	-o option

	Choosing paper size
	Changing the installed default paper size

	Interacting with pipes
	Using Ghostscript with PDF files
	Switches for PDF files
	-dNEWPDF
	-dPDFINFO
	-dPDFFitPage
	-dPrinted & -dPrinted=false
	-dUseBleedBox
	-dUseTrimBox
	-dUseArtBox
	-dUseCropBox
	-sPDFPassword=password
	-dShowAnnots=false
	-dShowAcroForm=false
	-dNoUserUnit
	-dRENDERTTNOTDEF
	-dFirstPage=pagenumber
	-dLastPage=pagenumber
	-sPageList=pageranges

	Problems interpreting a PDF file
	PDF files from standard input

	Using Ghostscript with EPS files
	Using Ghostscript with overprinting and spot colors
	How Ghostscript finds files
	Testing a file name for an absolute path
	Finding PostScript Level 2 resources
	Font lookup
	Differences between search path and font path
	Suggested GS_FONTPATH for different systems

	CID fonts
	CID font substitution
	Automatic CIDFont Substitution
	Explicit CIDFont Substitution
	Format 1
	Format 2
	Format 3
	Examples

	Using Unicode True Type fonts
	Temporary files
	Where Ghostscript puts temporary files

	Notes on specific platforms
	Word size (32 or 64 bits)
	Unix
	pv.sh
	sysvlp.sh
	pj-gs.sh
	unix-lpr.sh
	lprsetup.sh

	VMS
	Using X Windows on VMS

	MS Windows
	MS-DOS
	X Windows
	X Windows resources
	X resources
	Working around bugs in X servers
	X device parameters
	AlwaysUpdate
	MaxBitmap
	MaxTempPixmap, MaxTempImage

	SCO Unix

	Command line options
	General switches
	Input control
	@filename
	– filename arg1 …
	-+ filename arg1 …
	-@ filename arg1 …
	-
	-_
	-c token …
	-c string …
	-f
	-f filename

	File searching
	-I directories
	-P
	-P-

	Setting parameters
	-D name, -d name
	-D name=token, -d name=token
	-S name=string, -s name=string
	-p name=string
	-u name
	-g number1 x number2
	-r number (same as -r number x number)
	-r number1 x number2

	Suppress messages
	-q

	Parameter switches (-d and -s)
	Rendering parameters
	-dCOLORSCREEN
	-dCOLORSCREEN=0
	-dCOLORSCREEN=false
	-dDITHERPPI= lpi
	-dInterpolateControl= control_value
	-dDOINTERPOLATE
	-dNOINTERPOLATE
	-dTextAlphaBits= n
	-dGraphicsAlphaBits= n
	-dAlignToPixels= n
	-dGridFitTT= n
	-dUseCIEColor
	-dNOCIE
	-dNOSUBSTDEVICECOLORS
	-dNOPSICC
	-dNOTRANSPARENCY
	-dALLOWPSTRANSPARENCY
	-dNO_TN5044
	-dDOPS
	-dBlackText
	-dBlackVector
	-dBlackThresholdL= float
	-dBlackThresholdC= float

	Page parameters
	-dFirstPage= pagenumber
	-dLastPage= pagenumber
	-sPageList= pagenumber
	-dFIXEDMEDIA
	-dFIXEDRESOLUTION
	-dPSFitPage
	-dORIENT1=true
	-dORIENT1=false
	-dDEVICEWIDTHPOINTS= w
	-dDEVICEHEIGHTPOINTS= h
	-sDEFAULTPAPERSIZE= a4
	-dFitPage
	-sNupControl= Nup_option_string

	Font-related parameters
	-dLOCALFONTS
	-dNOFONTMAP
	-dNOFONTPATH
	-dNOPLATFONTS
	-dNONATIVEFONTMAP
	-sFONTMAP= filename1;filename2;…
	-sFONTPATH= dir1;dir2;…
	-sSUBSTFONT= fontname

	Resource-related parameters
	-sGenericResourceDir= path
	-sFontResourceDir= path

	Interaction-related parameters
	-dBATCH
	-dNOPAGEPROMPT
	-dNOPAUSE
	-dNOPROMPT
	-dQUIET
	-dSHORTERRORS
	-sstdout= filename
	-dTTYPAUSE

	Device and output selection parameters
	-dNODISPLAY
	-sDEVICE= device
	-sOutputFile= filename
	-d.IgnoreNumCopies= true

	Deferred Page Rendering
	EPS parameters
	-dEPSCrop
	-dEPSFitPage
	-dNOEPS

	ICC color parameters
	-sDefaultGrayProfile= filename
	-sDefaultRGBProfile= filename
	-sDefaultCMYKProfile= filename
	-sDeviceNProfile= filename
	-sOutputICCProfile= filename
	-sICCOutputColors= “Cyan, Magenta, Yellow, Black, Orange, Violet”
	-sProofProfile= filename
	-sDeviceLinkProfile= filename
	-sNamedProfile= filename
	-sBlendColorProfile= filename
	-dColorAccuracy= 0/1/2
	-dRenderIntent= 0/1/2/3
	-dBlackPtComp= 0/1
	-dKPreserve= 0/1/2
	-sVectorICCProfile= filename
	-dVectorIntent= 0/1/2/3
	-dVectorBlackPt= 0/1
	-dVectorKPreserve= 0/1/2
	-sImageICCProfile= filename
	-dImageIntent= 0/1/2/3
	-dImageBlackPt= 0/1
	-dImageKPreserve= 0/1/2
	-sTextICCProfile= filename
	-dTextIntent= 0/1/2/3
	-dTextBlackPt= 0/1
	-dTextKPreserve= 0/1/2
	-dOverrideICC
	-sSourceObjectICC= filename
	-dDeviceGrayToK= true/false
	-dUseFastColor= true/false
	-dSimulateOverprint= true/false
	-dOverprint= /enable | /disable | /simulate
	-dUsePDFX3Profile= int
	-sUseOutputIntent= string
	-sICCProfilesDir= path

	Other parameters
	-dFILTERIMAGE
	-dFILTERTEXT
	-dFILTERVECTOR
	-dDELAYBIND
	-dDOPDFMARKS
	-dJOBSERVER
	-dNOCACHE
	-dNOGC
	-dNOOUTERSAVE
	-dNOSAFER
	-dSAFER
	-dOLDSAFER
	-dPreBandThreshold= true/false
	-dWRITESYSTEMDICT

	Improving performance
	Summary of environment variables
	GS, GSC (MS Windows only)
	GS_DEVICE
	GS_FONTPATH
	GS_LIB
	GS_OPTIONS
	TEMP, TMPDIR

	Debugging
	Debug switches
	Switches used in debugging

	Visual Trace

	Appendix: Paper sizes known to Ghostscript
	U.S. standard
	ISO standard
	JIS standard
	ISO/JIS switchable
	Other

	API
	What is the Ghostscript Interpreter API?
	Exported functions
	gsapi_revision()
	gsapi_new_instance()
	gsapi_delete_instance()
	gsapi_set_stdio_with_handle()
	gsapi_set_stdio()
	gsapi_set_poll_with_handle()
	gsapi_set_poll()
	gsapi_set_display_callback()
	gsapi_register_callout()
	gsapi_deregister_callout()
	gsapi_set_arg_encoding()
	gsapi_set_default_device_list()
	gsapi_get_default_device_list()
	gsapi_init_with_args()
	gsapi_run_*()
	gsapi_exit()
	gsapi_set_param()
	gsapi_get_param()
	gsapi_enumerate_params()
	gsapi_add_control_path()
	gsapi_remove_control_path()
	gsapi_purge_control_paths()
	gsapi_activate_path_control()
	gsapi_is_path_control_active()
	gsapi_add_fs
	gsapi_remove_fs
	gsapi_fs_t

	Callouts
	Return codes
	Return Codes from gsapi_*()

	Example Usage
	Example 1
	Example 2
	Example 3
	Example 4

	Multiple Threads
	Standard Input and Output
	Display Device
	Legacy method
	Modern method
	display_open()
	display_preclose()
	display_close()
	display_presize()
	display_size()
	display_sync()
	display_page()
	display_update()
	display_memalloc()
	display_memfree()
	display_separation()
	display_adjust_band_height()
	display_rectangle_request()

	Language Bindings
	The C API
	Licensing
	Open Source license
	Commercial license

	Demo code
	C#
	Introduction
	Platform & setup
	GhostAPI
	Structs and Enums
	gsapi_revision_t
	gs_set_param_type
	gsEncoding

	Constants
	gsConstants

	GSAPI
	gsapi_revision
	gsapi_new_instance
	gsapi_delete_instance
	gsapi_set_stdio_with_handle
	gsapi_set_stdio
	gsapi_set_poll_with_handle
	gsapi_set_poll
	gsapi_set_display_callback
	gsapi_register_callout
	gsapi_deregister_callout
	gsapi_set_arg_encoding
	gsapi_set_default_device_list
	gsapi_get_default_device_list
	gsapi_init_with_args
	gsapi_run_*
	gsapi_run_string_begin
	gsapi_run_string_continue
	gsapi_run_string_with_length
	gsapi_run_string
	gsapi_run_string_end
	gsapi_run_file
	gsapi_exit
	gsapi_set_param
	gsapi_get_param
	gsapi_enumerate_params
	gsapi_add_control_path
	gsapi_remove_control_path
	gsapi_purge_control_paths
	gsapi_activate_path_control
	gsapi_is_path_control_active

	Callback and Callout prototypes
	gs_stdio_handler
	gsPollHandler
	gsCallOut

	GhostNET
	Enums
	Tasks
	Results
	Status

	The Parameter Struct
	Parameters explained

	The Event class
	GSNET
	Sample code
	Delegates
	DLLProblemCallBack
	StdIOCallBack
	ProgressCallBack
	PageRenderedCallBack

	GetVersion
	DisplayDeviceOpen
	DisplayDeviceClose
	GetPageCount
	CreateXPS
	DistillPS
	DisplayDeviceRunFile
	DisplayDeviceRenderThumbs
	DisplayDeviceRenderPages
	GetStatus
	Cancel
	GhostscriptException

	GhostMono
	Enums
	Tasks
	Results
	Status

	The Parameter Struct
	Parameters explained

	The Event class
	GSMONO
	Delegates
	DLLProblemCallBack
	StdIOCallBack
	ProgressCallBack
	PageRenderedCallBack

	GetVersion
	DisplayDeviceOpen
	DisplayDeviceClose
	GetPageCount
	DistillPS
	DisplayDeviceRenderAll
	DisplayDeviceRenderThumbs
	DisplayDeviceRenderPages
	GetStatus
	GhostscriptException

	Java
	Introduction
	Platform & setup
	jni: Building the Java Native Interface
	Preparing your include folder
	Building on Windows
	Building on MacOS
	Building on Linux

	gsjava: Building the JAR
	Building with the command line
	Building with Eclipse
	Linking the JAR

	Demo projects
	gstest
	gsviewer
	Building on Windows
	Running on Windows
	Building on MacOS
	Running on MacOS
	Building on Linux
	Running on Linux

	Using the Java library
	gsjava
	GSAPI & GSInstance
	GSAPI
	gsapi_revision
	GSAPI.Revision

	gsapi_new_instance
	gsapi_delete_instance
	gsapi_set_stdio_with_handle
	gsapi_set_stdio
	gsapi_set_poll_with_handle
	gsapi_set_poll
	gsapi_set_display_callback
	gsapi_register_callout
	gsapi_deregister_callout
	gsapi_set_arg_encoding
	gsapi_set_default_device_list
	gsapi_get_default_device_list
	gsapi_init_with_args
	gsapi_run_*
	gsapi_run_string_begin
	gsapi_run_string_continue
	gsapi_run_string_with_length
	gsapi_run_string
	gsapi_run_string_end
	gsapi_run_file
	gsapi_exit
	gsapi_set_param
	gsapi_get_param
	gsapi_enumerate_params
	gsapi_add_control_path
	gsapi_remove_control_path
	gsapi_purge_control_paths
	gsapi_activate_path_control
	gsapi_is_path_control_active

	Callback & Callout interfaces
	IStdInFunction
	IStdOutFunction
	IStdErrFunction
	IPollFunction
	ICalloutFunction

	GSInstance
	Constructors
	delete_instance
	set_stdio
	set_poll
	set_display_callback
	register_callout
	deregister_callout
	set_arg_encoding
	set_default_device_list
	get_default_device_list
	init_with_args
	run_string_begin
	run_string_continue
	run_string
	run_file
	exit
	set_param
	get_param
	enumerate_params
	add_control_path
	remove_control_path
	purge_control_paths
	activate_path_control
	is_path_control_active

	Utility classes
	com.artifex.gsjava.util.Reference

	Python
	Introduction
	Platform & setup
	Specifying the Ghostscript shared library
	API test

	The gsapi Python module
	gsapi_revision()
	gsapi_new_instance(caller_handle)
	gsapi_delete_instance(instance)
	gsapi_set_stdio(instance, stdin_fn, stdout_fn, stderr_fn)
	gsapi_set_poll(instance, poll_fn)
	gsapi_set_display_callback(instance, callback)
	gsapi_set_arg_encoding(instance, encoding)
	gsapi_set_default_device_list(instance, list_)
	gsapi_get_default_device_list(instance)
	gsapi_init_with_args(instance, args)
	gsapi_run_*
	gsapi_run_string_begin(instance, user_errors)
	gsapi_run_string_continue(instance, str_, user_errors)
	gsapi_run_string_with_length(instance, str_, length, user_errors)
	gsapi_run_string(instance, str_, user_errors)
	gsapi_run_string_end(instance, user_errors)
	gsapi_run_file(instance, filename, user_errors)
	gsapi_exit(instance)
	gsapi_set_param(instance, param, value, type_=None)
	gsapi_get_param(instance, param, type_=None, encoding=None)
	gsapi_enumerate_params(instance)
	gsapi_add_control_path(instance, type_, path)
	gsapi_remove_control_path(instance, type_, path)
	gsapi_purge_control_paths(instance, type_)
	gsapi_activate_path_control(instance, enable)
	gsapi_is_path_control_active(instance)

	Details of Ghostscript Output Devices
	Notes on measurements
	Inches
	Centimeters and millimeters
	Points
	Dots per inch
	Bits per pixel

	Image file formats
	PNG file format
	Options
	Examples

	JPEG file format (JFIF)
	Options
	Examples

	PNM
	TIFF file formats
	Options

	FAX
	BMP
	PCX
	PSD
	PDF

	Optical Character Recognition (OCR) devices
	OCR text output
	PDF image output (with OCR text)
	Vector PDF output (with OCR Unicode CMaps)

	High level devices
	PDF writer
	PS2 writer
	EPS writer
	PXL
	Text output

	Display devices
	X Window System
	Display device (MS Windows, OS/2, gtk+)
	Options

	IJS - Inkjet and other raster devices
	Building IJS

	Rinkj - Resplendent inkjet driver
	HP Deskjet official drivers
	Gimp-Print driver collection
	MS Windows printers
	Supported command-line parameters
	Supported options (device properties)
	Duplex printing

	Sun SPARCprinter
	Installation
	Problems

	Apple dot matrix printer
	Special and Test devices
	Raw ‘bit’ devices
	Bounding box output
	Ink coverage output
	Permutation (DeviceN color model)
	spotcmyk (DeviceN color model)
	XCF (DeviceN color model)

	High Level Devices
	PCL-XL (PXL)
	Options

	Text output
	Options

	DOCX output
	XPS file output
	The family of PDF and PostScript output devices
	Common controls and features
	Distiller Parameters
	Note 0
	Note 1
	Note 2
	Note 3
	Note 4
	Note 5
	Note 6
	Note 7
	Note 8
	Note 9
	Note 10
	Note 11
	Note 12
	Note 13
	Note 14
	Note 15
	Note 16

	Color Conversion and Management
	Setting page orientation

	Controls and features specific to PostScript and PDF input
	Controls and features specific to PCL and PXL input
	Example creation of a PDF/A output file
	Example using DISTILLERPARAMS to set the quality of JPEG compression

	PDF file output
	PostScript file output
	Controlling device specific behaviour

	Encapsulated PostScript (EPS) file output

	Creating a PDF/X-3 document
	Creating a PDF/A document
	Ghostscript PDF Printer Description
	Windows XP or 2000

	pdfmark extensions
	Limitations

	The Interface between Ghostscript and Device Drivers
	Adding a driver
	Keeping things simple
	Driver structure
	Structure definition
	For sophisticated developers only

	Coordinates and types
	Coordinate system
	Color definition
	Separable and linear fields
	Changing color_info data

	Types

	Coding conventions
	Allocating storage
	Driver instance allocation

	Printer drivers
	Printer drivers (Multi-threaded)
	Driver procedures
	Life cycle
	Open, close, sync, copy
	Color and alpha mapping
	Pixel-level drawing
	Bitmap imaging
	Pixmap imaging
	Compositing

	Polygon-level drawing
	Linear color drawing
	High-level drawing
	Paths
	The function specification f
	Images
	Text
	Unicode support for high level (vector) devices

	Reading bits back
	Parameters
	Default color rendering dictionary (CRD) parameters
	Device parameters affecting interpretation

	Page devices
	Miscellaneous
	Device Specific Operations

	Tray selection
	Tray rotation and the LeadingEdge parameter
	Interaction between LeadingEdge and PageSize

	Ghostscript and the PostScript Language
	Ghostscript’s capabilities in relation to PostScript
	Implementation limits
	Architectural limits
	Typical memory limits in LanguageLevel 1
	Other differences in VM consumption

	Additional operators in Ghostscript
	Graphics and text operators
	Transparency
	Graphics state operators
	Rendering stack operators
	New ImageType

	Other graphics state operators
	Character operators

	Other operators
	Mathematical operators
	Dictionary operators
	File operators
	Miscellaneous operators
	Device operators

	Filters
	Standard filters
	Non-standard filters
	Unstable filters

	Device parameters
	User parameters
	Miscellaneous additions
	Extended semantics of ‘run’
	Decoding resources
	CIDDecoding resources
	GlyphNames2Unicode
	Multiple Resource directories

	Scripting the PDF interpreter
	PostScript functions
	PostScript operators interfacing to the PDF interpreter

	The Ghostscript Library
	PostScript operator API
	Patterns
	Lower-level API

	Visual Trace instructions
	Visual Trace instructions semantics
	vd_trace_interface structure

	A full example

	Information for Ghostscript Developers
	Introduction
	Architecture
	Design Goals
	Functionality
	Performance
	Licensing
	Other

	Design principles
	Non-preemption
	Multi-instantiability
	Late configuration binding
	Large-scale structure
	Object-oriented constructs

	File roadmap
	Substrate
	Runtime Context
	Memory manager
	Streams
	Platform-specific code
	Miscellaneous

	Graphics library
	Support
	Paths
	Text
	Images
	Paint
	Clipping
	Other graphics
	Font API support
	Driver support
	Visual Trace

	Device drivers
	Internal devices
	PostScript and PDF writers
	Shared support
	PDF output driver (pdfwrite)
	Other high-level devices
	Other maintained drivers
	Window system drivers
	Raster file output drivers
	Printer drivers
	Contributed drivers

	PostScript interpreter
	Main program
	Data structures
	Stacks
	Interpreter loop
	Scanning/parsing
	Standard operators
	Non-standard operators
	Interpreter support
	PostScript code

	PDF interpreter
	PostScript Printer Description
	Build process
	Makefile structure
	.dev files
	Generators
	Support

	Utilities
	Utilities in PostScript
	Utility scripts

	Memory management
	Memory manager architecture
	Objects vs strings
	Structure descriptors
	Garbage collection
	Movability
	Parent hierarchy
	Allocator API

	Freeing storage
	Explicit freeing
	Reference counting
	(Real) garbage collection

	Special implementations
	malloc
	Locking
	Retrying
	Chunk

	Standard implementation
	PostScript interpreter extensions
	Refs (PostScript “objects”)
	Stable allocators
	Garbage collection

	Portability
	Structural mechanisms
	CPU and compiler
	Library headers
	Cross-platform APIs
	Makefiles

	Coding standards
	Explicit dependencies
	Implicit dependencies

	Platform-specific code

	Troubleshooting
	Profiling
	Profiling with Microsoft Developer Studio 6

	Ghostscript C Coding Guidelines
	C language do’s and don’ts
	Preprocessor
	Conditionals
	Macros

	Other
	Lexical elements
	Scoping (extern, static, …)
	Scalars
	Arrays
	Typedefs
	Structures
	Unions
	Expressions
	Statements
	Procedures
	Standard library

	Language extensions
	Scoping
	Scalar types

	Stylistic conventions
	Formatting
	Indentation
	Spaces
	Parentheses

	Preprocessor
	Conditionals
	Macros

	Comments
	Naming
	Types
	Pointers

	Procedures
	Miscellany
	Local variables

	Compiler warnings

	File structuring
	All files
	Makefiles
	General C code
	Headers (.h files)
	Source (.c files)

	Ghostscript conventions
	Specific names
	code
	status

	Structure type descriptors
	“Objects”
	Classes
	Procedures
	Subclassing

	Error handling

	Ghostscript PostScript Coding Guidelines
	Summary of the coding guidelines
	Use of PostScript language features
	Restrictions
	Protection
	Standard constructions
	Multi-way conditionals
	Switches

	File structuring

	Commenting
	Formatting
	Indentation
	Spaces

	Naming
	Miscellany
	Some useful non-standard operators
	Some useful procedures
	Other

	Convert PostScript to Encapsulated PostScript Interchange Format
	Overview
	Usage
	MS-DOS
	Unix

	Limitations
	Files

	PostScript Files Distributed with Ghostscript
	Generally used system files
	gs_*_e.ps
	PostScript Encodings
	PDF Encodings
	Non-standard Encodings
	Pseudo-encodings

	Other files

	Configuration files
	More obscure system files
	PDF-specific system files
	Display PostScript-specific system files
	Art and examples
	Utilities
	Development tools
	Odds and ends

	Fonts and Font Facilities Supplied with Ghostscript
	About Ghostscript fonts
	Ghostscript’s free fonts
	How Ghostscript gets fonts when it runs
	Adding your own fonts
	Converting BDF fonts

	For developers only
	Contents of fonts
	Font names and unique IDs
	Running Ghostscript with third-party font renderers

	Setting Up a Unix lpr Filter for Ghostscript
	What it can do
	Setting it up
	Editing the device list DEVICES
	Field 1: bits per pixel
	Field 2: colours
	Field 3: dual queues
	Example definition of DEVICES

	Editing the filter list
	Editing the printer port and type
	Modifying printcap.insert
	Single or dual queues

	News
	Guide to Ghostscript Source Code
	Conceptual overview
	PostScript interpreter
	PDF interpreter
	Graphics library
	Device drivers
	Platform-specific code

	Makefiles

	Third Party Libraries Used by Ghostscript and GhostPDL
	Unsupported devices
	H-P 8xx, 1100, and 1600 color inkjet printers
	Drivers contained in gdevcd8.c
	Further documentation

	H-P 812, 815, 832, 880, 882, 895, and 970 color inkjet printers
	Drivers contained in gdevcd8.c
	Further documentation

	H-P color inkjet printers
	Drivers contained in gdevcdj.c
	Default paper size
	DeskJet physical limits
	Printer properties (command-line parameters)
	Bits per pixel
	DeskJet properties
	PaintJet XL300 / PaintJet XL properties

	Gamma correction
	HP’s resolution-enhanced mode for Inkjet printers
	General tips

	Canon BJC-8200 printer
	Introduction
	The uniprint control files for the BJC-8200
	Further Optimization for the Canon BJC-8200
	Outlook
	Usage on RedHat Linux

	Other Canon BubbleJet (BJC) printers
	History
	Configuring and building the BJC drivers
	CMYK-to-RGB color conversion
	Vertical centering of the printable area
	Page margins
	Makefile and compilation

	Use of the drivers
	Supported Options and Defaults
	Device information
	Hardware margins
	PostScript printer description (PPD) files
	Customizing the PPD files

	How to report problems
	Acknowledgements

	Epson Stylus color printer (see also uniprint)
	Usage
	Options
	Application note and FAQ
	Support for A3 paper
	Margins, PageSize
	Stylus Color II / IIs and 1500

	Recommendations
	Color dithering experiments with gdevstc 1.21

	Color transformation
	ColorAdjustMatrix
	RGB / CMYK coding and transfer, and BitsPerPixel
	What is weaving?
	Print mode parameters
	Unidirectional
	Microweave, noWeave and OutputCode=deltarow
	Model

	Bugs and pitfalls
	Tests
	Acknowledgments

	uniprint, a flexible unified printer driver
	The state of this driver
	Notes on uniprint’s background
	Godzilla’s guide to the creation of Unified Printer Parameter (.upp) files
	All parameters in brief
	uniprint’s Roll of Honor
	Uniprint weaving parameters HowTo
	Example: stc.upp from Aladdin Ghostscript 6.01

	Extension to uniprint for the Epson Stylus Color 300
	Example 1 - Epson Stylus Color 300 - 360 dpi colour
	Example 2 - Epson Stylus Color 300 - 180 dpi black only
	Example 3 - Epson Stylus Color 300 - 360 dpi black only

	Indices and tables

