summaryrefslogtreecommitdiff
path: root/gs/base/gxipixel.c
blob: 93fdc11cdb05be5faf23f5cbe37a966d16e8b8ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
/* Copyright (C) 2001-2006 Artifex Software, Inc.
   All Rights Reserved.
  
   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied, modified
   or distributed except as expressly authorized under the terms of that
   license.  Refer to licensing information at http://www.artifex.com/
   or contact Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134,
   San Rafael, CA  94903, U.S.A., +1(415)492-9861, for further information.
*/

/* $Id$ */
/* Common code for ImageType 1 and 4 initialization */
#include "gx.h"
#include "math_.h"
#include "memory_.h"
#include "gpcheck.h"
#include "gscdefs.h"		/* for image class table */
#include "gserrors.h"
#include "gsstruct.h"
#include "gsutil.h"
#include "gxfixed.h"
#include "gxfrac.h"
#include "gxarith.h"
#include "gxmatrix.h"
#include "gsccolor.h"
#include "gspaint.h"
#include "gzstate.h"
#include "gxdevice.h"
#include "gzpath.h"
#include "gzcpath.h"
#include "gxdevmem.h"
#include "gximage.h"
#include "gxiparam.h"
#include "gdevmrop.h"

/* Structure descriptors */
private_st_gx_image_enum();

/* Image class procedures */
extern_gx_image_class_table();

/* Enumerator procedures */
static const gx_image_enum_procs_t image1_enum_procs = {
    gx_image1_plane_data, gx_image1_end_image, gx_image1_flush
};

/* GC procedures */
static 
ENUM_PTRS_WITH(image_enum_enum_ptrs, gx_image_enum *eptr)
{
    int bps;
    gs_ptr_type_t ret;

    /* Enumerate the used members of clues.dev_color. */
    index -= gx_image_enum_num_ptrs;
    bps = eptr->unpack_bps;
    if (eptr->spp != 1)
	bps = 8;
    else if (bps > 8 || eptr->unpack == sample_unpack_copy)
	bps = 1;
    if (index >= (1 << bps) * st_device_color_max_ptrs)		/* done */
	return 0;
    ret = ENUM_USING(st_device_color,
		     &eptr->clues[(index / st_device_color_max_ptrs) *
				  (255 / ((1 << bps) - 1))].dev_color,
		     sizeof(eptr->clues[0].dev_color),
		     index % st_device_color_max_ptrs);
    if (ret == 0)		/* don't stop early */
	ENUM_RETURN(0);
    return ret;
}
#define e1(i,elt) ENUM_PTR(i,gx_image_enum,elt);
gx_image_enum_do_ptrs(e1)
#undef e1
ENUM_PTRS_END
static RELOC_PTRS_WITH(image_enum_reloc_ptrs, gx_image_enum *eptr)
{
    int i;

#define r1(i,elt) RELOC_PTR(gx_image_enum,elt);
    gx_image_enum_do_ptrs(r1)
#undef r1
    {
	int bps = eptr->unpack_bps;

	if (eptr->spp != 1)
	    bps = 8;
	else if (bps > 8 || eptr->unpack == sample_unpack_copy)
	    bps = 1;
	for (i = 0; i <= 255; i += 255 / ((1 << bps) - 1))
	    RELOC_USING(st_device_color,
			&eptr->clues[i].dev_color, sizeof(gx_device_color));
    }
}
RELOC_PTRS_END

/* Forward declarations */
static int color_draws_b_w(gx_device * dev,
			    const gx_drawing_color * pdcolor);
static void image_init_map(byte * map, int map_size, const float *decode);
static void image_init_colors(gx_image_enum * penum, int bps, int spp,
			       gs_image_format_t format,
			       const float *decode,
			       const gs_imager_state * pis, gx_device * dev,
			       const gs_color_space * pcs, bool * pdcb);

/* Procedures for unpacking the input data into bytes or fracs. */
/*extern SAMPLE_UNPACK_PROC(sample_unpack_copy); *//* declared above */

/*
 * Do common initialization for processing an ImageType 1 or 4 image.
 * Allocate the enumerator and fill in the following members:
 *	rect
 */
int
gx_image_enum_alloc(const gs_image_common_t * pic,
		    const gs_int_rect * prect, gs_memory_t * mem,
		    gx_image_enum **ppenum)
{
    const gs_pixel_image_t *pim = (const gs_pixel_image_t *)pic;
    int width = pim->Width, height = pim->Height;
    int bpc = pim->BitsPerComponent;
    gx_image_enum *penum;

    if (width < 0 || height < 0)
	return_error(gs_error_rangecheck);
    switch (pim->format) {
    case gs_image_format_chunky:
    case gs_image_format_component_planar:
	switch (bpc) {
	case 1: case 2: case 4: case 8: case 12: case 16: break;
	default: return_error(gs_error_rangecheck);
	}
	break;
    case gs_image_format_bit_planar:
	if (bpc < 1 || bpc > 8)
	    return_error(gs_error_rangecheck);
    }
    if (prect) {
	if (prect->p.x < 0 || prect->p.y < 0 ||
	    prect->q.x < prect->p.x || prect->q.y < prect->p.y ||
	    prect->q.x > width || prect->q.y > height
	    )
	    return_error(gs_error_rangecheck);
    }
    penum = gs_alloc_struct(mem, gx_image_enum, &st_gx_image_enum,
			    "gx_default_begin_image");
    if (penum == 0)
	return_error(gs_error_VMerror);
    if (prect) {
	penum->rect.x = prect->p.x;
	penum->rect.y = prect->p.y;
	penum->rect.w = prect->q.x - prect->p.x;
	penum->rect.h = prect->q.y - prect->p.y;
    } else {
	penum->rect.x = 0, penum->rect.y = 0;
	penum->rect.w = width, penum->rect.h = height;
    }
#ifdef DEBUG
    if (gs_debug_c('b')) {
	dlprintf2("[b]Image: w=%d h=%d", width, height);
	if (prect)
	    dprintf4(" ((%d,%d),(%d,%d))",
		     prect->p.x, prect->p.y, prect->q.x, prect->q.y);
    }
#endif
    *ppenum = penum;
    return 0;
}

/*
 * Finish initialization for processing an ImageType 1 or 4 image.
 * Assumes the following members of *penum are set in addition to those
 * set by gx_image_enum_alloc:
 *	alpha, use_mask_color, mask_color (if use_mask_color is true),
 *	masked, adjust
 */
int
gx_image_enum_begin(gx_device * dev, const gs_imager_state * pis,
		    const gs_matrix *pmat, const gs_image_common_t * pic,
		const gx_drawing_color * pdcolor, const gx_clip_path * pcpath,
		gs_memory_t * mem, gx_image_enum *penum)
{
    const gs_pixel_image_t *pim = (const gs_pixel_image_t *)pic;
    gs_image_format_t format = pim->format;
    const int width = pim->Width;
    const int height = pim->Height;
    const int bps = pim->BitsPerComponent;
    bool masked = penum->masked;
    const float *decode = pim->Decode;
    gs_matrix_double mat;
    int index_bps;
    const gs_color_space *pcs = pim->ColorSpace;
    gs_logical_operation_t lop = (pis ? pis->log_op : lop_default);
    int code;
    int log2_xbytes = (bps <= 8 ? 0 : arch_log2_sizeof_frac);
    int spp, nplanes, spread;
    uint bsize;
    byte *buffer;
    fixed mtx, mty;
    gs_fixed_point row_extent, col_extent, x_extent, y_extent;
    bool device_color = true;
    gs_fixed_rect obox, cbox;

    penum->Width = width;
    penum->Height = height;
    if (pmat == 0)
	pmat = &ctm_only(pis);
    if ((code = gs_matrix_invert_to_double(&pim->ImageMatrix, &mat)) < 0 ||
	(code = gs_matrix_multiply_double(&mat, pmat, &mat)) < 0
	) {
	gs_free_object(mem, penum, "gx_default_begin_image");
	return code;
    }
    /*penum->matrix = mat;*/
    penum->matrix.xx = mat.xx;
    penum->matrix.xy = mat.xy;
    penum->matrix.yx = mat.yx;
    penum->matrix.yy = mat.yy;
    penum->matrix.tx = mat.tx;
    penum->matrix.ty = mat.ty;
    if_debug6('b', " [%g %g %g %g %g %g]\n",
	      mat.xx, mat.xy, mat.yx, mat.yy, mat.tx, mat.ty);
    /* following works for 1, 2, 4, 8, 12, 16 */
    index_bps = (bps < 8 ? bps >> 1 : (bps >> 2) + 1);
    /* 
     * Compute extents with distance transformation.
     */
    if (mat.tx > 0)
	mtx = float2fixed(mat.tx);
    else { /* Use positive values to ensure round down. */
	int f = (int)-mat.tx + 1;

	mtx = float2fixed(mat.tx + f) - int2fixed(f);
    }
    if (mat.ty > 0)
	mty = float2fixed(mat.ty);
    else {  /* Use positive values to ensure round down. */
	int f = (int)-mat.ty + 1;

	mty = float2fixed(mat.ty + f) - int2fixed(f);
    }

    row_extent.x = float2fixed_rounded(width * mat.xx);
    row_extent.y =
	(is_fzero(mat.xy) ? fixed_0 :
	 float2fixed_rounded(width * mat.xy));
    col_extent.x =
	(is_fzero(mat.yx) ? fixed_0 :
	 float2fixed_rounded(height * mat.yx));
    col_extent.y = float2fixed_rounded(height * mat.yy);
    gx_image_enum_common_init((gx_image_enum_common_t *)penum,
			      (const gs_data_image_t *)pim,
			      &image1_enum_procs, dev,
			      (masked ? 1 : (penum->alpha ? cs_num_components(pcs)+1 : cs_num_components(pcs))),
			      format);
    if (penum->rect.w == width && penum->rect.h == height) {
	x_extent = row_extent;
	y_extent = col_extent;
    } else {
	int rw = penum->rect.w, rh = penum->rect.h;

	x_extent.x = float2fixed_rounded(rw * mat.xx);
	x_extent.y =
	    (is_fzero(mat.xy) ? fixed_0 :
	     float2fixed_rounded(rw * mat.xy));
	y_extent.x =
	    (is_fzero(mat.yx) ? fixed_0 :
	     float2fixed_rounded(rh * mat.yx));
	y_extent.y = float2fixed_rounded(rh * mat.yy);
    }
    if (masked) {	/* This is imagemask. */
	if (bps != 1 || pcs != NULL || penum->alpha || decode[0] == decode[1]) {
	    gs_free_object(mem, penum, "gx_default_begin_image");
	    return_error(gs_error_rangecheck);
	}
	/* Initialize color entries 0 and 255. */
	set_nonclient_dev_color(&penum->icolor0, gx_no_color_index);
	penum->icolor1 = *pdcolor;
	memcpy(&penum->map[0].table.lookup4x1to32[0],
	       (decode[0] < decode[1] ? lookup4x1to32_inverted :
		lookup4x1to32_identity),
	       16 * 4);
	penum->map[0].decoding = sd_none;
	spp = 1;
	lop = rop3_know_S_0(lop);
    } else {			/* This is image, not imagemask. */
	const gs_color_space_type *pcst = pcs->type;
	int b_w_color;

	spp = cs_num_components(pcs);
	if (spp < 0) {		/* Pattern not allowed */
	    gs_free_object(mem, penum, "gx_default_begin_image");
	    return_error(gs_error_rangecheck);
	}
	if (penum->alpha)
	    ++spp;
	/* Use a less expensive format if possible. */
	switch (format) {
	case gs_image_format_bit_planar:
	    if (bps > 1)
		break;
	    format = gs_image_format_component_planar;
	case gs_image_format_component_planar:
	    if (spp == 1)
		format = gs_image_format_chunky;
	default:		/* chunky */
	    break;
	}
	device_color = (*pcst->concrete_space) (pcs, pis) == pcs;
	image_init_colors(penum, bps, spp, format, decode, pis, dev,
			  pcs, &device_color);
	/* Try to transform non-default RasterOps to something */
	/* that we implement less expensively. */
	if (!pim->CombineWithColor)
	    lop = rop3_know_T_0(lop) & ~lop_T_transparent;
	else {
	    if (rop3_uses_T(lop))
		switch (color_draws_b_w(dev, pdcolor)) {
		    case 0:
			lop = rop3_know_T_0(lop);
			break;
		    case 1:
			lop = rop3_know_T_1(lop);
			break;
		    default:
			;
		}
	}
	if (lop != rop3_S &&	/* if best case, no more work needed */
	    !rop3_uses_T(lop) && bps == 1 && spp == 1 &&
	    (b_w_color =
	     color_draws_b_w(dev, &penum->icolor0)) >= 0 &&
	    color_draws_b_w(dev, &penum->icolor1) == (b_w_color ^ 1)
	    ) {
	    if (b_w_color) {	/* Swap the colors and invert the RasterOp source. */
		gx_device_color dcolor;

		dcolor = penum->icolor0;
		penum->icolor0 = penum->icolor1;
		penum->icolor1 = dcolor;
		lop = rop3_invert_S(lop);
	    }
	    /*
	     * At this point, we know that the source pixels
	     * correspond directly to the S input for the raster op,
	     * i.e., icolor0 is black and icolor1 is white.
	     */
	    switch (lop) {
		case rop3_D & rop3_S:
		    /* Implement this as an inverted mask writing 0s. */
		    penum->icolor1 = penum->icolor0;
		    /* (falls through) */
		case rop3_D | rop3_not(rop3_S):
		    /* Implement this as an inverted mask writing 1s. */
		    memcpy(&penum->map[0].table.lookup4x1to32[0],
			   lookup4x1to32_inverted, 16 * 4);
		  rmask:	/* Fill in the remaining parameters for a mask. */
		    penum->masked = masked = true;
		    set_nonclient_dev_color(&penum->icolor0, gx_no_color_index);
		    penum->map[0].decoding = sd_none;
		    lop = rop3_T;
		    break;
		case rop3_D & rop3_not(rop3_S):
		    /* Implement this as a mask writing 0s. */
		    penum->icolor1 = penum->icolor0;
		    /* (falls through) */
		case rop3_D | rop3_S:
		    /* Implement this as a mask writing 1s. */
		    memcpy(&penum->map[0].table.lookup4x1to32[0],
			   lookup4x1to32_identity, 16 * 4);
		    goto rmask;
		default:
		    ;
	    }
	}
    }
    penum->device_color = device_color;
    /*
     * Adjust width upward for unpacking up to 7 trailing bits in
     * the row, plus 1 byte for end-of-run, plus up to 7 leading
     * bits for data_x offset within a packed byte.
     */
    bsize = ((bps > 8 ? width * 2 : width) + 15) * spp;
    buffer = gs_alloc_bytes(mem, bsize, "image buffer");
    if (buffer == 0) {
	gs_free_object(mem, penum, "gx_default_begin_image");
	return_error(gs_error_VMerror);
    }
    penum->bps = bps;
    penum->unpack_bps = bps;
    penum->log2_xbytes = log2_xbytes;
    penum->spp = spp;
    switch (format) {
    case gs_image_format_chunky:
	nplanes = 1;
	spread = 1 << log2_xbytes;
	break;
    case gs_image_format_component_planar:
	nplanes = spp;
	spread = spp << log2_xbytes;
	break;
    case gs_image_format_bit_planar:
	nplanes = spp * bps;
	spread = spp << log2_xbytes;
	break;
    default:
	/* No other cases are possible (checked by gx_image_enum_alloc). */
	return_error(gs_error_Fatal);
    }
    penum->num_planes = nplanes;
    penum->spread = spread;
    /*
     * If we're asked to interpolate in a partial image, we have to
     * assume that the client either really only is interested in
     * the given sub-image, or else is constructing output out of
     * overlapping pieces.
     */
    penum->interpolate = pim->Interpolate;
    penum->x_extent = x_extent;
    penum->y_extent = y_extent;
    penum->posture =
	((x_extent.y | y_extent.x) == 0 ? image_portrait :
	 (x_extent.x | y_extent.y) == 0 ? image_landscape :
	 image_skewed);
    penum->pis = pis;
    penum->pcs = pcs;
    penum->memory = mem;
    penum->buffer = buffer;
    penum->buffer_size = bsize;
    penum->line = 0;
    penum->line_size = 0;
    penum->use_rop = lop != (masked ? rop3_T : rop3_S);
#ifdef DEBUG
    if (gs_debug_c('*')) {
	if (penum->use_rop)
	    dprintf1("[%03x]", lop);
	dprintf5("%c%d%c%dx%d ",
		 (masked ? (color_is_pure(pdcolor) ? 'm' : 'h') : 'i'),
		 bps,
		 (penum->posture == image_portrait ? ' ' :
		  penum->posture == image_landscape ? 'L' : 'T'),
		 width, height);
    }
#endif
    penum->slow_loop = 0;
    if (pcpath == 0) {
	(*dev_proc(dev, get_clipping_box)) (dev, &obox);
	cbox = obox;
	penum->clip_image = 0;
    } else
	penum->clip_image =
	    (gx_cpath_outer_box(pcpath, &obox) |	/* not || */
	     gx_cpath_inner_box(pcpath, &cbox) ?
	     0 : image_clip_region);
    penum->clip_outer = obox;
    penum->clip_inner = cbox;
    penum->log_op = rop3_T;	/* rop device takes care of this */
    penum->clip_dev = 0;	/* in case we bail out */
    penum->rop_dev = 0;		/* ditto */
    penum->scaler = 0;		/* ditto */
    /*
     * If all four extrema of the image fall within the clipping
     * rectangle, clipping is never required.  When making this check,
     * we must carefully take into account the fact that we only care
     * about pixel centers.
     */
    {
	fixed
	    epx = min(row_extent.x, 0) + min(col_extent.x, 0),
	    eqx = max(row_extent.x, 0) + max(col_extent.x, 0),
	    epy = min(row_extent.y, 0) + min(col_extent.y, 0),
	    eqy = max(row_extent.y, 0) + max(col_extent.y, 0);

	{
	    int hwx, hwy;

	    switch (penum->posture) {
		case image_portrait:
		    hwx = width, hwy = height;
		    break;
		case image_landscape:
		    hwx = height, hwy = width;
		    break;
		default:
		    hwx = hwy = 0;
	    }
	    /*
	     * If the image is only 1 sample wide or high,
	     * and is less than 1 device pixel wide or high,
	     * move it slightly so that it covers pixel centers.
	     * This is a hack to work around a bug in some old
	     * versions of TeX/dvips, which use 1-bit-high images
	     * to draw horizontal and vertical lines without
	     * positioning them properly.
	     */
	    if (hwx == 1 && eqx - epx < fixed_1) {
		fixed diff =
		arith_rshift_1(row_extent.x + col_extent.x);

		mtx = (((mtx + diff) | fixed_half) & -fixed_half) - diff;
	    }
	    if (hwy == 1 && eqy - epy < fixed_1) {
		fixed diff =
		arith_rshift_1(row_extent.y + col_extent.y);

		mty = (((mty + diff) | fixed_half) & -fixed_half) - diff;
	    }
	}
	if_debug5('b', "[b]Image: %sspp=%d, bps=%d, mt=(%g,%g)\n",
		  (masked? "masked, " : ""), spp, bps,
		  fixed2float(mtx), fixed2float(mty));
	if_debug9('b',
		  "[b]   cbox=(%g,%g),(%g,%g), obox=(%g,%g),(%g,%g), clip_image=0x%x\n",
		  fixed2float(cbox.p.x), fixed2float(cbox.p.y),
		  fixed2float(cbox.q.x), fixed2float(cbox.q.y),
		  fixed2float(obox.p.x), fixed2float(obox.p.y),
		  fixed2float(obox.q.x), fixed2float(obox.q.y),
		  penum->clip_image);
	dda_init(penum->dda.row.x, mtx, col_extent.x, height);
	dda_init(penum->dda.row.y, mty, col_extent.y, height);
	penum->dst_width = row_extent.x;
	penum->dst_height = col_extent.y;
	penum->yi0 = fixed2int_pixround_perfect(dda_current(penum->dda.row.y)); /* For gs_image_class_0_interpolate. */
	if (penum->rect.y) {
	    int y = penum->rect.y;

	    while (y--) {
		dda_next(penum->dda.row.x);
		dda_next(penum->dda.row.y);
	    }
	}
	penum->cur.x = penum->prev.x = dda_current(penum->dda.row.x);
	penum->cur.y = penum->prev.y = dda_current(penum->dda.row.y);
	dda_init(penum->dda.strip.x, penum->cur.x, row_extent.x, width);
	dda_init(penum->dda.strip.y, penum->cur.y, row_extent.y, width);
	if (penum->rect.x) {
	    dda_advance(penum->dda.strip.x, penum->rect.x);
	    dda_advance(penum->dda.strip.y, penum->rect.x);
	} {
	    fixed ox = dda_current(penum->dda.strip.x);
	    fixed oy = dda_current(penum->dda.strip.y);

	    if (!penum->clip_image)	/* i.e., not clip region */
		penum->clip_image =
		    (fixed_pixround(ox + epx) < fixed_pixround(cbox.p.x) ?
		     image_clip_xmin : 0) +
		    (fixed_pixround(ox + eqx) >= fixed_pixround(cbox.q.x) ?
		     image_clip_xmax : 0) +
		    (fixed_pixround(oy + epy) < fixed_pixround(cbox.p.y) ?
		     image_clip_ymin : 0) +
		    (fixed_pixround(oy + eqy) >= fixed_pixround(cbox.q.y) ?
		     image_clip_ymax : 0);
	}
    }
    penum->y = 0;
    penum->used.x = 0;
    penum->used.y = 0;
    {
	static sample_unpack_proc_t procs[2][6] = {
	{   sample_unpack_1, sample_unpack_2,
	    sample_unpack_4, sample_unpack_8,
	    0, 0
	}, 
	{   sample_unpack_1_interleaved, sample_unpack_2_interleaved,
	    sample_unpack_4_interleaved, sample_unpack_8_interleaved,
	    0, 0
	}};
	int num_planes = penum->num_planes;
	bool interleaved = (num_planes == 1 && penum->plane_depths[0] != penum->bps);
	int i;

	procs[0][4] = procs[1][4] = sample_unpack_12_proc;
	procs[0][5] = procs[1][5] = sample_unpack_16_proc;
	if (interleaved) {
	    int num_components = penum->plane_depths[0] / penum->bps;

	    for (i = 1; i < num_components; i++) {
		if (decode[0] != decode[i * 2 + 0] ||
		    decode[1] != decode[i * 2 + 1])
		    break;
	    }
	    if (i == num_components)
		interleaved = false; /* Use single table. */
	}
	if (index_bps >= 4) {
	    if ((penum->unpack = procs[interleaved][index_bps]) == 0) {		/* bps case not supported. */
		gx_default_end_image(dev,
				     (gx_image_enum_common_t *) penum,
				     false);
		return_error(gs_error_rangecheck);
	    }
	} else {
	    penum->unpack = procs[interleaved][index_bps];
	}
	if_debug1('b', "[b]unpack=%d\n", bps);
	/* Set up pixel0 for image class procedures. */
	penum->dda.pixel0 = penum->dda.strip;
	for (i = 0; i < gx_image_class_table_count; ++i)
	    if ((penum->render = gx_image_class_table[i](penum)) != 0)
		break;
	if (i == gx_image_class_table_count) {
	    /* No available class can handle this image. */
	    gx_default_end_image(dev, (gx_image_enum_common_t *) penum,
				 false);
	    return_error(gs_error_rangecheck);
	}
    }
    if (penum->clip_image && pcpath) {	/* Set up the clipping device. */
	gx_device_clip *cdev =
	    gs_alloc_struct(mem, gx_device_clip,
			    &st_device_clip, "image clipper");

	if (cdev == 0) {
	    gx_default_end_image(dev,
				 (gx_image_enum_common_t *) penum,
				 false);
	    return_error(gs_error_VMerror);
	}
	gx_make_clip_device_in_heap(cdev, pcpath, dev, mem);
	penum->clip_dev = cdev;
    }
    if (penum->use_rop) {	/* Set up the RasterOp source device. */
	gx_device_rop_texture *rtdev;

	code = gx_alloc_rop_texture_device(&rtdev, mem,
					   "image RasterOp");
	if (code < 0) {
	    gx_default_end_image(dev, (gx_image_enum_common_t *) penum,
				 false);
	    return code;
	}
	gx_make_rop_texture_device(rtdev,
				   (penum->clip_dev != 0 ?
				    (gx_device *) penum->clip_dev :
				    dev), lop, pdcolor);
	penum->rop_dev = rtdev;
    }
    return 0;
}

/* If a drawing color is black or white, return 0 or 1 respectively, */
/* otherwise return -1. */
static int
color_draws_b_w(gx_device * dev, const gx_drawing_color * pdcolor)
{
    if (color_is_pure(pdcolor)) {
	gx_color_value rgb[3];

	(*dev_proc(dev, map_color_rgb)) (dev, gx_dc_pure_color(pdcolor),
					 rgb);
	if (!(rgb[0] | rgb[1] | rgb[2]))
	    return 0;
	if ((rgb[0] & rgb[1] & rgb[2]) == gx_max_color_value)
	    return 1;
    }
    return -1;
}

/* Export this for use by image_render_ functions */
void
image_init_clues(gx_image_enum * penum, int bps, int spp)
{
    /* Initialize the color table */
#define ictype(i)\
  penum->clues[i].dev_color.type

    switch ((spp == 1 ? bps : 8)) {
	case 8:		/* includes all color images */
	    {
		register gx_image_clue *pcht = &penum->clues[0];
		register int n = 64;	/* 8 bits means 256 clues, do	*/
					/* 4 at a time for efficiency	*/
		do {
		    pcht[0].dev_color.type =
			pcht[1].dev_color.type =
			pcht[2].dev_color.type =
			pcht[3].dev_color.type =
			gx_dc_type_none;
		    pcht[0].key = pcht[1].key =
			pcht[2].key = pcht[3].key = 0;
		    pcht += 4;
		}
		while (--n > 0);
		penum->clues[0].key = 1;	/* guarantee no hit */
		break;
	    }
	case 4:
	    ictype(17) = ictype(2 * 17) = ictype(3 * 17) =
		ictype(4 * 17) = ictype(6 * 17) = ictype(7 * 17) =
		ictype(8 * 17) = ictype(9 * 17) = ictype(11 * 17) =
		ictype(12 * 17) = ictype(13 * 17) = ictype(14 * 17) =
		gx_dc_type_none;
	    /* falls through */
	case 2:
	    ictype(5 * 17) = ictype(10 * 17) = gx_dc_type_none;
#undef ictype
    }
}

/* Initialize the color mapping tables for a non-mask image. */
static void
image_init_colors(gx_image_enum * penum, int bps, int spp,
		  gs_image_format_t format, const float *decode /*[spp*2] */ ,
		  const gs_imager_state * pis, gx_device * dev,
		  const gs_color_space * pcs, bool * pdcb)
{
    int ci;
    static const float default_decode[] = {
	0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0
    };

    image_init_clues(penum, bps, spp);

    /* Initialize the maps from samples to intensities. */
    for (ci = 0; ci < spp; ci++) {
	sample_map *pmap = &penum->map[ci];

	/* If the decoding is [0 1] or [1 0], we can fold it */
	/* into the expansion of the sample values; */
	/* otherwise, we have to use the floating point method. */

	const float *this_decode = &decode[ci * 2];
	const float *map_decode;	/* decoding used to */
					/* construct the expansion map */
	const float *real_decode;	/* decoding for expanded samples */

	bool no_decode;

	map_decode = real_decode = this_decode;
	if (map_decode[0] == 0.0 && map_decode[1] == 1.0)
	    no_decode = true;
	else if (map_decode[0] == 1.0 && map_decode[1] == 0.0 && bps <= 8) {
	    no_decode = true;
	    real_decode = default_decode;
	} else {
	    no_decode = false;
	    *pdcb = false;
	    map_decode = default_decode;
	}
	if (bps > 2 || format != gs_image_format_chunky) {
	    if (bps <= 8)
		image_init_map(&pmap->table.lookup8[0], 1 << bps,
			       map_decode);
	} else {		/* The map index encompasses more than one pixel. */
	    byte map[4];
	    register int i;

	    image_init_map(&map[0], 1 << bps, map_decode);
	    switch (bps) {
		case 1:
		    {
			register bits32 *p = &pmap->table.lookup4x1to32[0];

			if (map[0] == 0 && map[1] == 0xff)
			    memcpy((byte *) p, lookup4x1to32_identity, 16 * 4);
			else if (map[0] == 0xff && map[1] == 0)
			    memcpy((byte *) p, lookup4x1to32_inverted, 16 * 4);
			else
			    for (i = 0; i < 16; i++, p++)
				((byte *) p)[0] = map[i >> 3],
				    ((byte *) p)[1] = map[(i >> 2) & 1],
				    ((byte *) p)[2] = map[(i >> 1) & 1],
				    ((byte *) p)[3] = map[i & 1];
		    }
		    break;
		case 2:
		    {
			register bits16 *p = &pmap->table.lookup2x2to16[0];

			for (i = 0; i < 16; i++, p++)
			    ((byte *) p)[0] = map[i >> 2],
				((byte *) p)[1] = map[i & 3];
		    }
		    break;
	    }
	}
	pmap->decode_base /* = decode_lookup[0] */  = real_decode[0];
	pmap->decode_factor =
	    (real_decode[1] - real_decode[0]) /
	    (bps <= 8 ? 255.0 : (float)frac_1);
	pmap->decode_max /* = decode_lookup[15] */  = real_decode[1];
	if (no_decode) {
	    pmap->decoding = sd_none;
	    pmap->inverted = map_decode[0] != 0;
	} else if (bps <= 4) {
	    int step = 15 / ((1 << bps) - 1);
	    int i;

	    pmap->decoding = sd_lookup;
	    for (i = 15 - step; i > 0; i -= step)
		pmap->decode_lookup[i] = pmap->decode_base +
		    i * (255.0 / 15) * pmap->decode_factor;
	} else
	    pmap->decoding = sd_compute;
	if (spp == 1) {		/* and ci == 0 *//* Pre-map entries 0 and 255. */
	    gs_client_color cc;

	    cc.paint.values[0] = real_decode[0];
	    (*pcs->type->remap_color) (&cc, pcs, &penum->icolor0,
				       pis, dev, gs_color_select_source);
	    cc.paint.values[0] = real_decode[1];
	    (*pcs->type->remap_color) (&cc, pcs, &penum->icolor1,
				       pis, dev, gs_color_select_source);
	}
    }

}
/* Construct a mapping table for sample values. */
/* map_size is 2, 4, 16, or 256.  Note that 255 % (map_size - 1) == 0, */
/* so the division 0xffffL / (map_size - 1) is always exact. */
static void
image_init_map(byte * map, int map_size, const float *decode)
{
    float min_v = decode[0];
    float diff_v = decode[1] - min_v;

    if (diff_v == 1 || diff_v == -1) {	/* We can do the stepping with integers, without overflow. */
	byte *limit = map + map_size;
	uint value = (uint)(min_v * 0xffffL);
	int diff = (int)(diff_v * (0xffffL / (map_size - 1)));

	for (; map != limit; map++, value += diff)
	    *map = value >> 8;
    } else {			/* Step in floating point, with clamping. */
	int i;

	for (i = 0; i < map_size; ++i) {
	    int value = (int)((min_v + diff_v * i / (map_size - 1)) * 255);

	    map[i] = (value < 0 ? 0 : value > 255 ? 255 : value);
	}
    }
}

/*
 * Scale a pair of mask_color values to match the scaling of each sample to
 * a full byte, and complement and swap them if the map incorporates
 * a Decode = [1 0] inversion.
 */
void
gx_image_scale_mask_colors(gx_image_enum *penum, int component_index)
{
    uint scale = 255 / ((1 << penum->bps) - 1);
    uint *values = &penum->mask_color.values[component_index * 2];
    uint v0 = values[0] *= scale;
    uint v1 = values[1] *= scale;

    if (penum->map[component_index].decoding == sd_none &&
	penum->map[component_index].inverted
	) {
	values[0] = 255 - v1;
	values[1] = 255 - v0;
    }
}