summaryrefslogtreecommitdiff
path: root/gs/base/gxshade1.c
blob: 5fdd219af2cb68212cc5abc55a277393139f4b92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
/* Copyright (C) 2001-2012 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  7 Mt. Lassen Drive - Suite A-134, San Rafael,
   CA  94903, U.S.A., +1(415)492-9861, for further information.
*/


/* Rendering for non-mesh shadings */
#include "math_.h"
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsmatrix.h"		/* for gscoord.h */
#include "gscoord.h"
#include "gspath.h"
#include "gsptype2.h"
#include "gxcspace.h"
#include "gxdcolor.h"
#include "gxfarith.h"
#include "gxfixed.h"
#include "gxistate.h"
#include "gxpath.h"
#include "gxshade.h"
#include "gxdevcli.h"
#include "gxshade4.h"
#include "vdtrace.h"
#include "gsicc_cache.h"

#define VD_TRACE_AXIAL_PATCH 1
#define VD_TRACE_RADIAL_PATCH 1
#define VD_TRACE_FUNCTIONAL_PATCH 1

/* ---------------- Function-based shading ---------------- */

typedef struct Fb_frame_s {	/* A rudiment of old code. */
    gs_rect region;
    gs_client_color cc[4];	/* colors at 4 corners */
    int state;
} Fb_frame_t;

typedef struct Fb_fill_state_s {
    shading_fill_state_common;
    const gs_shading_Fb_t *psh;
    gs_matrix_fixed ptm;	/* parameter space -> device space */
    Fb_frame_t frame;
} Fb_fill_state_t;
/****** NEED GC DESCRIPTOR ******/

static inline void
make_other_poles(patch_curve_t curve[4])
{
    int i, j;

    for (i = 0; i < 4; i++) {
        j = (i + 1) % 4;
        curve[i].control[0].x = (curve[i].vertex.p.x * 2 + curve[j].vertex.p.x) / 3;
        curve[i].control[0].y = (curve[i].vertex.p.y * 2 + curve[j].vertex.p.y) / 3;
        curve[i].control[1].x = (curve[i].vertex.p.x + curve[j].vertex.p.x * 2) / 3;
        curve[i].control[1].y = (curve[i].vertex.p.y + curve[j].vertex.p.y * 2) / 3;
        curve[i].straight = true;
    }
}

/* Transform a point with a fixed-point result. */
static void
gs_point_transform2fixed_clamped(const gs_matrix_fixed * pmat,
                         floatp x, floatp y, gs_fixed_point * ppt)
{
    gs_point fpt;

    gs_point_transform(x, y, (const gs_matrix *)pmat, &fpt);
    ppt->x = clamp_coord(fpt.x);
    ppt->y = clamp_coord(fpt.y);
}

static int
Fb_fill_region(Fb_fill_state_t * pfs, const gs_fixed_rect *rect)
{
    patch_fill_state_t pfs1;
    patch_curve_t curve[4];
    Fb_frame_t * fp = &pfs->frame;
    int code;

    if (VD_TRACE_FUNCTIONAL_PATCH && vd_allowed('s')) {
        vd_get_dc('s');
        vd_set_shift(0, 0);
        vd_set_scale(0.01);
        vd_set_origin(0, 0);
    }
    memcpy(&pfs1, (shading_fill_state_t *)pfs, sizeof(shading_fill_state_t));
    pfs1.Function = pfs->psh->params.Function;
    code = init_patch_fill_state(&pfs1);
    if (code < 0)
        return code;
    pfs1.maybe_self_intersecting = false;
    pfs1.n_color_args = 2;
    pfs1.rect = *rect;
    gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.p.y, &curve[0].vertex.p);
    gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.p.y, &curve[1].vertex.p);
    gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.q.y, &curve[2].vertex.p);
    gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.q.y, &curve[3].vertex.p);
    make_other_poles(curve);
    curve[0].vertex.cc[0] = fp->region.p.x;   curve[0].vertex.cc[1] = fp->region.p.y;
    curve[1].vertex.cc[0] = fp->region.q.x;   curve[1].vertex.cc[1] = fp->region.p.y;
    curve[2].vertex.cc[0] = fp->region.q.x;   curve[2].vertex.cc[1] = fp->region.q.y;
    curve[3].vertex.cc[0] = fp->region.p.x;   curve[3].vertex.cc[1] = fp->region.q.y;
    code = patch_fill(&pfs1, curve, NULL, NULL);
    if (term_patch_fill_state(&pfs1))
        return_error(gs_error_unregistered); /* Must not happen. */
    if (VD_TRACE_FUNCTIONAL_PATCH && vd_allowed('s'))
        vd_release_dc;
    return code;
}

int
gs_shading_Fb_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
                             const gs_fixed_rect * rect_clip,
                             gx_device * dev, gs_imager_state * pis)
{
    const gs_shading_Fb_t * const psh = (const gs_shading_Fb_t *)psh0;
    gs_matrix save_ctm;
    int xi, yi, code;
    float x[2], y[2];
    Fb_fill_state_t state;

    code = shade_init_fill_state((shading_fill_state_t *) & state, psh0, dev, pis);
    if (code < 0)
        return code;
    state.psh = psh;
    /****** HACK FOR FIXED-POINT MATRIX MULTIPLY ******/
    gs_currentmatrix((gs_state *) pis, &save_ctm);
    gs_concat((gs_state *) pis, &psh->params.Matrix);
    state.ptm = pis->ctm;
    gs_setmatrix((gs_state *) pis, &save_ctm);
    /* Compute the parameter X and Y ranges. */
    {
        gs_rect pbox;

        gs_bbox_transform_inverse(rect, &psh->params.Matrix, &pbox);
        x[0] = max(pbox.p.x, psh->params.Domain[0]);
        x[1] = min(pbox.q.x, psh->params.Domain[1]);
        y[0] = max(pbox.p.y, psh->params.Domain[2]);
        y[1] = min(pbox.q.y, psh->params.Domain[3]);
    }
    if (x[0] > x[1] || y[0] > y[1]) {
        /* The region is outside the shading area. */
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
        return 0;
    }
    for (xi = 0; xi < 2; ++xi)
        for (yi = 0; yi < 2; ++yi) {
            float v[2];

            v[0] = x[xi], v[1] = y[yi];
            gs_function_evaluate(psh->params.Function, v,
                                 state.frame.cc[yi * 2 + xi].paint.values);
        }
    state.frame.region.p.x = x[0];
    state.frame.region.p.y = y[0];
    state.frame.region.q.x = x[1];
    state.frame.region.q.y = y[1];
    code = Fb_fill_region(&state, rect_clip);
    if (state.icclink != NULL) gsicc_release_link(state.icclink);
    return code;
}

/* ---------------- Axial shading ---------------- */

typedef struct A_fill_state_s {
    const gs_shading_A_t *psh;
    gs_point delta;
    double length;
    double t0, t1;
    double v0, v1, u0, u1;
} A_fill_state_t;
/****** NEED GC DESCRIPTOR ******/

/* Note t0 and t1 vary over [0..1], not the Domain. */

static int
A_fill_region(A_fill_state_t * pfs, patch_fill_state_t *pfs1)
{
    const gs_shading_A_t * const psh = pfs->psh;
    double x0 = psh->params.Coords[0] + pfs->delta.x * pfs->v0;
    double y0 = psh->params.Coords[1] + pfs->delta.y * pfs->v0;
    double x1 = psh->params.Coords[0] + pfs->delta.x * pfs->v1;
    double y1 = psh->params.Coords[1] + pfs->delta.y * pfs->v1;
    double h0 = pfs->u0, h1 = pfs->u1;
    patch_curve_t curve[4];

    gs_point_transform2fixed(&pfs1->pis->ctm, x0 + pfs->delta.y * h0, y0 - pfs->delta.x * h0, &curve[0].vertex.p);
    gs_point_transform2fixed(&pfs1->pis->ctm, x1 + pfs->delta.y * h0, y1 - pfs->delta.x * h0, &curve[1].vertex.p);
    gs_point_transform2fixed(&pfs1->pis->ctm, x1 + pfs->delta.y * h1, y1 - pfs->delta.x * h1, &curve[2].vertex.p);
    gs_point_transform2fixed(&pfs1->pis->ctm, x0 + pfs->delta.y * h1, y0 - pfs->delta.x * h1, &curve[3].vertex.p);
    curve[0].vertex.cc[0] = pfs->t0; /* The element cc[1] is set to a dummy value against */
    curve[1].vertex.cc[0] = pfs->t1; /* interrupts while an idle priocessing in gxshade.6.c .  */
    curve[2].vertex.cc[0] = pfs->t1;
    curve[3].vertex.cc[0] = pfs->t0;
    curve[0].vertex.cc[1] = 0; /* The element cc[1] is set to a dummy value against */
    curve[1].vertex.cc[1] = 0; /* interrupts while an idle priocessing in gxshade.6.c .  */
    curve[2].vertex.cc[1] = 0;
    curve[3].vertex.cc[1] = 0;
    make_other_poles(curve);
    return patch_fill(pfs1, curve, NULL, NULL);
}

static inline int
gs_shading_A_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect,
                            const gs_fixed_rect *clip_rect,
                            gx_device * dev, gs_imager_state * pis)
{
    const gs_shading_A_t *const psh = (const gs_shading_A_t *)psh0;
    gs_function_t * const pfn = psh->params.Function;
    gs_matrix cmat;
    gs_rect t_rect;
    A_fill_state_t state;
    patch_fill_state_t pfs1;
    float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1];
    float dd = d1 - d0;
    double t0, t1;
    gs_point dist;
    int code;

    state.psh = psh;
    code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pis);
    if (code < 0)
        return code;
    pfs1.Function = pfn;
    pfs1.rect = *clip_rect;
    code = init_patch_fill_state(&pfs1);
    if (code < 0) {
        if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
        return code;
    }
    pfs1.maybe_self_intersecting = false;
    pfs1.function_arg_shift = 1;
    /*
     * Compute the parameter range.  We construct a matrix in which
     * (0,0) corresponds to t = 0 and (0,1) corresponds to t = 1,
     * and use it to inverse-map the rectangle to be filled.
     */
    cmat.tx = psh->params.Coords[0];
    cmat.ty = psh->params.Coords[1];
    state.delta.x = psh->params.Coords[2] - psh->params.Coords[0];
    state.delta.y = psh->params.Coords[3] - psh->params.Coords[1];
    cmat.yx = state.delta.x;
    cmat.yy = state.delta.y;
    cmat.xx = cmat.yy;
    cmat.xy = -cmat.yx;
    gs_bbox_transform_inverse(rect, &cmat, &t_rect);
    t0 = min(max(t_rect.p.y, 0), 1);
    t1 = max(min(t_rect.q.y, 1), 0);
    state.v0 = t0;
    state.v1 = t1;
    state.u0 = t_rect.p.x;
    state.u1 = t_rect.q.x;
    state.t0 = t0 * dd + d0;
    state.t1 = t1 * dd + d0;
    gs_distance_transform(state.delta.x, state.delta.y, &ctm_only(pis),
                          &dist);
    state.length = hypot(dist.x, dist.y);	/* device space line length */
    code = A_fill_region(&state, &pfs1);
    if (psh->params.Extend[0] && t0 > t_rect.p.y) {
        if (code < 0) {
            if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
            return code;
        }
        /* Use the general algorithm, because we need the trapping. */
        state.v0 = t_rect.p.y;
        state.v1 = t0;
        state.t0 = state.t1 = t0 * dd + d0;
        code = A_fill_region(&state, &pfs1);
    }
    if (psh->params.Extend[1] && t1 < t_rect.q.y) {
        if (code < 0) {
            if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
            return code;
        }
        /* Use the general algorithm, because we need the trapping. */
        state.v0 = t1;
        state.v1 = t_rect.q.y;
        state.t0 = state.t1 = t1 * dd + d0;
        code = A_fill_region(&state, &pfs1);
    }
    if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
    if (term_patch_fill_state(&pfs1))
        return_error(gs_error_unregistered); /* Must not happen. */
    return code;
}

int
gs_shading_A_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
                            const gs_fixed_rect * rect_clip,
                            gx_device * dev, gs_imager_state * pis)
{
    int code;

    if (VD_TRACE_AXIAL_PATCH && vd_allowed('s')) {
        vd_get_dc('s');
        vd_set_shift(0, 0);
        vd_set_scale(0.01);
        vd_set_origin(0, 0);
    }
    code = gs_shading_A_fill_rectangle_aux(psh0, rect, rect_clip, dev, pis);
    if (VD_TRACE_AXIAL_PATCH && vd_allowed('s'))
        vd_release_dc;
    return code;
}

/* ---------------- Radial shading ---------------- */

/* Some notes on what I have struggled to understand about the following
 * function. This function renders the 'tube' given by interpolating one
 * circle to another.
 *
 * The first circle is at (x0, y0) with radius r0, and has 'color' t0.
 * The other circle is at (x1, y1) with radius r1, and has 'color' t1.
 *
 * We perform this rendering by approximating each quadrant of the 'tube'
 * by a tensor patch. The tensor patch is formed by taking a curve along
 * 1/4 of the circumference of the first circle, a straight line to the
 * equivalent point on the circumference of the second circle, a curve
 * back along the circumference of the second circle, and then a straight
 * line back to where we started.
 *
 * There is additional logic in this function that forms the directions of
 * the curves differently for different quadrants. This is done to ensure
 * that we always paint 'around' the tube from the back towards the front,
 * so we don't get unexpected regions showing though. This is explained more
 * below.
 *
 * The original code here examined the position change between the two
 * circles dx and dy. Based upon this vector it would pick which quadrant/
 * tensor patch to draw first. It would draw the quadrants/tensor patches
 * in anticlockwise order. Presumably this was intended to be done so that
 * the 'top' quadrant would be drawn last.
 *
 * Unfortunately this did not always work; see bug 692513. If the quadrants
 * were rendered in the order 0,1,2,3, the rendering of 1 was leaving traces
 * on top of 0, which was unexpected.
 *
 * I have therefore altered the code slightly; rather than picking a start
 * quadrant and moving anticlockwise, we now draw the 'undermost' quadrant,
 * then the two adjacent quadrants, then the topmost quadrant.
 *
 * For the purposes of explaination, we shall label the octants as below:
 *
 *     \2|1/       and Quadrants as:       |
 *     3\|/0                            Q1 | Q0 
 *    ---+---                          ----+----
 *     4/|\7                            Q2 | Q3
 *     /5|6\                               |
 *
 * We find (dx,dy), the difference between the centres of the circles.
 * We look to see which octant this falls in. Firstly, this tells us which
 * quadrant of the circle we need to draw first (Octant n, starts with
 * Quadrant floor(n/2)). Secondly, it tells us which direction to form the 
 * tensor patch in; we always want to draw from the side 'closest' to
 * dx/dy to the side further away. This ensures that we don't overwrite
 * pixels in the incorrect order as the patch decomposes.
 */
static int
R_tensor_annulus(patch_fill_state_t *pfs,
    double x0, double y0, double r0, double t0,
    double x1, double y1, double r1, double t1)
{
    double dx = x1 - x0, dy = y1 - y0;
    double d = hypot(dx, dy);
    gs_point p0, p1, pc0, pc1;
    int k, j, code, dirn;
    bool inside = 0;

    /* pc0 and pc1 are the centres of the respective circles. */
    pc0.x = x0, pc0.y = y0;
    pc1.x = x1, pc1.y = y1;
    /* Set p0 up so it's a unit vector giving the direction of 90 degrees
     * to the right of the major axis as we move from p0c to p1c. */
    if (r0 + d <= r1 || r1 + d <= r0) {
        /* One circle is inside another one.
           Use any subdivision,
           but don't depend on dx, dy, which may be too small. */
        p0.x = 0, p0.y = -1, dirn = 0;
        /* Align stripes along radii for faster triangulation : */
        inside = 1;
    } else {
        /* Must generate canonic quadrangle arcs,
           because we approximate them with curves. */
        if(dx >= 0) {
            if (dy >= 0)
                p0.x = 1, p0.y = 0, dirn = (dx >= dy ? 1 : 0);
            else
                p0.x = 0, p0.y = -1, dirn = (dx >= -dy ? 0 : 1);
        } else {
            if (dy >= 0)
                p0.x = 0, p0.y = 1, dirn = (-dx >= dy ? 1 : 0);
            else
                p0.x = -1, p0.y = 0, dirn = (-dx >= -dy ? 0 : 1);
        }
    }
    /* fixme: wish: cut invisible parts off.
       Note : when r0 != r1 the invisible part is not a half circle. */
    for (k = 0; k < 4; k++) {
        gs_point p[12];
        patch_curve_t curve[4];

        /* Set p1 to be 90 degrees anticlockwise from p0 */
        p1.x = -p0.y; p1.y = p0.x;
        if (dirn == 0) { /* Clockwise */
            make_quadrant_arc(p + 0, &pc0, &p1, &p0, r0);
            make_quadrant_arc(p + 6, &pc1, &p0, &p1, r1);
        } else { /* Anticlockwise */
            make_quadrant_arc(p + 0, &pc0, &p0, &p1, r0);
            make_quadrant_arc(p + 6, &pc1, &p1, &p0, r1);
        }
        p[4].x = (p[3].x * 2 + p[6].x) / 3;
        p[4].y = (p[3].y * 2 + p[6].y) / 3;
        p[5].x = (p[3].x + p[6].x * 2) / 3;
        p[5].y = (p[3].y + p[6].y * 2) / 3;
        p[10].x = (p[9].x * 2 + p[0].x) / 3;
        p[10].y = (p[9].y * 2 + p[0].y) / 3;
        p[11].x = (p[9].x + p[0].x * 2) / 3;
        p[11].y = (p[9].y + p[0].y * 2) / 3;
        for (j = 0; j < 4; j++) {
            int jj = (j + inside) % 4;

            if (gs_point_transform2fixed(&pfs->pis->ctm,         p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p) < 0)
                gs_point_transform2fixed_clamped(&pfs->pis->ctm, p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p);

            if (gs_point_transform2fixed(&pfs->pis->ctm,         p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]) < 0)
                gs_point_transform2fixed_clamped(&pfs->pis->ctm, p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]);

            if (gs_point_transform2fixed(&pfs->pis->ctm,         p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]) < 0)
                gs_point_transform2fixed_clamped(&pfs->pis->ctm, p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]);
            curve[j].straight = (((j + inside) & 1) != 0);
        }
        curve[(0 + inside) % 4].vertex.cc[0] = t0;
        curve[(1 + inside) % 4].vertex.cc[0] = t0;
        curve[(2 + inside) % 4].vertex.cc[0] = t1;
        curve[(3 + inside) % 4].vertex.cc[0] = t1;
        curve[0].vertex.cc[1] = curve[1].vertex.cc[1] = 0; /* Initialize against FPE. */
        curve[2].vertex.cc[1] = curve[3].vertex.cc[1] = 0; /* Initialize against FPE. */
        code = patch_fill(pfs, curve, NULL, NULL);
        if (code < 0)
            return code;
        /* Move p0 to be ready for the next position */
        if (k == 0) {
            /* p0 moves clockwise */
            p1 = p0;
            p0.x = p1.y; p0.y = -p1.x;
            dirn = 0;
        } else if (k == 1) {
            /* p0 flips sides */
            p0.x = -p0.x; p0.y = -p0.y;
            dirn = 1;
        } else if (k == 2) {
            /* p0 moves anti-clockwise */
            p1 = p0;
            p0.x = -p1.y; p0.y = p1.x;
            dirn = 0;
        }
    }
    return 0;
}

static int
R_outer_circle(patch_fill_state_t *pfs, const gs_rect *rect,
        double x0, double y0, double r0,
        double x1, double y1, double r1,
        double *x2, double *y2, double *r2)
{
    double dx = x1 - x0, dy = y1 - y0;
    double sp, sq, s;

    /* Compute a cone circle, which contacts the rect externally. */
    /* Don't bother with all 4 sides of the rect,
       just do with the X or Y span only,
       so it's not an exact contact, sorry. */
    if (any_abs(dx) > any_abs(dy)) {
        /* Solving :
            x0 + (x1 - x0) * sq + r0 + (r1 - r0) * sq == bbox_px
            (x1 - x0) * sp + (r1 - r0) * sp == bbox_px - x0 - r0
            sp = (bbox_px - x0 - r0) / (x1 - x0 + r1 - r0)

            x0 + (x1 - x0) * sq - r0 - (r1 - r0) * sq == bbox_qx
            (x1 - x0) * sq - (r1 - r0) * sq == bbox_x - x0 + r0
            sq = (bbox_x - x0 + r0) / (x1 - x0 - r1 + r0)
         */
        if (x1 - x0 + r1 - r0 ==  0) /* We checked for obtuse cone. */
            return_error(gs_error_unregistered); /* Must not happen. */
        if (x1 - x0 - r1 + r0 ==  0) /* We checked for obtuse cone. */
            return_error(gs_error_unregistered); /* Must not happen. */
        sp = (rect->p.x - x0 - r0) / (x1 - x0 + r1 - r0);
        sq = (rect->q.x - x0 + r0) / (x1 - x0 - r1 + r0);
    } else {
        /* Same by Y. */
        if (y1 - y0 + r1 - r0 ==  0) /* We checked for obtuse cone. */
            return_error(gs_error_unregistered); /* Must not happen. */
        if (y1 - y0 - r1 + r0 ==  0) /* We checked for obtuse cone. */
            return_error(gs_error_unregistered); /* Must not happen. */
        sp = (rect->p.y - y0 - r0) / (y1 - y0 + r1 - r0);
        sq = (rect->q.y - y0 + r0) / (y1 - y0 - r1 + r0);
    }
    if (sp >= 1 && sq >= 1)
        s = max(sp, sq);
    else if(sp >= 1)
        s = sp;
    else if (sq >= 1)
        s = sq;
    else {
        /* The circle 1 is outside the rect, use it. */
        s = 1;
    }
    if (r0 + (r1 - r0) * s < 0) {
        /* Passed the cone apex, use the apex. */
        s = r0 / (r0 - r1);
        *r2 = 0;
    } else
        *r2 = r0 + (r1 - r0) * s;
    *x2 = x0 + (x1 - x0) * s;
    *y2 = y0 + (y1 - y0) * s;
    return 0;
}

static double
R_rect_radius(const gs_rect *rect, double x0, double y0)
{
    double d, dd;

    dd = hypot(rect->p.x - x0, rect->p.y - y0);
    d = hypot(rect->p.x - x0, rect->q.y - y0);
    dd = max(dd, d);
    d = hypot(rect->q.x - x0, rect->q.y - y0);
    dd = max(dd, d);
    d = hypot(rect->q.x - x0, rect->p.y - y0);
    dd = max(dd, d);
    return dd;
}

static int
R_fill_triangle_new(patch_fill_state_t *pfs, const gs_rect *rect,
    double x0, double y0, double x1, double y1, double x2, double y2, double t)
{
    shading_vertex_t p0, p1, p2;
    patch_color_t *c;
    int code;
    reserve_colors(pfs, &c, 1); /* Can't fail */

    p0.c = c;
    p1.c = c;
    p2.c = c;
    code = gs_point_transform2fixed(&pfs->pis->ctm, x0, y0, &p0.p);
    if (code >= 0)
        code = gs_point_transform2fixed(&pfs->pis->ctm, x1, y1, &p1.p);
    if (code >= 0)
        code = gs_point_transform2fixed(&pfs->pis->ctm, x2, y2, &p2.p);
    if (code >= 0) {
        c->t[0] = c->t[1] = t;
        patch_resolve_color(c, pfs);
        code = mesh_triangle(pfs, &p0, &p1, &p2);
    }
    release_colors(pfs, pfs->color_stack, 1);
    return code;
}

static int
R_obtuse_cone(patch_fill_state_t *pfs, const gs_rect *rect,
        double x0, double y0, double r0,
        double x1, double y1, double r1, double t0, double r_rect,
        bool inwards)
{
    double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0);
    double d = hypot(dx, dy);
    /* Assuming dr > d / 3 && d > dr + 1e-7 * (d + dr), see the caller. */
    double r = r_rect * 1.4143; /* A few bigger than sqrt(2). */
    double ax, ay, as; /* Cone apex. */
    double g0; /* The distance from apex to the tangent point of the 0th circle. */
    int code;

    as = r0 / (r0 - r1);
    ax = x0 + (x1 - x0) * as;
    ay = y0 + (y1 - y0) * as;
    g0 = sqrt(dx * dx + dy * dy - dr * dr) * as;
    if (g0 < 1e-7 * r0) {
        /* Nearly degenerate, replace with half-plane. */
        /* Restrict the half plane with triangle, which covers the rect. */
        gs_point p0, p1, p2; /* Right tangent limit, apex limit, left tangent linit,
                                (right, left == when looking from the apex). */

        p0.x = ax - dy * r / d;
        p0.y = ay + dx * r / d;
        p1.x = ax - dx * r / d;
        p1.y = ay - dy * r / d;
        p2.x = ax + dy * r / d;
        p2.y = ay - dx * r / d;
        /* Split into 2 triangles at the apex,
           so that the apex is preciselly covered.
           Especially important when it is not exactly degenerate. */
        code = R_fill_triangle_new(pfs, rect, ax, ay, p0.x, p0.y, p1.x, p1.y, t0);
        if (code < 0)
            return code;
        return R_fill_triangle_new(pfs, rect, ax, ay, p1.x, p1.y, p2.x, p2.y, t0);
    } else {
        /* Compute the "limit" circle so that its
           tangent points are outside the rect. */
        /* Note: this branch is executed when the condition above is false :
           g0 >= 1e-7 * r0 .
           We believe that computing this branch with doubles
           provides enough precision after converting coordinates into 'fixed',
           and that the limit circle radius is not dramatically big.
         */
        double es, er; /* The limit circle parameter, radius. */
        double ex, ey; /* The limit circle centrum. */

        es = as - as * r / g0; /* Always negative. */
        er = r * r0 / g0 ;
        ex = x0 + dx * es;
        ey = y0 + dy * es;
        /* Fill the annulus: */
        code = R_tensor_annulus(pfs, x0, y0, r0, t0, ex, ey, er, t0);
        if (code < 0)
            return code;
        /* Fill entire ending circle to ensure entire rect is covered, but
         * only if we are filling "inwards" (as otherwise we will overwrite
         * all the hard work we have done to this point) */
        if (inwards)
            code = R_tensor_annulus(pfs, ex, ey, er, t0, ex, ey, 0, t0);
        return code;
    }
}

static int
R_tensor_cone_apex(patch_fill_state_t *pfs, const gs_rect *rect,
        double x0, double y0, double r0,
        double x1, double y1, double r1, double t)
{
    double as = r0 / (r0 - r1);
    double ax = x0 + (x1 - x0) * as;
    double ay = y0 + (y1 - y0) * as;

    return R_tensor_annulus(pfs, x1, y1, r1, t, ax, ay, 0, t);
}

/*
 * A map of this code:
 *
 * R_extensions
 * |-> (R_rect_radius)
 * |-> (R_outer_circle)
 * |-> R_obtuse_cone
 * |   |-> R_fill_triangle_new
 * |   |   '-> mesh_triangle
 * |   |       '-> mesh_triangle_rec <--.
 * |   |           |--------------------'
 * |   |           |-> small_mesh_triangle
 * |   |           |   '-> fill_triangle
 * |   |           |       '-> triangle_by_4 <--.
 * |   |           |           |----------------'
 * |   |           |           |-> constant_color_triangle
 * |   |           |           |-> make_wedge_median (etc)
 * |   |           '-----------+--------------------.
 * |   '-------------------.                        |
 * |-> R_tensor_cone_apex  |                        |
 * |   '-------------------+                        |
 * '-> R_tensor_annulus <--'                       \|/
 *     |-> (make_quadrant_arc)                      |
 *     '-> patch_fill                               |
 *         |-> fill_patch <--.                      |
 *         |   |-------------'                      |
 *         |   |------------------------------------+
 *         |   '-> fill_stripe                      |
 *         |       |-----------------------.        |
 *         |      \|/                      |        |
 *         |-> fill_wedges                 |        |
 *             '-> fill_wedges_aux <--.    |        |
 *                 |------------------'   \|/       |
 *                 |----------------> mesh_padding  '
 *                 |                  '----------------------------------.
 *                 '-> wedge_by_triangles <--.      .                    |
 *                     |---------------------'      |                    |
 *                     '-> fill_triangle_wedge <----'                    |
 *                         '-> fill_triangle_wedge_aux                   |
 *                             '-> fill_wedge_trap                       |
 *                                 '-> wedge_trap_decompose              |
 *                                     '-> linear_color_trapezoid        |
 *                                         '-> decompose_linear_color <--|
 *                                             |-------------------------'
 *                                             '-> constant_color_trapezoid
 */
static int
R_extensions(patch_fill_state_t *pfs, const gs_shading_R_t *psh, const gs_rect *rect,
        double t0, double t1, bool Extend0, bool Extend1)
{
    float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1];
    floatp r0 = psh->params.Coords[2];
    float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4];
    floatp r1 = psh->params.Coords[5];
    double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0);
    double d = hypot(dx, dy), r;
    int code;

    if (dr >= d - 1e-7 * (d + dr)) {
        /* Nested circles, or degenerate. */
        if (r0 > r1) {
            if (Extend0) {
                r = R_rect_radius(rect, x0, y0);
                if (r > r0) {
                    code = R_tensor_annulus(pfs, x0, y0, r, t0, x0, y0, r0, t0);
                    if (code < 0)
                        return code;
                }
            }
            if (Extend1 && r1 > 0)
                return R_tensor_annulus(pfs, x1, y1, r1, t1, x1, y1, 0, t1);
        } else {
            if (Extend1) {
                r = R_rect_radius(rect, x1, y1);
                if (r > r1) {
                    code = R_tensor_annulus(pfs, x1, y1, r, t1, x1, y1, r1, t1);
                    if (code < 0)
                        return code;
                }
            }
            if (Extend0 && r0 > 0)
                return R_tensor_annulus(pfs, x0, y0, r0, t0, x0, y0, 0, t0);
        }
    } else if (dr > d / 3) {
        /* Obtuse cone. */
        if (r0 > r1) {
            if (Extend0) {
                r = R_rect_radius(rect, x0, y0);
                code = R_obtuse_cone(pfs, rect, x0, y0, r0, x1, y1, r1, t0, r, true);
                if (code < 0)
                    return code;
            }
            if (Extend1 && r1 != 0)
                return R_tensor_cone_apex(pfs, rect, x0, y0, r0, x1, y1, r1, t1);
            return 0;
        } else {
            if (Extend1) {
                r = R_rect_radius(rect, x1, y1);
                code = R_obtuse_cone(pfs, rect, x1, y1, r1, x0, y0, r0, t1, r, false);
                if (code < 0)
                    return code;
            }
            if (Extend0 && r0 != 0)
                return R_tensor_cone_apex(pfs, rect, x1, y1, r1, x0, y0, r0, t0);
        }
    } else {
        /* Acute cone or cylinder. */
        double x2, y2, r2, x3, y3, r3;

        if (Extend0) {
            code = R_outer_circle(pfs, rect, x1, y1, r1, x0, y0, r0, &x3, &y3, &r3);
            if (code < 0)
                return code;
            if (x3 != x1 || y3 != y1) {
                code = R_tensor_annulus(pfs, x0, y0, r0, t0, x3, y3, r3, t0);
                if (code < 0)
                    return code;
            }
        }
        if (Extend1) {
            code = R_outer_circle(pfs, rect, x0, y0, r0, x1, y1, r1, &x2, &y2, &r2);
            if (code < 0)
                return code;
            if (x2 != x0 || y2 != y0) {
                code = R_tensor_annulus(pfs, x1, y1, r1, t1, x2, y2, r2, t1);
                if (code < 0)
                    return code;
            }
        }
    }
    return 0;
}

static int
R_fill_rect_with_const_color(patch_fill_state_t *pfs, const gs_fixed_rect *clip_rect, float t)
{
#if 0 /* Disabled because the clist writer device doesn't pass
         the clipping path with fill_recatangle. */
    patch_color_t pc;
    const gs_color_space *pcs = pfs->direct_space;
    gx_device_color dc;
    int code;

    code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values);
    if (code < 0)
        return code;
    pcs->type->restrict_color(&pc.cc, pcs);
    code = patch_color_to_device_color(pfs, &pc, &dc);
    if (code < 0)
        return code;
    return gx_fill_rectangle_device_rop(fixed2int_pixround(clip_rect->p.x), fixed2int_pixround(clip_rect->p.y),
                                        fixed2int_pixround(clip_rect->q.x) - fixed2int_pixround(clip_rect->p.x),
                                        fixed2int_pixround(clip_rect->q.y) - fixed2int_pixround(clip_rect->p.y),
                                        &dc, pfs->dev, pfs->pis->log_op);
#else
    /* Can't apply fill_rectangle, because the clist writer device doesn't pass
       the clipping path with fill_recatangle. Convert into trapezoids instead.
    */
    quadrangle_patch p;
    shading_vertex_t pp[2][2];
    const gs_color_space *pcs = pfs->direct_space;
    patch_color_t pc;
    int code;

    code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values);
    if (code < 0)
        return code;
    pcs->type->restrict_color(&pc.cc, pcs);
    pc.t[0] = pc.t[1] = t;
    pp[0][0].p = clip_rect->p;
    pp[0][1].p.x = clip_rect->q.x;
    pp[0][1].p.y = clip_rect->p.y;
    pp[1][0].p.x = clip_rect->p.x;
    pp[1][0].p.y = clip_rect->q.y;
    pp[1][1].p = clip_rect->q;
    pp[0][0].c = pp[0][1].c = pp[1][0].c = pp[1][1].c = &pc;
    p.p[0][0] = &pp[0][0];
    p.p[0][1] = &pp[0][1];
    p.p[1][0] = &pp[1][0];
    p.p[1][1] = &pp[1][1];
    return constant_color_quadrangle(pfs, &p, false);
#endif
}

typedef struct radial_shading_attrs_s {
    double x0, y0;
    double x1, y1;
    double span[2][2];
    double apex;
    bool have_apex;
    bool have_root[2]; /* ongoing contact, outgoing contact. */
    bool outer_contact[2];
    gs_point p[6]; /* 4 corners of the rectangle, p[4] = p[0], p[5] = p[1] */
} radial_shading_attrs_t;

#define Pw2(a) ((a)*(a))

static void
radial_shading_external_contact(radial_shading_attrs_t *rsa, int point_index, double t, double r0, double r1, bool at_corner, int root_index)
{
    double cx = rsa->x0 + (rsa->x1 - rsa->x0) * t;
    double cy = rsa->y0 + (rsa->y1 - rsa->y0) * t;
    double rx = rsa->p[point_index].x - cx;
    double ry = rsa->p[point_index].y - cy;
    double dx = rsa->p[point_index - 1].x - rsa->p[point_index].x;
    double dy = rsa->p[point_index - 1].y - rsa->p[point_index].y;

    if (at_corner) {
        double Dx = rsa->p[point_index + 1].x - rsa->p[point_index].x;
        double Dy = rsa->p[point_index + 1].y - rsa->p[point_index].y;
        bool b1 = (dx * rx + dy * ry >= 0);
        bool b2 = (Dx * rx + Dy * ry >= 0);

        if (b1 & b2)
            rsa->outer_contact[root_index] = true;
    } else {
        if (rx * dy - ry * dx < 0)
            rsa->outer_contact[root_index] = true;
    }
}

static void
store_roots(radial_shading_attrs_t *rsa, const bool have_root[2], const double t[2], double r0, double r1, int point_index, bool at_corner)
{
    int i;

    for (i = 0; i < 2; i++) {
        bool good_root;

        if (!have_root[i])
            continue;
        good_root = (!rsa->have_apex || (rsa->apex <= 0 || r0 == 0 ? t[i] >= rsa->apex : t[i] <= rsa->apex));
        if (good_root) {
            radial_shading_external_contact(rsa, point_index, t[i], r0, r1, at_corner, i);
            if (!rsa->have_root[i]) {
                rsa->span[i][0] = rsa->span[i][1] = t[i];
                rsa->have_root[i] = true;
            } else {
                if (rsa->span[i][0] > t[i])
                    rsa->span[i][0] = t[i];
                if (rsa->span[i][1] < t[i])
                    rsa->span[i][1] = t[i];
            }
        }
    }
}

static void
compute_radial_shading_span_extended_side(radial_shading_attrs_t *rsa, double r0, double r1, int point_index)
{
    double cc, c;
    bool have_root[2] = {false, false};
    double t[2];
    bool by_x = (rsa->p[point_index].x != rsa->p[point_index + 1].x);
    int i;

    /* As t moves from 0 to 1, the circles move from r0 to r1, and from
     * from position p0 to py. For simplicity, adjust so that p0 is at
     * the origin. Consider the projection of the circle drawn at any given
     * time onto the x axis. The range of points would be:
     * p1x*t +/- (r0+(r1-r0)*t). We are interested in the first (and last)
     * moments when the range includes a point c on the x axis. So solve for:
     * p1x*t +/- (r0+(r1-r0)*t) = c. Let cc = p1x.
     * So p1x*t0 + (r1-r0)*t0 = c - r0 => t0 = (c - r0)/(p1x + r1 - r0)
     *    p1x*t1 - (r1-r0)*t1 = c + r0 => t1 = (c + r0)/(p1x - r1 + r0)
     */
    if (by_x) {
        c = rsa->p[point_index].x - rsa->x0;
        cc = rsa->x1 - rsa->x0;
    } else {
        c = rsa->p[point_index].y - rsa->y0;
        cc = rsa->y1 - rsa->y0;
    }
    t[0] = (c - r0) / (cc + r1 - r0);
    t[1] = (c + r0) / (cc - r1 + r0);
    if (t[0] > t[1]) {
        c    = t[0];
        t[0] = t[1];
        t[1] = c;
    }
    for (i = 0; i < 2; i++) {
        double d, d0, d1;

        if (by_x) {
            d = rsa->y1 - rsa->y0 + r0 + (r1 - r0) * t[i];
            d0 = rsa->p[point_index].y;
            d1 = rsa->p[point_index + 1].y;
        } else {
            d = rsa->x1 - rsa->x0 + r0 + (r1 - r0) * t[i];
            d0 = rsa->p[point_index].x;
            d1 = rsa->p[point_index + 1].x;
        }
        if (d1 > d0 ? d0 <= d && d <= d1 : d1 <= d && d <= d0)
            have_root[i] = true;
    }
    store_roots(rsa, have_root, t, r0, r1, point_index, false);
}

static int
compute_radial_shading_span_extended_point(radial_shading_attrs_t *rsa, double r0, double r1, int point_index)
{
    /* As t moves from 0 to 1, the circles move from r0 to r1, and from
     * from position p0 to py. At any given time t, therefore, we
     * paint the points that are distance r0+(r1-r0)*t from point
     * (p0x+(p1x-p0x)*t,p0y+(p1y-p0y)*t) = P(t).
     *
     * To simplify our algebra, adjust so that (p0x, p0y) is at the origin.
     * To find the time(s) t at which the a point q is painted, we therefore
     * solve for t in:
     *
     * |q-P(t)| = r0+(r1-r0)*t
     *
     *   (qx-p1x*t)^2 + (qy-p1y*t)^2 - (r0+(r1-r0)*t)^2 = 0
     * = qx^2 - 2qx.p1x.t + p1x^2.t^2 + qy^2 - 2qy.p1y.t + p1y^2.t^2 -
     *                                   (r0^2 + 2r0(r1-r0)t + (r1-r0)^2.t^2)
     * =   qx^2 + qy^2 - r0^2
     *   + -2(qx.p1x + qy.p1y + r0(r1-r0)).t
     *   + (p1x^2 + p1y^2 - (r1-r0)^2).t^2
     *
     * So solve using the usual t = (-b +/- SQRT(b^2 - 4ac)) where
     *   a = p1x^2 + p1y^2 - (r1-r0)^2
     *   b = -2(qx.p1x + qy.p1y + r0(r1-r0))
     *   c = qx^2 + qy^2 - r0^2
     */
    double p1x = rsa->x1 - rsa->x0;
    double p1y = rsa->y1 - rsa->y0;
    double qx  = rsa->p[point_index].x - rsa->x0;
    double qy  = rsa->p[point_index].y - rsa->y0;
    double a   = (Pw2(p1x) + Pw2(p1y) - Pw2(r0 - r1));
    bool have_root[2] = {false, false};
    double t[2];

    if (fabs(a) < 1e-8) {
        /* Linear equation. */
        /* This case is always the ongoing ellipse contact. */
        double cx = rsa->x0 - (rsa->x1 - rsa->x0) * r0 / (r1 - r0);
        double cy = rsa->y0 - (rsa->y1 - rsa->y0) * r0 / (r1 - r0);

        t[0] = (Pw2(qx) + Pw2(qy))/(cx*qx + cy*qy) / 2;
        have_root[0] = true;
    } else {
        /* Square equation.  No solution if b^2 - 4ac = 0. Equivalently if
         * (b^2)/4 -a.c = 0 === (b/2)^2 - a.c = 0 ===  (-b/2)^2 - a.c = 0 */
        double minushalfb = r0*(r1-r0) + p1x*qx + p1y*qy;
        double c          = Pw2(qx) + Pw2(qy) - Pw2(r0);
        double desc2      = Pw2(minushalfb) - a*c; /* desc2 = 1/4 (b^2-4ac) */

        if (desc2 < 0) {
            return -1; /* The point is outside the shading coverage.
                          Do not shorten, because we didn't observe it in practice. */
        } else {
            double desc1 = sqrt(desc2); /* desc1 = 1/2 SQRT(b^2-4ac) */

            if (a > 0) {
                t[0] = (minushalfb - desc1) / a;
                t[1] = (minushalfb + desc1) / a;
            } else {
                t[0] = (minushalfb + desc1) / a;
                t[1] = (minushalfb - desc1) / a;
            }
            have_root[0] = have_root[1] = true;
        }
    }
    store_roots(rsa, have_root, t, r0, r1, point_index, true);
    if (have_root[0] && have_root[1])
        return 15;
    if (have_root[0])
        return 15 - 4;
    if (have_root[1])
        return 15 - 2;
    return -1;
}

#undef Pw2

static int
compute_radial_shading_span_extended(radial_shading_attrs_t *rsa, double r0, double r1)
{
    int span_type0, span_type1;

    span_type0 = compute_radial_shading_span_extended_point(rsa, r0, r1, 1);
    if (span_type0 == -1)
        return -1;
    span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 2);
    if (span_type0 != span_type1)
        return -1;
    span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 3);
    if (span_type0 != span_type1)
        return -1;
    span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 4);
    if (span_type0 != span_type1)
        return -1;
    compute_radial_shading_span_extended_side(rsa, r0, r1, 1);
    compute_radial_shading_span_extended_side(rsa, r0, r1, 2);
    compute_radial_shading_span_extended_side(rsa, r0, r1, 3);
    compute_radial_shading_span_extended_side(rsa, r0, r1, 4);
    return span_type0;
}

static int
compute_radial_shading_span(radial_shading_attrs_t *rsa, float x0, float y0, floatp r0, float x1, float y1, floatp r1, const gs_rect * rect)
{
    /* If the shading area is much larger than the path bbox,
       we want to shorten the shading for a faster rendering.
       If any point of the path bbox falls outside the shading area,
       our math is not applicable, and we render entire shading.
       If the path bbox is inside the shading area,
       we compute 1 or 2 'spans' - the shading parameter intervals,
       which covers the bbox. For doing that we need to resolve
       a square eqation by the shading parameter
       for each corner of the bounding box,
       and for each side of the shading bbox.
       Note the equation to be solved in the user space.
       Since each equation gives 2 roots (because the points are
       strongly inside the shading area), we will get 2 parameter intervals -
       the 'lower' one corresponds to the first (ongoing) contact of
       the running circle, and the second one corresponds to the last (outgoing) contact
       (like in a sun eclipse; well our sun is rectangular).

       Here are few exceptions.

       First, the equation degenerates when the distance sqrt((x1-x0)^2 + (y1-y0)^2)
       appears equal to r0-r1. In this case the base circles do contact,
       and the running circle does contact at the same point.
       The equation degenerates to a linear one.
       Since we don't want float precision noize to affect the result,
       we compute this condition in 'fixed' coordinates.

       Second, Postscript approximates any circle with 3d order beziers.
       This approximation may give a 2% error.
       Therefore using the precise roots may cause a dropout.
       To prevetn them, we slightly modify the base radii.
       However the sign of modification smartly depends
       on the relative sizes of the base circles,
       and on the contact number. Currently we don't want to
       define and debug the smart optimal logic for that,
       so we simply try all 4 variants for each source equation,
       and use the union of intervals.

       Third, we could compute which quarter of the circle
       really covers the path bbox. Using it we could skip
       rendering of uncovering quarters. Currently we do not
       implement this optimization. The general tensor patch algorithm
       will skip uncovering parts.

       Fourth, when one base circle is (almost) inside the other,
       the parameter interval must include the shading apex.
       To know that, we determine whether the contacting circle
       is outside the rectangle (the "outer" contact),
       or it is (partially) inside the rectangle.

       At last, a small shortening of a shading won't give a
       sensible speedup, but it may replace a symmetric function domain
       with an assymmetric one, so that the rendering
       would be asymmetyric for a symmetric shading.
       Therefore we do not perform a small sortening.
       Instead we shorten only if the shading span
       is much smaller that the shading domain.
     */
    const double extent = 1.02;
    int span_type0, span_type1, span_type;

    memset(rsa, 0, sizeof(*rsa));
    rsa->x0 = x0;
    rsa->y0 = y0;
    rsa->x1 = x1;
    rsa->y1 = y1;
    rsa->p[0] = rsa->p[4] = rect->p;
    rsa->p[1].x = rsa->p[5].x = rect->p.x;
    rsa->p[1].y = rsa->p[5].y = rect->q.y;
    rsa->p[2] = rect->q;
    rsa->p[3].x = rect->q.x;
    rsa->p[3].y = rect->p.y;
    rsa->have_apex = any_abs(r1 - r0) > 1e-7 * any_abs(r1 + r0);
    rsa->apex = (rsa->have_apex ? -r0 / (r1 - r0) : 0);
    span_type0 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 * extent);
    if (span_type0 == -1)
        return -1;
    span_type1 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 / extent);
    if (span_type0 != span_type1)
        return -1;
    span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 * extent);
    if (span_type0 != span_type1)
        return -1;
    span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 / extent);
    if (span_type1 == -1)
        return -1;
    if (r0 < r1) {
        if (rsa->have_root[0] && !rsa->outer_contact[0])
            rsa->span[0][0] = rsa->apex; /* Likely never happens. Remove ? */
        if (rsa->have_root[1] && !rsa->outer_contact[1])
            rsa->span[1][0] = rsa->apex;
    } else if (r0 > r1) {
        if (rsa->have_root[0] && !rsa->outer_contact[0])
            rsa->span[0][1] = rsa->apex;
        if (rsa->have_root[1] && !rsa->outer_contact[1])
            rsa->span[1][1] = rsa->apex; /* Likely never happens. Remove ? */
    }
    span_type = 0;
    if (rsa->have_root[0] && rsa->span[0][0] < 0)
        span_type |= 1;
    if (rsa->have_root[1] && rsa->span[1][0] < 0)
        span_type |= 1;
    if (rsa->have_root[0] && rsa->span[0][1] > 0 && rsa->span[0][0] < 1)
        span_type |= 2;
    if (rsa->have_root[1] && rsa->span[1][1] > 0 && rsa->span[1][0] < 1)
        span_type |= 4;
    if (rsa->have_root[0] && rsa->span[0][1] > 1)
        span_type |= 8;
    if (rsa->have_root[1] && rsa->span[1][1] > 1)
        span_type |= 8;
    return span_type;
}

static bool
shorten_radial_shading(float *x0, float *y0, floatp *r0, float *d0, float *x1, float *y1, floatp *r1, float *d1, double span_[2])
{
    double s0 = span_[0], s1 = span_[1], w;

    if (s0 < 0)
        s0 = 0;
    if (s1 < 0)
        s1 = 0;
    if (s0 > 1)
        s0 = 1;
    if (s1 > 1)
        s1 = 1;
    w = s1 - s0;
    if (w == 0)
        return false; /* Don't pass a degenerate shading. */
    if (w > 0.3)
        return false; /* The span is big, don't shorten it. */
    {	/* Do shorten. */
        double R0 = *r0, X0 = *x0, Y0 = *y0, D0 = *d0;
        double R1 = *r1, X1 = *x1, Y1 = *y1, D1 = *d1;

        *r0 = R0 + (R1 - R0) * s0;
        *x0 = X0 + (X1 - X0) * s0;
        *y0 = Y0 + (Y1 - Y0) * s0;
        *d0 = D0 + (D1 - D0) * s0;
        *r1 = R0 + (R1 - R0) * s1;
        *x1 = X0 + (X1 - X0) * s1;
        *y1 = Y0 + (Y1 - Y0) * s1;
        *d1 = D0 + (D1 - D0) * s1;
    }
    return true;
}

static bool inline
is_radial_shading_large(double x0, double y0, double r0, double x1, double y1, double r1, const gs_rect * rect)
{
    const double d = hypot(x1 - x0, y1 - y0);
    const double area0 = M_PI * r0 * r0 / 2;
    const double area1 = M_PI * r1 * r1 / 2;
    const double area2 = (r0 + r1) / 2 * d;
    const double arbitrary = 8;
    double areaX, areaY;

    /* The shading area is not equal to area0 + area1 + area2
       when one circle is (almost) inside the other.
       We believe that the 'arbitrary' coefficient recovers that
       when it is set greater than 2. */
    /* If one dimension is large enough, the shading parameter span is wide. */
    areaX = (rect->q.x - rect->p.x) * (rect->q.x - rect->p.x);
    if (areaX * arbitrary < area0 + area1 + area2)
        return true;
    areaY = (rect->q.y - rect->p.y) * (rect->q.y - rect->p.y);
    if (areaY * arbitrary < area0 + area1 + area2)
        return true;
    return false;
}

static int
gs_shading_R_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect,
                            const gs_fixed_rect *clip_rect,
                            gx_device * dev, gs_imager_state * pis)
{
    const gs_shading_R_t *const psh = (const gs_shading_R_t *)psh0;
    float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1];
    float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1];
    floatp r0 = psh->params.Coords[2];
    float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4];
    floatp r1 = psh->params.Coords[5];
    radial_shading_attrs_t rsa;
    int span_type; /* <0 - don't shorten, 1 - extent0, 2 - first contact, 4 - last contact, 8 - extent1. */
    int code;
    patch_fill_state_t pfs1;

    if (r0 == 0 && r1 == 0)
        return 0; /* PLRM requires to paint nothing. */
    code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pis);
    if (code < 0)
        return code;
    pfs1.Function = psh->params.Function;
    code = init_patch_fill_state(&pfs1);
    if (code < 0) {
        if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
        return code;
    }
    pfs1.function_arg_shift = 1;
    pfs1.rect = *clip_rect;
    pfs1.maybe_self_intersecting = false;
    if (is_radial_shading_large(x0, y0, r0, x1, y1, r1, rect))
        span_type = compute_radial_shading_span(&rsa, x0, y0, r0, x1, y1, r1, rect);
    else
        span_type = -1;
    if (span_type < 0) {
        code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false);
        if (code >= 0)
            code = R_tensor_annulus(&pfs1, x0, y0, r0, d0, x1, y1, r1, d1);
        if (code >= 0)
            code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]);
    } else if (span_type == 1) {
        code = R_fill_rect_with_const_color(&pfs1, clip_rect, d0);
    } else if (span_type == 8) {
        code = R_fill_rect_with_const_color(&pfs1, clip_rect, d1);
    } else {
        bool second_interval = true;

        code = 0;
        if (span_type & 1)
            code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false);
        if ((code >= 0) && (span_type & 2)) {
            float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1;
            floatp R0 = r0, R1 = r1;

            if ((span_type & 4) && rsa.span[0][1] >= rsa.span[1][0]) {
                double united[2];

                united[0] = rsa.span[0][0];
                united[1] = rsa.span[1][1];
                shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, united);
                second_interval = false;
            } else {
                second_interval = shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[0]);
            }
            code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1);
        }
        if (code >= 0 && second_interval) {
            if (span_type & 4) {
                float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1;
                floatp R0 = r0, R1 = r1;

                shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[1]);
                code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1);
            }
        }
        if (code >= 0 && (span_type & 8))
            code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]);
    }
    if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
    if (term_patch_fill_state(&pfs1))
        return_error(gs_error_unregistered); /* Must not happen. */
    return code;
}

int
gs_shading_R_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
                            const gs_fixed_rect * rect_clip,
                            gx_device * dev, gs_imager_state * pis)
{
    int code;

    if (VD_TRACE_RADIAL_PATCH && vd_allowed('s')) {
        vd_get_dc('s');
        vd_set_shift(0, 0);
        vd_set_scale(0.01);
        vd_set_origin(0, 0);
    }
    code = gs_shading_R_fill_rectangle_aux(psh0, rect, rect_clip, dev, pis);
    if (VD_TRACE_FUNCTIONAL_PATCH && vd_allowed('s'))
        vd_release_dc;
    return code;
}