1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
/* Copyright (C) 1989, 2000 Aladdin Enterprises. All rights reserved.
This file is part of AFPL Ghostscript.
AFPL Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author or
distributor accepts any responsibility for the consequences of using it, or
for whether it serves any particular purpose or works at all, unless he or
she says so in writing. Refer to the Aladdin Free Public License (the
"License") for full details.
Every copy of AFPL Ghostscript must include a copy of the License, normally
in a plain ASCII text file named PUBLIC. The License grants you the right
to copy, modify and redistribute AFPL Ghostscript, but only under certain
conditions described in the License. Among other things, the License
requires that the copyright notice and this notice be preserved on all
copies.
*/
/*$Id$ */
/* Dictionary operators */
#include "ghost.h"
#include "oper.h"
#include "iddict.h"
#include "dstack.h"
#include "ilevel.h" /* for [count]dictstack */
#include "iname.h" /* for dict_find_name */
#include "ipacked.h" /* for inline dict lookup */
#include "ivmspace.h"
#include "store.h"
/* <int> dict <dict> */
int
zdict(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
check_type(*op, t_integer);
#if arch_sizeof_int < arch_sizeof_long
check_int_leu(*op, max_uint);
#else
if (op->value.intval < 0)
return_error(e_rangecheck);
#endif
return dict_create((uint) op->value.intval, op);
}
/* <dict> maxlength <int> */
private int
zmaxlength(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
check_type(*op, t_dictionary);
check_dict_read(*op);
make_int(op, dict_maxlength(op));
return 0;
}
/* <dict> begin - */
int
zbegin(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
check_type(*op, t_dictionary);
check_dict_read(*op);
if (dsp == dstop)
return_error(e_dictstackoverflow);
++dsp;
ref_assign(dsp, op);
dict_set_top();
pop(1);
return 0;
}
/* - end - */
int
zend(i_ctx_t *i_ctx_p)
{
if (ref_stack_count_inline(&d_stack) == min_dstack_size) {
/* We would underflow the d-stack. */
return_error(e_dictstackunderflow);
}
while (dsp == dsbot) {
/* We would underflow the current block. */
ref_stack_pop_block(&d_stack);
}
dsp--;
dict_set_top();
return 0;
}
/* <key> <value> def - */
/*
* We make this into a separate procedure because
* the interpreter will almost always call it directly.
*/
int
zop_def(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
os_ptr op1 = op - 1;
ref *pvslot;
/* The following combines a check_op(2) with a type check. */
switch (r_type(op1)) {
case t_name: {
/* We can use the fast single-probe lookup here. */
uint nidx = name_index(op1);
uint htemp;
if_dict_find_name_by_index_top(nidx, htemp, pvslot) {
if (dtop_can_store(op))
goto ra;
}
break; /* handle all slower cases */
}
case t_null:
return_error(e_typecheck);
case t__invalid:
return_error(e_stackunderflow);
}
/*
* Combine the check for a writable top dictionary with
* the global/local store check. See dstack.h for details.
*/
if (!dtop_can_store(op)) {
check_dict_write(*dsp);
/*
* If the dictionary is writable, the problem must be
* an invalid store.
*/
return_error(e_invalidaccess);
}
/*
* Save a level of procedure call in the common (redefinition)
* case. With the current interfaces, we pay a double lookup
* in the uncommon case.
*/
if (dict_find(dsp, op1, &pvslot) <= 0)
return idict_put(dsp, op1, op);
ra:
ref_assign_old_inline(&dsp->value.pdict->values, pvslot, op,
"dict_put(value)");
return 0;
}
int
zdef(i_ctx_t *i_ctx_p)
{
int code = zop_def(i_ctx_p);
if (code >= 0) {
pop(2);
}
return code;
}
/* <key> load <value> */
private int
zload(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
ref *pvalue;
switch (r_type(op)) {
case t_name:
/* Use the fast lookup. */
if ((pvalue = dict_find_name(op)) == 0)
return_error(e_undefined);
ref_assign(op, pvalue);
return 0;
case t_null:
return_error(e_typecheck);
case t__invalid:
return_error(e_stackunderflow);
default: {
/* Use an explicit loop. */
uint size = ref_stack_count(&d_stack);
uint i;
for (i = 0; i < size; i++) {
ref *dp = ref_stack_index(&d_stack, i);
check_dict_read(*dp);
if (dict_find(dp, op, &pvalue) > 0) {
ref_assign(op, pvalue);
return 0;
}
}
return_error(e_undefined);
}
}
}
/* get - implemented in zgeneric.c */
/* put - implemented in zgeneric.c */
/* <dict> <key> .undef - */
/* <dict> <key> undef - */
private int
zundef(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
check_type(op[-1], t_dictionary);
check_dict_write(op[-1]);
idict_undef(op - 1, op); /* ignore undefined error */
pop(2);
return 0;
}
/* <dict> <key> known <bool> */
private int
zknown(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
register os_ptr op1 = op - 1;
ref *pvalue;
check_type(*op1, t_dictionary);
check_dict_read(*op1);
make_bool(op1, (dict_find(op1, op, &pvalue) > 0 ? 1 : 0));
pop(1);
return 0;
}
/* <key> where <dict> true */
/* <key> where false */
int
zwhere(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
ref_stack_enum_t rsenum;
check_op(1);
ref_stack_enum_begin(&rsenum, &d_stack);
do {
const ref *const bot = rsenum.ptr;
const ref *pdref = bot + rsenum.size;
ref *pvalue;
while (pdref-- > bot) {
check_dict_read(*pdref);
if (dict_find(pdref, op, &pvalue) > 0) {
push(1);
ref_assign(op - 1, pdref);
make_true(op);
return 0;
}
}
} while (ref_stack_enum_next(&rsenum));
make_false(op);
return 0;
}
/* copy for dictionaries -- called from zcopy in zgeneric.c. */
/* Only the type of *op has been checked. */
int
zcopy_dict(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
os_ptr op1 = op - 1;
int code;
check_type(*op1, t_dictionary);
check_dict_read(*op1);
check_dict_write(*op);
if (!dict_auto_expand &&
(dict_length(op) != 0 || dict_maxlength(op) < dict_length(op1))
)
return_error(e_rangecheck);
code = idict_copy(op1, op);
if (code < 0)
return code;
/*
* In Level 1 systems, we must copy the access attributes too.
* The only possible effect this can have is to make the
* copy read-only if the original dictionary is read-only.
*/
if (!level2_enabled)
r_copy_attrs(dict_access_ref(op), a_write, dict_access_ref(op1));
ref_assign(op1, op);
pop(1);
return 0;
}
/* - currentdict <dict> */
private int
zcurrentdict(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
push(1);
ref_assign(op, dsp);
return 0;
}
/* - countdictstack <int> */
private int
zcountdictstack(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
uint count = ref_stack_count(&d_stack);
push(1);
if (!level2_enabled)
count--; /* see dstack.h */
make_int(op, count);
return 0;
}
/* <array> dictstack <subarray> */
private int
zdictstack(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
uint count = ref_stack_count(&d_stack);
check_write_type(*op, t_array);
if (!level2_enabled)
count--; /* see dstack.h */
return ref_stack_store(&d_stack, op, count, 0, 0, true, idmemory,
"dictstack");
}
/* - cleardictstack - */
private int
zcleardictstack(i_ctx_t *i_ctx_p)
{
while (zend(i_ctx_p) >= 0)
DO_NOTHING;
return 0;
}
/* ------ Extensions ------ */
/* <dict1> <dict2> .dictcopynew <dict2> */
private int
zdictcopynew(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
os_ptr op1 = op - 1;
int code;
check_type(*op1, t_dictionary);
check_dict_read(*op1);
check_type(*op, t_dictionary);
check_dict_write(*op);
/* This is only recognized in Level 2 mode. */
if (!dict_auto_expand)
return_error(e_undefined);
code = idict_copy_new(op1, op);
if (code < 0)
return code;
ref_assign(op1, op);
pop(1);
return 0;
}
/* -mark- <key0> <value0> <key1> <value1> ... .dicttomark <dict> */
/* This is the Level 2 >> operator. */
private int
zdicttomark(i_ctx_t *i_ctx_p)
{
uint count2 = ref_stack_counttomark(&o_stack);
ref rdict;
int code;
uint idx;
if (count2 == 0)
return_error(e_unmatchedmark);
count2--;
if ((count2 & 1) != 0)
return_error(e_rangecheck);
code = dict_create(count2 >> 1, &rdict);
if (code < 0)
return code;
/* << /a 1 /a 2 >> => << /a 1 >>, i.e., */
/* we must enter the keys in top-to-bottom order. */
for (idx = 0; idx < count2; idx += 2) {
code = idict_put(&rdict,
ref_stack_index(&o_stack, idx + 1),
ref_stack_index(&o_stack, idx));
if (code < 0) { /* There's no way to free the dictionary -- too bad. */
return code;
}
}
ref_stack_pop(&o_stack, count2);
ref_assign(osp, &rdict);
return code;
}
/* <dict> <key> .forceundef - */
/*
* This forces an "undef" even if the dictionary is not writable.
* Like .forceput, it is meant to be used only in a few special situations,
* and should not be accessible by name after initialization.
*/
private int
zforceundef(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
check_type(op[-1], t_dictionary);
/* Don't check_dict_write */
idict_undef(op - 1, op); /* ignore undefined error */
pop(2);
return 0;
}
/* <dict> <key> .knownget <value> true */
/* <dict> <key> .knownget false */
private int
zknownget(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
register os_ptr op1 = op - 1;
ref *pvalue;
check_type(*op1, t_dictionary);
check_dict_read(*op1);
if (dict_find(op1, op, &pvalue) <= 0) {
make_false(op1);
pop(1);
} else {
ref_assign(op1, pvalue);
make_true(op);
}
return 0;
}
/* <dict> <key> .knownundef <bool> */
private int
zknownundef(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
os_ptr op1 = op - 1;
int code;
check_type(*op1, t_dictionary);
check_dict_write(*op1);
code = idict_undef(op1, op);
make_bool(op1, code == 0);
pop(1);
return 0;
}
/* <dict> <int> .setmaxlength - */
private int
zsetmaxlength(i_ctx_t *i_ctx_p)
{
os_ptr op = osp;
os_ptr op1 = op - 1;
uint new_size;
int code;
check_type(*op1, t_dictionary);
check_dict_write(*op1);
check_type(*op, t_integer);
#if arch_sizeof_int < arch_sizeof_long
check_int_leu(*op, max_uint);
#else
if (op->value.intval < 0)
return_error(e_rangecheck);
#endif
new_size = (uint) op->value.intval;
if (dict_length(op - 1) > new_size)
return_error(e_dictfull);
code = idict_resize(op - 1, new_size);
if (code >= 0)
pop(2);
return code;
}
/* ------ Initialization procedure ------ */
/* We need to split the table because of the 16-element limit. */
const op_def zdict1_op_defs[] = {
{"0cleardictstack", zcleardictstack},
{"1begin", zbegin},
{"0countdictstack", zcountdictstack},
{"0currentdict", zcurrentdict},
{"2def", zdef},
{"1dict", zdict},
{"0dictstack", zdictstack},
{"0end", zend},
{"2known", zknown},
{"1load", zload},
{"1maxlength", zmaxlength},
{"2.undef", zundef}, /* we need this even in Level 1 */
{"1where", zwhere},
op_def_end(0)
};
const op_def zdict2_op_defs[] = {
/* Extensions */
{"2.dictcopynew", zdictcopynew},
{"1.dicttomark", zdicttomark},
{"2.forceundef", zforceundef},
{"2.knownget", zknownget},
{"1.knownundef", zknownundef},
{"2.setmaxlength", zsetmaxlength},
op_def_end(0)
};
|