summaryrefslogtreecommitdiff
path: root/gs/base/gxicolor.c
blob: 238aeeeb0b76ce1acd6d5909cc869f87dbf4343d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
/* Copyright (C) 2001-2006 Artifex Software, Inc.
   All Rights Reserved.
  
   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied, modified
   or distributed except as expressly authorized under the terms of that
   license.  Refer to licensing information at http://www.artifex.com/
   or contact Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134,
   San Rafael, CA  94903, U.S.A., +1(415)492-9861, for further information.
*/

/* $Id$ */
/* Color image rendering */

#include "gx.h"
#include "memory_.h"
#include "gpcheck.h"
#include "gserrors.h"
#include "gxfixed.h"
#include "gxfrac.h"
#include "gxarith.h"
#include "gxmatrix.h"
#include "gsccolor.h"
#include "gspaint.h"
#include "gzstate.h"
#include "gxdevice.h"
#include "gxcmap.h"
#include "gxdcconv.h"
#include "gxdcolor.h"
#include "gxistate.h"
#include "gxdevmem.h"
#include "gxcpath.h"
#include "gximage.h"
#include "gsicc.h"
#include "gsicc_cache.h"
#include "gsicc_cms.h"
#include "gxcie.h"
#include "gscie.h"
#include "gzht.h"
#include "gxht_thresh.h"


typedef union {
    byte v[GS_IMAGE_MAX_COLOR_COMPONENTS];
#define BYTES_PER_BITS32 4
#define BITS32_PER_COLOR_SAMPLES\
  ((GS_IMAGE_MAX_COLOR_COMPONENTS + BYTES_PER_BITS32 - 1) / BYTES_PER_BITS32)
    bits32 all[BITS32_PER_COLOR_SAMPLES];	/* for fast comparison */
} color_samples;

/* ------ Strategy procedure ------ */

/* Check the prototype. */
iclass_proc(gs_image_class_4_color);

static irender_proc(image_render_color_DeviceN);
static irender_proc(image_render_color_icc);
static irender_proc(image_render_color_thresh);

irender_proc_t
gs_image_class_4_color(gx_image_enum * penum)
{
    bool std_cmap_procs;
    int code;
    bool use_fast_thresh = false;

    if (penum->use_mask_color) {
	/*
	 * Scale the mask colors to match the scaling of each sample to
	 * a full byte, and set up the quick-filter parameters.
	 */
	int i;
	color_samples mask, test;
	bool exact = penum->spp <= BYTES_PER_BITS32;

	memset(&mask, 0, sizeof(mask));
	memset(&test, 0, sizeof(test));
	for (i = 0; i < penum->spp; ++i) {
	    byte v0, v1;
	    byte match = 0xff;

	    gx_image_scale_mask_colors(penum, i);
	    v0 = (byte)penum->mask_color.values[2 * i];
	    v1 = (byte)penum->mask_color.values[2 * i + 1];
	    while ((v0 & match) != (v1 & match))
		match <<= 1;
	    mask.v[i] = match;
	    test.v[i] = v0 & match;
	    exact &= (v0 == match && (v1 | match) == 0xff);
	}
	penum->mask_color.mask = mask.all[0];
	penum->mask_color.test = test.all[0];
	penum->mask_color.exact = exact;
    } else {
	penum->mask_color.mask = 0;
	penum->mask_color.test = ~0;
    }
    /* If the device has some unique color mapping procs due to its color space,
       then we will need to use those and go through pixel by pixel instead
       of blasting through buffers.  This is true for example with many of 
       the color spaces for CUPs */
    std_cmap_procs = gx_device_uses_std_cmap_procs(penum->dev);
    if ( (gs_color_space_get_index(penum->pcs) == gs_color_space_index_DeviceN &&
        penum->pcs->cmm_icc_profile_data == NULL) || penum->use_mask_color ||
        !std_cmap_procs) {
        return &image_render_color_DeviceN;
    } else {
        /* Set up the link now */
        const gs_color_space *pcs;
        gsicc_rendering_param_t rendering_params;
        int k;
        int src_num_comp = cs_num_components(penum->pcs);

         penum->icc_setup.need_decode = false;
        /* Check if we need to do any decoding.  If yes, then that will slow us down */
        for (k = 0; k < src_num_comp; k++) {
            if ( penum->map[k].decoding != sd_none ) {
                penum->icc_setup.need_decode = true;
                break;
            }
        }
        /* Define the rendering intents */
        rendering_params.black_point_comp = BP_ON;
        rendering_params.object_type = GS_IMAGE_TAG;
        rendering_params.rendering_intent = penum->pis->renderingintent;
        if (gs_color_space_is_PSCIE(penum->pcs) && penum->pcs->icc_equivalent != NULL) {
            pcs = penum->pcs->icc_equivalent;
        } else {
            pcs = penum->pcs;
        }
        penum->icc_setup.is_lab = pcs->cmm_icc_profile_data->islab;
        penum->icc_setup.must_halftone = gx_device_must_halftone(penum->dev);
        penum->icc_setup.has_transfer = gx_has_transfer(penum->pis,
                                penum->dev->device_icc_profile->num_comps);
        if (penum->icc_setup.is_lab) penum->icc_setup.need_decode = false;
        if (penum->icc_link == NULL) {
            penum->icc_link = gsicc_get_link(penum->pis, penum->dev, pcs, NULL, 
                &rendering_params, penum->memory, false);
        }
        /* PS CIE color spaces may have addition decoding that needs to
           be performed to ensure that the range of 0 to 1 is provided
           to the CMM since ICC profiles are restricted to that range
           but the PS color spaces are not. */
        if (gs_color_space_is_PSCIE(penum->pcs) && 
            penum->pcs->icc_equivalent != NULL) {
            /* We have a PS CIE space.  Check the range */
            if ( !check_cie_range(penum->pcs) ) {
                /* It is not 0 to 1.  We will be doing decode
                   plus an additional linear adjustment */
                penum->cie_range = get_cie_range(penum->pcs);
            }
        }
        /* Decide if we are going to do thresholding during rendering */
        if (gx_device_must_halftone(penum->dev) && use_fast_thresh && 
            penum->dev->color_info.num_components == 1 &&
            penum->dev->color_info.depth == 1 &&
            penum->bps == 8 && (penum->posture == image_portrait
            || penum->posture == image_landscape) &&
            penum->image_parent_type == gs_image_type1) {
            code = gxht_thresh_image_init(penum);
            if (code > 0) {
                 return &image_render_color_thresh;
            }
        }
        return &image_render_color_icc;
    }
}

/* ------ Rendering procedures ------ */

/* Test whether a color is transparent. */
static bool
mask_color_matches(const byte *v, const gx_image_enum *penum,
		   int num_components)
{
    int i;

    for (i = num_components * 2, v += num_components - 1; (i -= 2) >= 0; --v)
	if (*v < penum->mask_color.values[i] ||
	    *v > penum->mask_color.values[i + 1]
	    )
	    return false;
    return true;
}

static inline float
rescale_input_color(gs_range range, float input)
{
    return((input-range.rmin)/(range.rmax-range.rmin));
}

/* This one includes an extra adjustment for the CIE PS color space 
   non standard range */
static void 
decode_row_cie(const gx_image_enum *penum, const byte *psrc, int spp, byte *pdes, 
                byte *bufend, gs_range range_array[])
{
    byte *curr_pos = pdes;
    int k;
    float temp;

    while ( curr_pos < bufend ) {
        for ( k = 0; k < spp; k ++ ) {
            switch ( penum->map[k].decoding ) {
                case sd_none:
                    *curr_pos = *psrc;
                    break;
                case sd_lookup:	
                    temp = penum->map[k].decode_lookup[(*psrc) >> 4]*255.0;
                    temp = rescale_input_color(range_array[k], temp);
                    temp = temp*255;
                    if (temp > 255) temp = 255;
                    if (temp < 0 ) temp = 0;
                    *curr_pos = (unsigned char) temp;
                    break;
                case sd_compute:
                    temp = penum->map[k].decode_base + 
                        (*psrc) * penum->map[k].decode_factor;
                    temp = rescale_input_color(range_array[k], temp);
                    temp = temp*255;
                    if (temp > 255) temp = 255;
                    if (temp < 0 ) temp = 0;
                    *curr_pos = (unsigned char) temp;
                default:
                    break;
            }
            curr_pos++;
            psrc++;
        }
    }
}

static void 
decode_row(const gx_image_enum *penum, const byte *psrc, int spp, byte *pdes, 
                byte *bufend)
{
    byte *curr_pos = pdes;
    int k;
    float temp;

    while ( curr_pos < bufend ) {
        for ( k = 0; k < spp; k ++ ) {
            switch ( penum->map[k].decoding ) {
                case sd_none:
                    *curr_pos = *psrc;
                    break;
                case sd_lookup:	
                    temp = penum->map[k].decode_lookup[(*psrc) >> 4]*255.0;
                    if (temp > 255) temp = 255;
                    if (temp < 0 ) temp = 0;
                    *curr_pos = (unsigned char) temp;
                    break;
                case sd_compute:
                    temp = penum->map[k].decode_base + 
                        (*psrc) * penum->map[k].decode_factor;
                    temp *= 255;
                    if (temp > 255) temp = 255;
                    if (temp < 0 ) temp = 0;
                    *curr_pos = (unsigned char) temp;
                default:
                    break;
            }
            curr_pos++;
            psrc++;
        }
    }
}

/* Common code shared amongst the thresholding and non thresholding color image
   renderers */
static int
image_color_icc_prep(gx_image_enum *penum_orig, const byte *psrc, uint w, 
                     gx_device *dev, int *spp_cm_out, byte **psrc_cm, 
                     byte **psrc_cm_start, byte **psrc_decode, byte **bufend)
{
    const gx_image_enum *const penum = penum_orig; /* const within proc */
    const gs_imager_state *pis = penum->pis;
    const gs_color_space *pcs;
    bool need_decode = penum->icc_setup.need_decode;
    gsicc_bufferdesc_t input_buff_desc;
    gsicc_bufferdesc_t output_buff_desc;
    int num_pixels, spp_cm;
    int spp = penum->spp;
    
    if (penum->icc_link == NULL) {
        return gs_rethrow(-1, "ICC Link not created during image render color");
    }
    if (gs_color_space_is_PSCIE(penum->pcs) && penum->pcs->icc_equivalent != NULL) {
        pcs = penum->pcs->icc_equivalent;
    } else {
        pcs = penum->pcs;
    }
    /* If the link is the identity, then we don't need to do any color 
       conversions except for potentially a decode. */
    if (penum->icc_link->is_identity && !need_decode) {
        /* Fastest case.  No decode or CM needed */
        *psrc_cm = (unsigned char *) psrc;
        spp_cm = spp;
        *bufend = *psrc_cm +  w;
        *psrc_cm_start = NULL;
    } else {
        spp_cm = dev->device_icc_profile->num_comps;
        *psrc_cm = gs_alloc_bytes(pis->memory,  w * spp_cm/spp, 
                                  "image_render_color_icc");
        *psrc_cm_start = *psrc_cm;
        *bufend = *psrc_cm +  w * spp_cm/spp;
        if (penum->icc_link->is_identity) {
            /* decode only. no CM.  This is slow but does not happen that often */
            decode_row(penum, psrc, spp, *psrc_cm, *bufend);    
        } else {
            /* Set up the buffer descriptors. */
            num_pixels = w/spp;
            gsicc_init_buffer(&input_buff_desc, spp, 1,
                          false, false, false, 0, w,
                          1, num_pixels);
            gsicc_init_buffer(&output_buff_desc, spp_cm, 1,
                          false, false, false, 0, num_pixels * spp_cm,
                          1, num_pixels);
            /* For now, just blast it all through the link. If we had a significant reduction 
               we will want to repack the data first and then do this.  That will be 
               an optimization shortly.  For now just allocate a new output
               buffer.  We can reuse the old one if the number of channels in the output is
               less than or equal to the new one.  */
            if (need_decode) {
                /* Need decode and CM.  This is slow but does not happen that often */
                *psrc_decode = gs_alloc_bytes(pis->memory,  w, 
                                              "image_render_color_icc");
                if (penum->cie_range == NULL) {
                    decode_row(penum, psrc, spp, *psrc_decode, (*psrc_decode)+w);
                } else {
                    /* Decode needs to include adjustment for CIE range */
                    decode_row_cie(penum, psrc, spp, *psrc_decode, 
                                    (*psrc_decode)+w, penum->cie_range);
                }
                gscms_transform_color_buffer(penum->icc_link, &input_buff_desc, 
                                        &output_buff_desc, (void*) *psrc_decode, 
                                        (void*) *psrc_cm);
                gs_free_object(pis->memory, (byte *) *psrc_decode, 
                               "image_render_color_icc");
            } else {
                /* CM only. No decode */
                gscms_transform_color_buffer(penum->icc_link, &input_buff_desc, 
                                            &output_buff_desc, (void*) psrc, 
                                            (void*) *psrc_cm);
            }
        }
    }
    *spp_cm_out = spp_cm;
    return 0;
}

static int
image_render_color_thresh(gx_image_enum *penum, const byte *buffer, int data_x,
		   uint w, int h, gx_device * dev)
{
    int code;
    int spp = penum->spp;
    const byte *psrc_initial = buffer + data_x * spp;
    const byte *psrc = psrc_initial;
    int spp_cm = 0;
    byte *psrc_cm = NULL, *psrc_cm_start = NULL, *psrc_decode = NULL;
    byte *bufend = NULL;

    if (h == 0)
	return 0;
    /* Get the buffer into the device color space */
    code = image_color_icc_prep(penum, psrc, w, dev, &spp_cm, &psrc_cm, 
                                &psrc_cm_start, &psrc_decode, &bufend);
    /* Data is now in the proper destination color space.  Now we want 
       to go ahead and get the data into the proper spatial setting and then
       threshold */
 
return 0;
}

/* Render a color image with 8 or fewer bits per sample using ICC profile. */
static int
image_render_color_icc(gx_image_enum *penum_orig, const byte *buffer, int data_x,
		   uint w, int h, gx_device * dev)
{
    const gx_image_enum *const penum = penum_orig; /* const within proc */
    const gs_imager_state *pis = penum->pis;
    gs_logical_operation_t lop = penum->log_op;
    gx_dda_fixed_point pnext;
    image_posture posture = penum->posture;
    fixed xprev, yprev;
    fixed pdyx, pdyy;		/* edge of parallelogram */
    int vci, vdi;
    gx_device_color devc1;
    gx_device_color devc2;
    gx_device_color *pdevc;
    gx_device_color *pdevc_next;
    gx_device_color *ptemp;
    int spp = penum->spp;
    const byte *psrc_initial = buffer + data_x * spp;
    const byte *psrc = psrc_initial;
    const byte *rsrc = psrc + spp; /* psrc + spp at start of run */
    fixed xrun;			/* x ditto */
    fixed yrun;			/* y ditto */
    int irun;			/* int x/rrun */
    color_samples run;		/* run value */
    color_samples next;		/* next sample value */
    byte *bufend = NULL;
    int code = 0, mcode = 0;
    byte *psrc_cm = NULL, *psrc_cm_start = NULL, *psrc_decode = NULL;
    int k;
    gx_color_value conc[GX_DEVICE_COLOR_MAX_COMPONENTS];
    int spp_cm = 0;
    gx_color_index color;
    bool must_halftone = penum->icc_setup.must_halftone;
    bool has_transfer = penum->icc_setup.has_transfer;

    pdevc = &devc1;
    pdevc_next = &devc2;
    /* These used to be set by init clues */
    pdevc->type = gx_dc_type_none;
    pdevc_next->type = gx_dc_type_none;
    if (h == 0)
	return 0;
    code = image_color_icc_prep(penum_orig, psrc, w, dev, &spp_cm, &psrc_cm, 
                                &psrc_cm_start, &psrc_decode, &bufend);
    if (code < 0) return code;
    /* Needed for device N */
    memset(&(conc[0]), 0, sizeof(gx_color_value[GX_DEVICE_COLOR_MAX_COMPONENTS]));
    pnext = penum->dda.pixel0;
    xrun = xprev = dda_current(pnext.x);
    yrun = yprev = dda_current(pnext.y);
    pdyx = dda_current(penum->dda.row.x) - penum->cur.x;
    pdyy = dda_current(penum->dda.row.y) - penum->cur.y;
    switch (posture) {
	case image_portrait:
	    vci = penum->yci, vdi = penum->hci;
	    irun = fixed2int_var_rounded(xrun);
	    break;
	case image_landscape:
	default:    /* we don't handle skew -- treat as landscape */
	    vci = penum->xci, vdi = penum->wci;
	    irun = fixed2int_var_rounded(yrun);
	    break;
    }
    if_debug5('b', "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
	      penum->y, data_x, w, fixed2float(xprev), fixed2float(yprev));
    memset(&run, 0, sizeof(run));
    memset(&next, 0, sizeof(next));
    run.v[0] = ~psrc_cm[0];	/* Force intial setting */
    while (psrc_cm < bufend) {
	dda_next(pnext.x);
	dda_next(pnext.y);
        if ( penum->alpha ) {
            /* If the pixels are different, then take care of the alpha now */
            /* will need to adjust spp below.... */
        } else {
            memcpy(&(next.v[0]),psrc_cm, spp_cm);
            psrc_cm += spp_cm;
        }
        /* Compare to previous.  If same then move on */
        if (posture != image_skewed && next.all[0] == run.all[0])
		goto inc;
        /* This needs to be sped up */
         for ( k = 0; k < spp_cm; k++ ) {
            conc[k] = gx_color_value_from_byte(next.v[k]);
        }
        /* Now we can do an encoding directly or we have to apply transfer
           and or halftoning */
        if (must_halftone || has_transfer) {
            /* We need to do the tranfer function and/or the halftoning */
            cmap_transfer_halftone(&(conc[0]), pdevc_next, pis, dev, 
                has_transfer, must_halftone, gs_color_select_source);
        } else {
            /* encode as a color index. avoid all the cv to frac to cv
               conversions */
            color = dev_proc(dev, encode_color)(dev, &(conc[0]));
            /* check if the encoding was successful; we presume failure is rare */
            if (color != gx_no_color_index)
                color_set_pure(pdevc_next, color);
        }
        /* Fill the region between */
	/* xrun/irun and xprev */
		/*
	 * Note;  This section is nearly a copy of a simlar section below
         * for processing the last image pixel in the loop.  This would have been
         * made into a subroutine except for complications about the number of
         * variables that would have been needed to be passed to the routine.
		 */
	switch (posture) {
	case image_portrait:
	    {		/* Rectangle */
		int xi = irun;
		int wi = (irun = fixed2int_var_rounded(xprev)) - xi;

		if (wi < 0)
		    xi += wi, wi = -wi;
		if (wi > 0)
		    code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
							pdevc, dev, lop);
		}
	    break;
	case image_landscape:
	    {		/* 90 degree rotated rectangle */
		int yi = irun;
		int hi = (irun = fixed2int_var_rounded(yprev)) - yi;

		if (hi < 0)
		    yi += hi, hi = -hi;
		if (hi > 0)
		    code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
							pdevc, dev, lop);
	    }
	    break;
	default:
	    {		/* Parallelogram */
		code = (*dev_proc(dev, fill_parallelogram))
		    (dev, xrun, yrun, xprev - xrun, yprev - yrun, pdyx, pdyy,
		     pdevc, lop);
		xrun = xprev;
		yrun = yprev;
	    }
		}
	if (code < 0)
	    goto err;
	rsrc = psrc;
	if ((code = mcode) < 0) goto err;
        /* Swap around the colors due to a change */
        ptemp = pdevc;
        pdevc = pdevc_next;
        pdevc_next = ptemp;
 	run = next;
inc:	xprev = dda_current(pnext.x);
	yprev = dda_current(pnext.y);	/* harmless if no skew */
    }
    /* Fill the last run. */
		/*
     * Note;  This section is nearly a copy of a simlar section above
     * for processing an image pixel in the loop.  This would have been
     * made into a subroutine except for complications about the number
     * variables that would have been needed to be passed to the routine.
		 */
    switch (posture) {
    	case image_portrait:
	    {		/* Rectangle */
		int xi = irun;
		int wi = (irun = fixed2int_var_rounded(xprev)) - xi;

		if (wi < 0)
		    xi += wi, wi = -wi;
		if (wi > 0)
		    code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
							pdevc, dev, lop);
			}
	    break;
	case image_landscape:
	    {		/* 90 degree rotated rectangle */
		int yi = irun;
		int hi = (irun = fixed2int_var_rounded(yprev)) - yi;

		if (hi < 0)
		    yi += hi, hi = -hi;
		if (hi > 0)
		    code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
							pdevc, dev, lop);
		}
	    break;
	default:
	    {		/* Parallelogram */
		code = (*dev_proc(dev, fill_parallelogram))
		    (dev, xrun, yrun, xprev - xrun, yprev - yrun, pdyx, pdyy,
		     pdevc, lop);
		}
	    }
    /* Free cm buffer, if it was used */
    if (psrc_cm_start != NULL) {
        gs_free_object(pis->memory, (byte *)psrc_cm_start, "image_render_color_icc");
	    }
    return (code < 0 ? code : 1);
    /* Save position if error, in case we resume. */
err:
    gs_free_object(pis->memory, (byte *)psrc_cm_start, "image_render_color_icc");
    penum_orig->used.x = (rsrc - spp - psrc_initial) / spp;
    penum_orig->used.y = 0;
    return code;
}

/* Render a color image for deviceN source color with no ICC profile.  This   
   is also used if the image has any masking (type4 image) since we will not 
   be blasting through quickly */
static int
image_render_color_DeviceN(gx_image_enum *penum_orig, const byte *buffer, int data_x,
		   uint w, int h, gx_device * dev)
{
    const gx_image_enum *const penum = penum_orig; /* const within proc */
    const gs_imager_state *pis = penum->pis;
    gs_logical_operation_t lop = penum->log_op;
    gx_dda_fixed_point pnext;
    image_posture posture = penum->posture;
    fixed xprev, yprev;
    fixed pdyx, pdyy;		/* edge of parallelogram */
    int vci, vdi;
    const gs_color_space *pcs = penum->pcs;
    cs_proc_remap_color((*remap_color)) = pcs->type->remap_color;
    gs_client_color cc;
    gx_device_color devc1;
    gx_device_color devc2;
    gx_device_color *pdevc;
    gx_device_color *pdevc_next;
    gx_device_color *ptemp;
    int spp = penum->spp;
    const byte *psrc_initial = buffer + data_x * spp;
    const byte *psrc = psrc_initial;
    const byte *rsrc = psrc + spp; /* psrc + spp at start of run */
    fixed xrun;			/* x ditto */
    fixed yrun;			/* y ditto */
    int irun;			/* int x/rrun */
    color_samples run;		/* run value */
    color_samples next;		/* next sample value */
    const byte *bufend = psrc + w;
    int code = 0, mcode = 0;
	    int i;
    bits32 mask = penum->mask_color.mask;
    bits32 test = penum->mask_color.test;

    if (h == 0)
	return 0;
    pdevc = &devc1;
    pdevc_next = &devc2;
    /* These used to be set by init clues */
    pdevc->type = gx_dc_type_none;
    pdevc_next->type = gx_dc_type_none;
    pnext = penum->dda.pixel0;
    xrun = xprev = dda_current(pnext.x);
    yrun = yprev = dda_current(pnext.y);
    pdyx = dda_current(penum->dda.row.x) - penum->cur.x;
    pdyy = dda_current(penum->dda.row.y) - penum->cur.y;
    switch (posture) {
	case image_portrait:
	    vci = penum->yci, vdi = penum->hci;
	    irun = fixed2int_var_rounded(xrun);
	    break;
	case image_landscape:
	default:    /* we don't handle skew -- treat as landscape */
	    vci = penum->xci, vdi = penum->wci;
	    irun = fixed2int_var_rounded(yrun);
	    break;
    }
    if_debug5('b', "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
	      penum->y, data_x, w, fixed2float(xprev), fixed2float(yprev));
    memset(&run, 0, sizeof(run));
    memset(&next, 0, sizeof(next));
    cs_full_init_color(&cc, pcs);
    run.v[0] = ~psrc[0];	/* force remap */
    while (psrc < bufend) {
        dda_next(pnext.x);
        dda_next(pnext.y);
	    if (posture != image_skewed && !memcmp(psrc, run.v, spp)) {
		psrc += spp;
		goto inc;
	    }
	    memcpy(next.v, psrc, spp);
	    psrc += spp;
        /* Check for transparent color. */
	    if ((next.all[0] & mask) == test &&
            (penum->mask_color.exact || 
            mask_color_matches(next.v, penum, spp))) {
		color_set_null(pdevc_next);
		goto mapped;
	    }
	    for (i = 0; i < spp; ++i)
		decode_sample(next.v[i], cc, i);
#ifdef DEBUG
	    if (gs_debug_c('B')) {
		dprintf2("[B]cc[0..%d]=%g", spp - 1,
			 cc.paint.values[0]);
		for (i = 1; i < spp; ++i)
		    dprintf1(",%g", cc.paint.values[i]);
		dputs("\n");
	    }
#endif
	mcode = remap_color(&cc, pcs, pdevc_next, pis, dev,
			   gs_color_select_source);
mapped:	if (mcode < 0)
	    goto fill;
	if (sizeof(pdevc_next->colors.binary.color[0]) <= sizeof(ulong))
	    if_debug7('B', "[B]0x%x,0x%x,0x%x,0x%x -> 0x%lx,0x%lx,0x%lx\n",
		  next.v[0], next.v[1], next.v[2], next.v[3],
		  (ulong)pdevc_next->colors.binary.color[0],
		  (ulong)pdevc_next->colors.binary.color[1],
		  (ulong) pdevc_next->type);
	else
	    if_debug9('B', "[B]0x%x,0x%x,0x%x,0x%x -> 0x%08lx%08lx,0x%08lx%08lx,0x%lx\n",
		  next.v[0], next.v[1], next.v[2], next.v[3],
		  (ulong)(pdevc_next->colors.binary.color[0] >> 
			8 * (sizeof(pdevc_next->colors.binary.color[0]) - sizeof(ulong))),
		  (ulong)pdevc_next->colors.binary.color[0],
		  (ulong)(pdevc_next->colors.binary.color[1] >> 
			8 * (sizeof(pdevc_next->colors.binary.color[1]) - sizeof(ulong))),
		  (ulong)pdevc_next->colors.binary.color[1],
		  (ulong) pdevc_next->type);
	/* NB: printf above fails to account for sizeof gx_color_index 4 or 8 bytes */
	if (posture != image_skewed && next.all[0] == run.all[0])
	    goto set;
fill:	/* Fill the region between */
	/* xrun/irun and xprev */
        /*
	 * Note;  This section is nearly a copy of a simlar section below
         * for processing the last image pixel in the loop.  This would have been
         * made into a subroutine except for complications about the number of
         * variables that would have been needed to be passed to the routine.
	 */
	switch (posture) {
	case image_portrait:
	    {		/* Rectangle */
		int xi = irun;
		int wi = (irun = fixed2int_var_rounded(xprev)) - xi;

		if (wi < 0)
		    xi += wi, wi = -wi;
		if (wi > 0)
		    code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
							pdevc, dev, lop);
	    }
	    break;
	case image_landscape:
	    {		/* 90 degree rotated rectangle */
		int yi = irun;
		int hi = (irun = fixed2int_var_rounded(yprev)) - yi;

		if (hi < 0)
		    yi += hi, hi = -hi;
		if (hi > 0)
		    code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
							pdevc, dev, lop);
	    }
	    break;
	default:
	    {		/* Parallelogram */
		code = (*dev_proc(dev, fill_parallelogram))
		    (dev, xrun, yrun, xprev - xrun, yprev - yrun, pdyx, pdyy,
		     pdevc, lop);
		xrun = xprev;
		yrun = yprev;
	    }
	}
	if (code < 0)
	    goto err;
	rsrc = psrc;

	if ((code = mcode) < 0) goto err;
        /* Swap around the colors due to a change */
        ptemp = pdevc;
        pdevc = pdevc_next;
        pdevc_next = ptemp;
set:	run = next;
inc:	xprev = dda_current(pnext.x);
	yprev = dda_current(pnext.y);	/* harmless if no skew */
    }
    /* Fill the last run. */
    /*
     * Note;  This section is nearly a copy of a simlar section above
     * for processing an image pixel in the loop.  This would have been
     * made into a subroutine except for complications about the number
     * variables that would have been needed to be passed to the routine.
     */
    switch (posture) {
    	case image_portrait:
	    {		/* Rectangle */
		int xi = irun;
		int wi = (irun = fixed2int_var_rounded(xprev)) - xi;

		if (wi < 0)
		    xi += wi, wi = -wi;
		if (wi > 0)
		    code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
							pdevc, dev, lop);
	    }
	    break;
	case image_landscape:
	    {		/* 90 degree rotated rectangle */
		int yi = irun;
		int hi = (irun = fixed2int_var_rounded(yprev)) - yi;

		if (hi < 0)
		    yi += hi, hi = -hi;
		if (hi > 0)
		    code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
							pdevc, dev, lop);
	    }
	    break;
	default:
	    {		/* Parallelogram */
		code = (*dev_proc(dev, fill_parallelogram))
		    (dev, xrun, yrun, xprev - xrun, yprev - yrun, pdyx, pdyy,
		     pdevc, lop);
	    }
    }
    return (code < 0 ? code : 1);
    /* Save position if error, in case we resume. */
err:
    penum_orig->used.x = (rsrc - spp - psrc_initial) / spp;
    penum_orig->used.y = 0;
    return code;
}