summaryrefslogtreecommitdiff
path: root/gs/src/gximono.c
blob: 89d4f17c1019b163653ed0fa8abe43654987a076 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/* Copyright (C) 1989, 1995, 1996, 1997, 1998 Aladdin Enterprises.  All rights reserved.

   This file is part of Aladdin Ghostscript.

   Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND.  No author
   or distributor accepts any responsibility for the consequences of using it,
   or for whether it serves any particular purpose or works at all, unless he
   or she says so in writing.  Refer to the Aladdin Ghostscript Free Public
   License (the "License") for full details.

   Every copy of Aladdin Ghostscript must include a copy of the License,
   normally in a plain ASCII text file named PUBLIC.  The License grants you
   the right to copy, modify and redistribute Aladdin Ghostscript, but only
   under certain conditions described in the License.  Among other things, the
   License requires that the copyright notice and this notice be preserved on
   all copies.
 */


/* General mono-component image rendering */
#include "gx.h"
#include "memory_.h"
#include "gpcheck.h"
#include "gserrors.h"
#include "gxfixed.h"
#include "gxarith.h"
#include "gxmatrix.h"
#include "gsccolor.h"
#include "gspaint.h"
#include "gsutil.h"
#include "gxdevice.h"
#include "gxcmap.h"
#include "gxdcolor.h"
#include "gxistate.h"
#include "gzpath.h"
#include "gxdevmem.h"
#include "gdevmem.h"		/* for mem_mono_device */
#include "gxcpath.h"
#include "gximage.h"
#include "gzht.h"

/* ------ Strategy procedure ------ */

private irender_proc(image_render_mono);
private irender_proc_t
image_strategy_mono(gx_image_enum * penum)
{
    if (penum->spp == 1) {
	/*
	 * Use the slow loop for imagemask with a halftone or a non-default
	 * logical operation.
	 */
	penum->slow_loop =
	    (penum->masked && !color_is_pure(&penum->icolor1)) ||
	    penum->use_rop;
	/* We can bypass X clipping for portrait mono-component images. */
	if (!(penum->slow_loop || penum->posture != image_portrait))
	    penum->clip_image &= ~(image_clip_xmin | image_clip_xmax);
	if_debug0('b', "[b]render=mono\n");
	/* Precompute values needed for rasterizing. */
	penum->dxx =
	    float2fixed(penum->matrix.xx + fixed2float(fixed_epsilon) / 2);
	/*
	 * Scale the mask colors to match the scaling of each sample to a
	 * full byte.  Also, if black or white is transparent, reset icolor0
	 * or icolor1, which are used directly in the fast case loop.
	 */
	if (penum->use_mask_color) {
	    uint scale = 255 / ((1 << penum->bps) - 1);

	    if ((penum->mask_color.values[0] *= scale) <= 0)
		color_set_null(&penum->icolor0);
	    if ((penum->mask_color.values[1] *= scale) >= 255)
		color_set_null(&penum->icolor1);
	}
	return image_render_mono;
    }
    return 0;
}

void
gs_gximono_init(gs_memory_t * mem)
{
    image_strategies.mono = image_strategy_mono;
}

/* ------ Rendering procedure ------ */

/* Provide a fake map_gray procedure for the DevicePixel color space. */
private void
no_map_gray(frac pixel, gx_device_color * pdc, const gs_imager_state * pis,
	    gx_device * dev, gs_color_select_t select)
{
    color_set_pure(pdc, frac2byte(pixel));
}

/*
 * Rendering procedure for general mono-component images, dealing with
 * multiple bit-per-sample images, general transformations, arbitrary
 * single-component color spaces (DeviceGray, DevicePixel, CIEBasedA,
 * Separation, Indexed), and color masking. This procedure handles a
 * single scan line.
 */
private int
image_render_mono(gx_image_enum * penum, const byte * buffer, int data_x,
		  uint w, int h, gx_device * dev)
{
    const gs_imager_state *pis = penum->pis;
    gs_logical_operation_t lop = penum->log_op;
    const bool masked = penum->masked;
    const gs_color_space *pcs;	/* only set for non-masks */
    cmap_proc_gray((*map_gray));	/* ditto */
    cs_proc_remap_color((*remap_color));	/* ditto */
    gs_client_color cc;
    gx_device_color *pdevc = &penum->icolor1;	/* color for masking */
    /*
     * Make sure the cache setup matches the graphics state.  Also determine
     * whether all tiles fit in the cache.  We may bypass the latter check
     * for masked images with a pure color.
     */
    bool tiles_fit =
	(pis && penum->device_color ? gx_check_tile_cache(pis) : false);
    uint mask_base = penum->mask_color.values[0];
    uint mask_limit =
	(penum->use_mask_color ?
	 penum->mask_color.values[1] - mask_base + 1 : 0);
/*
 * Free variables of IMAGE_SET_GRAY:
 *   Read: penum, pis, dev, tiles_fit, mask_base, mask_limit
 *   Set: pdevc, code, cc
 */
#define IMAGE_SET_GRAY(sample_value)\
  BEGIN\
    pdevc = &penum->clues[sample_value].dev_color;\
    if (!color_is_set(pdevc)) {\
	if ((uint)(sample_value - mask_base) < mask_limit)\
	    color_set_null(pdevc);\
	else if (penum->device_color)\
	    (*map_gray)(byte2frac(sample_value), pdevc, pis, dev, gs_color_select_source);\
	else {\
	    decode_sample(sample_value, cc, 0);\
	    (*remap_color)(&cc, pcs, pdevc, pis, dev, gs_color_select_source);\
	}\
    } else if (!color_is_pure(pdevc)) {\
	if (!tiles_fit) {\
	    code = gx_color_load_select(pdevc, pis, dev, gs_color_select_source);\
	    if ( code < 0 ) return code;\
	}\
    }\
  END
    gx_dda_fixed_point next;	/* (y not used in fast loop) */
    gx_dda_step_fixed dxx2, dxx3, dxx4;		/* (not used in all loops) */
    register const byte *psrc = buffer + data_x;
    const byte *endp = psrc + w;
    const byte *stop = endp;
    fixed xrun;			/* x at start of run */
    register byte run;		/* run value */
    int htrun = (masked ? 255 : -2);		/* halftone run value */
    int code = 0;

    if (h == 0)
	return 0;
    next = penum->dda.pixel0;
    xrun = dda_current(next.x);
    if (!masked) {
	pcs = penum->pcs;	/* (may not be set for masks) */
	if (penum->device_color)
	    map_gray =
		(gs_color_space_get_index(pcs) ==
		 gs_color_space_index_DeviceGray ?
		 gx_device_cmap_procs(dev)->map_gray :
		 no_map_gray /*DevicePixel */ );
	else
	    remap_color = pcs->type->remap_color;
    }
    run = *psrc;
    /* Find the last transition in the input. */
    {
	byte last = stop[-1];

	while (stop > psrc && stop[-1] == last)
	    --stop;
    }
    if (penum->slow_loop || penum->posture != image_portrait) {

	/**************************************************************
	 * Slow case (skewed, rotated, or imagemask with a halftone). *
	 **************************************************************/

	fixed yrun;
	const fixed pdyx = dda_current(penum->dda.row.x) - penum->cur.x;
	const fixed pdyy = dda_current(penum->dda.row.y) - penum->cur.y;
	dev_proc_fill_parallelogram((*fill_pgram)) =
	    dev_proc(dev, fill_parallelogram);

#define xl dda_current(next.x)
#define ytf dda_current(next.y)
	yrun = ytf;
	if (masked) {

	    /**********************
	     * Slow case, masked. *
	     **********************/

	    pdevc = &penum->icolor1;
	    code = gx_color_load(pdevc, pis, dev);
	    if (code < 0)
		return code;
	    if (stop <= psrc)
		goto last;
	    if (penum->posture == image_portrait) {

		/********************************
		 * Slow case, masked, portrait. *
		 ********************************/

		/*
		 * We don't have to worry about the Y DDA, and the fill
		 * regions are rectangles.  Calculate multiples of the DDA
		 * step.
		 */
		fixed ax =
		    (penum->matrix.xx < 0 ? -penum->adjust : penum->adjust);
		fixed ay =
		    (pdyy < 0 ? -penum->adjust : penum->adjust);
		fixed dyy = pdyy + (ay << 1);

		yrun -= ay;
		dda_translate(next.x, -ax);
		ax <<= 1;
		dxx2 = next.x.step;
		dda_step_add(dxx2, next.x.step);
		dxx3 = dxx2;
		dda_step_add(dxx3, next.x.step);
		dxx4 = dxx3;
		dda_step_add(dxx4, next.x.step);
		for (;;) {	/* Skip a run of zeros. */
		    while (!psrc[0])
			if (!psrc[1]) {
			    if (!psrc[2]) {
				if (!psrc[3]) {
				    psrc += 4;
				    dda_state_next(next.x.state, dxx4);
				    continue;
				}
				psrc += 3;
				dda_state_next(next.x.state, dxx3);
				break;
			    }
			    psrc += 2;
			    dda_state_next(next.x.state, dxx2);
			    break;
			} else {
			    ++psrc;
			    dda_next(next.x);
			    break;
			}
		    xrun = xl;
		    if (psrc >= stop)
			break;
		    for (; *psrc; ++psrc)
			dda_next(next.x);
		    code = (*fill_pgram)(dev, xrun, yrun,
					 xl - xrun + ax, fixed_0, fixed_0, dyy,
					 pdevc, lop);
		    if (code < 0)
			return code;
		    if (psrc >= stop)
			break;
		}

	    } else if (penum->posture == image_landscape) {

		/*********************************
		 * Slow case, masked, landscape. *
		 *********************************/

		/*
		 * We don't have to worry about the X DDA.  However, we do
		 * have to take adjustment into account.  We don't bother to
		 * optimize this as heavily as the portrait case.
		 */
		fixed ax =
		    (pdyx < 0 ? -penum->adjust : penum->adjust);
		fixed dyx = pdyx + (ax << 1);
		fixed ay =
		    (penum->matrix.xy < 0 ? -penum->adjust : penum->adjust);

		xrun -= ax;
		dda_translate(next.y, -ay);
		ay <<= 1;
		for (;;) {
		    for (; !*psrc; ++psrc)
			dda_next(next.y);
		    yrun = ytf;
		    if (psrc >= stop)
			break;
		    for (; *psrc; ++psrc)
			dda_next(next.y);
		    code = (*fill_pgram)(dev, xrun, yrun, fixed_0,
					 ytf - yrun + ay, dyx, fixed_0,
					 pdevc, lop);
		    if (code < 0)
			return code;
		    if (psrc >= stop)
			break;
		}

	    } else {

		/**************************************
		 * Slow case, masked, not orthogonal. *
		 **************************************/

		for (;;) {
		    for (; !*psrc; ++psrc) {
			dda_next(next.x);
			dda_next(next.y);
		    }
		    yrun = ytf;
		    xrun = xl;
		    if (psrc >= stop)
			break;
		    for (; *psrc; ++psrc) {
			dda_next(next.x);
			dda_next(next.y);
		    }
		    code = (*fill_pgram)(dev, xrun, yrun, xl - xrun,
					 ytf - yrun, pdyx, pdyy, pdevc, lop);
		    if (code < 0)
			return code;
		    if (psrc >= stop)
			break;
		}

	    }

	} else if (penum->posture == image_portrait ||
		   penum->posture == image_landscape
	    ) {

	    /**************************************
	     * Slow case, not masked, orthogonal. *
	     **************************************/

	    /* In this case, we can fill runs quickly. */
	    /****** DOESN'T DO ADJUSTMENT ******/
	    if (stop <= psrc)
		goto last;
	    for (;;) {
		if (*psrc != run) {
		    if (run != htrun) {
			htrun = run;
			IMAGE_SET_GRAY(run);
		    }
		    code = (*fill_pgram)(dev, xrun, yrun, xl - xrun,
					 ytf - yrun, pdyx, pdyy,
					 pdevc, lop);
		    if (code < 0)
			return code;
		    yrun = ytf;
		    xrun = xl;
		    if (psrc >= stop)
			break;
		    run = *psrc;
		}
		psrc++;
		dda_next(next.x);
		dda_next(next.y);
	    }
	} else {

	    /******************************************
	     * Slow case, not masked, not orthogonal. *
	     ******************************************/

	    /*
	     * Since we have to check for the end after every pixel
	     * anyway, we may as well avoid the last-run code.
	     */
	    stop = endp;
	    for (;;) {
		/* We can't skip large constant regions quickly, */
		/* because this leads to rounding errors. */
		/* Just fill the region between xrun and xl. */
		psrc++;
		if (run != htrun) {
		    htrun = run;
		    IMAGE_SET_GRAY(run);
		}
		code = (*fill_pgram) (dev, xrun, yrun, xl - xrun,
				      ytf - yrun, pdyx, pdyy, pdevc, lop);
		if (code < 0)
		    return code;
		yrun = ytf;
		xrun = xl;
		if (psrc > stop) {
		    --psrc;
		    break;
		}
		run = psrc[-1];
		dda_next(next.x);
		dda_next(next.y);	/* harmless if no skew */
	    }

	}
	/* Fill the last run. */
      last:if (stop < endp && (*stop || !masked)) {
	    if (!masked) {
		IMAGE_SET_GRAY(*stop);
	    }
	    dda_advance(next.x, endp - stop);
	    dda_advance(next.y, endp - stop);
	    code = (*fill_pgram) (dev, xrun, yrun, xl - xrun,
				  ytf - yrun, pdyx, pdyy, pdevc, lop);
	}
#undef xl
#undef ytf

    } else {

	/**********************************************************
	 * Fast case: no skew, and not imagemask with a halftone. *
	 **********************************************************/

	const fixed adjust = penum->adjust;
	const fixed dxx = penum->dxx;
	fixed xa = (dxx >= 0 ? adjust : -adjust);
	const int yt = penum->yci, iht = penum->hci;

	dev_proc_fill_rectangle((*fill_proc)) =
	    dev_proc(dev, fill_rectangle);
	dev_proc_strip_tile_rectangle((*tile_proc)) =
	    dev_proc(dev, strip_tile_rectangle);
	dev_proc_copy_mono((*copy_mono_proc)) =
	    dev_proc(dev, copy_mono);
	/*
	 * If each pixel is likely to fit in a single halftone tile,
	 * determine that now (tile_offset = offset of row within tile).
	 * Don't do this for band devices; they handle halftone fills
	 * more efficiently than copy_mono.
	 */
	int bstart;
	int phase_x;
	int tile_offset =
	    (penum->device_color &&
	     (*dev_proc(dev, get_band)) (dev, yt, &bstart) == 0 ?
	     gx_check_tile_size(pis,
				fixed2int_ceiling(any_abs(dxx) + (xa << 1)),
				yt, iht, gs_color_select_source, &phase_x) :
	     -1);
	int xmin = fixed2int_pixround(penum->clip_outer.p.x);
	int xmax = fixed2int_pixround(penum->clip_outer.q.x);

#define xl dda_current(next.x)
	/* Fold the adjustment into xrun and xl, */
	/* including the +0.5-epsilon for rounding. */
	xrun = xrun - xa + (fixed_half - fixed_epsilon);
	dda_translate(next.x, xa + (fixed_half - fixed_epsilon));
	xa <<= 1;
	/* Calculate multiples of the DDA step. */
	dxx2 = next.x.step;
	dda_step_add(dxx2, next.x.step);
	dxx3 = dxx2;
	dda_step_add(dxx3, next.x.step);
	dxx4 = dxx3;
	dda_step_add(dxx4, next.x.step);
	if (stop > psrc)
	    for (;;) {		/* Skip large constant regions quickly, */
		/* but don't slow down transitions too much. */
	      skf:if (psrc[0] == run) {
		    if (psrc[1] == run) {
			if (psrc[2] == run) {
			    if (psrc[3] == run) {
				psrc += 4;
				dda_state_next(next.x.state, dxx4);
				goto skf;
			    } else {
				psrc += 4;
				dda_state_next(next.x.state, dxx3);
			    }
			} else {
			    psrc += 3;
			    dda_state_next(next.x.state, dxx2);
			}
		    } else {
			psrc += 2;
			dda_next(next.x);
		    }
		} else
		    psrc++;
		{		/* Now fill the region between xrun and xl. */
		    int xi = fixed2int_var(xrun);
		    int wi = fixed2int_var(xl) - xi;
		    int xei, tsx;
		    const gx_strip_bitmap *tile;

		    if (wi <= 0) {
			if (wi == 0)
			    goto mt;
			xi += wi, wi = -wi;
		    }
		    if ((xei = xi + wi) > xmax || xi < xmin) {	/* Do X clipping */
			if (xi < xmin)
			    wi -= xmin - xi, xi = xmin;
			if (xei > xmax)
			    wi -= xei - xmax;
			if (wi <= 0)
			    goto mt;
		    }
		    switch (run) {
			case 0:
			    if (masked)
				goto mt;
			    if (!color_is_pure(&penum->icolor0))
				goto ht;
			    code = (*fill_proc) (dev, xi, yt, wi, iht,
						 penum->icolor0.colors.pure);
			    break;
			case 255:	/* just for speed */
			    if (!color_is_pure(&penum->icolor1))
				goto ht;
			    code = (*fill_proc) (dev, xi, yt, wi, iht,
						 penum->icolor1.colors.pure);
			    break;
			default:
			  ht:	/* Use halftone if needed */
			    if (run != htrun) {
				IMAGE_SET_GRAY(run);
				htrun = run;
			    }
			    /* We open-code gx_fill_rectangle, */
			    /* because we've done some of the work for */
			    /* halftone tiles in advance. */
			    if (color_is_pure(pdevc)) {
				code = (*fill_proc) (dev, xi, yt, wi, iht,
						     pdevc->colors.pure);
			    } else if (!color_is_binary_halftone(pdevc)) {
				code =
				    gx_fill_rectangle_device_rop(xi, yt, wi, iht,
							   pdevc, dev, lop);
			    } else if (tile_offset >= 0 &&
				(tile = &pdevc->colors.binary.b_tile->tiles,
				 (tsx = (xi + phase_x) % tile->rep_width) + wi <= tile->size.x)
				) {	/* The pixel(s) fit(s) in a single (binary) tile. */
				byte *row = tile->data + tile_offset;

				code = (*copy_mono_proc)
				    (dev, row, tsx, tile->raster, gx_no_bitmap_id,
				     xi, yt, wi, iht,
				     pdevc->colors.binary.color[0],
				     pdevc->colors.binary.color[1]);
			    } else {
				code = (*tile_proc) (dev,
					&pdevc->colors.binary.b_tile->tiles,
						     xi, yt, wi, iht,
					      pdevc->colors.binary.color[0],
					      pdevc->colors.binary.color[1],
					    pdevc->phase.x, pdevc->phase.y);
			    }
		    }
		    if (code < 0)
			return code;
		  mt:xrun = xl - xa;	/* original xa << 1 */
		    if (psrc > stop) {
			--psrc;
			break;
		    }
		    run = psrc[-1];
		}
		dda_next(next.x);
	    }
	/* Fill the last run. */
	if (*stop != 0 || !masked) {
	    int xi = fixed2int_var(xrun);
	    int wi, xei;

	    dda_advance(next.x, endp - stop);
	    wi = fixed2int_var(xl) - xi;
	    if (wi <= 0) {
		if (wi == 0)
		    goto lmt;
		xi += wi, wi = -wi;
	    }
	    if ((xei = xi + wi) > xmax || xi < xmin) {	/* Do X clipping */
		if (xi < xmin)
		    wi -= xmin - xi, xi = xmin;
		if (xei > xmax)
		    wi -= xei - xmax;
		if (wi <= 0)
		    goto lmt;
	    }
	    IMAGE_SET_GRAY(*stop);
	    code = gx_fill_rectangle_device_rop(xi, yt, wi, iht,
						pdevc, dev, lop);
	  lmt:;
	}

    }
#undef xl
    return (code < 0 ? code : 1);
}