1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
|
---
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
---
# Geo database replication **(PREMIUM SELF)**
NOTE:
If your GitLab installation uses external (not managed by Omnibus) PostgreSQL
instances, the Omnibus roles will not be able to perform all necessary
configuration steps. In this case,
[follow the Geo with external PostgreSQL instances document instead](external_database.md).
NOTE:
The stages of the setup process must be completed in the documented order.
Before attempting the steps in this stage, [complete all prior stages](../setup/index.md#using-omnibus-gitlab).
This document describes the minimal steps you have to take to replicate your
**primary** GitLab database to a **secondary** node's database. You may have to
change some values, based on attributes including your database's setup and
size.
You are encouraged to first read through all the steps before executing them
in your testing/production environment.
## PostgreSQL replication
The GitLab **primary** node where the write operations happen will connect to
the **primary** database server, and **secondary** nodes will
connect to their own database servers (which are also read-only).
We recommend using [PostgreSQL replication slots](https://medium.com/@tk512/replication-slots-in-postgresql-b4b03d277c75)
to ensure that the **primary** node retains all the data necessary for the **secondary** nodes to
recover. See below for more details.
The following guide assumes that:
- You are using Omnibus and therefore you are using PostgreSQL 11 or later
which includes the [`pg_basebackup` tool](https://www.postgresql.org/docs/11/app-pgbasebackup.html).
- You have a **primary** node already set up (the GitLab server you are
replicating from), running Omnibus' PostgreSQL (or equivalent version), and
you have a new **secondary** server set up with the same versions of the OS,
PostgreSQL, and GitLab on all nodes.
WARNING:
Geo works with streaming replication. Logical replication is not supported at this time.
There is an [issue where support is being discussed](https://gitlab.com/gitlab-org/gitlab/-/issues/7420).
### Step 1. Configure the **primary** server
1. SSH into your GitLab **primary** server and login as root:
```shell
sudo -i
```
1. Edit `/etc/gitlab/gitlab.rb` and add a **unique** name for your node:
```ruby
# The unique identifier for the Geo node.
gitlab_rails['geo_node_name'] = '<node_name_here>'
```
1. Reconfigure the **primary** node for the change to take effect:
```shell
gitlab-ctl reconfigure
```
1. Execute the command below to define the node as **primary** node:
```shell
gitlab-ctl set-geo-primary-node
```
This command will use your defined `external_url` in `/etc/gitlab/gitlab.rb`.
1. GitLab 10.4 and up only: Do the following to make sure the `gitlab` database user has a password defined:
NOTE:
Until FDW settings are removed in GitLab version 14.0, avoid using single or double quotes in the
password for PostgreSQL as that will lead to errors when reconfiguring.
Generate a MD5 hash of the desired password:
```shell
gitlab-ctl pg-password-md5 gitlab
# Enter password: <your_password_here>
# Confirm password: <your_password_here>
# fca0b89a972d69f00eb3ec98a5838484
```
Edit `/etc/gitlab/gitlab.rb`:
```ruby
# Fill with the hash generated by `gitlab-ctl pg-password-md5 gitlab`
postgresql['sql_user_password'] = '<md5_hash_of_your_password>'
# Every node that runs Puma or Sidekiq needs to have the database
# password specified as below. If you have a high-availability setup, this
# must be present in all application nodes.
gitlab_rails['db_password'] = '<your_password_here>'
```
1. Omnibus GitLab already has a [replication user](https://wiki.postgresql.org/wiki/Streaming_Replication)
called `gitlab_replicator`. You must set the password for this user manually.
You will be prompted to enter a password:
```shell
gitlab-ctl set-replication-password
```
This command will also read the `postgresql['sql_replication_user']` Omnibus
setting in case you have changed `gitlab_replicator` username to something
else.
If you are using an external database not managed by Omnibus GitLab, you need
to create the replicator user and define a password to it manually:
```sql
--- Create a new user 'replicator'
CREATE USER gitlab_replicator;
--- Set/change a password and grants replication privilege
ALTER USER gitlab_replicator WITH REPLICATION ENCRYPTED PASSWORD '<replication_password>';
```
1. Configure PostgreSQL to listen on network interfaces:
For security reasons, PostgreSQL does not listen on any network interfaces
by default. However, Geo requires the **secondary** node to be able to
connect to the **primary** node's database. For this reason, we need the address of
each node.
NOTE:
For external PostgreSQL instances, see [additional instructions](external_database.md).
If you are using a cloud provider, you can lookup the addresses for each
Geo node through your cloud provider's management console.
To lookup the address of a Geo node, SSH in to the Geo node and execute:
```shell
##
## Private address
##
ip route get 255.255.255.255 | awk '{print "Private address:", $NF; exit}'
##
## Public address
##
echo "External address: $(curl --silent "ipinfo.io/ip")"
```
In most cases, the following addresses will be used to configure GitLab
Geo:
| Configuration | Address |
|:----------------------------------------|:------------------------------------------------------|
| `postgresql['listen_address']` | **Primary** node's public or VPC private address. |
| `postgresql['md5_auth_cidr_addresses']` | **Secondary** node's public or VPC private addresses. |
If you are using Google Cloud Platform, SoftLayer, or any other vendor that
provides a virtual private cloud (VPC) you can use the **primary** and **secondary** nodes
private addresses (corresponds to "internal address" for Google Cloud Platform) for
`postgresql['md5_auth_cidr_addresses']` and `postgresql['listen_address']`.
The `listen_address` option opens PostgreSQL up to network connections with the interface
corresponding to the given address. See [the PostgreSQL documentation](https://www.postgresql.org/docs/11/runtime-config-connection.html)
for more details.
NOTE:
If you need to use `0.0.0.0` or `*` as the listen_address, you will also need to add
`127.0.0.1/32` to the `postgresql['md5_auth_cidr_addresses']` setting, to allow Rails to connect through
`127.0.0.1`. For more information, see [omnibus-5258](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5258).
Depending on your network configuration, the suggested addresses may not
be correct. If your **primary** node and **secondary** nodes connect over a local
area network, or a virtual network connecting availability zones like
[Amazon's VPC](https://aws.amazon.com/vpc/) or [Google's VPC](https://cloud.google.com/vpc/)
you should use the **secondary** node's private address for `postgresql['md5_auth_cidr_addresses']`.
Edit `/etc/gitlab/gitlab.rb` and add the following, replacing the IP
addresses with addresses appropriate to your network configuration:
```ruby
##
## Geo Primary role
## - configure dependent flags automatically to enable Geo
##
roles ['geo_primary_role']
##
## Primary address
## - replace '<primary_node_ip>' with the public or VPC address of your Geo primary node
##
postgresql['listen_address'] = '<primary_node_ip>'
##
# Allow PostgreSQL client authentication from the primary and secondary IPs. These IPs may be
# public or VPC addresses in CIDR format, for example ['198.51.100.1/32', '198.51.100.2/32']
##
postgresql['md5_auth_cidr_addresses'] = ['<primary_node_ip>/32', '<secondary_node_ip>/32']
##
## Replication settings
## - set this to be the number of Geo secondary nodes you have
##
postgresql['max_replication_slots'] = 1
# postgresql['max_wal_senders'] = 10
# postgresql['wal_keep_segments'] = 10
##
## Disable automatic database migrations temporarily
## (until PostgreSQL is restarted and listening on the private address).
##
gitlab_rails['auto_migrate'] = false
```
1. Optional: If you want to add another **secondary** node, the relevant setting would look like:
```ruby
postgresql['md5_auth_cidr_addresses'] = ['<primary_node_ip>/32', '<secondary_node_ip>/32', '<another_secondary_node_ip>/32']
```
You may also want to edit the `wal_keep_segments` and `max_wal_senders` to match your
database replication requirements. Consult the [PostgreSQL - Replication documentation](https://www.postgresql.org/docs/11/runtime-config-replication.html)
for more information.
1. Save the file and reconfigure GitLab for the database listen changes and
the replication slot changes to be applied:
```shell
gitlab-ctl reconfigure
```
Restart PostgreSQL for its changes to take effect:
```shell
gitlab-ctl restart postgresql
```
1. Re-enable migrations now that PostgreSQL is restarted and listening on the
private address.
Edit `/etc/gitlab/gitlab.rb` and **change** the configuration to `true`:
```ruby
gitlab_rails['auto_migrate'] = true
```
Save the file and reconfigure GitLab:
```shell
gitlab-ctl reconfigure
```
1. Now that the PostgreSQL server is set up to accept remote connections, run
`netstat -plnt | grep 5432` to make sure that PostgreSQL is listening on port
`5432` to the **primary** server's private address.
1. A certificate was automatically generated when GitLab was reconfigured. This
will be used automatically to protect your PostgreSQL traffic from
eavesdroppers, but to protect against active ("man-in-the-middle") attackers,
the **secondary** node needs a copy of the certificate. Make a copy of the PostgreSQL
`server.crt` file on the **primary** node by running this command:
```shell
cat ~gitlab-psql/data/server.crt
```
Copy the output into a clipboard or into a local file. You
will need it when setting up the **secondary** node! The certificate is not sensitive
data.
### Step 2. Configure the **secondary** server
1. SSH into your GitLab **secondary** server and login as root:
```shell
sudo -i
```
1. Stop application server and Sidekiq
```shell
gitlab-ctl stop puma
gitlab-ctl stop sidekiq
```
NOTE:
This step is important so we don't try to execute anything before the node is fully configured.
1. [Check TCP connectivity](../../raketasks/maintenance.md) to the **primary** node's PostgreSQL server:
```shell
gitlab-rake gitlab:tcp_check[<primary_node_ip>,5432]
```
NOTE:
If this step fails, you may be using the wrong IP address, or a firewall may
be preventing access to the server. Check the IP address, paying close
attention to the difference between public and private addresses and ensure
that, if a firewall is present, the **secondary** node is permitted to connect to the
**primary** node on port 5432.
1. Create a file `server.crt` in the **secondary** server, with the content you got on the last step of the **primary** node's setup:
```shell
editor server.crt
```
1. Set up PostgreSQL TLS verification on the **secondary** node:
Install the `server.crt` file:
```shell
install \
-D \
-o gitlab-psql \
-g gitlab-psql \
-m 0400 \
-T server.crt ~gitlab-psql/.postgresql/root.crt
```
PostgreSQL will now only recognize that exact certificate when verifying TLS
connections. The certificate can only be replicated by someone with access
to the private key, which is **only** present on the **primary** node.
1. Test that the `gitlab-psql` user can connect to the **primary** node's database
(the default Omnibus database name is `gitlabhq_production`):
```shell
sudo \
-u gitlab-psql /opt/gitlab/embedded/bin/psql \
--list \
-U gitlab_replicator \
-d "dbname=gitlabhq_production sslmode=verify-ca" \
-W \
-h <primary_node_ip>
```
When prompted enter the password you set in the first step for the
`gitlab_replicator` user. If all worked correctly, you should see
the list of **primary** node's databases.
A failure to connect here indicates that the TLS configuration is incorrect.
Ensure that the contents of `~gitlab-psql/data/server.crt` on the **primary** node
match the contents of `~gitlab-psql/.postgresql/root.crt` on the **secondary** node.
1. Configure PostgreSQL:
This step is similar to how we configured the **primary** instance.
We need to enable this, even if using a single node.
Edit `/etc/gitlab/gitlab.rb` and add the following, replacing the IP
addresses with addresses appropriate to your network configuration:
```ruby
##
## Geo Secondary role
## - configure dependent flags automatically to enable Geo
##
roles ['geo_secondary_role']
##
## Secondary address
## - replace '<secondary_node_ip>' with the public or VPC address of your Geo secondary node
##
postgresql['listen_address'] = '<secondary_node_ip>'
postgresql['md5_auth_cidr_addresses'] = ['<secondary_node_ip>/32']
##
## Database credentials password (defined previously in primary node)
## - replicate same values here as defined in primary node
##
postgresql['sql_user_password'] = '<md5_hash_of_your_password>'
gitlab_rails['db_password'] = '<your_password_here>'
```
For external PostgreSQL instances, see [additional instructions](external_database.md).
If you bring a former **primary** node back online to serve as a **secondary** node, then you also need to remove `roles ['geo_primary_role']` or `geo_primary_role['enable'] = true`.
1. Reconfigure GitLab for the changes to take effect:
```shell
gitlab-ctl reconfigure
```
1. Restart PostgreSQL for the IP change to take effect:
```shell
gitlab-ctl restart postgresql
```
### Step 3. Initiate the replication process
Below we provide a script that connects the database on the **secondary** node to
the database on the **primary** node, replicates the database, and creates the
needed files for streaming replication.
The directories used are the defaults that are set up in Omnibus. If you have
changed any defaults, configure it as you see fit replacing the directories and paths.
WARNING:
Make sure to run this on the **secondary** server as it removes all PostgreSQL's
data before running `pg_basebackup`.
1. SSH into your GitLab **secondary** server and login as root:
```shell
sudo -i
```
1. Choose a database-friendly name to use for your **secondary** node to
use as the replication slot name. For example, if your domain is
`secondary.geo.example.com`, you may use `secondary_example` as the slot
name as shown in the commands below.
1. Execute the command below to start a backup/restore and begin the replication
WARNING:
Each Geo **secondary** node must have its own unique replication slot name.
Using the same slot name between two secondaries will break PostgreSQL replication.
```shell
gitlab-ctl replicate-geo-database \
--slot-name=<secondary_node_name> \
--host=<primary_node_ip>
```
NOTE:
Replication slot names must only contain lowercase letters, numbers, and the underscore character.
When prompted, enter the _plaintext_ password you set up for the `gitlab_replicator`
user in the first step.
This command also takes a number of additional options. You can use `--help`
to list them all, but here are a couple of tips:
- If PostgreSQL is listening on a non-standard port, add `--port=` as well.
- If your database is too large to be transferred in 30 minutes, you will need
to increase the timeout, e.g., `--backup-timeout=3600` if you expect the
initial replication to take under an hour.
- Pass `--sslmode=disable` to skip PostgreSQL TLS authentication altogether
(e.g., you know the network path is secure, or you are using a site-to-site
VPN). This is **not** safe over the public Internet!
- You can read more details about each `sslmode` in the
[PostgreSQL documentation](https://www.postgresql.org/docs/11/libpq-ssl.html#LIBPQ-SSL-PROTECTION);
the instructions above are carefully written to ensure protection against
both passive eavesdroppers and active "man-in-the-middle" attackers.
- Change the `--slot-name` to the name of the replication slot
to be used on the **primary** database. The script will attempt to create the
replication slot automatically if it does not exist.
- If you're repurposing an old server into a Geo **secondary** node, you'll need to
add `--force` to the command line.
- When not in a production machine you can disable backup step if you
really sure this is what you want by adding `--skip-backup`
The replication process is now complete.
## PgBouncer support (optional)
[PgBouncer](https://www.pgbouncer.org/) may be used with GitLab Geo to pool
PostgreSQL connections. We recommend using PgBouncer if you use GitLab in a
high-availability configuration with a cluster of nodes supporting a Geo
**primary** node and another cluster of nodes supporting a Geo **secondary** node. For more
information, see [High Availability with Omnibus GitLab](../../postgresql/replication_and_failover.md).
## Patroni support
Support for Patroni is intended to replace `repmgr` as a
[highly available PostgreSQL solution](../../postgresql/replication_and_failover.md)
on the primary node, but it can also be used for PostgreSQL HA on a secondary
site.
Starting with GitLab 13.5, Patroni is available for _experimental_ use with Geo
primary and secondary sites. Due to its experimental nature, Patroni support is
subject to change without notice.
This experimental implementation has the following limitations:
- Whenever `gitlab-ctl reconfigure` runs on a Patroni Leader instance, there's a
chance the node will be demoted due to the required short-time restart. To
avoid this, you can pause auto-failover by running `gitlab-ctl patroni pause`.
After a reconfigure, it resumes on its own.
For instructions about how to set up Patroni on the primary site, see the
[PostgreSQL replication and failover with Omnibus GitLab](../../postgresql/replication_and_failover.md#patroni) page.
If you are currently using `repmgr` on your Geo primary site, see [these instructions](#migrating-from-repmgr-to-patroni) for migrating from `repmgr` to Patroni.
A production-ready and secure setup requires at least three Consul nodes, three
Patroni nodes, one internal load-balancing node on the primary site, and a similar
configuration for the secondary site. The internal load balancer provides a single
endpoint for connecting to the Patroni cluster's leader whenever a new leader is
elected. Be sure to use [password credentials](../../postgresql/replication_and_failover.md#database-authorization-for-patroni) and other database best practices.
Similar to `repmgr`, using Patroni on a secondary node is optional.
### Step 1. Configure Patroni permanent replication slot on the primary site
To set up database replication with Patroni on a secondary node, we need to
configure a _permanent replication slot_ on the primary node's Patroni cluster,
and ensure password authentication is used.
For each Patroni instance on the primary site **starting on the Patroni
Leader instance**:
1. SSH into your Patroni instance and login as root:
```shell
sudo -i
```
1. Edit `/etc/gitlab/gitlab.rb` and add the following:
```ruby
consul['enable'] = true
consul['configuration'] = {
retry_join: %w[CONSUL_PRIMARY1_IP CONSULT_PRIMARY2_IP CONSULT_PRIMARY3_IP]
}
repmgr['enable'] = false
# You need one entry for each secondary, with a unique name following PostgreSQL slot_name constraints:
#
# Configuration syntax will be: 'unique_slotname' => { 'type' => 'physical' },
# We don't support setting a permanent replication slot for logical replication type
patroni['replication_slots'] = {
'geo_secondary' => { 'type' => 'physical' }
}
patroni['use_pg_rewind'] = true
patroni['postgresql']['max_wal_senders'] = 8 # Use double of the amount of patroni/reserved slots (3 patronis + 1 reserved slot for a Geo secondary).
patroni['postgresql']['max_replication_slots'] = 8 # Use double of the amount of patroni/reserved slots (3 patronis + 1 reserved slot for a Geo secondary).
postgresql['md5_auth_cidr_addresses'] = [
'PATRONI_PRIMARY1_IP/32', 'PATRONI_PRIMARY2_IP/32', 'PATRONI_PRIMARY3_IP/32', 'PATRONI_PRIMARY_PGBOUNCER/32',
'PATRONI_SECONDARY1_IP/32', 'PATRONI_SECONDARY2_IP/32', 'PATRONI_SECONDARY3_IP/32', 'PATRONI_SECONDARY_PGBOUNCER/32' # We list all secondary instances as they can all become a Standby Leader
]
postgresql['pgbouncer_user_password'] = 'PGBOUNCER_PASSWORD_HASH'
postgresql['sql_replication_password'] = 'POSTGRESQL_REPLICATION_PASSWORD_HASH'
postgresql['sql_user_password'] = 'POSTGRESQL_PASSWORD_HASH'
```
1. Reconfigure GitLab for the changes to take effect:
```shell
gitlab-ctl reconfigure
```
### Step 2. Configure the internal load balancer on the primary site
To avoid reconfiguring the Standby Leader on the secondary site whenever a new
Leader is elected on the primary site, we'll need to set up a TCP internal load
balancer which will give a single endpoint for connecting to the Patroni
cluster's Leader.
The Omnibus GitLab packages do not include a Load Balancer. Here's how you
could do it with [HAProxy](https://www.haproxy.org/).
The following IPs and names will be used as an example:
- `10.6.0.21`: Patroni 1 (`patroni1.internal`)
- `10.6.0.21`: Patroni 2 (`patroni2.internal`)
- `10.6.0.22`: Patroni 3 (`patroni3.internal`)
```plaintext
global
log /dev/log local0
log localhost local1 notice
log stdout format raw local0
defaults
log global
default-server inter 3s fall 3 rise 2 on-marked-down shutdown-sessions
frontend internal-postgresql-tcp-in
bind *:5000
mode tcp
option tcplog
default_backend postgresql
backend postgresql
option httpchk
http-check expect status 200
server patroni1.internal 10.6.0.21:5432 maxconn 100 check port 8008
server patroni2.internal 10.6.0.22:5432 maxconn 100 check port 8008
server patroni3.internal 10.6.0.23.195:5432 maxconn 100 check port 8008
```
Refer to your preferred Load Balancer's documentation for further guidance.
### Step 3. Configure a Standby cluster on the secondary site
NOTE:
If you are converting a secondary site to a Patroni Cluster, you must start
on the PostgreSQL instance. It will become the Patroni Standby Leader instance,
and then you can switchover to another replica if you need.
For each Patroni instance on the secondary site:
1. SSH into your Patroni node and login as root:
```shell
sudo -i
```
1. Edit `/etc/gitlab/gitlab.rb` and add the following:
```ruby
roles ['consul_role', 'postgres_role']
consul['enable'] = true
consul['configuration'] = {
retry_join: %w[CONSUL_SECONDARY1_IP CONSULT_SECONDARY2_IP CONSULT_SECONDARY3_IP]
}
repmgr['enable'] = false
postgresql['md5_auth_cidr_addresses'] = [
'PATRONI_SECONDARY1_IP/32', 'PATRONI_SECONDARY2_IP/32', 'PATRONI_SECONDARY3_IP/32', 'PATRONI_SECONDARY_PGBOUNCER/32',
# Any other instance that needs access to the database as per documentation
]
patroni['enable'] = false
patroni['standby_cluster']['enable'] = true
patroni['standby_cluster']['host'] = 'INTERNAL_LOAD_BALANCER_PRIMARY_IP'
patroni['standby_cluster']['port'] = INTERNAL_LOAD_BALANCER_PRIMARY_PORT
patroni['standby_cluster']['primary_slot_name'] = 'geo_secondary' # Or the unique replication slot name you setup before
patroni['replication_password'] = 'PLAIN_TEXT_POSTGRESQL_REPLICATION_PASSWORD'
patroni['use_pg_rewind'] = true
patroni['postgresql']['max_wal_senders'] = 5 # A minimum of three for one replica, plus two for each additional replica
patroni['postgresql']['max_replication_slots'] = 5 # A minimum of three for one replica, plus two for each additional replica
```
1. Reconfigure GitLab for the changes to take effect.
This is required to bootstrap PostgreSQL users and settings:
```shell
gitlab-ctl reconfigure
```
1. Remove the PostgreSQL data directory:
WARNING:
If you are converting a secondary site to a Patroni Cluster, you must skip
this step on the PostgreSQL instance.
```shell
rm -rf /var/opt/gitlab/postgresql/data
```
1. Edit `/etc/gitlab/gitlab.rb` to enable Patroni:
```ruby
patroni['enable'] = true
```
1. Reconfigure GitLab for the changes to take effect:
```shell
gitlab-ctl reconfigure
```
## Migrating from repmgr to Patroni
1. Before migrating, it is recommended that there is no replication lag between the primary and secondary sites and that replication is paused. In GitLab 13.2 and later, you can pause and resume replication with `gitlab-ctl geo-replication-pause` and `gitlab-ctl geo-replication-resume` on a Geo secondary database node.
1. Follow the [instructions to migrate repmgr to Patroni](../../postgresql/replication_and_failover.md#switching-from-repmgr-to-patroni). When configuring Patroni on each primary site database node, add `patroni['replicaton_slots'] = { '<slot_name>' => 'physical' }`
to `gitlab.rb` where `<slot_name>` is the name of the replication slot for your Geo secondary. This will ensure that Patroni recognizes the replication slot as permanent and will not drop it upon restarting.
1. If database replication to the secondary was paused before migration, resume replication once Patroni is confirmed working on the primary.
## Migrating a single PostgreSQL node to Patroni
Before the introduction of Patroni, Geo had no Omnibus support for HA setups on the secondary node.
With Patroni it's now possible to support that. In order to migrate the existing PostgreSQL to Patroni:
1. Make sure you have a Consul cluster setup on the secondary (similar to how you set it up on the primary).
1. [Configure a permanent replication slot](#step-1-configure-patroni-permanent-replication-slot-on-the-primary-site).
1. [Configure the internal load balancer](#step-2-configure-the-internal-load-balancer-on-the-primary-site).
1. [Configure a Standby Cluster](#step-3-configure-a-standby-cluster-on-the-secondary-site)
on that single node machine.
You will end up with a "Standby Cluster" with a single node. That allows you to later on add additional Patroni nodes
by following the same instructions above.
## Troubleshooting
Read the [troubleshooting document](../replication/troubleshooting.md).
|