summaryrefslogtreecommitdiff
path: root/notes.c
blob: 1674391d386fd9adf91226ab5ed4353736ce3fc3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
#include "cache.h"
#include "notes.h"
#include "blob.h"
#include "tree.h"
#include "utf8.h"
#include "strbuf.h"
#include "tree-walk.h"
#include "string-list.h"
#include "refs.h"

/*
 * Use a non-balancing simple 16-tree structure with struct int_node as
 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
 * 16-array of pointers to its children.
 * The bottom 2 bits of each pointer is used to identify the pointer type
 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
 *
 * The root node is a statically allocated struct int_node.
 */
struct int_node {
	void *a[16];
};

/*
 * Leaf nodes come in two variants, note entries and subtree entries,
 * distinguished by the LSb of the leaf node pointer (see above).
 * As a note entry, the key is the SHA1 of the referenced object, and the
 * value is the SHA1 of the note object.
 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
 * referenced object, using the last byte of the key to store the length of
 * the prefix. The value is the SHA1 of the tree object containing the notes
 * subtree.
 */
struct leaf_node {
	unsigned char key_sha1[20];
	unsigned char val_sha1[20];
};

/*
 * A notes tree may contain entries that are not notes, and that do not follow
 * the naming conventions of notes. There are typically none/few of these, but
 * we still need to keep track of them. Keep a simple linked list sorted alpha-
 * betically on the non-note path. The list is populated when parsing tree
 * objects in load_subtree(), and the non-notes are correctly written back into
 * the tree objects produced by write_notes_tree().
 */
struct non_note {
	struct non_note *next; /* grounded (last->next == NULL) */
	char *path;
	unsigned int mode;
	unsigned char sha1[20];
};

#define PTR_TYPE_NULL     0
#define PTR_TYPE_INTERNAL 1
#define PTR_TYPE_NOTE     2
#define PTR_TYPE_SUBTREE  3

#define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3)
#define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3))
#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))

#define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)

#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
	(memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))

struct notes_tree default_notes_tree;

static struct string_list display_notes_refs;
static struct notes_tree **display_notes_trees;

static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
		struct int_node *node, unsigned int n);

/*
 * Search the tree until the appropriate location for the given key is found:
 * 1. Start at the root node, with n = 0
 * 2. If a[0] at the current level is a matching subtree entry, unpack that
 *    subtree entry and remove it; restart search at the current level.
 * 3. Use the nth nibble of the key as an index into a:
 *    - If a[n] is an int_node, recurse from #2 into that node and increment n
 *    - If a matching subtree entry, unpack that subtree entry (and remove it);
 *      restart search at the current level.
 *    - Otherwise, we have found one of the following:
 *      - a subtree entry which does not match the key
 *      - a note entry which may or may not match the key
 *      - an unused leaf node (NULL)
 *      In any case, set *tree and *n, and return pointer to the tree location.
 */
static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
		unsigned char *n, const unsigned char *key_sha1)
{
	struct leaf_node *l;
	unsigned char i;
	void *p = (*tree)->a[0];

	if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
		l = (struct leaf_node *) CLR_PTR_TYPE(p);
		if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
			/* unpack tree and resume search */
			(*tree)->a[0] = NULL;
			load_subtree(t, l, *tree, *n);
			free(l);
			return note_tree_search(t, tree, n, key_sha1);
		}
	}

	i = GET_NIBBLE(*n, key_sha1);
	p = (*tree)->a[i];
	switch (GET_PTR_TYPE(p)) {
	case PTR_TYPE_INTERNAL:
		*tree = CLR_PTR_TYPE(p);
		(*n)++;
		return note_tree_search(t, tree, n, key_sha1);
	case PTR_TYPE_SUBTREE:
		l = (struct leaf_node *) CLR_PTR_TYPE(p);
		if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
			/* unpack tree and resume search */
			(*tree)->a[i] = NULL;
			load_subtree(t, l, *tree, *n);
			free(l);
			return note_tree_search(t, tree, n, key_sha1);
		}
		/* fall through */
	default:
		return &((*tree)->a[i]);
	}
}

/*
 * To find a leaf_node:
 * Search to the tree location appropriate for the given key:
 * If a note entry with matching key, return the note entry, else return NULL.
 */
static struct leaf_node *note_tree_find(struct notes_tree *t,
		struct int_node *tree, unsigned char n,
		const unsigned char *key_sha1)
{
	void **p = note_tree_search(t, &tree, &n, key_sha1);
	if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
		struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
		if (!hashcmp(key_sha1, l->key_sha1))
			return l;
	}
	return NULL;
}

/*
 * How to consolidate an int_node:
 * If there are > 1 non-NULL entries, give up and return non-zero.
 * Otherwise replace the int_node at the given index in the given parent node
 * with the only entry (or a NULL entry if no entries) from the given tree,
 * and return 0.
 */
static int note_tree_consolidate(struct int_node *tree,
	struct int_node *parent, unsigned char index)
{
	unsigned int i;
	void *p = NULL;

	assert(tree && parent);
	assert(CLR_PTR_TYPE(parent->a[index]) == tree);

	for (i = 0; i < 16; i++) {
		if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
			if (p) /* more than one entry */
				return -2;
			p = tree->a[i];
		}
	}

	/* replace tree with p in parent[index] */
	parent->a[index] = p;
	free(tree);
	return 0;
}

/*
 * To remove a leaf_node:
 * Search to the tree location appropriate for the given leaf_node's key:
 * - If location does not hold a matching entry, abort and do nothing.
 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
 */
static void note_tree_remove(struct notes_tree *t, struct int_node *tree,
		unsigned char n, struct leaf_node *entry)
{
	struct leaf_node *l;
	struct int_node *parent_stack[20];
	unsigned char i, j;
	void **p = note_tree_search(t, &tree, &n, entry->key_sha1);

	assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
	if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
		return; /* type mismatch, nothing to remove */
	l = (struct leaf_node *) CLR_PTR_TYPE(*p);
	if (hashcmp(l->key_sha1, entry->key_sha1))
		return; /* key mismatch, nothing to remove */

	/* we have found a matching entry */
	free(l);
	*p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);

	/* consolidate this tree level, and parent levels, if possible */
	if (!n)
		return; /* cannot consolidate top level */
	/* first, build stack of ancestors between root and current node */
	parent_stack[0] = t->root;
	for (i = 0; i < n; i++) {
		j = GET_NIBBLE(i, entry->key_sha1);
		parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
	}
	assert(i == n && parent_stack[i] == tree);
	/* next, unwind stack until note_tree_consolidate() is done */
	while (i > 0 &&
	       !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
				      GET_NIBBLE(i - 1, entry->key_sha1)))
		i--;
}

/*
 * To insert a leaf_node:
 * Search to the tree location appropriate for the given leaf_node's key:
 * - If location is unused (NULL), store the tweaked pointer directly there
 * - If location holds a note entry that matches the note-to-be-inserted, then
 *   combine the two notes (by calling the given combine_notes function).
 * - If location holds a note entry that matches the subtree-to-be-inserted,
 *   then unpack the subtree-to-be-inserted into the location.
 * - If location holds a matching subtree entry, unpack the subtree at that
 *   location, and restart the insert operation from that level.
 * - Else, create a new int_node, holding both the node-at-location and the
 *   node-to-be-inserted, and store the new int_node into the location.
 */
static int note_tree_insert(struct notes_tree *t, struct int_node *tree,
		unsigned char n, struct leaf_node *entry, unsigned char type,
		combine_notes_fn combine_notes)
{
	struct int_node *new_node;
	struct leaf_node *l;
	void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
	int ret = 0;

	assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
	l = (struct leaf_node *) CLR_PTR_TYPE(*p);
	switch (GET_PTR_TYPE(*p)) {
	case PTR_TYPE_NULL:
		assert(!*p);
		if (is_null_sha1(entry->val_sha1))
			free(entry);
		else
			*p = SET_PTR_TYPE(entry, type);
		return 0;
	case PTR_TYPE_NOTE:
		switch (type) {
		case PTR_TYPE_NOTE:
			if (!hashcmp(l->key_sha1, entry->key_sha1)) {
				/* skip concatenation if l == entry */
				if (!hashcmp(l->val_sha1, entry->val_sha1))
					return 0;

				ret = combine_notes(l->val_sha1,
						    entry->val_sha1);
				if (!ret && is_null_sha1(l->val_sha1))
					note_tree_remove(t, tree, n, entry);
				free(entry);
				return ret;
			}
			break;
		case PTR_TYPE_SUBTREE:
			if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
						    entry->key_sha1)) {
				/* unpack 'entry' */
				load_subtree(t, entry, tree, n);
				free(entry);
				return 0;
			}
			break;
		}
		break;
	case PTR_TYPE_SUBTREE:
		if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
			/* unpack 'l' and restart insert */
			*p = NULL;
			load_subtree(t, l, tree, n);
			free(l);
			return note_tree_insert(t, tree, n, entry, type,
						combine_notes);
		}
		break;
	}

	/* non-matching leaf_node */
	assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
	       GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
	if (is_null_sha1(entry->val_sha1)) { /* skip insertion of empty note */
		free(entry);
		return 0;
	}
	new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
	ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
			       combine_notes);
	if (ret)
		return ret;
	*p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
	return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
}

/* Free the entire notes data contained in the given tree */
static void note_tree_free(struct int_node *tree)
{
	unsigned int i;
	for (i = 0; i < 16; i++) {
		void *p = tree->a[i];
		switch (GET_PTR_TYPE(p)) {
		case PTR_TYPE_INTERNAL:
			note_tree_free(CLR_PTR_TYPE(p));
			/* fall through */
		case PTR_TYPE_NOTE:
		case PTR_TYPE_SUBTREE:
			free(CLR_PTR_TYPE(p));
		}
	}
}

/*
 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
 * - hex      - Partial SHA1 segment in ASCII hex format
 * - hex_len  - Length of above segment. Must be multiple of 2 between 0 and 40
 * - sha1     - Partial SHA1 value is written here
 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
 * Pads sha1 with NULs up to sha1_len (not included in returned length).
 */
static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
		unsigned char *sha1, unsigned int sha1_len)
{
	unsigned int i, len = hex_len >> 1;
	if (hex_len % 2 != 0 || len > sha1_len)
		return -1;
	for (i = 0; i < len; i++) {
		unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
		if (val & ~0xff)
			return -1;
		*sha1++ = val;
		hex += 2;
	}
	for (; i < sha1_len; i++)
		*sha1++ = 0;
	return len;
}

static int non_note_cmp(const struct non_note *a, const struct non_note *b)
{
	return strcmp(a->path, b->path);
}

static void add_non_note(struct notes_tree *t, const char *path,
		unsigned int mode, const unsigned char *sha1)
{
	struct non_note *p = t->prev_non_note, *n;
	n = (struct non_note *) xmalloc(sizeof(struct non_note));
	n->next = NULL;
	n->path = xstrdup(path);
	n->mode = mode;
	hashcpy(n->sha1, sha1);
	t->prev_non_note = n;

	if (!t->first_non_note) {
		t->first_non_note = n;
		return;
	}

	if (non_note_cmp(p, n) < 0)
		; /* do nothing  */
	else if (non_note_cmp(t->first_non_note, n) <= 0)
		p = t->first_non_note;
	else {
		/* n sorts before t->first_non_note */
		n->next = t->first_non_note;
		t->first_non_note = n;
		return;
	}

	/* n sorts equal or after p */
	while (p->next && non_note_cmp(p->next, n) <= 0)
		p = p->next;

	if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
		assert(strcmp(p->path, n->path) == 0);
		p->mode = n->mode;
		hashcpy(p->sha1, n->sha1);
		free(n);
		t->prev_non_note = p;
		return;
	}

	/* n sorts between p and p->next */
	n->next = p->next;
	p->next = n;
}

static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
		struct int_node *node, unsigned int n)
{
	unsigned char object_sha1[20];
	unsigned int prefix_len;
	void *buf;
	struct tree_desc desc;
	struct name_entry entry;
	int len, path_len;
	unsigned char type;
	struct leaf_node *l;

	buf = fill_tree_descriptor(&desc, subtree->val_sha1);
	if (!buf)
		die("Could not read %s for notes-index",
		     sha1_to_hex(subtree->val_sha1));

	prefix_len = subtree->key_sha1[19];
	assert(prefix_len * 2 >= n);
	memcpy(object_sha1, subtree->key_sha1, prefix_len);
	while (tree_entry(&desc, &entry)) {
		path_len = strlen(entry.path);
		len = get_sha1_hex_segment(entry.path, path_len,
				object_sha1 + prefix_len, 20 - prefix_len);
		if (len < 0)
			goto handle_non_note; /* entry.path is not a SHA1 */
		len += prefix_len;

		/*
		 * If object SHA1 is complete (len == 20), assume note object
		 * If object SHA1 is incomplete (len < 20), and current
		 * component consists of 2 hex chars, assume note subtree
		 */
		if (len <= 20) {
			type = PTR_TYPE_NOTE;
			l = (struct leaf_node *)
				xcalloc(sizeof(struct leaf_node), 1);
			hashcpy(l->key_sha1, object_sha1);
			hashcpy(l->val_sha1, entry.sha1);
			if (len < 20) {
				if (!S_ISDIR(entry.mode) || path_len != 2)
					goto handle_non_note; /* not subtree */
				l->key_sha1[19] = (unsigned char) len;
				type = PTR_TYPE_SUBTREE;
			}
			if (note_tree_insert(t, node, n, l, type,
					     combine_notes_concatenate))
				die("Failed to load %s %s into notes tree "
				    "from %s",
				    type == PTR_TYPE_NOTE ? "note" : "subtree",
				    sha1_to_hex(l->key_sha1), t->ref);
		}
		continue;

handle_non_note:
		/*
		 * Determine full path for this non-note entry:
		 * The filename is already found in entry.path, but the
		 * directory part of the path must be deduced from the subtree
		 * containing this entry. We assume here that the overall notes
		 * tree follows a strict byte-based progressive fanout
		 * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not
		 * e.g. 4/36 fanout). This means that if a non-note is found at
		 * path "dead/beef", the following code will register it as
		 * being found on "de/ad/beef".
		 * On the other hand, if you use such non-obvious non-note
		 * paths in the middle of a notes tree, you deserve what's
		 * coming to you ;). Note that for non-notes that are not
		 * SHA1-like at the top level, there will be no problems.
		 *
		 * To conclude, it is strongly advised to make sure non-notes
		 * have at least one non-hex character in the top-level path
		 * component.
		 */
		{
			char non_note_path[PATH_MAX];
			char *p = non_note_path;
			const char *q = sha1_to_hex(subtree->key_sha1);
			int i;
			for (i = 0; i < prefix_len; i++) {
				*p++ = *q++;
				*p++ = *q++;
				*p++ = '/';
			}
			strcpy(p, entry.path);
			add_non_note(t, non_note_path, entry.mode, entry.sha1);
		}
	}
	free(buf);
}

/*
 * Determine optimal on-disk fanout for this part of the notes tree
 *
 * Given a (sub)tree and the level in the internal tree structure, determine
 * whether or not the given existing fanout should be expanded for this
 * (sub)tree.
 *
 * Values of the 'fanout' variable:
 * - 0: No fanout (all notes are stored directly in the root notes tree)
 * - 1: 2/38 fanout
 * - 2: 2/2/36 fanout
 * - 3: 2/2/2/34 fanout
 * etc.
 */
static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
		unsigned char fanout)
{
	/*
	 * The following is a simple heuristic that works well in practice:
	 * For each even-numbered 16-tree level (remember that each on-disk
	 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
	 * entries at that tree level. If all of them are either int_nodes or
	 * subtree entries, then there are likely plenty of notes below this
	 * level, so we return an incremented fanout.
	 */
	unsigned int i;
	if ((n % 2) || (n > 2 * fanout))
		return fanout;
	for (i = 0; i < 16; i++) {
		switch (GET_PTR_TYPE(tree->a[i])) {
		case PTR_TYPE_SUBTREE:
		case PTR_TYPE_INTERNAL:
			continue;
		default:
			return fanout;
		}
	}
	return fanout + 1;
}

static void construct_path_with_fanout(const unsigned char *sha1,
		unsigned char fanout, char *path)
{
	unsigned int i = 0, j = 0;
	const char *hex_sha1 = sha1_to_hex(sha1);
	assert(fanout < 20);
	while (fanout) {
		path[i++] = hex_sha1[j++];
		path[i++] = hex_sha1[j++];
		path[i++] = '/';
		fanout--;
	}
	strcpy(path + i, hex_sha1 + j);
}

static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
		unsigned char n, unsigned char fanout, int flags,
		each_note_fn fn, void *cb_data)
{
	unsigned int i;
	void *p;
	int ret = 0;
	struct leaf_node *l;
	static char path[40 + 19 + 1];  /* hex SHA1 + 19 * '/' + NUL */

	fanout = determine_fanout(tree, n, fanout);
	for (i = 0; i < 16; i++) {
redo:
		p = tree->a[i];
		switch (GET_PTR_TYPE(p)) {
		case PTR_TYPE_INTERNAL:
			/* recurse into int_node */
			ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
				fanout, flags, fn, cb_data);
			break;
		case PTR_TYPE_SUBTREE:
			l = (struct leaf_node *) CLR_PTR_TYPE(p);
			/*
			 * Subtree entries in the note tree represent parts of
			 * the note tree that have not yet been explored. There
			 * is a direct relationship between subtree entries at
			 * level 'n' in the tree, and the 'fanout' variable:
			 * Subtree entries at level 'n <= 2 * fanout' should be
			 * preserved, since they correspond exactly to a fanout
			 * directory in the on-disk structure. However, subtree
			 * entries at level 'n > 2 * fanout' should NOT be
			 * preserved, but rather consolidated into the above
			 * notes tree level. We achieve this by unconditionally
			 * unpacking subtree entries that exist below the
			 * threshold level at 'n = 2 * fanout'.
			 */
			if (n <= 2 * fanout &&
			    flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
				/* invoke callback with subtree */
				unsigned int path_len =
					l->key_sha1[19] * 2 + fanout;
				assert(path_len < 40 + 19);
				construct_path_with_fanout(l->key_sha1, fanout,
							   path);
				/* Create trailing slash, if needed */
				if (path[path_len - 1] != '/')
					path[path_len++] = '/';
				path[path_len] = '\0';
				ret = fn(l->key_sha1, l->val_sha1, path,
					 cb_data);
			}
			if (n > fanout * 2 ||
			    !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
				/* unpack subtree and resume traversal */
				tree->a[i] = NULL;
				load_subtree(t, l, tree, n);
				free(l);
				goto redo;
			}
			break;
		case PTR_TYPE_NOTE:
			l = (struct leaf_node *) CLR_PTR_TYPE(p);
			construct_path_with_fanout(l->key_sha1, fanout, path);
			ret = fn(l->key_sha1, l->val_sha1, path, cb_data);
			break;
		}
		if (ret)
			return ret;
	}
	return 0;
}

struct tree_write_stack {
	struct tree_write_stack *next;
	struct strbuf buf;
	char path[2]; /* path to subtree in next, if any */
};

static inline int matches_tree_write_stack(struct tree_write_stack *tws,
		const char *full_path)
{
	return  full_path[0] == tws->path[0] &&
		full_path[1] == tws->path[1] &&
		full_path[2] == '/';
}

static void write_tree_entry(struct strbuf *buf, unsigned int mode,
		const char *path, unsigned int path_len, const
		unsigned char *sha1)
{
	strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
	strbuf_add(buf, sha1, 20);
}

static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
		const char *path)
{
	struct tree_write_stack *n;
	assert(!tws->next);
	assert(tws->path[0] == '\0' && tws->path[1] == '\0');
	n = (struct tree_write_stack *)
		xmalloc(sizeof(struct tree_write_stack));
	n->next = NULL;
	strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */
	n->path[0] = n->path[1] = '\0';
	tws->next = n;
	tws->path[0] = path[0];
	tws->path[1] = path[1];
}

static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
{
	int ret;
	struct tree_write_stack *n = tws->next;
	unsigned char s[20];
	if (n) {
		ret = tree_write_stack_finish_subtree(n);
		if (ret)
			return ret;
		ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s);
		if (ret)
			return ret;
		strbuf_release(&n->buf);
		free(n);
		tws->next = NULL;
		write_tree_entry(&tws->buf, 040000, tws->path, 2, s);
		tws->path[0] = tws->path[1] = '\0';
	}
	return 0;
}

static int write_each_note_helper(struct tree_write_stack *tws,
		const char *path, unsigned int mode,
		const unsigned char *sha1)
{
	size_t path_len = strlen(path);
	unsigned int n = 0;
	int ret;

	/* Determine common part of tree write stack */
	while (tws && 3 * n < path_len &&
	       matches_tree_write_stack(tws, path + 3 * n)) {
		n++;
		tws = tws->next;
	}

	/* tws point to last matching tree_write_stack entry */
	ret = tree_write_stack_finish_subtree(tws);
	if (ret)
		return ret;

	/* Start subtrees needed to satisfy path */
	while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
		tree_write_stack_init_subtree(tws, path + 3 * n);
		n++;
		tws = tws->next;
	}

	/* There should be no more directory components in the given path */
	assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);

	/* Finally add given entry to the current tree object */
	write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
			 sha1);

	return 0;
}

struct write_each_note_data {
	struct tree_write_stack *root;
	struct non_note *next_non_note;
};

static int write_each_non_note_until(const char *note_path,
		struct write_each_note_data *d)
{
	struct non_note *n = d->next_non_note;
	int cmp = 0, ret;
	while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
		if (note_path && cmp == 0)
			; /* do nothing, prefer note to non-note */
		else {
			ret = write_each_note_helper(d->root, n->path, n->mode,
						     n->sha1);
			if (ret)
				return ret;
		}
		n = n->next;
	}
	d->next_non_note = n;
	return 0;
}

static int write_each_note(const unsigned char *object_sha1,
		const unsigned char *note_sha1, char *note_path,
		void *cb_data)
{
	struct write_each_note_data *d =
		(struct write_each_note_data *) cb_data;
	size_t note_path_len = strlen(note_path);
	unsigned int mode = 0100644;

	if (note_path[note_path_len - 1] == '/') {
		/* subtree entry */
		note_path_len--;
		note_path[note_path_len] = '\0';
		mode = 040000;
	}
	assert(note_path_len <= 40 + 19);

	/* Weave non-note entries into note entries */
	return  write_each_non_note_until(note_path, d) ||
		write_each_note_helper(d->root, note_path, mode, note_sha1);
}

struct note_delete_list {
	struct note_delete_list *next;
	const unsigned char *sha1;
};

static int prune_notes_helper(const unsigned char *object_sha1,
		const unsigned char *note_sha1, char *note_path,
		void *cb_data)
{
	struct note_delete_list **l = (struct note_delete_list **) cb_data;
	struct note_delete_list *n;

	if (has_sha1_file(object_sha1))
		return 0; /* nothing to do for this note */

	/* failed to find object => prune this note */
	n = (struct note_delete_list *) xmalloc(sizeof(*n));
	n->next = *l;
	n->sha1 = object_sha1;
	*l = n;
	return 0;
}

int combine_notes_concatenate(unsigned char *cur_sha1,
		const unsigned char *new_sha1)
{
	char *cur_msg = NULL, *new_msg = NULL, *buf;
	unsigned long cur_len, new_len, buf_len;
	enum object_type cur_type, new_type;
	int ret;

	/* read in both note blob objects */
	if (!is_null_sha1(new_sha1))
		new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
	if (!new_msg || !new_len || new_type != OBJ_BLOB) {
		free(new_msg);
		return 0;
	}
	if (!is_null_sha1(cur_sha1))
		cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
	if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
		free(cur_msg);
		free(new_msg);
		hashcpy(cur_sha1, new_sha1);
		return 0;
	}

	/* we will separate the notes by a newline anyway */
	if (cur_msg[cur_len - 1] == '\n')
		cur_len--;

	/* concatenate cur_msg and new_msg into buf */
	buf_len = cur_len + 1 + new_len;
	buf = (char *) xmalloc(buf_len);
	memcpy(buf, cur_msg, cur_len);
	buf[cur_len] = '\n';
	memcpy(buf + cur_len + 1, new_msg, new_len);
	free(cur_msg);
	free(new_msg);

	/* create a new blob object from buf */
	ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1);
	free(buf);
	return ret;
}

int combine_notes_overwrite(unsigned char *cur_sha1,
		const unsigned char *new_sha1)
{
	hashcpy(cur_sha1, new_sha1);
	return 0;
}

int combine_notes_ignore(unsigned char *cur_sha1,
		const unsigned char *new_sha1)
{
	return 0;
}

static int string_list_add_one_ref(const char *path, const unsigned char *sha1,
				   int flag, void *cb)
{
	struct string_list *refs = cb;
	if (!unsorted_string_list_has_string(refs, path))
		string_list_append(refs, path);
	return 0;
}

void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
{
	if (has_glob_specials(glob)) {
		for_each_glob_ref(string_list_add_one_ref, glob, list);
	} else {
		unsigned char sha1[20];
		if (get_sha1(glob, sha1))
			warning("notes ref %s is invalid", glob);
		if (!unsorted_string_list_has_string(list, glob))
			string_list_append(list, glob);
	}
}

void string_list_add_refs_from_colon_sep(struct string_list *list,
					 const char *globs)
{
	struct strbuf globbuf = STRBUF_INIT;
	struct strbuf **split;
	int i;

	strbuf_addstr(&globbuf, globs);
	split = strbuf_split(&globbuf, ':');

	for (i = 0; split[i]; i++) {
		if (!split[i]->len)
			continue;
		if (split[i]->buf[split[i]->len-1] == ':')
			strbuf_setlen(split[i], split[i]->len-1);
		string_list_add_refs_by_glob(list, split[i]->buf);
	}

	strbuf_list_free(split);
	strbuf_release(&globbuf);
}

static int string_list_add_refs_from_list(struct string_list_item *item,
					  void *cb)
{
	struct string_list *list = cb;
	string_list_add_refs_by_glob(list, item->string);
	return 0;
}

static int notes_display_config(const char *k, const char *v, void *cb)
{
	int *load_refs = cb;

	if (*load_refs && !strcmp(k, "notes.displayref")) {
		if (!v)
			config_error_nonbool(k);
		string_list_add_refs_by_glob(&display_notes_refs, v);
	}

	return 0;
}

const char *default_notes_ref(void)
{
	const char *notes_ref = NULL;
	if (!notes_ref)
		notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
	if (!notes_ref)
		notes_ref = notes_ref_name; /* value of core.notesRef config */
	if (!notes_ref)
		notes_ref = GIT_NOTES_DEFAULT_REF;
	return notes_ref;
}

void init_notes(struct notes_tree *t, const char *notes_ref,
		combine_notes_fn combine_notes, int flags)
{
	unsigned char sha1[20], object_sha1[20];
	unsigned mode;
	struct leaf_node root_tree;

	if (!t)
		t = &default_notes_tree;
	assert(!t->initialized);

	if (!notes_ref)
		notes_ref = default_notes_ref();

	if (!combine_notes)
		combine_notes = combine_notes_concatenate;

	t->root = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
	t->first_non_note = NULL;
	t->prev_non_note = NULL;
	t->ref = notes_ref ? xstrdup(notes_ref) : NULL;
	t->combine_notes = combine_notes;
	t->initialized = 1;
	t->dirty = 0;

	if (flags & NOTES_INIT_EMPTY || !notes_ref ||
	    read_ref(notes_ref, object_sha1))
		return;
	if (get_tree_entry(object_sha1, "", sha1, &mode))
		die("Failed to read notes tree referenced by %s (%s)",
		    notes_ref, sha1_to_hex(object_sha1));

	hashclr(root_tree.key_sha1);
	hashcpy(root_tree.val_sha1, sha1);
	load_subtree(t, &root_tree, t->root, 0);
}

struct load_notes_cb_data {
	int counter;
	struct notes_tree **trees;
};

static int load_one_display_note_ref(struct string_list_item *item,
				     void *cb_data)
{
	struct load_notes_cb_data *c = cb_data;
	struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
	init_notes(t, item->string, combine_notes_ignore, 0);
	c->trees[c->counter++] = t;
	return 0;
}

struct notes_tree **load_notes_trees(struct string_list *refs)
{
	struct notes_tree **trees;
	struct load_notes_cb_data cb_data;
	trees = xmalloc((refs->nr+1) * sizeof(struct notes_tree *));
	cb_data.counter = 0;
	cb_data.trees = trees;
	for_each_string_list(refs, load_one_display_note_ref, &cb_data);
	trees[cb_data.counter] = NULL;
	return trees;
}

void init_display_notes(struct display_notes_opt *opt)
{
	char *display_ref_env;
	int load_config_refs = 0;
	display_notes_refs.strdup_strings = 1;

	assert(!display_notes_trees);

	if (!opt || !opt->suppress_default_notes) {
		string_list_append(&display_notes_refs, default_notes_ref());
		display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
		if (display_ref_env) {
			string_list_add_refs_from_colon_sep(&display_notes_refs,
							    display_ref_env);
			load_config_refs = 0;
		} else
			load_config_refs = 1;
	}

	git_config(notes_display_config, &load_config_refs);

	if (opt && opt->extra_notes_refs)
		for_each_string_list(opt->extra_notes_refs,
				     string_list_add_refs_from_list,
				     &display_notes_refs);

	display_notes_trees = load_notes_trees(&display_notes_refs);
	string_list_clear(&display_notes_refs, 0);
}

int add_note(struct notes_tree *t, const unsigned char *object_sha1,
		const unsigned char *note_sha1, combine_notes_fn combine_notes)
{
	struct leaf_node *l;

	if (!t)
		t = &default_notes_tree;
	assert(t->initialized);
	t->dirty = 1;
	if (!combine_notes)
		combine_notes = t->combine_notes;
	l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
	hashcpy(l->key_sha1, object_sha1);
	hashcpy(l->val_sha1, note_sha1);
	return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
}

void remove_note(struct notes_tree *t, const unsigned char *object_sha1)
{
	struct leaf_node l;

	if (!t)
		t = &default_notes_tree;
	assert(t->initialized);
	t->dirty = 1;
	hashcpy(l.key_sha1, object_sha1);
	hashclr(l.val_sha1);
	note_tree_remove(t, t->root, 0, &l);
}

const unsigned char *get_note(struct notes_tree *t,
		const unsigned char *object_sha1)
{
	struct leaf_node *found;

	if (!t)
		t = &default_notes_tree;
	assert(t->initialized);
	found = note_tree_find(t, t->root, 0, object_sha1);
	return found ? found->val_sha1 : NULL;
}

int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
		void *cb_data)
{
	if (!t)
		t = &default_notes_tree;
	assert(t->initialized);
	return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
}

int write_notes_tree(struct notes_tree *t, unsigned char *result)
{
	struct tree_write_stack root;
	struct write_each_note_data cb_data;
	int ret;

	if (!t)
		t = &default_notes_tree;
	assert(t->initialized);

	/* Prepare for traversal of current notes tree */
	root.next = NULL; /* last forward entry in list is grounded */
	strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */
	root.path[0] = root.path[1] = '\0';
	cb_data.root = &root;
	cb_data.next_non_note = t->first_non_note;

	/* Write tree objects representing current notes tree */
	ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
				FOR_EACH_NOTE_YIELD_SUBTREES,
			write_each_note, &cb_data) ||
		write_each_non_note_until(NULL, &cb_data) ||
		tree_write_stack_finish_subtree(&root) ||
		write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
	strbuf_release(&root.buf);
	return ret;
}

void prune_notes(struct notes_tree *t, int flags)
{
	struct note_delete_list *l = NULL;

	if (!t)
		t = &default_notes_tree;
	assert(t->initialized);

	for_each_note(t, 0, prune_notes_helper, &l);

	while (l) {
		if (flags & NOTES_PRUNE_VERBOSE)
			printf("%s\n", sha1_to_hex(l->sha1));
		if (!(flags & NOTES_PRUNE_DRYRUN))
			remove_note(t, l->sha1);
		l = l->next;
	}
}

void free_notes(struct notes_tree *t)
{
	if (!t)
		t = &default_notes_tree;
	if (t->root)
		note_tree_free(t->root);
	free(t->root);
	while (t->first_non_note) {
		t->prev_non_note = t->first_non_note->next;
		free(t->first_non_note->path);
		free(t->first_non_note);
		t->first_non_note = t->prev_non_note;
	}
	free(t->ref);
	memset(t, 0, sizeof(struct notes_tree));
}

void format_note(struct notes_tree *t, const unsigned char *object_sha1,
		struct strbuf *sb, const char *output_encoding, int flags)
{
	static const char utf8[] = "utf-8";
	const unsigned char *sha1;
	char *msg, *msg_p;
	unsigned long linelen, msglen;
	enum object_type type;

	if (!t)
		t = &default_notes_tree;
	if (!t->initialized)
		init_notes(t, NULL, NULL, 0);

	sha1 = get_note(t, object_sha1);
	if (!sha1)
		return;

	if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen ||
			type != OBJ_BLOB) {
		free(msg);
		return;
	}

	if (output_encoding && *output_encoding &&
			strcmp(utf8, output_encoding)) {
		char *reencoded = reencode_string(msg, output_encoding, utf8);
		if (reencoded) {
			free(msg);
			msg = reencoded;
			msglen = strlen(msg);
		}
	}

	/* we will end the annotation by a newline anyway */
	if (msglen && msg[msglen - 1] == '\n')
		msglen--;

	if (flags & NOTES_SHOW_HEADER) {
		const char *ref = t->ref;
		if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
			strbuf_addstr(sb, "\nNotes:\n");
		} else {
			if (!prefixcmp(ref, "refs/"))
				ref += 5;
			if (!prefixcmp(ref, "notes/"))
				ref += 6;
			strbuf_addf(sb, "\nNotes (%s):\n", ref);
		}
	}

	for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
		linelen = strchrnul(msg_p, '\n') - msg_p;

		if (flags & NOTES_INDENT)
			strbuf_addstr(sb, "    ");
		strbuf_add(sb, msg_p, linelen);
		strbuf_addch(sb, '\n');
	}

	free(msg);
}

void format_display_notes(const unsigned char *object_sha1,
			  struct strbuf *sb, const char *output_encoding, int flags)
{
	int i;
	assert(display_notes_trees);
	for (i = 0; display_notes_trees[i]; i++)
		format_note(display_notes_trees[i], object_sha1, sb,
			    output_encoding, flags);
}

int copy_note(struct notes_tree *t,
	      const unsigned char *from_obj, const unsigned char *to_obj,
	      int force, combine_notes_fn combine_notes)
{
	const unsigned char *note = get_note(t, from_obj);
	const unsigned char *existing_note = get_note(t, to_obj);

	if (!force && existing_note)
		return 1;

	if (note)
		return add_note(t, to_obj, note, combine_notes);
	else if (existing_note)
		return add_note(t, to_obj, null_sha1, combine_notes);

	return 0;
}