/* Copyright (C) 1990, 1996, 1998, 1999 Aladdin Enterprises. All rights reserved. This file is part of Aladdin Ghostscript. Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author or distributor accepts any responsibility for the consequences of using it, or for whether it serves any particular purpose or works at all, unless he or she says so in writing. Refer to the Aladdin Ghostscript Free Public License (the "License") for full details. Every copy of Aladdin Ghostscript must include a copy of the License, normally in a plain ASCII text file named PUBLIC. The License grants you the right to copy, modify and redistribute Aladdin Ghostscript, but only under certain conditions described in the License. Among other things, the License requires that the copyright notice and this notice be preserved on all copies. */ /* Level 2 encoded number reading utilities for Ghostscript */ #include "math_.h" #include "memory_.h" #include "ghost.h" #include "errors.h" #include "stream.h" #include "ibnum.h" #include "imemory.h" /* for iutil.h */ #include "iutil.h" /* Define the number of bytes for a given format of encoded number. */ const byte enc_num_bytes[] = { enc_num_bytes_values }; /* ------ Encoded number reading ------ */ /* Set up to read from an encoded number array/string. */ /* Return <0 for error, or a number format. */ int num_array_format(const ref * op) { switch (r_type(op)) { case t_string: { /* Check that this is a legitimate encoded number string. */ const byte *bp = op->value.bytes; int format; if (r_size(op) < 4 || bp[0] != bt_num_array_value) return_error(e_rangecheck); format = bp[1]; if (!num_is_valid(format) || sdecodeshort(bp + 2, format) != (r_size(op) - 4) / encoded_number_bytes(format) ) return_error(e_rangecheck); return format; } case t_array: case t_mixedarray: case t_shortarray: return num_array; default: return_error(e_typecheck); } } /* Get the number of elements in an encoded number array/string. */ uint num_array_size(const ref * op, int format) { return (format == num_array ? r_size(op) : (r_size(op) - 4) / encoded_number_bytes(format)); } /* Get an encoded number from an array/string according to the given format. */ /* Put the value in np->value.{intval,realval}. */ /* Return t_int if integer, t_real if real, t_null if end of stream, */ /* or an error if the format is invalid. */ int num_array_get(const ref * op, int format, uint index, ref * np) { if (format == num_array) { int code = array_get(op, (long)index, np); if (code < 0) return t_null; switch (r_type(np)) { case t_integer: return t_integer; case t_real: return t_real; default: return_error(e_rangecheck); } } else { uint nbytes = encoded_number_bytes(format); if (index >= (r_size(op) - 4) / nbytes) return t_null; return sdecode_number(op->value.bytes + 4 + index * nbytes, format, np); } } /* Internal routine to decode a number in a given format. */ /* Same returns as sget_encoded_number. */ static const double binary_scale[32] = { #define EXPN2(n) (0.5 / (1L << (n-1))) 1.0, EXPN2(1), EXPN2(2), EXPN2(3), EXPN2(4), EXPN2(5), EXPN2(6), EXPN2(7), EXPN2(8), EXPN2(9), EXPN2(10), EXPN2(11), EXPN2(12), EXPN2(13), EXPN2(14), EXPN2(15), EXPN2(16), EXPN2(17), EXPN2(18), EXPN2(19), EXPN2(20), EXPN2(21), EXPN2(22), EXPN2(23), EXPN2(24), EXPN2(25), EXPN2(26), EXPN2(27), EXPN2(28), EXPN2(29), EXPN2(30), EXPN2(31) #undef EXPN2 }; int sdecode_number(const byte * str, int format, ref * np) { switch (format & 0x170) { case num_int32: case num_int32 + 16: if ((format & 31) == 0) { np->value.intval = sdecodelong(str, format); return t_integer; } else { np->value.realval = (double)sdecodelong(str, format) * binary_scale[format & 31]; return t_real; } case num_int16: if ((format & 15) == 0) { np->value.intval = sdecodeshort(str, format); return t_integer; } else { np->value.realval = sdecodeshort(str, format) * binary_scale[format & 15]; return t_real; } case num_float: np->value.realval = sdecodefloat(str, format); return t_real; default: return_error(e_syntaxerror); /* invalid format?? */ } } /* ------ Decode number ------ */ /* Decode encoded numbers from a string according to format. */ /* Decode a (16-bit, signed or unsigned) short. */ uint sdecodeushort(const byte * p, int format) { int a = p[0], b = p[1]; return (num_is_lsb(format) ? (b << 8) + a : (a << 8) + b); } int sdecodeshort(const byte * p, int format) { int v = (int)sdecodeushort(p, format); return (v & 0x7fff) - (v & 0x8000); } /* Decode a (32-bit, signed) long. */ long sdecodelong(const byte * p, int format) { int a = p[0], b = p[1], c = p[2], d = p[3]; long v = (num_is_lsb(format) ? ((long)d << 24) + ((long)c << 16) + (b << 8) + a : ((long)a << 24) + ((long)b << 16) + (c << 8) + d); #if arch_sizeof_long > 4 /* Propagate bit 31 as the sign. */ v = (v ^ 0x80000000L) - 0x80000000L; #endif return v; } /* Decode a float. We assume that native floats occupy 32 bits. */ float sdecodefloat(const byte * p, int format) { bits32 lnum = (bits32) sdecodelong(p, format); float fnum; #if !arch_floats_are_IEEE if (format != num_float_native) { /* We know IEEE floats take 32 bits. */ /* Convert IEEE float to native float. */ int sign_expt = lnum >> 23; int expt = sign_expt & 0xff; long mant = lnum & 0x7fffff; if (expt == 0 && mant == 0) fnum = 0; else { mant += 0x800000; fnum = (float)ldexp((float)mant, expt - 127 - 24); } if (sign_expt & 0x100) fnum = -fnum; } else #endif fnum = *(float *)&lnum; return fnum; }