summaryrefslogtreecommitdiff
path: root/gs/src/gxpflat.c
blob: ce42e8b91e21d3d5bf59ac00cc10ff08be79cfde (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/* Copyright (C) 1997, 1998 Aladdin Enterprises.  All rights reserved.

   This file is part of Aladdin Ghostscript.

   Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND.  No author
   or distributor accepts any responsibility for the consequences of using it,
   or for whether it serves any particular purpose or works at all, unless he
   or she says so in writing.  Refer to the Aladdin Ghostscript Free Public
   License (the "License") for full details.

   Every copy of Aladdin Ghostscript must include a copy of the License,
   normally in a plain ASCII text file named PUBLIC.  The License grants you
   the right to copy, modify and redistribute Aladdin Ghostscript, but only
   under certain conditions described in the License.  Among other things, the
   License requires that the copyright notice and this notice be preserved on
   all copies.
 */

/*$Id$ */
/* Path flattening algorithms */
#include "gx.h"
#include "gxarith.h"
#include "gxfixed.h"
#include "gzpath.h"

/* Define whether to merge nearly collinear line segments when flattening */
/* curves.  This is very good for performance, but we feel a little */
/* uneasy about its effects on character appearance. */
#define MERGE_COLLINEAR_SEGMENTS 1

/* ---------------- Curve flattening ---------------- */

#define x1 pc->p1.x
#define y1 pc->p1.y
#define x2 pc->p2.x
#define y2 pc->p2.y
#define x3 pc->pt.x
#define y3 pc->pt.y

/*
 * To calculate how many points to sample along a path in order to
 * approximate it to the desired degree of flatness, we define
 *      dist((x,y)) = abs(x) + abs(y);
 * then the number of points we need is
 *      N = 1 + sqrt(3/4 * D / flatness),
 * where
 *      D = max(dist(p0 - 2*p1 + p2), dist(p1 - 2*p2 + p3)).
 * Since we are going to use a power of 2 for the number of intervals,
 * we can avoid the square root by letting
 *      N = 1 + 2^(ceiling(log2(3/4 * D / flatness) / 2)).
 * (Reference: DEC Paris Research Laboratory report #1, May 1989.)
 *
 * We treat two cases specially.  First, if the curve is very
 * short, we halve the flatness, to avoid turning short shallow curves
 * into short straight lines.  Second, if the curve forms part of a
 * character (indicated by flatness = 0), we let
 *      N = 1 + 2 * max(abs(x3-x0), abs(y3-y0)).
 * This is probably too conservative, but it produces good results.
 */
int
gx_curve_log2_samples(fixed x0, fixed y0, const curve_segment * pc,
		      fixed fixed_flat)
{
    fixed
	x03 = x3 - x0,
	y03 = y3 - y0;
    int k;

    if (x03 < 0)
	x03 = -x03;
    if (y03 < 0)
	y03 = -y03;
    if ((x03 | y03) < int2fixed(16))
	fixed_flat >>= 1;
    if (fixed_flat == 0) {	/* Use the conservative method. */
	fixed m = max(x03, y03);

	for (k = 1; m > fixed_1;)
	    k++, m >>= 1;
    } else {
	const fixed
	      x12 = x1 - x2, y12 = y1 - y2, dx0 = x0 - x1 - x12, dy0 = y0 - y1 - y12,
	      dx1 = x12 - x2 + x3, dy1 = y12 - y2 + y3, adx0 = any_abs(dx0),
	      ady0 = any_abs(dy0), adx1 = any_abs(dx1), ady1 = any_abs(dy1);

	fixed
	    d = max(adx0, adx1) + max(ady0, ady1);
	/*
	 * The following statement is split up to work around a
	 * bug in the gcc 2.7.2 optimizer on H-P RISC systems.
	 */
	uint qtmp = d - (d >> 2) /* 3/4 * D */ +fixed_flat - 1;
	uint q = qtmp / fixed_flat;

	if_debug6('2', "[2]d01=%g,%g d12=%g,%g d23=%g,%g\n",
		  fixed2float(x1 - x0), fixed2float(y1 - y0),
		  fixed2float(-x12), fixed2float(-y12),
		  fixed2float(x3 - x2), fixed2float(y3 - y2));
	if_debug2('2', "     D=%f, flat=%f,",
		  fixed2float(d), fixed2float(fixed_flat));
	/* Now we want to set k = ceiling(log2(q) / 2). */
	for (k = 0; q > 1;)
	    k++, q = (q + 3) >> 2;
	if_debug1('2', " k=%d\n", k);
    }
    return k;
}

/*
 * Define the maximum number of points for sampling if we want accurate
 * rasterizing.  2^(k_sample_max*3)-1 must fit into a uint with a bit
 * to spare; also, we must be able to compute 1/2^(3*k) by table lookup.
 */
#define k_sample_max min((size_of(int) * 8 - 1) / 3, 10)

/*
 * Split a curve segment into two pieces at the (parametric) midpoint.
 * Algorithm is from "The Beta2-split: A special case of the Beta-spline
 * Curve and Surface Representation," B. A. Barsky and A. D. DeRose, IEEE,
 * 1985, courtesy of Crispin Goswell.
 */
private void
split_curve_midpoint(fixed x0, fixed y0, const curve_segment * pc,
		     curve_segment * pc1, curve_segment * pc2)
{				/*
				 * We have to define midpoint carefully to avoid overflow.
				 * (If it overflows, something really pathological is going
				 * on, but we could get infinite recursion that way....)
				 */
#define midpoint(a,b)\
  (arith_rshift_1(a) + arith_rshift_1(b) + ((a) & (b) & 1) + 1)
    fixed x12 = midpoint(x1, x2);
    fixed y12 = midpoint(y1, y2);

    /*
     * pc1 or pc2 may be the same as pc, so we must be a little careful
     * about the order in which we store the results.
     */
    pc1->p1.x = midpoint(x0, x1);
    pc1->p1.y = midpoint(y0, y1);
    pc2->p2.x = midpoint(x2, x3);
    pc2->p2.y = midpoint(y2, y3);
    pc1->p2.x = midpoint(pc1->p1.x, x12);
    pc1->p2.y = midpoint(pc1->p1.y, y12);
    pc2->p1.x = midpoint(x12, pc2->p2.x);
    pc2->p1.y = midpoint(y12, pc2->p2.y);
    if (pc2 != pc)
	pc2->pt.x = pc->pt.x,
	    pc2->pt.y = pc->pt.y;
    pc1->pt.x = midpoint(pc1->p2.x, pc2->p1.x);
    pc1->pt.y = midpoint(pc1->p2.y, pc2->p1.y);
#undef midpoint
}

/*
 * Flatten a segment of the path by repeated sampling.
 * 2^k is the number of lines to produce (i.e., the number of points - 1,
 * including the endpoints); we require k >= 1.
 * If k or any of the coefficient values are too large,
 * use recursive subdivision to whittle them down.
 */
int
gx_flatten_sample(gx_path * ppath, int k, curve_segment * pc,
		  segment_notes notes)
{
    fixed x0, y0;

    /* x1 ... y3 were defined above */
    fixed cx, bx, ax, cy, by, ay;
    fixed ptx, pty;
    fixed x, y;

    /*
     * We can compute successive values by finite differences,
     * using the formulas:
     x(t) =
     a*t^3 + b*t^2 + c*t + d =>
     dx(t) = x(t+e)-x(t) =
     a*(3*t^2*e + 3*t*e^2 + e^3) + b*(2*t*e + e^2) + c*e =
     (3*a*e)*t^2 + (3*a*e^2 + 2*b*e)*t + (a*e^3 + b*e^2 + c*e) =>
     d2x(t) = dx(t+e)-dx(t) =
     (3*a*e)*(2*t*e + e^2) + (3*a*e^2 + 2*b*e)*e =
     (6*a*e^2)*t + (6*a*e^3 + 2*b*e^2) =>
     d3x(t) = d2x(t+e)-d2x(t) =
     6*a*e^3;
     x(0) = d, dx(0) = (a*e^3 + b*e^2 + c*e),
     d2x(0) = 6*a*e^3 + 2*b*e^2;
     * In these formulas, e = 1/2^k; of course, there are separate
     * computations for the x and y values.
     *
     * There is a tradeoff in doing the above computation in fixed
     * point.  If we separate out the constant term (d) and require that
     * all the other values fit in a long, then on a 32-bit machine with
     * 12 bits of fraction in a fixed, k = 4 implies a maximum curve
     * size of 128 pixels; anything larger requires subdividing the
     * curve.  On the other hand, doing the computations in explicit
     * double precision slows down the loop by a factor of 3 or so.  We
     * found to our surprise that the latter is actually faster, because
     * the additional subdivisions cost more than the slower loop.
     *
     * We represent each quantity as I+R/M, where I is an "integer" and
     * the "remainder" R lies in the range 0 <= R < M=2^(3*k).  Note
     * that R may temporarily exceed M; for this reason, we require that
     * M have at least one free high-order bit.  To reduce the number of
     * variables, we don't actually compute M, only M-1 (rmask).  */
    uint i;
    uint rmask;			/* M-1 */
    fixed idx, idy, id2x, id2y, id3x, id3y;	/* I */
    uint rx, ry, rdx, rdy, rd2x, rd2y, rd3x, rd3y;	/* R */
    gs_fixed_point *ppt;

#define max_points 50		/* arbitrary */
    gs_fixed_point points[max_points + 1];

  top:x0 = ppath->position.x;
    y0 = ppath->position.y;
#ifdef DEBUG
    if (gs_debug_c('3')) {
	dlprintf4("[3]x0=%f y0=%f x1=%f y1=%f\n",
		  fixed2float(x0), fixed2float(y0),
		  fixed2float(x1), fixed2float(y1));
	dlprintf5("   x2=%f y2=%f x3=%f y3=%f  k=%d\n",
		  fixed2float(x2), fixed2float(y2),
		  fixed2float(x3), fixed2float(y3), k);
    }
#endif
    {
	fixed x01, x12, y01, y12;

	curve_points_to_coefficients(x0, x1, x2, x3, ax, bx, cx,
				     x01, x12);
	curve_points_to_coefficients(y0, y1, y2, y3, ay, by, cy,
				     y01, y12);
    }

    if_debug6('3', "[3]ax=%f bx=%f cx=%f\n   ay=%f by=%f cy=%f\n",
	      fixed2float(ax), fixed2float(bx), fixed2float(cx),
	      fixed2float(ay), fixed2float(by), fixed2float(cy));
#define max_fast (max_fixed / 6)
#define min_fast (-max_fast)
#define in_range(v) (v < max_fast && v > min_fast)
    if (k == 0) {		/* The curve is very short, or anomalous in some way. */
	/* Just add a line and exit. */
	return gx_path_add_line_notes(ppath, x3, y3, notes);
    }
    if (k <= k_sample_max &&
	in_range(ax) && in_range(ay) &&
	in_range(bx) && in_range(by) &&
	in_range(cx) && in_range(cy)
	) {
	x = x0, y = y0;
	rx = ry = 0;
	ppt = points;
	/* Fast check for n == 3, a common special case */
	/* for small characters. */
	if (k == 1) {
#define poly2(a,b,c)\
  arith_rshift_1(arith_rshift_1(arith_rshift_1(a) + b) + c)
	    x += poly2(ax, bx, cx);
	    y += poly2(ay, by, cy);
#undef poly2
	    if_debug2('3', "[3]dx=%f, dy=%f\n",
		      fixed2float(x - x0), fixed2float(y - y0));
	    if_debug3('3', "[3]%s x=%g, y=%g\n",
		      (((x ^ x0) | (y ^ y0)) & float2fixed(-0.5) ?
		       "add" : "skip"),
		      fixed2float(x), fixed2float(y));
	    if (((x ^ x0) | (y ^ y0)) & float2fixed(-0.5))
		ppt->x = ptx = x,
		    ppt->y = pty = y,
		    ppt++;
	    goto last;
	} else {
	    fixed bx2 = bx << 1, by2 = by << 1;
	    fixed ax6 = ((ax << 1) + ax) << 1, ay6 = ((ay << 1) + ay) << 1;

#define adjust_rem(r, q)\
  if ( r > rmask ) q ++, r &= rmask
	    const int k2 = k << 1;
	    const int k3 = k2 + k;

	    rmask = (1 << k3) - 1;
	    /* We can compute all the remainders as ints, */
	    /* because we know they don't exceed M. */
	    /* cx/y terms */
	    idx = arith_rshift(cx, k),
		idy = arith_rshift(cy, k);
	    rdx = ((uint) cx << k2) & rmask,
		rdy = ((uint) cy << k2) & rmask;
	    /* bx/y terms */
	    id2x = arith_rshift(bx2, k2),
		id2y = arith_rshift(by2, k2);
	    rd2x = ((uint) bx2 << k) & rmask,
		rd2y = ((uint) by2 << k) & rmask;
	    idx += arith_rshift_1(id2x),
		idy += arith_rshift_1(id2y);
	    rdx += ((uint) bx << k) & rmask,
		rdy += ((uint) by << k) & rmask;
	    adjust_rem(rdx, idx);
	    adjust_rem(rdy, idy);
	    /* ax/y terms */
	    idx += arith_rshift(ax, k3),
		idy += arith_rshift(ay, k3);
	    rdx += (uint) ax & rmask,
		rdy += (uint) ay & rmask;
	    adjust_rem(rdx, idx);
	    adjust_rem(rdy, idy);
	    id2x += id3x = arith_rshift(ax6, k3),
		id2y += id3y = arith_rshift(ay6, k3);
	    rd2x += rd3x = (uint) ax6 & rmask,
		rd2y += rd3y = (uint) ay6 & rmask;
	    adjust_rem(rd2x, id2x);
	    adjust_rem(rd2y, id2y);
#undef adjust_rem
	}
    } else {			/*
				 * Curve is too long.  Break into two pieces and recur.
				 */
	curve_segment cseg;
	int code;

	k--;
	split_curve_midpoint(x0, y0, pc, &cseg, pc);
	code = gx_flatten_sample(ppath, k, &cseg, notes);
	if (code < 0)
	    return code;
	notes |= sn_not_first;
	goto top;
    }
    if_debug1('2', "[2]sampling k=%d\n", k);
    ptx = x0, pty = y0;
    for (i = (1 << k) - 1;;) {
	int code;

#ifdef DEBUG
	if (gs_debug_c('3')) {
	    dlprintf4("[3]dx=%f+%d, dy=%f+%d\n",
		      fixed2float(idx), rdx,
		      fixed2float(idy), rdy);
	    dlprintf4("   d2x=%f+%d, d2y=%f+%d\n",
		      fixed2float(id2x), rd2x,
		      fixed2float(id2y), rd2y);
	    dlprintf4("   d3x=%f+%d, d3y=%f+%d\n",
		      fixed2float(id3x), rd3x,
		      fixed2float(id3y), rd3y);
	}
#endif
#define accum(i, r, di, dr)\
  if ( (r += dr) > rmask ) r &= rmask, i += di + 1;\
  else i += di
	accum(x, rx, idx, rdx);
	accum(y, ry, idy, rdy);
	if_debug3('3', "[3]%s x=%g, y=%g\n",
		  (((x ^ ptx) | (y ^ pty)) & float2fixed(-0.5) ?
		   "add" : "skip"),
		  fixed2float(x), fixed2float(y));
	/*
	 * Skip very short segments -- those that lie entirely within
	 * a square half-pixel.  Also merge nearly collinear
	 * segments -- those where one coordinate of all three points
	 * (the two endpoints and the midpoint) lie within the same
	 * half-pixel and both coordinates are monotonic.
	 * Note that ptx/y, the midpoint, is the same as ppt[-1].x/y;
	 * the previous point is ppt[-2].x/y.
	 */
#define coord_near(v, ptv)\
  (!( ((v) ^ (ptv)) & float2fixed(-0.5) ))
#define coords_in_order(v0, v1, v2)\
  ( (((v1) - (v0)) ^ ((v2) - (v1))) >= 0 )
	if (coord_near(x, ptx)) {	/* X coordinates are within a half-pixel. */
	    if (coord_near(y, pty))
		goto skip;	/* short segment */
#if MERGE_COLLINEAR_SEGMENTS
	    /* Check for collinear segments. */
	    if (ppt > points + 1 && coord_near(x, ppt[-2].x) &&
		coords_in_order(ppt[-2].x, ptx, x) &&
		coords_in_order(ppt[-2].y, pty, y)
		)
		--ppt;		/* remove middle point */
#endif
	} else if (coord_near(y, pty)) {	/* Y coordinates are within a half-pixel. */
#if MERGE_COLLINEAR_SEGMENTS
	    /* Check for collinear segments. */
	    if (ppt > points + 1 && coord_near(y, ppt[-2].y) &&
		coords_in_order(ppt[-2].x, ptx, x) &&
		coords_in_order(ppt[-2].y, pty, y)
		)
		--ppt;		/* remove middle point */
#endif
	}
#undef coord_near
#undef coords_in_order
	/* Add a line. */
	if (ppt == &points[max_points]) {
	    if (notes & sn_not_first)
		code = gx_path_add_lines_notes(ppath, points, max_points,
					       notes);
	    else {
		code = gx_path_add_line_notes(ppath, points[0].x,
					      points[0].y, notes);
		if (code < 0)
		    return code;
		code = gx_path_add_lines_notes(ppath, points,
				      max_points - 1, notes | sn_not_first);
	    }
	    if (code < 0)
		return code;
	    ppt = points;
	    notes |= sn_not_first;
	}
	ppt->x = ptx = x;
	ppt->y = pty = y;
	ppt++;
      skip:if (--i == 0)
	    break;		/* don't bother with last accum */
	accum(idx, rdx, id2x, rd2x);
	accum(id2x, rd2x, id3x, rd3x);
	accum(idy, rdy, id2y, rd2y);
	accum(id2y, rd2y, id3y, rd3y);
#undef accum
    }
  last:if_debug2('3', "[3]last x=%g, y=%g\n",
	      fixed2float(x3), fixed2float(y3));
    if (ppt > points) {
	int count = ppt + 1 - points;
	gs_fixed_point *pts = points;

	if (!(notes & sn_not_first)) {
	    int code = gx_path_add_line_notes(ppath,
					      points[0].x, points[0].y,
					      notes);

	    if (code < 0)
		return code;
	    ++pts, --count;
	    notes |= sn_not_first;
	}
	ppt->x = x3, ppt->y = y3;
	return gx_path_add_lines_notes(ppath, pts, count, notes);
    }
    return gx_path_add_line_notes(ppath, x3, y3, notes);
}

#undef x1
#undef y1
#undef x2
#undef y2
#undef x3
#undef y3