summaryrefslogtreecommitdiff
path: root/gs/base/gsmchunk.c
blob: 94f0c4b87e8cb16835c703bb699e294f9c9527a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
/* Copyright (C) 2001-2012 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134, San Rafael,
   CA  94903, U.S.A., +1(415)492-9861, for further information.
*/


/* chunk consolidating wrapper on a base memory allocator */

#include "memory_.h"
#include "gx.h"
#include "gsstype.h"
#include "gserrors.h"
#include "gsmchunk.h"
#include "gxsync.h"
#include "malloc_.h" /* For MEMENTO */

/* Raw memory procedures */
static gs_memory_proc_alloc_bytes(chunk_alloc_bytes_immovable);
static gs_memory_proc_resize_object(chunk_resize_object);
static gs_memory_proc_free_object(chunk_free_object);
static gs_memory_proc_stable(chunk_stable);
static gs_memory_proc_status(chunk_status);
static gs_memory_proc_free_all(chunk_free_all);
static gs_memory_proc_consolidate_free(chunk_consolidate_free);

/* Object memory procedures */
static gs_memory_proc_alloc_bytes(chunk_alloc_bytes);
static gs_memory_proc_alloc_struct(chunk_alloc_struct);
static gs_memory_proc_alloc_struct(chunk_alloc_struct_immovable);
static gs_memory_proc_alloc_byte_array(chunk_alloc_byte_array);
static gs_memory_proc_alloc_byte_array(chunk_alloc_byte_array_immovable);
static gs_memory_proc_alloc_struct_array(chunk_alloc_struct_array);
static gs_memory_proc_alloc_struct_array(chunk_alloc_struct_array_immovable);
static gs_memory_proc_object_size(chunk_object_size);
static gs_memory_proc_object_type(chunk_object_type);
static gs_memory_proc_alloc_string(chunk_alloc_string);
static gs_memory_proc_alloc_string(chunk_alloc_string_immovable);
static gs_memory_proc_resize_string(chunk_resize_string);
static gs_memory_proc_free_string(chunk_free_string);
static gs_memory_proc_register_root(chunk_register_root);
static gs_memory_proc_unregister_root(chunk_unregister_root);
static gs_memory_proc_enable_free(chunk_enable_free);
static const gs_memory_procs_t chunk_procs =
{
    /* Raw memory procedures */
    chunk_alloc_bytes_immovable,
    chunk_resize_object,
    chunk_free_object,
    chunk_stable,
    chunk_status,
    chunk_free_all,
    chunk_consolidate_free,
    /* Object memory procedures */
    chunk_alloc_bytes,
    chunk_alloc_struct,
    chunk_alloc_struct_immovable,
    chunk_alloc_byte_array,
    chunk_alloc_byte_array_immovable,
    chunk_alloc_struct_array,
    chunk_alloc_struct_array_immovable,
    chunk_object_size,
    chunk_object_type,
    chunk_alloc_string,
    chunk_alloc_string_immovable,
    chunk_resize_string,
    chunk_free_string,
    chunk_register_root,
    chunk_unregister_root,
    chunk_enable_free
};

typedef struct chunk_obj_node_s {
    struct chunk_obj_node_s *next;
    gs_memory_type_ptr_t type;
    uint size;			/* objlist: client size */
#ifdef DEBUG
    unsigned long sequence;
#endif
} chunk_obj_node_t;

/*
 * Note: All objects within a chunk are 'aligned' since we round_up_to_align
 * the free list pointer when removing part of a free area.
 */
typedef struct chunk_mem_node_s {
    uint size;
    uint largest_free;			/* quick check when allocating */
    bool is_multiple_object_chunk;	/* tells us which list this chunk is on */
    struct chunk_mem_node_s *next;
    chunk_obj_node_t *objlist;	/* head of objects in this chunk (no order) */
    chunk_obj_node_t *freelist;		/* free list (ordered) */
    /* chunk data follows immediately */
} chunk_mem_node_t;

typedef struct gs_memory_chunk_s {
    gs_memory_common;		/* interface outside world sees */
    gs_memory_t *target;	/* base allocator */
    chunk_mem_node_t *head_mo_chunk;	/* head of multiple object chunks */
    chunk_mem_node_t *head_so_chunk;	/* head of single object chunks */
    unsigned long used;
#ifdef DEBUG
    unsigned long sequence_counter;
    unsigned long max_used;
    int	     in_use;		/* 0 for idle, 1 in alloc, -1 in free */
#endif
} gs_memory_chunk_t;

/* ---------- Public constructors/destructors ---------- */

/* Initialize a gs_memory_chunk_t */
int				/* -ve error code or 0 */
gs_memory_chunk_wrap( gs_memory_t **wrapped,	/* chunk allocator init */
                      gs_memory_t * target )	/* base allocator */
{
    /* Use the non-GC allocator of the target. */
    gs_memory_t *non_gc_target = target->non_gc_memory;
    gs_memory_chunk_t *cmem = NULL;

    *wrapped = NULL;		/* don't leave garbage in case we fail */
    if (non_gc_target)
            cmem = (gs_memory_chunk_t *) gs_alloc_bytes_immovable(non_gc_target,
                        sizeof(gs_memory_chunk_t), "gs_malloc_wrap(chunk)");
    if (cmem == 0)
        return_error(gs_error_VMerror);
    cmem->stable_memory = (gs_memory_t *)cmem;	/* we are stable */
    cmem->procs = chunk_procs;
    cmem->gs_lib_ctx = non_gc_target->gs_lib_ctx;
    cmem->non_gc_memory = (gs_memory_t *)cmem;	/* and are not subject to GC */
    cmem->thread_safe_memory = non_gc_target->thread_safe_memory;
    cmem->target = non_gc_target;
    cmem->head_mo_chunk = NULL;
    cmem->head_so_chunk = NULL;
    cmem->used = 0;
#ifdef DEBUG
    cmem->sequence_counter = 0;
    cmem->max_used = 0;
    cmem->in_use = 0;		/* idle */
#endif

    /* Init the chunk management values */
    *wrapped = (gs_memory_t *)cmem;
    return 0;
}

/* Release a chunk memory manager. */
/* Note that this has no effect on the target. */
void
gs_memory_chunk_release(gs_memory_t *mem)
{
    gs_memory_free_all((gs_memory_t *)mem, FREE_ALL_EVERYTHING,
                       "gs_memory_chunk_release");
}

/* ---------- Accessors ------------- */

/* Retrieve this allocator's target */
gs_memory_t *
gs_memory_chunk_target(const gs_memory_t *mem)
{
    gs_memory_chunk_t *cmem = (gs_memory_chunk_t *)mem;
    return cmem->target;
}

#ifdef DEBUG
void
gs_memory_chunk_dump_memory(const gs_memory_t *mem)
{
    gs_memory_chunk_t *cmem = (gs_memory_chunk_t *)mem;
    chunk_mem_node_t *head = cmem->head_mo_chunk;	/* dump multiple object chunks first */
    chunk_mem_node_t *current;
    chunk_mem_node_t *next;
    int i;

    dprintf2("chunk_dump_memory: current used=%d, max_used=%d\n", cmem->used, cmem->max_used);
    if (cmem->in_use != 0)
        dprintf1("*** this memory allocator is not idle, used for: %s\n",
                cmem->in_use < 0 ? "free" : "alloc");
    for (i=0; i<2; i++) {
        current = head;
        while ( current != NULL ) {
            if (current->objlist != NULL) {
                chunk_obj_node_t *obj;

                for (obj= current->objlist; obj != NULL; obj=obj->next)
                    dprintf4("chunk_mem leak, obj=0x%lx, size=%d, type=%s, sequence#=%ld\n",
                            (ulong)obj, obj->size, obj->type->sname, obj->sequence);
            }
            next = current->next;
            current = next;
        }
        head = cmem->head_so_chunk;	/* switch to single object chunk list */
    }
}
#endif

/* -------- Private members --------- */

/* Note that all of the data is 'immovable' and is opaque to the base allocator */
/* thus even if it is a GC type of allocator, no GC functions will be applied   */
/* All allocations are done in the target */

/* Procedures */

static void
chunk_mem_node_free_all_remaining(gs_memory_chunk_t *cmem)
{
    chunk_mem_node_t *head = cmem->head_mo_chunk;	/* Free multiple object chunk nodes first */
    gs_memory_t * const target = cmem->target;
    chunk_mem_node_t *current;
    chunk_mem_node_t *next;
    int i;

#ifdef DEBUG
    if (cmem->in_use != 0)
        dprintf1("*** chunk_mem_node_free_all_remaining: this memory allocator is not idle, used for: %s\n",
                cmem->in_use < 0 ? "free" : "alloc");
#endif
    for (i=0; i<2; i++) {
        current = head;
        while ( current != NULL ) {
            next = current->next;
            gs_free_object(target, current, "chunk_mem_node_remove");
            current = next;
        }
        cmem->head_mo_chunk = NULL;
        head = cmem->head_so_chunk;	/* switch to single object chunk list */
    }
    cmem->head_so_chunk = NULL;
}

static void
chunk_free_all(gs_memory_t * mem, uint free_mask, client_name_t cname)
{
    gs_memory_chunk_t * const cmem = (gs_memory_chunk_t *)mem;
    gs_memory_t * const target = cmem->target;

#ifdef DEBUG
    if (cmem->in_use != 0)
        dprintf1("*** chunk_free_all: this memory allocator is not idle, used for: %s\n",
                cmem->in_use < 0 ? "free" : "alloc");
#endif
    /* Only free the structures and the allocator itself. */
    if (mem->stable_memory) {
        if (mem->stable_memory != mem)
            gs_memory_free_all(mem->stable_memory, free_mask, cname);
        if (free_mask & FREE_ALL_ALLOCATOR)
            mem->stable_memory = 0;
    }
    if (free_mask & FREE_ALL_DATA) {
        chunk_mem_node_free_all_remaining(cmem);
    }
    if (free_mask & FREE_ALL_STRUCTURES) {
        cmem->target = 0;
    }
    if (free_mask & FREE_ALL_ALLOCATOR)
        gs_free_object(target, cmem, cname);
}

extern const gs_memory_struct_type_t st_bytes;

/* round up objects to make sure we have room for a header left */
inline static uint
round_up_to_align(uint size)
{
    uint num_node_headers = (size + sizeof(chunk_obj_node_t) - 1) / sizeof(chunk_obj_node_t);

    return num_node_headers * sizeof(chunk_obj_node_t);
}

#ifdef MEMENTO
/* If we're using memento, make ALL objects single objects (i.e. put them all
 * in their own chunk. */
#define IS_SINGLE_OBJ_SIZE(chunk_size) (1)
#else
#define IS_SINGLE_OBJ_SIZE(chunk_size) \
    (chunk_size > (CHUNK_SIZE>>1))
#endif
#define MULTIPLE_OBJ_CHUNK_SIZE \
    (sizeof(chunk_mem_node_t) + round_up_to_align(CHUNK_SIZE))

/* return -1 on error, 0 on success */
static int
chunk_mem_node_add(gs_memory_chunk_t *cmem, uint size_needed, bool is_multiple_object_chunk,
                        chunk_mem_node_t **newchunk
#ifdef MEMENTO
                        , client_name_t cname
#endif
                  )
{
    chunk_mem_node_t *node;
    gs_memory_t *target = cmem->target;
    /* Allocate enough for the chunk header, and the size_needed */
    /* The size needed already includes the object header from caller */
    /* and is already rounded up to the obj_node_t sized elements */
    uint chunk_size = size_needed + sizeof(chunk_mem_node_t);

    /* caller tells us whether or not to use a single object chunk */
    if (is_multiple_object_chunk && (chunk_size < MULTIPLE_OBJ_CHUNK_SIZE)) {
        chunk_size = MULTIPLE_OBJ_CHUNK_SIZE;	/* the size for collections of objects */
        is_multiple_object_chunk = true;
    } else
        is_multiple_object_chunk = false;

    *newchunk = NULL;
#ifdef MEMENTO
#define LOCAL_CNAME cname
#else
#define LOCAL_CNAME "chunk_mem_node_add"
#endif
    node = (chunk_mem_node_t *)gs_alloc_bytes_immovable(target, chunk_size,
                                                        LOCAL_CNAME);
#undef LOCAL_CNAME
    if (node == NULL)
        return -1;
    cmem->used += chunk_size;
#ifdef DEBUG
    if (cmem->used > cmem->max_used)
        cmem->max_used = cmem->used;
#endif
    node->size = chunk_size;	/* how much we allocated */
    node->largest_free = chunk_size - sizeof(chunk_mem_node_t);
    node->is_multiple_object_chunk = is_multiple_object_chunk;
    node->objlist = NULL;
    node->freelist = (chunk_obj_node_t *)((byte *)(node) + sizeof(chunk_mem_node_t));
    node->freelist->next = NULL;
    node->freelist->size = node->largest_free;

    /* Put the node at the head of the list (so=single object, mo=multiple object) */
    /* only multiple objects will be have any room in them */
    if (is_multiple_object_chunk) {
        if (cmem->head_mo_chunk == NULL) {
            cmem->head_mo_chunk = node;
            node->next = NULL;
        } else {
            node->next = cmem->head_mo_chunk;
            cmem->head_mo_chunk = node;
        }
    } else {
        if (cmem->head_so_chunk == NULL) {
            cmem->head_so_chunk = node;
            node->next = NULL;
        } else {
            node->next = cmem->head_so_chunk;
            cmem->head_so_chunk = node;
        }
    }

    *newchunk = node;	    /* return the chunk we just allocated */
    return 0;
}

static int
chunk_mem_node_remove(gs_memory_chunk_t *cmem, chunk_mem_node_t *addr)
{
    chunk_mem_node_t **p_head = addr->is_multiple_object_chunk ?
                &(cmem->head_mo_chunk) : &(cmem->head_so_chunk);
    chunk_mem_node_t *head = *p_head;
    gs_memory_t * const target = cmem->target;

    cmem->used -= addr->size;
#ifdef DEBUG
#endif

    /* check the head first */
    if (head == NULL) {
        dprintf("FAIL - no nodes to be removed\n" );
        return -1;
    }
    if (head == addr) {
        *p_head = head->next;
        gs_free_object(target, head, "chunk_mem_node_remove");
    } else {
        chunk_mem_node_t *current;
        bool found = false;

        /* scan the list, stopping in front of element */
        for (current = head; current != NULL; current = current->next) {
            if ( current->next && (current->next == addr) ) {
                current->next = current->next->next;	/* de-link it */
                gs_free_object(target, addr, "chunk_mem_node_remove");
                found = true;
                break;
            }
        }
        if ( !found ) {
            dprintf1("FAIL freeing wild pointer freed address 0x%lx not found\n", (ulong)addr );
            return -1;
        }
    }
    return 0;
}

/* all of the allocation routines reduce to the this function */
static byte *
chunk_obj_alloc(gs_memory_t *mem, uint size, gs_memory_type_ptr_t type, client_name_t cname)
{
    gs_memory_chunk_t *cmem = (gs_memory_chunk_t *)mem;
    chunk_mem_node_t *head = cmem->head_mo_chunk;	/* we only scan chunks with space in them */
    uint newsize, free_size;
    chunk_obj_node_t *newobj = NULL;
    chunk_obj_node_t *free_obj, *prev_free, *new_free;
    chunk_mem_node_t *current = NULL;
    bool rescan_free_list = false;
    bool is_multiple_object_size;

#ifdef DEBUG
    if (cmem->in_use != 0)
        dprintf1("*** chunk_obj_alloc: this memory allocator is not idle, used for: %s\n",
                cmem->in_use < 0 ? "free" : "alloc");
    cmem->in_use = 1;	/* alloc */
#endif
    newsize = round_up_to_align(size + sizeof(chunk_obj_node_t));	/* space we will need */
    is_multiple_object_size = ! IS_SINGLE_OBJ_SIZE(newsize);

    if ( is_multiple_object_size ) {
        /* Search the multiple object chunks for one with a large enough free area */
        for (current = head; current != NULL; current = current->next) {
            if ( current->largest_free >= newsize)
                break;
        }
    }
    if (current == NULL) {
        /* No chunks with enough space or size makes this a single object, allocate one */
        if (chunk_mem_node_add(cmem, newsize, is_multiple_object_size, &current
#ifdef MEMENTO
                               , cname
#endif
                              ) < 0) {
#ifdef DEBUG
        if (gs_debug_c('a'))
            dlprintf1("[a+]chunk_obj_alloc(chunk_mem_node_add)(%u) Failed.\n", size);
            cmem->in_use = 0;	/* idle */
#endif
            return NULL;
        }
    }
    /* Find the first free area in the current chunk that is big enough */
    /* LATER: might be better to find the 'best fit' */
    prev_free = NULL;		/* NULL means chunk */
    for (free_obj = current->freelist; free_obj != NULL; free_obj=free_obj->next) {
        if (free_obj->size >= newsize)
            break;
        prev_free = free_obj;	/* keep track so we can update link */
    }

    if (free_obj == NULL) {
        dprintf2("largest_free value = %d is too large, cannot find room for size = %d\n",
            current->largest_free, newsize);
#ifdef DEBUG
        cmem->in_use = 0;	/* idle */
#endif
        return NULL;
    }

    /* If this free object's size == largest_free, we'll have to re-scan */
    rescan_free_list = current->is_multiple_object_chunk && free_obj->size == current->largest_free;

    /* Make an object in the free_obj we found above, reducing it's size */
    /* and adjusting the free list preserving alignment	*/
    newobj = free_obj;
    free_size = free_obj->size - newsize;	/* amount remaining */
    new_free = (chunk_obj_node_t *)((byte *)(free_obj) + newsize);	/* start of remaining free area */
    if (free_size >= sizeof(chunk_obj_node_t)) {
        if (prev_free != NULL)
            prev_free->next = new_free;
        else
            current->freelist = new_free;
        new_free->next = free_obj->next;
        new_free->size = free_size;
    } else {
       /* Not enough space remaining, just skip around it */
        if (prev_free != NULL)
            prev_free->next = free_obj->next;
        else
            current->freelist = free_obj->next;
    }

#ifdef DEBUG
    memset((byte *)(newobj) + sizeof(chunk_obj_node_t), 0xa1, newsize - sizeof(chunk_obj_node_t));
    memset((byte *)(newobj) + sizeof(chunk_obj_node_t), 0xac, size);
    newobj->sequence = cmem->sequence_counter++;
#endif

    newobj->next = current->objlist;	/* link to start of list */
    current->objlist = newobj;
    newobj->size = size;		/* client requested size */
    newobj->type = type;		/* and client desired type */

    /* If we flagged for re-scan to find the new largest_free, do it now */
    if (rescan_free_list) {
        current->largest_free = 0;
        for (free_obj = current->freelist; free_obj != NULL; free_obj=free_obj->next)
            if (free_obj->size > current->largest_free)
                current->largest_free = free_obj->size;
    }

    /* return the client area of the object we allocated */
#ifdef DEBUG
    if (gs_debug_c('A'))
        dlprintf3("[a+]chunk_obj_alloc (%s)(%u) = 0x%lx: OK.\n",
                  client_name_string(cname), size, (ulong) newobj);
    cmem->in_use = 0; 	/* idle */
#endif
    return (byte *)(newobj) + sizeof(chunk_obj_node_t);
}

static byte *
chunk_alloc_bytes_immovable(gs_memory_t * mem, uint size, client_name_t cname)
{
    return chunk_obj_alloc(mem, size, &st_bytes, cname);
}

static byte *
chunk_alloc_bytes(gs_memory_t * mem, uint size, client_name_t cname)
{
    return chunk_obj_alloc(mem, size, &st_bytes, cname);
}

static void *
chunk_alloc_struct_immovable(gs_memory_t * mem, gs_memory_type_ptr_t pstype,
                         client_name_t cname)
{
    return chunk_obj_alloc(mem, pstype->ssize, pstype, cname);
}

static void *
chunk_alloc_struct(gs_memory_t * mem, gs_memory_type_ptr_t pstype,
               client_name_t cname)
{
    return chunk_obj_alloc(mem, pstype->ssize, pstype, cname);
}

static byte *
chunk_alloc_byte_array_immovable(gs_memory_t * mem, uint num_elements,
                             uint elt_size, client_name_t cname)
{
    return chunk_alloc_bytes(mem, num_elements * elt_size, cname);
}

static byte *
chunk_alloc_byte_array(gs_memory_t * mem, uint num_elements, uint elt_size,
                   client_name_t cname)
{
    return chunk_alloc_bytes(mem, num_elements * elt_size, cname);
}

static void *
chunk_alloc_struct_array_immovable(gs_memory_t * mem, uint num_elements,
                           gs_memory_type_ptr_t pstype, client_name_t cname)
{
    return chunk_obj_alloc(mem, num_elements * pstype->ssize, pstype, cname);
}

static void *
chunk_alloc_struct_array(gs_memory_t * mem, uint num_elements,
                     gs_memory_type_ptr_t pstype, client_name_t cname)
{
    return chunk_obj_alloc(mem, num_elements * pstype->ssize, pstype, cname);
}

static void *
chunk_resize_object(gs_memory_t * mem, void *ptr, uint new_num_elements, client_name_t cname)
{
    /* This isn't particularly efficient, but it is rarely used */
    chunk_obj_node_t *obj = ((chunk_obj_node_t *)ptr) - 1;
    ulong new_size = (obj->type->ssize * new_num_elements);
    ulong old_size = obj->size;
    /* get the type from the old object */
    gs_memory_type_ptr_t type = obj->type;
    void *new_ptr;
#ifdef DEBUG
    gs_memory_chunk_t *cmem = (gs_memory_chunk_t *)mem;
    ulong save_max_used = cmem->max_used;
#endif

    if (new_size == old_size)
        return ptr;
    if ((new_ptr = chunk_obj_alloc(mem, new_size, type, cname)) == 0)
        return 0;
    memcpy(new_ptr, ptr, min(old_size, new_size));
    chunk_free_object(mem, ptr, cname);
#ifdef DEBUG
    cmem->max_used = save_max_used;
    if (cmem->used > cmem->max_used)
        cmem->max_used = cmem->used;
#endif
    return new_ptr;
}

static void
chunk_free_object(gs_memory_t * mem, void *ptr, client_name_t cname)
{
    gs_memory_chunk_t * const cmem = (gs_memory_chunk_t *)mem;

    if (ptr == NULL )
        return;
    {
        /* back up to obj header */
        chunk_obj_node_t *obj = ((chunk_obj_node_t *)ptr) - 1;
        struct_proc_finalize((*finalize)) = obj->type->finalize;
        chunk_mem_node_t *current;
        chunk_obj_node_t *free_obj, *prev_free;
        chunk_obj_node_t *scan_obj, *prev_obj;
        /* space we will free */
        uint freed_size = round_up_to_align(obj->size + sizeof(chunk_obj_node_t));

        if ( finalize != NULL )
            finalize(mem, ptr);
#ifdef DEBUG
        if (cmem->in_use != 0)
            dprintf1("*** chunk_free_object: this memory allocator is not idle, used for: %s\n",
                    cmem->in_use < 0 ? "free" : "alloc");
        cmem->in_use = -1;	/* free */
#endif
        /* finalize may change the head_**_chunk doing free of stuff */
        current = IS_SINGLE_OBJ_SIZE(freed_size) ?
                                        cmem->head_so_chunk : cmem->head_mo_chunk;
        /* Find the chunk containing this object */
        for ( ; current != NULL; current = current->next) {
            if (((byte *)obj > (byte *)current) && ((byte *)obj < (byte *)(current) + current->size))
                break;
        }
        if (current == NULL) {
            /* We _may_have searched the wrong list -- if so find out. */
            current = cmem->head_so_chunk;
            /* Find the chunk containing this object */
            for ( ; current != NULL; current = current->next) {
                if (((byte *)obj > (byte *)current) && ((byte *)obj < (byte *)(current) + current->size)) {
                    dprintf1("chunk_free_obj: OOPS! found it on the single_object list, size=%d\n",
                                obj->size);
                    break;
                }
            }
            if (current == NULL) {
                current = cmem->head_mo_chunk;
                /* Find the chunk containing this object */
                for ( ; current != NULL; current = current->next) {
                    if (((byte *)obj > (byte *)current) && ((byte *)obj < (byte *)(current) + current->size)) {
                        dprintf1("chunk_free_obj: OOPS! found it on the multiple_object list, size=%d\n",
                                obj->size);
                        break;
                    }
                }
            }
            if (current == NULL) {
                /* Object not found in any chunk */
                dprintf2("chunk_free_obj failed, object 0x%lx not in any chunk, size=%d\n", ((ulong)obj), obj->size);
#ifdef DEBUG
                cmem->in_use = 0; 	/* idle */
#endif
                return;
            }
        }
        /* For large objects, they were given their own chunk -- just remove the node */
        if (IS_SINGLE_OBJ_SIZE(freed_size)) {
            chunk_mem_node_remove(cmem, current);
#ifdef DEBUG
            cmem->in_use = 0; 	/* idle */
#endif
            return;
        }

        /* Scan obj list to find this element */
        prev_obj = NULL;	/* object is head, linked to mem node */
        for (scan_obj = current->objlist; scan_obj != NULL; scan_obj = scan_obj->next) {
            if (scan_obj == obj)
                break;
            prev_obj = scan_obj;
        }
        if (scan_obj == NULL) {
            /* Object not found in expected chunk */
            dprintf3("chunk_free_obj failed, object 0x%lx not in chunk at 0x%lx, size = %d\n",
                            ((ulong)obj), ((ulong)current), current->size);
#ifdef DEBUG
            cmem->in_use = 0; 	/* idle */
#endif
            return;
        }
        /* link around the object being freed */
        if (prev_obj == NULL)
            current->objlist = obj->next;
        else
            prev_obj->next = obj->next;

        if_debug3('A', "[a-]chunk_free_object(%s) 0x%lx(%u)\n",
                  client_name_string(cname), (ulong) ptr, obj->size);

        /* Add this object's space (including the header) to the free list */

        /* Scan free list to find where this element goes */
        obj->size = freed_size;	    /* adjust size to include chunk_obj_node and pad */

        prev_free = NULL;
        for (free_obj = current->freelist; free_obj != NULL; free_obj = free_obj->next) {
            if (obj < free_obj)
                break;
            prev_free = free_obj;
        }
        if (prev_free == NULL) {
            /* this object is before any other free objects */
            obj->next = current->freelist;
            current->freelist = obj;
        } else {
            obj->next = free_obj;
            prev_free->next = obj;
        }
        /* If the end of this object is adjacent to the next free space,
         * merge the two. Next we'll merge with predecessor (prev_free)
         */
        if (free_obj != NULL) {
            byte *after_obj = (byte*)(obj) + freed_size;

            if (free_obj <= (chunk_obj_node_t *)after_obj) {
                /* Object is adjacent to following free space block -- merge it */
                obj->next = free_obj->next;	/* link around the one being absorbed */
                obj->size = (byte *)(free_obj) - (byte *)(obj) + free_obj->size;
            }
        }
        /* the prev_free object precedes this object that is now free,
         * it _may_ be adjacent
         */
        if (prev_free != NULL) {
            byte *after_free = (byte*)(prev_free) + prev_free->size;

            if (obj <= (chunk_obj_node_t *)after_free) {
                /* Object is adjacent to prior free space block -- merge it */
                /* NB: this is the common case with LIFO alloc-free patterns */
                /* (LIFO: Last-allocated, first freed) */
                prev_free->size = (byte *)(obj) - (byte *)(prev_free) + obj->size;
                prev_free->next = obj->next;		/* link around 'obj' area */
                obj = prev_free;
            }
        }
#ifdef DEBUG
memset((byte *)(obj) + sizeof(chunk_obj_node_t), 0xf1, obj->size - sizeof(chunk_obj_node_t));
#endif
        if (current->largest_free < obj->size)
            current->largest_free = obj->size;

        /* If this chunk is now totally empty, free it */
        if (current->objlist == NULL) {
            if (current->size != current->freelist->size + sizeof(chunk_mem_node_t))
                dprintf2("chunk freelist size not correct, is: %d, should be: %d\n",
                    round_up_to_align(current->freelist->size + sizeof(chunk_mem_node_t)), current->size);
            chunk_mem_node_remove(cmem, current);
        }
#ifdef DEBUG
        cmem->in_use = 0; 	/* idle */
#endif
    }
}

static byte *
chunk_alloc_string_immovable(gs_memory_t * mem, uint nbytes, client_name_t cname)
{
    /* we just alloc bytes here */
    return chunk_alloc_bytes(mem, nbytes, cname);
}

static byte *
chunk_alloc_string(gs_memory_t * mem, uint nbytes, client_name_t cname)
{
    /* we just alloc bytes here */
    return chunk_alloc_bytes(mem, nbytes, cname);
}

static byte *
chunk_resize_string(gs_memory_t * mem, byte * data, uint old_num, uint new_num,
                client_name_t cname)
{
    /* just resize object - ignores old_num */
    return chunk_resize_object(mem, data, new_num, cname);
}

static void
chunk_free_string(gs_memory_t * mem, byte * data, uint nbytes,
              client_name_t cname)
{
    chunk_free_object(mem, data, cname);
}

static void
chunk_status(gs_memory_t * mem, gs_memory_status_t * pstat)
{
    gs_memory_chunk_t *cmem = (gs_memory_chunk_t *)mem;
    chunk_mem_node_t *current = cmem->head_mo_chunk;	/* we only scan chunks with space in them */
    chunk_obj_node_t *free_obj;		/* free list object node */
    int tot_free = 0;

    pstat->allocated = cmem->used;
    /* Scan all chunks for free space to calculate the actual amount 'used' */
    for ( ; current != NULL; current = current->next) {
        for (free_obj = current->freelist; free_obj != NULL; free_obj=free_obj->next)
            tot_free += free_obj->size;
    }
    pstat->used = cmem->used - tot_free;

    pstat->is_thread_safe = false;	/* this allocator does not have an internal mutex */
}

static gs_memory_t *
chunk_stable(gs_memory_t * mem)
{
    return mem;
}

static void
chunk_enable_free(gs_memory_t * mem, bool enable)
{
}

static void
chunk_consolidate_free(gs_memory_t *mem)
{
}

/* aceesors to get size and type given the pointer returned to the client */
static uint
chunk_object_size(gs_memory_t * mem, const void *ptr)
{
    chunk_obj_node_t *obj = ((chunk_obj_node_t *)ptr) - 1;

    return obj->size;
}

static gs_memory_type_ptr_t
chunk_object_type(const gs_memory_t * mem, const void *ptr)
{
    chunk_obj_node_t *obj = ((chunk_obj_node_t *)ptr) - 1;
    return obj->type;
}

static int
chunk_register_root(gs_memory_t * mem, gs_gc_root_t * rp, gs_ptr_type_t ptype,
                 void **up, client_name_t cname)
{
    return 0;
}

static void
chunk_unregister_root(gs_memory_t * mem, gs_gc_root_t * rp, client_name_t cname)
{
}

#ifdef DEBUG

#define A(obj, size) \
    if ((obj = gs_alloc_bytes(cmem, size, "chunk_alloc_unit_test")) == NULL) { \
        dprintf("chunk alloc failed\n"); \
        return_error(gs_error_VMerror); \
    }

#define F(obj) \
    gs_free_object(cmem, obj, "chunk_alloc_unit_test");

int
chunk_allocator_unit_test(gs_memory_t *mem)
{
    int code;
    gs_memory_t *cmem;
    byte *obj1, *obj2, *obj3, *obj4, *obj5, *obj6, *obj7;

    if ((code = gs_memory_chunk_wrap(&cmem, mem )) < 0) {
        dprintf1("chunk_wrap returned error code: %d\n", code);
        return code;
    }

    /* Allocate a large object */
    A(obj1, 80000);
    F(obj1);
    A(obj1, 80000);

    A(obj2, 3);
    A(obj3, 7);
    A(obj4, 15);
    A(obj5, 16);
    A(obj6, 16);
    A(obj7, 16);

    F(obj2);
    F(obj1);
    F(obj5);
    F(obj4);
    F(obj6);
    F(obj7);
    F(obj3);

    /* cleanup */
    gs_memory_chunk_release(cmem);
    return 0;
}

#endif /* DEBUG */