1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
# Introduction
Checking large binary files into a source repository (Git or otherwise) is a bad idea because repository size quickly becomes unreasonable.
Even if the instantaneous working tree stays manageable, preserving repository integrity requires all binary files in the entire project history, which given the typically poor compression of binary diffs, implies that the repository size will become impractically large.
Some people recommend checking binaries into different repositories or even not versioning them at all, but these are not satisfying solutions for most workflows.
## Features of `git-fat`
* clones of the source repository are small and fast because no binaries are transferred, yet fully functional (unlike `git clone --depth`)
* `git-fat` supports the same workflow for large binaries and traditionally versioned files, but internally manages the "fat" files separately
* `git-bisect` works properly even when versions of the binary files change over time
* selective control of which large files to pull into the local store
* local fat object stores can be shared between multiple clones, even by different users
* can easily support fat object stores distributed across multiple hosts
* depends only on stock Python and rsync
## Related projects
* [git-annex](http://git-annex.branchable.com) is a far more comprehensive solution, but with less transparent workflow and with more dependencies.
* [git-media](https://github.com/schacon/git-media) adopts a similar approach to `git-fat`, but with a different synchronization philosophy and with many Ruby dependencies.
# Installation and configuration
Place `git-fat` in your `PATH`.
Edit `.gitattributes` to regard any desired extensions as fat files.
$ cat >> .gitattributes
*.png filter=fat -crlf
*.jpg filter=fat -crlf
*.gz filter=fat -crlf
^D
Run `git fat init` to active the extension. Now add and commit as usual.
Matched files will be transparently stored externally, but will appear
complete in the working tree.
Set a remote store for the fat objects by editing `.gitfat`.
[rsync]
remote = your.remote-host.org:/share/fat-store
This file should typically be committed to the repository so that others
will automatically have their remote set. This remote address can use
any protocol supported by rsync. Most users will configure it to use
remote ssh in a directory with shared access.
# A worked example
Before we start, let's turn on verbose reporting so we can see what's
happening. Without this environment variable, all the output lines
starting with `git-fat` will not be shown.
$ export GIT_FAT_VERBOSE=1
First, we create a repository and configure it for use with `git-fat`.
$ git init repo
Initialized empty Git repository in /tmp/repo/.git/
$ cd repo
$ git fat init
$ cat > .gitfat
[rsync]
remote = localhost:/tmp/fat-store
$ mkdir -p /tmp/fat-store # make sure the remote directory exists
$ echo '*.gz filter=fat -crlf' > .gitattributes
$ git add .gitfat .gitattributes
$ git commit -m'Initial repository'
[master (root-commit) eb7facb] Initial repository
2 files changed, 3 insertions(+)
create mode 100644 .gitattributes
create mode 100644 .gitfat
Now we add a binary file whose name matches the pattern we set in `.gitattributes`.
$ curl https://nodeload.github.com/jedbrown/git-fat/tar.gz/master -o master.tar.gz
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 6449 100 6449 0 0 7741 0 --:--:-- --:--:-- --:--:-- 9786
$ git add master.tar.gz
git-fat filter-clean: caching to /tmp/repo/.git/fat/objects/b3489819f81603b4c04e8ed134b80bace0810324
$ git commit -m'Added master.tar.gz'
[master b85a96f] Added master.tar.gz
git-fat filter-clean: caching to /tmp/repo/.git/fat/objects/b3489819f81603b4c04e8ed134b80bace0810324
1 file changed, 1 insertion(+)
create mode 100644 master.tar.gz
The patch itself is very simple and does not include the binary.
$ git show --pretty=oneline HEAD
918063043a6156172c2ad66478c6edd5c7df0217 Add master.tar.gz
diff --git a/master.tar.gz b/master.tar.gz
new file mode 100644
index 0000000..12f7d52
--- /dev/null
+++ b/master.tar.gz
@@ -0,0 +1 @@
+#$# git-fat 1f218834a137f7b185b498924e7a030008aee2ae
## Pushing fat files
Now let's push our fat files using the rsync configuration that we set up earlier.
$ git fat push
Pushing to localhost:/tmp/fat-store
building file list ...
1 file to consider
sent 61 bytes received 12 bytes 48.67 bytes/sec
total size is 6449 speedup is 88.34
We we might normally set a remote now and push the git repository.
## Cloning and pulling
Now let's look at what happens when we clone.
$ cd ..
$ git clone repo repo2
Cloning into 'repo2'...
done.
$ cd repo2
$ git fat init # don't forget
$ ls -l # file is just a placeholder
total 4
-rw-r--r-- 1 jed users 53 Nov 25 22:42 master.tar.gz
$ cat master.tar.gz # holds the SHA1 of the file
#$# git-fat 1f218834a137f7b185b498924e7a030008aee2ae
We can always get a summary of what fat objects are missing in our local cache.
Orphan objects:
1f218834a137f7b185b498924e7a030008aee2ae
Now get any objects referenced by our current `HEAD`. This command also
accepts the `--all` option to pull full history, or a revision to pull
selected history.
$ git fat pull
receiving file list ...
1 file to consider
1f218834a137f7b185b498924e7a030008aee2ae
6449 100% 6.15MB/s 0:00:00 (xfer#1, to-check=0/1)
sent 30 bytes received 6558 bytes 4392.00 bytes/sec
total size is 6449 speedup is 0.98
Restoring 1f218834a137f7b185b498924e7a030008aee2ae -> master.tar.gz
git-fat filter-smudge: restoring from /tmp/repo2/.git/fat/objects/1f218834a137f7b185b498924e7a030008aee2ae
Everything is in place
$ git status
git-fat filter-clean: caching to /tmp/repo2/.git/fat/objects/1f218834a137f7b185b498924e7a030008aee2ae
# On branch master
nothing to commit, working directory clean
$ ls -l # recovered the full file
total 8
-rw-r--r-- 1 jed users 6449 Nov 25 17:10 master.tar.gz
## Summary
* Set the "fat" file types in `.gitattributes`.
* Use normal git commands to interact with the repository without
thinking about what files are fat and non-fat. The fat files will be
treated specially.
* Synchronize fat files with `git fat push` and `git fat pull`.
## Implementation notes
The actual binary files are stored in `.git/fat/objects`, leaving `.git/objects` nice and small.
$ du -bs .git/objects
2212 .git/objects/
$ ls -l .git/fat/objects # This is where the file actually goes, but that's not important
total 8
-rw------- 1 jed users 6449 Nov 25 17:01 1f218834a137f7b185b498924e7a030008aee2ae
If you have multiple clones that access the same filesystem, you can make
`.git/fat/objects` a symlink to a common location, in which case all content
will be available in all repositories without extra copies. You still need to
`git fat push` to make it available to others.
# Some refinements
* Allow pulling and pushing only select files
* Relate orphan objects to file system
* Put some more useful message in smudged (working tree) version of missing files.
* More friendly configuration for multiple fat remotes
* Make commands safer in presence of a dirty tree.
* Private setting of a different remote.
* Gracefully handle unmanaged files when the filter is called (either
legacy files or files matching the pattern that should some reason not
be treated as fat).
|