summaryrefslogtreecommitdiff
path: root/gs/base/gxiscale.c
blob: 18c95db60ea2106669f0ed0f4ad45031b90f3337 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
/* Copyright (C) 2001-2012 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134, San Rafael,
   CA  94903, U.S.A., +1(415)492-9861, for further information.
*/


/* Interpolated image procedures */
#include "gx.h"
#include "math_.h"
#include "memory_.h"
#include "stdint_.h"
#include "gpcheck.h"
#include "gserrors.h"
#include "gxfixed.h"
#include "gxfrac.h"
#include "gxarith.h"
#include "gxmatrix.h"
#include "gsccolor.h"
#include "gspaint.h"
#include "gxdevice.h"
#include "gxcmap.h"
#include "gxdcolor.h"
#include "gxistate.h"
#include "gxdevmem.h"
#include "gxcpath.h"
#include "gximage.h"
#include "stream.h"             /* for s_alloc_state */
#include "siinterp.h"           /* for spatial interpolation */
#include "siscale.h"            /* for Mitchell filtering */
#include "sidscale.h"           /* for special case downscale filter */
#include "vdtrace.h"
#include "gscindex.h"           /* included for proper handling of index color spaces
                                and keeping data in source color space */
#include "gxcolor2.h"           /* define of float_color_to_byte_color */
#include "gscspace.h"           /* Needed for checking is space is CIE */
#include "gsicc_cache.h"
#include "gsicc_manage.h"
#include "gsicc.h"

static void
decode_sample_frac_to_float(gx_image_enum *penum, frac sample_value, gs_client_color *cc, int i);

/*
 * Define whether we are using Mitchell filtering or spatial
 * interpolation to implement Interpolate.  (The latter doesn't work yet.)
 */
#define USE_MITCHELL_FILTER

/* ------ Strategy procedure ------ */

/* Check the prototype. */
iclass_proc(gs_image_class_0_interpolate);

/* If we're interpolating, use special logic.
   This function just gets interpolation stucture
   initialized and allocates buffer space if needed */
static irender_proc(image_render_interpolate);
static irender_proc(image_render_interpolate_icc);

irender_proc_t
gs_image_class_0_interpolate(gx_image_enum * penum)
{
    gs_memory_t *mem = penum->memory;
    stream_image_scale_params_t iss;
    stream_image_scale_state *pss;
    const stream_template *templat;
    byte *line;
    const gs_color_space *pcs = penum->pcs;
    gs_point dst_xy;
    uint in_size;
    bool use_icc = false;
    int num_des_comps;
    cmm_dev_profile_t *dev_profile;
    int code;

    if (!penum->interpolate)
        return 0;
    if (penum->use_mask_color || penum->posture != image_portrait ||
        penum->masked || penum->alpha) {
        /* We can't handle these cases yet.  Punt. */
        penum->interpolate = false;
        return 0;
    }
    if ( pcs->cmm_icc_profile_data != NULL ) {
        use_icc = true;
    }
    if ( pcs->type->index == gs_color_space_index_Indexed) {
        if ( pcs->base_space->cmm_icc_profile_data != NULL) {
            use_icc = true;
        }
    }
    if (!(penum->bps <= 8 || penum->bps == 16)) {
        use_icc = false;
    }
    /* Do not allow mismatch in devices component output with the
       profile output size.  For example sep device with CMYK profile should
       not go through the fast method */
    code = dev_proc(penum->dev, get_profile)(penum->dev, &dev_profile);
    num_des_comps = gsicc_get_device_profile_comps(dev_profile);
    if (num_des_comps != penum->dev->color_info.num_components) {
        use_icc = false;
    }
    /* If the device has some unique color mapping procs due to its color space,
       then we will need to use those and go through pixel by pixel instead
       of blasting through buffers.  This is true for example with many of
       the color spaces for CUPs */
    if(!gx_device_uses_std_cmap_procs(penum->dev, penum->pis)) {
        use_icc = false;
    }
/*
 * USE_CONSERVATIVE_INTERPOLATION_RULES is normally NOT defined since
 * the MITCHELL digital filter seems OK as long as we are going out to
 * a device that can produce > 15 shades.
 */
#if defined(USE_MITCHELL_FILTER) && defined(USE_CONSERVATIVE_INTERPOLATION_RULES)
    /*
     * We interpolate using a digital filter, rather than Adobe's
     * spatial interpolation algorithm: this produces very bad-looking
     * results if the input resolution is close to the output resolution,
     * especially if the input has low color resolution, so we resort to
     * some hack tests on the input color resolution and scale to suppress
     * interpolation if we think the result would look especially bad.
     * If we used Adobe's spatial interpolation approach, we wouldn't need
     * to do this, but the spatial interpolation filter doesn't work yet.
     */
    if (penum->bps < 4 || penum->bps * penum->spp < 8 ||
        (fabs(penum->matrix.xx) <= 5 && fabs(penum->matrix.yy <= 5))
        ) {
        penum->interpolate = false;
        return 0;
    }
#endif
    /* Non-ANSI compilers require the following casts: */
    gs_distance_transform((float)penum->rect.w, (float)penum->rect.h,
                          &penum->matrix, &dst_xy);
    if (use_icc) {
        iss.BitsPerComponentOut = 16;
        iss.MaxValueOut = 0xffff;
    } else {
        iss.BitsPerComponentOut = sizeof(frac) * 8;
        iss.MaxValueOut = frac_1;
    }
    iss.WidthOut = (int)ceil(fabs(dst_xy.x));
    iss.HeightOut = fixed2int_pixround_perfect((fixed)((int64_t)(penum->rect.y + penum->rect.h) *
                                                penum->dst_height / penum->Height))
        - fixed2int_pixround_perfect((fixed)((int64_t)penum->rect.y * penum->dst_height / penum->Height));
    iss.HeightOut = any_abs(iss.HeightOut);
    iss.WidthIn = penum->rect.w;
    iss.HeightIn = penum->rect.h;
    iss.src_y_offset = penum->rect.y;
    iss.EntireWidthIn = penum->Width;
    iss.EntireHeightIn = penum->Height;
    iss.EntireWidthOut = fixed2int_pixround(any_abs(penum->dst_width));
    iss.EntireHeightOut = fixed2int_pixround(any_abs(penum->dst_height));
    if (iss.EntireWidthOut == 0 || iss.EntireHeightOut == 0)
    {
        penum->interpolate = false;
        return 0;
    }
    /* If we are in an indexed space then we need to use the number of components
       in the base space.  Otherwise we use the number of components in the source space */
    if (pcs->type->index == gs_color_space_index_Indexed) {
        /* Use the number of colors in the base space */
        iss.spp_decode = cs_num_components(pcs->base_space);
    } else {
        /* Use the number of colors that exist in the source space
        as this is where we are doing our interpolation */
        iss.spp_decode = cs_num_components(pcs);
    }
    if (iss.HeightOut > iss.EntireHeightIn && use_icc) {
        iss.early_cm = true;
        iss.spp_interp = num_des_comps;
    } else {
        iss.early_cm = false;
        iss.spp_interp = iss.spp_decode;
    }
    if (penum->bps <= 8 ) {
       /* If the input is ICC or other device independent format, go ahead
          and do the interpolation in that space.
          If we have more than 8 bits per channel then we will need to
          handle that in a slightly different manner so
          that the interpolation algorithm handles it properly.
          The interpolation will still be in the source
          color space.  Note that if image data was less the 8 bps
          It is handed here to us in 8 bit form already decoded. */
        iss.BitsPerComponentIn = 8;
        iss.MaxValueIn = 0xff;
        /* If it is an index color space we will need to allocate for
           the decoded data */
       if (pcs->type->index == gs_color_space_index_Indexed) {
           in_size = iss.WidthIn * iss.spp_decode;
       } else {
           /* Non indexed case, we either use the data as
           is, or allocate space if it is reversed in X */
            in_size =
                (penum->matrix.xx < 0 ?
                 /* We need a buffer for reversing each scan line. */
                 iss.WidthIn * iss.spp_decode : 0);
            /* If it is not reversed, and we have 8 bit/color channel data then
            no need to allocate extra as we will use the source directly */
            /* However, if we have a nonstandard encoding and are in
                a device color space we will need to allocate
               in that case also. We will maintain 8 bits but
               do the decode and then interpolate.  This is OK
               for the linear decode */
            if (!penum->device_color && !gs_color_space_is_CIE(pcs)){
                in_size = iss.WidthIn * iss.spp_decode;
            }
        }
    } else {
        /* If it has more than 8 bits per color channel then we will go to frac
           for the interpolation to mantain precision or 16 bit for icc  */
        if (use_icc) {
            iss.BitsPerComponentIn = 16;
            iss.MaxValueIn = 0xffff;
        } else {
            iss.BitsPerComponentIn = sizeof(frac) * 8;
            iss.MaxValueIn = frac_1;
        }
        in_size = round_up(iss.WidthIn * iss.spp_decode * sizeof(frac),
                           align_bitmap_mod);
        /* Size to allocate space to store the input as frac type */
    }
#ifdef USE_MITCHELL_FILTER
    templat = &s_IScale_template;
#else
    templat = &s_IIEncode_template;
#endif
    if (((penum->dev->color_info.num_components == 1 &&
          penum->dev->color_info.max_gray < 15) ||
         (penum->dev->color_info.num_components > 1 &&
          penum->dev->color_info.max_color < 15))
        ) {
        /* halftone device -- restrict interpolation */
        if ((iss.WidthOut < iss.WidthIn * 4) &&
            (iss.HeightOut < iss.HeightIn * 4)) {
            if ((iss.WidthOut < iss.WidthIn) &&
                (iss.HeightOut < iss.HeightIn) &&       /* downsampling */
                (penum->dev->color_info.polarity != GX_CINFO_POLARITY_UNKNOWN)) {
                /* Special case handling for when we are downsampling
                   to a dithered device.  The point of this non-linear
                   downsampling is to preserve dark pixels from the source
                   image to avoid dropout. The color polarity is used for this  */
                templat = &s_ISpecialDownScale_template;
            } else {
                penum->interpolate = false;
                return 0;       /* no interpolation / downsampling */
            }
        }
        /* else, continue with the Mitchell filter (for upscaling of at least 4:1) */
    }
    /* The SpecialDownScale filter needs polarity, either ADDITIVE or SUBTRACTIVE */
    /* UNKNOWN case (such as for palette colors) has been handled above */
    iss.ColorPolarityAdditive =
        penum->dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE;
    /* Allocate a buffer for one source/destination line. */
    {
        uint out_size =
            iss.WidthOut * max(iss.spp_interp * (iss.BitsPerComponentOut / 8),
                               arch_sizeof_color_index);
        /* Allocate based upon frac size (as BitsPerComponentOut=16) output scan
           line input plus output. The outsize may have an adjustment for
           word boundary on it. Need to account for that now */
        out_size += align_bitmap_mod;
        line = gs_alloc_bytes(mem, in_size + out_size,
                              "image scale src+dst line");
    }
    pss = (stream_image_scale_state *)
        s_alloc_state(mem, templat->stype, "image scale state");
    if (line == 0 || pss == 0 ||
        (pss->params = iss, pss->templat = templat,
         (*pss->templat->init) ((stream_state *) pss) < 0)
        ) {
        gs_free_object(mem, pss, "image scale state");
        gs_free_object(mem, line, "image scale src+dst line");
        /* Try again without interpolation. */
        penum->interpolate = false;
        return 0;
    }
    penum->line = line;  /* Set to the input and output buffer */
    penum->scaler = pss;
    penum->line_xy = 0;
    {
        gx_dda_fixed x0;
        x0 = penum->dda.pixel0.x;
        if (penum->matrix.xx < 0)
            dda_advance(x0, penum->rect.w);
        penum->xyi.x = fixed2int_pixround(dda_current(x0));
    }
    penum->xyi.y = penum->yi0 + fixed2int_pixround_perfect((fixed)((int64_t)penum->rect.y
                                    * penum->dst_height / penum->Height));
    if_debug0('b', "[b]render=interpolate\n");
    if (use_icc) {
        /* Set up the link now */
        const gs_color_space *pcs;
        gsicc_rendering_param_t rendering_params;
        int k;
        int src_num_comp = cs_num_components(penum->pcs);

        penum->icc_setup.need_decode = false;
        /* Check if we need to do any decoding.  If yes, then that will slow us down */
        for (k = 0; k < src_num_comp; k++) {
            if ( penum->map[k].decoding != sd_none ) {
                penum->icc_setup.need_decode = true;
                break;
            }
        }
        /* Define the rendering intents */
        rendering_params.black_point_comp = BP_ON;
        rendering_params.graphics_type_tag = GS_IMAGE_TAG;
        rendering_params.rendering_intent = penum->pis->renderingintent;
        if (gs_color_space_is_PSCIE(penum->pcs) && penum->pcs->icc_equivalent != NULL) {
            pcs = penum->pcs->icc_equivalent;
        } else {
            /* Look for indexed space */
            if ( penum->pcs->type->index == gs_color_space_index_Indexed) {
                pcs = penum->pcs->base_space;
            } else {
                pcs = penum->pcs;
            }
        }
        penum->icc_setup.is_lab = pcs->cmm_icc_profile_data->islab;
        if (penum->icc_setup.is_lab) penum->icc_setup.need_decode = false;
        penum->icc_setup.must_halftone = gx_device_must_halftone(penum->dev);
        penum->icc_setup.has_transfer = 
            gx_has_transfer(penum->pis, num_des_comps);
        if (penum->icc_link == NULL) {
            penum->icc_link = gsicc_get_link(penum->pis, penum->dev, pcs, NULL,
                &rendering_params, penum->memory);
        }
        /* We need to make sure that we do the proper unpacking proc if we
           are doing 16 bit */
        if (penum->bps == 16) {
            penum->unpack = sample_unpackicc_16_proc;
        }
        return &image_render_interpolate_icc;
    } else {
        return &image_render_interpolate;
    }
}

/* ------ Rendering for interpolated images ------ */

/* This does some initial required decoding of index spaces and general
   decoding of odd scaled image data needed prior to interpolation or
   application of color management. */
static void
initial_decode(gx_image_enum * penum, const byte * buffer, int data_x, int h,
               bool need_decode, stream_cursor_read *stream_r, bool is_icc) 
{
    stream_image_scale_state *pss = penum->scaler;
    const gs_imager_state *pis = penum->pis;
    const gs_color_space *pcs = penum->pcs;
    gs_logical_operation_t lop = penum->log_op;
    int spp_decode = pss->params.spp_decode;
    stream_cursor_write w;
    unsigned char index_space;
    byte *out = penum->line;

    if (h != 0) {
        /* Convert the unpacked data to concrete values in the source buffer. */
        int sizeofPixelIn = pss->params.BitsPerComponentIn / 8;
        uint row_size = pss->params.WidthIn * spp_decode * sizeofPixelIn;
         /* raw input data */
        const unsigned char *bdata = buffer + data_x * spp_decode * sizeofPixelIn;   
        index_space = 0;
        /* We have the following cases to worry about
          1) Device 8 bit color but not indexed (e.g. ICC).
             Apply CMM after interpolation if needed.
             Also if ICC CIELAB do not do a decode operation
          2) Indexed 8 bit color.  Get to the base space. We will then be in
             the same state as 1.
          3) 16 bit not indexed.  Remap after interpolation.
          4) Indexed 16bit color.   Get to base space in 16bit form. We
             will then be in same state as 3.
         */
        if (sizeofPixelIn == 1) {
            if (pcs->type->index != gs_color_space_index_Indexed) {
                /* An issue here is that we may not be "device color" due to
                   how the data is encoded.  Need to check for that case here */
                /* Decide here if we need to decode or not. Essentially, as
                 * far as I can gather, we use the top case if we DON'T need
                 * to decode. This is fairly obviously conditional on
                 * need_decode being set to 0. The major exception to this is
                 * that if the colorspace is CIE, we interpolate, THEN decode,
                 * so the decode is done later in the pipeline, so we needn't
                 * decode here (see Bugs 692225 and 692331). */
                if (!need_decode) {
                    /* 8-bit color values, possibly device  indep. or device
                       depend., not indexed. Decode range was [0 1] */
                    if (penum->matrix.xx >= 0) {
                        /* Use the input data directly. sets up data in the 
                           stream buffer structure */
                        stream_r->ptr = bdata - 1;
                    } else {
                        /* Mirror the data in X. */
                        const byte *p = bdata + row_size - spp_decode;
                        byte *q = out;
                        int i;

                        for (i = 0; i < pss->params.WidthIn; 
                            p -= spp_decode, q += spp_decode, ++i)
                            memcpy(q, p, spp_decode);
                        stream_r->ptr = out - 1;
                        out += round_up(pss->params.WidthIn * 
                                        spp_decode, align_bitmap_mod);
                    }
                } else {
                    /* We need to do some decoding. Data will remain in 8 bits
                       This does not occur if color space was CIE encoded.
                       Then we do the decode during concretization which occurs
                       after interpolation */
                    int dc = penum->spp;
                    const byte *pdata = bdata;
                    byte *psrc = (byte *) penum->line;
                    int i, j;
                    int dpd = dc;
                    gs_client_color cc;

                    /* Go backwards through the data */
                    if (penum->matrix.xx < 0) {
                        pdata += (pss->params.WidthIn - 1) * dpd;
                        dpd = - dpd;
                    }
                    stream_r->ptr = (byte *) psrc - 1;
                    for (i = 0; i < pss->params.WidthIn; i++, psrc += spp_decode) {
                        /* Do the decode but remain in 8 bits */
                        for (j = 0; j < dc;  ++j) {
                            decode_sample(pdata[j], cc, j);
                            psrc[j] = float_color_to_byte_color(cc.paint.values[j]);
                        }
                        pdata += dpd;
                    }
                    out += round_up(pss->params.WidthIn * spp_decode,
                                    align_bitmap_mod);
                }
            } else {
                /* indexed 8 bit color values, possibly a device indep. or
                   device depend. base space. We need to get out of the indexed
                   space and into the base color space. Note that we need to
                   worry about the decode function for the index values. */
                int bps = penum->bps;
                int dc = penum->spp;
                const byte *pdata = bdata; /* Input buffer */
                unsigned char *psrc = (unsigned char *) penum->line;  /* Output */
                int i;
                int dpd = dc * (bps <= 8 ? 1 : sizeof(frac));
                float max_range;

                /* Get max of decode range */
                max_range = (penum->map[0].decode_factor < 0 ?
                    penum->map[0].decode_base :
                penum->map[0].decode_base + 255.0 * penum->map[0].decode_factor);
                index_space = 1;
                /* flip the horizontal direction if indicated by the matrix value */
                if (penum->matrix.xx < 0) {
                    pdata += (pss->params.WidthIn - 1) * dpd;
                    dpd = - dpd;
                }
                stream_r->ptr = (byte *) psrc - 1;

                for (i = 0; i < pss->params.WidthIn; i++, psrc += spp_decode) {
                    /* Let's get directly to a decoded byte type loaded into
                       psrc, and do the interpolation in the source space. Then
                       we will do the appropriate remap function after
                       interpolation. */
                    /* First we need to get the properly decoded value. */
                    float decode_value;
                    switch ( penum->map[0].decoding )
                    {
                        case sd_none:
                         /* while our indexin is going to be 0 to 255.0 due to
                            what is getting handed to us, the range of our
                            original data may not have been as such and we may
                            need to rescale, to properly lookup at the correct
                            location (or do the proc correctly) during the index
                            look-up.  This occurs even if decoding was set to
                            sd_none.  */
                            decode_value = (float) pdata[0] * (float)max_range / 255.0;
                            break;
                        case sd_lookup:
                            decode_value =
                              (float) penum->map[0].decode_lookup[pdata[0] >> 4];
                            break;
                        case sd_compute:
                            decode_value =
                              penum->map[0].decode_base +
                              ((float) pdata[0]) * penum->map[0].decode_factor;
                            break;
                        default:
                            decode_value = 0; /* Quiet gcc warning. */
                    }
                    gs_cspace_indexed_lookup_bytes(pcs, decode_value,psrc);
                    pdata += dpd;    /* Can't have just ++
                                        since we could be going backwards */
                }
                /* We need to set the output to the end of the input buffer
                   moving it to the next desired word boundary.  This must
                   be accounted for in the memory allocation of
                   gs_image_class_0_interpolate */
                out += round_up(pss->params.WidthIn * spp_decode, 
                                align_bitmap_mod);
            }
        } else {
            /* More than 8-bits/color values */
            /* Even in this case we need to worry about an indexed color space.
               We need to get to the base color space for the interpolation and
               then if necessary do the remap to the device space */
            if (pcs->type->index != gs_color_space_index_Indexed) {
                int bps = penum->bps;
                int dc = penum->spp;
                const byte *pdata = bdata;
                frac *psrc = (frac *) penum->line;
                int i, j;
                int dpd = dc * (bps <= 8 ? 1 : sizeof(frac));

                if (penum->matrix.xx < 0) {
                    pdata += (pss->params.WidthIn - 1) * dpd;
                    dpd = - dpd;
                }
                stream_r->ptr = (byte *) psrc - 1;
                if_debug0('B', "[B]Remap row:\n[B]");
                if (is_icc) {
                    stream_r->ptr = (byte *) pdata - 1;
                } else {
                    for (i = 0; i < pss->params.WidthIn; i++, 
                         psrc += spp_decode) {
                        /* Lets get directly to a frac type loaded into psrc, 
                           and do the interpolation in the source space. Then we 
                           will do the appropriate remap function after 
                           interpolation. */
                        for (j = 0; j < dc; ++j) {
                            DECODE_FRAC_FRAC(((const frac *)pdata)[j], psrc[j], j);
                        }
                        pdata += dpd;
    #ifdef DEBUG
                        if (gs_debug_c('B')) {
                            int ci;

                            for (ci = 0; ci < spp_decode; ++ci)
                                dprintf2("%c%04x", (ci == 0 ? ' ' : ','), psrc[ci]);
                        }
    #endif
                    }
                }
                out += round_up(pss->params.WidthIn * spp_decode * sizeof(frac),
                                align_bitmap_mod);
                if_debug0('B', "\n");
            } else {
                /* indexed and more than 8bps.  Need to get to the base space */
                int bps = penum->bps;
                int dc = penum->spp;
                const byte *pdata = bdata; /* Input buffer */
                frac *psrc = (frac *) penum->line;    /* Output buffer */
                int i;
                int dpd = dc * (bps <= 8 ? 1 : sizeof(frac));
                float decode_value;

                index_space = 1;
                /* flip the horizontal direction if indicated by the matrix value */
                if (penum->matrix.xx < 0) {
                    pdata += (pss->params.WidthIn - 1) * dpd;
                    dpd = - dpd;
                }
                stream_r->ptr = (byte *) psrc - 1;
                for (i = 0; i < pss->params.WidthIn; i++, psrc += spp_decode) {
                    /* Lets get the decoded value. Then we need to do the lookup
                       of this */
                    decode_value = penum->map[i].decode_base +
                        (((const frac *)pdata)[0]) * penum->map[i].decode_factor;
                    /* Now we need to do the lookup of this value, and stick it
                       in psrc as a frac, which is what the interpolator is
                       expecting, since we had more than 8 bits of original
                       image data */
                    gs_cspace_indexed_lookup_frac(pcs, decode_value,psrc);
                    pdata += dpd;
                }
                /* We need to set the output to the end of the input buffer
                   moving it to the next desired word boundary.  This must
                   be accounted for in the memory allocation of
                   gs_image_class_0_interpolate */
                out += round_up(pss->params.WidthIn * spp_decode, 
                                align_bitmap_mod);
            } /* end of else on indexed */
        }  /* end of else on more than 8 bps */
        stream_r->limit = stream_r->ptr + row_size;
    } else {                    /* h == 0 */
        stream_r->ptr = 0, stream_r->limit = 0;
        index_space = 0;
    }
}

static int
image_render_interpolate(gx_image_enum * penum, const byte * buffer,
                         int data_x, uint iw, int h, gx_device * dev)
{
    stream_image_scale_state *pss = penum->scaler;
    const gs_imager_state *pis = penum->pis;
    const gs_color_space *pcs = penum->pcs;
    gs_logical_operation_t lop = penum->log_op;
    int spp_decode = pss->params.spp_decode;
    stream_cursor_read stream_r;
    stream_cursor_write stream_w;
    bool is_index_space;
    byte *out = penum->line;
    bool islab = false;
    bool need_decode;

    if (pcs->cmm_icc_profile_data != NULL) {
        islab = pcs->cmm_icc_profile_data->islab;
    }
    /* Perform any decode procedure if needed */
    need_decode = !(penum->device_color || gs_color_space_is_CIE(pcs) || islab);
    initial_decode(penum, buffer, data_x, h, need_decode, &stream_r, false); 
    is_index_space = (pcs->type->index == gs_color_space_index_Indexed);
    /*
     * Process input and/or collect output.  By construction, the pixels are
     * 1-for-1 with the device, but the Y coordinate might be inverted.
     */
    {
        int xo = penum->xyi.x;
        int yo = penum->xyi.y;
        int width = pss->params.WidthOut;
        int sizeofPixelOut = pss->params.BitsPerComponentOut / 8;
        int dy;
        const gs_color_space *pconcs;
        const gs_color_space *pactual_cs;
        int bpp = dev->color_info.depth;
        uint raster = bitmap_raster(width * bpp);
        bool device_color;

        if (penum->matrix.yy > 0)
            dy = 1;
        else
            dy = -1, yo--;
        for (;;) {
            int ry = yo + penum->line_xy * dy;
            int x;
            const frac *psrc;
            gx_device_color devc;
            int status, code;

            DECLARE_LINE_ACCUM_COPY(out, bpp, xo);
            stream_w.limit = out + width *
                max(spp_decode * sizeofPixelOut, arch_sizeof_color_index) - 1;
            stream_w.ptr = stream_w.limit - width * spp_decode * sizeofPixelOut;
            psrc = (const frac *)(stream_w.ptr + 1);
            /* This is where the rescale takes place */
            status = (*pss->templat->process)
                ((stream_state *) pss, &stream_r, &stream_w, h == 0);
            if (status < 0 && status != EOFC)
                return_error(gs_error_ioerror);
            if (stream_w.ptr == stream_w.limit) {
                int xe = xo + width;

                if_debug1('B', "[B]Interpolated row %d:\n[B]",
                          penum->line_xy);
                for (x = xo; x < xe;) {
#ifdef DEBUG
                    if (gs_debug_c('B')) {
                        int ci;

                        for (ci = 0; ci < spp_decode; ++ci)
                            dprintf2("%c%04x", (ci == 0 ? ' ' : ','),
                                     psrc[ci]);
                    }
#endif
                    /* if we are in a non device space then work
                       from the pcs not from the concrete space
                       also handle index case, where base case was device type */
                    if (pcs->type->index == gs_color_space_index_Indexed) {
                        pactual_cs = pcs->base_space;
                    } else {
                        pactual_cs = pcs;
                    }
                    pconcs = cs_concrete_space(pactual_cs, pis);
                    if (pconcs->cmm_icc_profile_data != NULL) {
                        device_color = false;
                    } else {
                        device_color = (pconcs == pactual_cs);
                    }
                    if (device_color) {
                        /* Use the underlying concrete space remap */
                        code = (*pconcs->type->remap_concrete_color)
                        (psrc, pconcs, &devc, pis, dev, gs_color_select_source);
                    } else {
                        /* if we are device dependent we need to get back to
                           float prior to remap.  This stuff needs to be
                           reworked  as  part of the ICC flow update.
                           In such a flow, we will want the interpolation
                           algorithm output likely to be 8 bit (if the input
                           were 8 bit) and hit that buffer of values directly
                           with the linked transform */
                        gs_client_color cc;
                        int j;
                        int num_components =
                              gs_color_space_num_components(pactual_cs);

                        for (j = 0; j < num_components;  ++j) {
                            /* If we were indexed, dont use the decode procedure
                               for the index values just get to float directly */
                            if (is_index_space || islab) {
                                cc.paint.values[j] = frac2float(psrc[j]);
                            } else {
                                decode_sample_frac_to_float(penum, psrc[j], &cc, j);
                            }
                        }
                        /* If the source colors are LAB then use the mapping 
                           that does not rescale the source colors */
                        if (gs_color_space_is_ICC(pactual_cs) && 
                            pactual_cs->cmm_icc_profile_data != NULL &&
                            pactual_cs->cmm_icc_profile_data->islab) {
                            code = gx_remap_ICC_imagelab (&cc, pactual_cs, &devc, 
                                                          pis, dev, 
                                                          gs_color_select_source);
                        } else {
                            code = (pactual_cs->type->remap_color)
                                    (&cc, pactual_cs, &devc, pis, dev, 
                                     gs_color_select_source);
                        }
                    }
                    if (code < 0)
                        return code;
                    if (color_is_pure(&devc)) {
                        /* Just pack colors into a scan line. */
                        gx_color_index color = devc.colors.pure;
                        /* Skip runs quickly for the common cases. */
                        switch (spp_decode) {
                            case 1:
                                do {
                                    LINE_ACCUM(color, bpp);
                                    vd_pixel(int2fixed(x), int2fixed(ry), color);
                                    x++, psrc += 1;
                                } while (x < xe && psrc[-1] == psrc[0]);
                                break;
                            case 3:
                                do {
                                    LINE_ACCUM(color, bpp);
                                    vd_pixel(int2fixed(x), int2fixed(ry), color);
                                    x++, psrc += 3;
                                } while (x < xe &&
                                         psrc[-3] == psrc[0] &&
                                         psrc[-2] == psrc[1] &&
                                         psrc[-1] == psrc[2]);
                                break;
                            case 4:
                                do {
                                    LINE_ACCUM(color, bpp);
                                    x++, psrc += 4;
                                } while (x < xe &&
                                         psrc[-4] == psrc[0] &&
                                         psrc[-3] == psrc[1] &&
                                         psrc[-2] == psrc[2] &&
                                         psrc[-1] == psrc[3]);
                                break;
                            default:
                                LINE_ACCUM(color, bpp);
                                x++, psrc += spp_decode;
                        }
                    } else {
                        int rcode;

                        LINE_ACCUM_COPY(dev, out, bpp, xo, x, raster, ry);
                        rcode = gx_fill_rectangle_device_rop(x, ry, 1, 1,
                                                             &devc, dev, lop);
                        if (rcode < 0)
                            return rcode;
                        LINE_ACCUM_SKIP(bpp);
                        l_xprev = x + 1;
                        x++, psrc += spp_decode;
                    }
                }
                LINE_ACCUM_COPY(dev, out, bpp, xo, x, raster, ry);
                /*if_debug1('w', "[w]Y=%d:\n", ry);*/ /* See siscale.c about 'w'. */
                penum->line_xy++;
                if_debug0('B', "\n");
            }
            if ((status == 0 && stream_r.ptr == stream_r.limit) || status == EOFC)
                break;
        }
    }
    return (h == 0 ? 0 : 1);
}

/* Interpolation with ICC based source spaces. This is done seperately to
   enable optimization and avoid the multiple tranformations that occur in
   the above code */
static int
image_render_interpolate_icc(gx_image_enum * penum, const byte * buffer,
                         int data_x, uint iw, int h, gx_device * dev)
{
    stream_image_scale_state *pss = penum->scaler;
    const gs_imager_state *pis = penum->pis;
    const gs_color_space *pcs = penum->pcs;
    gs_logical_operation_t lop = penum->log_op;
    int spp_decode = pss->params.spp_decode;
    byte *out = penum->line;
    bool must_halftone = penum->icc_setup.must_halftone;
    bool has_transfer = penum->icc_setup.has_transfer;
    stream_cursor_read stream_r;
    stream_cursor_write stream_w;
    bool need_decode;

    if (penum->icc_link == NULL) {
        return gs_rethrow(-1, "ICC Link not created duringgs_image_class_0_interpolate");
    }
    /* Go ahead and take apart any indexed color space or do the decode 
       so that we can then perform the interpolation or color management */
    need_decode = !((penum->device_color || penum->icc_setup.is_lab) &&
                     (penum->icc_setup.need_decode == 0) ||
                     gs_color_space_is_CIE(pcs));
    initial_decode(penum, buffer, data_x, h, need_decode, &stream_r, true); 
    /*
     * Process input and/or collect output.  By construction, the pixels are
     * 1-for-1 with the device, but the Y coordinate might be inverted.
     * CM is performed on the entire row.
     */
    {
        int xo = penum->xyi.x;
        int yo = penum->xyi.y;
        int width = pss->params.WidthOut;
        int width_in = pss->params.WidthIn;
        int sizeofPixelOut = pss->params.BitsPerComponentOut / 8;
        int dy;
        int bpp = dev->color_info.depth;
        uint raster = bitmap_raster(width * bpp);
        unsigned short *p_cm_interp;
        byte *p_cm_buff = NULL;
        byte *psrc;
        int spp_decode = pss->params.spp_decode;
        int spp_interp = pss->params.spp_interp;
        int spp_cm;
        gsicc_bufferdesc_t input_buff_desc;
        gsicc_bufferdesc_t output_buff_desc;
        gx_color_index color;
        int code;
        cmm_dev_profile_t *dev_profile;
        int num_bytes_decode = pss->params.BitsPerComponentIn / 8;

        code = dev_proc(dev, get_profile)(dev, &dev_profile);
        spp_cm = gsicc_get_device_profile_comps(dev_profile);
        if (penum->matrix.yy > 0)
            dy = 1;
        else
            dy = -1, yo--;
        /* If it makes sense (if enlarging), do early CM */
        if (pss->params.early_cm && !penum->icc_link->is_identity
            && stream_r.ptr != stream_r.limit) {
            /* Get the buffers set up. */
            p_cm_buff = 
                (byte *) gs_alloc_bytes(pis->memory,
                                        num_bytes_decode * width_in * spp_cm,
                                        "image_render_interpolate_icc");
            /* Set up the buffer descriptors. We keep the bytes the same */
            gsicc_init_buffer(&input_buff_desc, spp_decode, num_bytes_decode,
                          false, false, false, 0, width_in * spp_decode,
                          1, width_in);
            gsicc_init_buffer(&output_buff_desc, spp_cm, num_bytes_decode,
                          false, false, false, 0, width_in * spp_cm,
                          1, width_in);
            /* Do the transformation */
            psrc = (byte*) (stream_r.ptr + 1);
            (penum->icc_link->procs.map_buffer)(dev, penum->icc_link, &input_buff_desc,
                                                &output_buff_desc, (void*) psrc,
                                                (void*) p_cm_buff);
            /* Re-set the reading stream to use the cm data */
            stream_r.ptr = p_cm_buff - 1;
            stream_r.limit = stream_r.ptr + num_bytes_decode * width_in * spp_cm;
        } else {
            /* CM after interpolation (or none).  Just set up the buffers 
               if needed.  16 bit operations if CM takes place.  */
            if (!penum->icc_link->is_identity) {
                p_cm_buff = (byte *) gs_alloc_bytes(pis->memory,
                    sizeof(unsigned short) * width * spp_cm,
                    "image_render_interpolate_icc");
                /* Set up the buffer descriptors. */
                gsicc_init_buffer(&input_buff_desc, spp_decode, 2,
                              false, false, false, 0, width * spp_decode,
                              1, width);
                gsicc_init_buffer(&output_buff_desc, spp_cm, 2,
                              false, false, false, 0, width * spp_cm,
                              1, width);
            }
        }
        for (;;) {
            int ry = yo + penum->line_xy * dy;
            int x;
            const unsigned short *pinterp;
            gx_device_color devc;
            int status;

            DECLARE_LINE_ACCUM_COPY(out, bpp, xo);
            stream_w.limit = out + width *
                max(spp_interp * sizeofPixelOut, arch_sizeof_color_index) - 1;
            stream_w.ptr = stream_w.limit - width * spp_interp * sizeofPixelOut;
            pinterp = (const unsigned short *)(stream_w.ptr + 1);
            /* This is where the rescale takes place */
            status = (*pss->templat->process)
                ((stream_state *) pss, &stream_r, &stream_w, h == 0);
            if (status < 0 && status != EOFC)
                return_error(gs_error_ioerror);
            if (stream_w.ptr == stream_w.limit) {
                int xe = xo + width;

                if_debug1('B', "[B]Interpolated row %d:\n[B]",
                          penum->line_xy);
                /* Take care of CM on the entire interpolated row, if we 
                   did not already do CM */
                if (penum->icc_link->is_identity || pss->params.early_cm) {
                    /* Fastest case. No CM needed */
                    p_cm_interp = (unsigned short *) pinterp;
                } else {
                    /* Transform */
                    p_cm_interp = (unsigned short *) p_cm_buff;
                    (penum->icc_link->procs.map_buffer)(dev, penum->icc_link, 
                                                        &input_buff_desc,
                                                        &output_buff_desc, 
                                                        (void*) pinterp,
                                                        (void*) p_cm_interp);
                }
                for (x = xo; x < xe;) {
#ifdef DEBUG
                    if (gs_debug_c('B')) {
                        int ci;

                        for (ci = 0; ci < spp_cm; ++ci)
                            dprintf2("%c%04x", (ci == 0 ? ' ' : ','),
                                     p_cm_interp[ci]);
                    }
#endif
                    /* Get the device color */
                    /* Now we can do an encoding directly or we have to apply transfer
                       and or halftoning */
                    if (must_halftone || has_transfer) {
                        /* We need to do the tranfer function and/or the halftoning */
                        cmap_transfer_halftone(p_cm_interp, &devc, pis, dev,
                            has_transfer, must_halftone, gs_color_select_source);
                    } else {
                        /* encode as a color index. avoid all the cv to frac to cv
                           conversions */
                        color = dev_proc(dev, encode_color)(dev, p_cm_interp);
                        /* check if the encoding was successful; we presume failure is rare */
                        if (color != gx_no_color_index)
                            color_set_pure(&devc, color);
                    }
                    if (color_is_pure(&devc)) {
                        /* Just pack colors into a scan line. */
                        gx_color_index color = devc.colors.pure;
                        /* Skip runs quickly for the common cases. */
                        switch (spp_cm) {
                            case 1:
                                do {
                                    LINE_ACCUM(color, bpp);
                                    vd_pixel(int2fixed(x), int2fixed(ry), color);
                                    x++, p_cm_interp += 1;
                                } while (x < xe && p_cm_interp[-1] == p_cm_interp[0]);
                                break;
                            case 3:
                                do {
                                    LINE_ACCUM(color, bpp);
                                    vd_pixel(int2fixed(x), int2fixed(ry), color);
                                    x++, p_cm_interp += 3;
                                } while (x < xe && p_cm_interp[-3] == p_cm_interp[0] &&
                                     p_cm_interp[-2] == p_cm_interp[1] &&
                                     p_cm_interp[-1] == p_cm_interp[2]);
                                break;
                            case 4:
                                do {
                                    LINE_ACCUM(color, bpp);
                                    x++, p_cm_interp += 4;
                                } while (x < xe && p_cm_interp[-4] == p_cm_interp[0] &&
                                     p_cm_interp[-3] == p_cm_interp[1] &&
                                     p_cm_interp[-2] == p_cm_interp[2] &&
                                     p_cm_interp[-1] == p_cm_interp[3]);
                                break;
                            default:
                                LINE_ACCUM(color, bpp);
                                x++, p_cm_interp += spp_cm;
                        }
                    } else {
                        int rcode;

                        LINE_ACCUM_COPY(dev, out, bpp, xo, x, raster, ry);
                        rcode = gx_fill_rectangle_device_rop(x, ry,
                                                     1, 1, &devc, dev, lop);
                        if (rcode < 0)
                            return rcode;
                        LINE_ACCUM_SKIP(bpp);
                        l_xprev = x + 1;
                        x++, p_cm_interp += spp_cm;
                    }
                }  /* End on x loop */
                LINE_ACCUM_COPY(dev, out, bpp, xo, x, raster, ry);
                /*if_debug1('w', "[w]Y=%d:\n", ry);*/ /* See siscale.c about 'w'. */
                penum->line_xy++;
                if_debug0('B', "\n");
            }
            if ((status == 0 && stream_r.ptr == stream_r.limit) || status == EOFC)
                break;
        }
        /* Free cm buffer, if it was used */
        if (p_cm_buff != NULL) {
            gs_free_object(pis->memory, (byte *)p_cm_buff, 
                           "image_render_interpolate_icc");
        }
    }
    return (h == 0 ? 0 : 1);
}

/* Decode a 16-bit sample into a floating point color component.
   This is used for cases where the spatial interpolation function output is 16 bit.
   It is only used here, hence the static declaration for now. */

static void
decode_sample_frac_to_float(gx_image_enum *penum, frac sample_value, gs_client_color *cc, int i)
{
    switch ( penum->map[i].decoding )
    {
        case sd_none:
            cc->paint.values[i] = frac2float(sample_value);
            break;
        case sd_lookup:
            cc->paint.values[i] =
                   penum->map[i].decode_lookup[(frac2byte(sample_value)) >> 4];
            break;
        case sd_compute:
            cc->paint.values[i] =
                   penum->map[i].decode_base + frac2float(sample_value)*255.0 * penum->map[i].decode_factor;
    }
}