summaryrefslogtreecommitdiff
path: root/doc/administration/nfs.md
blob: ef5d26ac8452e3885e5e92a8109136065605c995 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
---
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
---

# Using NFS with GitLab **(FREE SELF)**

NFS can be used as an alternative for object storage but this isn't typically
recommended for performance reasons.

For data objects such as LFS, Uploads, Artifacts, and so on, an [Object Storage service](object_storage.md)
is recommended over NFS where possible, due to better performance.
When eliminating the usage of NFS, there are [additional steps you need to take](object_storage.md#other-alternatives-to-file-system-storage)
in addition to moving to Object Storage.

File system performance can impact overall GitLab performance, especially for
actions that read or write to Git repositories. For steps you can use to test
file system performance, see
[File System Performance Benchmarking](operations/filesystem_benchmarking.md).

## Gitaly and NFS deprecation

Starting with GitLab version 14.0, support for NFS to store Git repository data is deprecated. Technical customer support and engineering support is available for the 14.x releases. Engineering is fixing bugs and security vulnerabilities consistent with our [release and maintenance policy](../policy/maintenance.md#security-releases).

Upon the release of GitLab 15.0 (tentatively May 22nd, 2022) technical and engineering support for using NFS to store Git repository data will be officially at end-of-life. There will be no product changes or troubleshooting provided via Engineering, Security or Paid Support channels after the release date of 15.0, regardless of your GitLab version.

Until the release of 15.0, for customers running 14.x releases, we continue to help with Git related tickets from customers running one or more Gitaly servers with its data stored on NFS. Examples may include:

- Performance issues or timeouts accessing Git data
- Commits or branches vanish
- GitLab intermittently returns the wrong Git data (such as reporting that a repository has no branches)

Assistance is limited to activities like:

- Verifying developers' workflow uses features like protected branches
- Reviewing GitLab event data from the database to advise if it looks like a force push over-wrote branches
- Verifying that NFS client mount options match our [documented recommendations](#mount-options)
- Analyzing the GitLab Workhorse and Rails logs, and determining that `500` errors being seen in the environment are caused by slow responses from Gitaly

GitLab support is unable to continue with the investigation if:

- The date of the request is on or after the release of GitLab version 15.0, and
- Support Engineers and Management determine that all reasonable non-NFS root causes have been exhausted

If the issue is reproducible, or if it happens intermittently but regularly, GitLab Support can investigate providing the issue reproduces without the use of NFS. In order to reproduce without NFS, the affected repositories should be migrated to a different Gitaly shard, such as Gitaly cluster or a standalone Gitaly VM, backed with block storage.

### Why remove NFS for Git repository data

{:.no-toc}

NFS is not well-suited to a workload consisting of many small files, like Git repositories. NFS does provide a number of configuration options designed to improve performance. However, over time, a number of these mount options have proven to result in inconsistencies across multiple nodes mounting the NFS volume, up to and including data loss. Addressing these inconsistencies consume extraordinary development and support engineer time that hamper our ability to develop [Gitaly Cluster](gitaly/praefect.md), our purpose-built solution to addressing the deficiencies of NFS in this environment.

Please note that Gitaly Cluster provides highly-available Git repository storage. If this is not a requirement, single-node Gitaly backed by block storage is a suitable substitute.

Engineering support for NFS for Git repositories is deprecated. Technical support is planned to be
unavailable from GitLab 15.0. No further enhancements are planned for this feature.

Read:

- [Moving beyond NFS](gitaly/index.md#moving-beyond-nfs).
- About the [correct mount options to use](#upgrade-to-gitaly-cluster-or-disable-caching-if-experiencing-data-loss).

## Known kernel version incompatibilities

RedHat Enterprise Linux (RHEL) and CentOS v7.7 and v7.8 ship with kernel
version `3.10.0-1127`, which [contains a
bug](https://bugzilla.redhat.com/show_bug.cgi?id=1783554) that causes
[uploads to fail to copy over NFS](https://gitlab.com/gitlab-org/gitlab/-/issues/218999). The
following GitLab versions include a fix to work properly with that
kernel version:

- [12.10.12](https://about.gitlab.com/releases/2020/06/25/gitlab-12-10-12-released/)
- [13.0.7](https://about.gitlab.com/releases/2020/06/25/gitlab-13-0-7-released/)
- [13.1.1](https://about.gitlab.com/releases/2020/06/24/gitlab-13-1-1-released/)
- 13.2 and up

If you are using that kernel version, be sure to upgrade GitLab to avoid
errors.

## Fast lookup of authorized SSH keys

The [fast SSH key lookup](operations/fast_ssh_key_lookup.md) feature can improve
performance of GitLab instances even if they're using block storage.

[Fast SSH key lookup](operations/fast_ssh_key_lookup.md) is a replacement for
`authorized_keys` (in `/var/opt/gitlab/.ssh`) using the GitLab database.

NFS increases latency, so fast lookup is recommended if `/var/opt/gitlab`
is moved to NFS.

We are investigating the use of
[fast lookup as the default](https://gitlab.com/groups/gitlab-org/-/epics/3104).

## Improving NFS performance with GitLab

NFS performance with GitLab can in some cases be improved with
[direct Git access](gitaly/index.md#direct-access-to-git-in-gitlab) using
[Rugged](https://github.com/libgit2/rugged).

From GitLab 12.1, GitLab automatically detects if Rugged can and should be used per storage.
If you previously enabled Rugged using the feature flag and you want to use automatic detection instead,
you must unset the feature flag:

```shell
sudo gitlab-rake gitlab:features:unset_rugged
```

If the Rugged feature flag is explicitly set to either `true` or `false`, GitLab uses the value explicitly set.

From GitLab 12.7, Rugged is only automatically enabled for use with Puma
if the [Puma thread count is set to `1`](../install/requirements.md#puma-settings).

To use Rugged with a Puma thread count of more than `1`, enable Rugged using the [feature flag](../development/gitaly.md#legacy-rugged-code).

## NFS server

Installing the `nfs-kernel-server` package allows you to share directories with
the clients running the GitLab application:

```shell
sudo apt-get update
sudo apt-get install nfs-kernel-server
```

### Required features

**File locking**: GitLab **requires** advisory file locking, which is only
supported natively in NFS version 4. NFSv3 also supports locking as long as
Linux Kernel 2.6.5+ is used. We recommend using version 4 and do not
specifically test NFSv3.

### Recommended options

When you define your NFS exports, we recommend you also add the following
options:

- `no_root_squash` - NFS normally changes the `root` user to `nobody`. This is
  a good security measure when NFS shares are accessed by many different
  users. However, in this case only GitLab uses the NFS share so it
  is safe. GitLab recommends the `no_root_squash` setting because we need to
  manage file permissions automatically. Without the setting you may receive
  errors when the Omnibus package tries to alter permissions. GitLab
  and other bundled components do **not** run as `root` but as non-privileged
  users. The recommendation for `no_root_squash` is to allow the Omnibus package
  to set ownership and permissions on files, as needed. In some cases where the
  `no_root_squash` option is not available, the `root` flag can achieve the same
  result.
- `sync` - Force synchronous behavior. Default is asynchronous and under certain
  circumstances it could lead to data loss if a failure occurs before data has
  synced.

Due to the complexities of running Omnibus with LDAP and the complexities of
maintaining ID mapping without LDAP, in most cases you should enable numeric UIDs
and GIDs (which is off by default in some cases) for simplified permission
management between systems:

- [NetApp instructions](https://library.netapp.com/ecmdocs/ECMP1401220/html/GUID-24367A9F-E17B-4725-ADC1-02D86F56F78E.html)
- For non-NetApp devices, disable NFSv4 `idmapping` by performing opposite of [enable NFSv4 idmapper](https://wiki.archlinux.org/title/NFS#Enabling_NFSv4_idmapping)

### Disable NFS server delegation

We recommend that all NFS users disable the NFS server delegation feature. This
is to avoid a [Linux kernel bug](https://bugzilla.redhat.com/show_bug.cgi?id=1552203)
which causes NFS clients to slow precipitously due to
[excessive network traffic from numerous `TEST_STATEID` NFS messages](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/52017).

To disable NFS server delegation, do the following:

1. On the NFS server, run:

   ```shell
   echo 0 > /proc/sys/fs/leases-enable
   sysctl -w fs.leases-enable=0
   ```

1. Restart the NFS server process. For example, on CentOS run `service nfs restart`.

NOTE:
The kernel bug may be fixed in
[more recent kernels with this commit](https://github.com/torvalds/linux/commit/95da1b3a5aded124dd1bda1e3cdb876184813140).
Red Hat Enterprise 7 [shipped a kernel update](https://access.redhat.com/errata/RHSA-2019:2029)
on August 6, 2019 that may also have resolved this problem.
You may not need to disable NFS server delegation if you know you are using a version of
the Linux kernel that has been fixed. That said, GitLab still encourages instance
administrators to keep NFS server delegation disabled.

## NFS client

The `nfs-common` provides NFS functionality without installing server components which
we don't need running on the application nodes.

```shell
apt-get update
apt-get install nfs-common
```

### Mount options

Here is an example snippet to add to `/etc/fstab`:

```plaintext
10.1.0.1:/var/opt/gitlab/.ssh /var/opt/gitlab/.ssh nfs4 defaults,vers=4.1,hard,rsize=1048576,wsize=1048576,noatime,nofail,_netdev,lookupcache=positive 0 2
10.1.0.1:/var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/uploads nfs4 defaults,vers=4.1,hard,rsize=1048576,wsize=1048576,noatime,nofail,_netdev,lookupcache=positive 0 2
10.1.0.1:/var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-rails/shared nfs4 defaults,vers=4.1,hard,rsize=1048576,wsize=1048576,noatime,nofail,_netdev,lookupcache=positive 0 2
10.1.0.1:/var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/gitlab-ci/builds nfs4 defaults,vers=4.1,hard,rsize=1048576,wsize=1048576,noatime,nofail,_netdev,lookupcache=positive 0 2
10.1.0.1:/var/opt/gitlab/git-data /var/opt/gitlab/git-data nfs4 defaults,vers=4.1,hard,rsize=1048576,wsize=1048576,noatime,nofail,_netdev,lookupcache=positive 0 2
```

You can view information and options set for each of the mounted NFS file
systems by running `nfsstat -m` and `cat /etc/fstab`.

Note there are several options that you should consider using:

| Setting | Description |
| ------- | ----------- |
| `vers=4.1` |NFS v4.1 should be used instead of v4.0 because there is a Linux [NFS client bug in v4.0](https://gitlab.com/gitlab-org/gitaly/-/issues/1339) that can cause significant problems due to stale data.
| `nofail` | Don't halt boot process waiting for this mount to become available
| `lookupcache=positive` | Tells the NFS client to honor `positive` cache results but invalidates any `negative` cache results. Negative cache results cause problems with Git. Specifically, a `git push` can fail to register uniformly across all NFS clients. The negative cache causes the clients to 'remember' that the files did not exist previously.
| `hard` | Instead of `soft`. [Further details](#soft-mount-option).
| `cto` | `cto` is the default option, which you should use. Do not use `nocto`. [Further details](#nocto-mount-option).
| `_netdev` | Wait to mount file system until network is online. See also the [`high_availability['mountpoint']`](https://docs.gitlab.com/omnibus/settings/configuration.html#only-start-omnibus-gitlab-services-after-a-given-file-system-is-mounted) option.

#### `soft` mount option

It's recommended that you use `hard` in your mount options, unless you have a specific
reason to use `soft`.

When GitLab.com used NFS, we used `soft` because there were times when we had NFS servers
reboot and `soft` improved availability, but everyone's infrastructure is different.
If your NFS is provided by on-premise storage arrays with redundant controllers,
for example, you shouldn't need to worry about NFS server availability.

The NFS man page states:

> "soft" timeout can cause silent data corruption in certain cases

Read the [Linux man page](https://linux.die.net/man/5/nfs) to understand the difference,
and if you do use `soft`, ensure that you've taken steps to mitigate the risks.

If you experience behavior that might have been caused by
writes to disk on the NFS server not occurring, such as commits going missing,
use the `hard` option, because (from the man page):

> use the soft option only when client responsiveness is more important than data integrity

Other vendors make similar recommendations, including
[System Applications and Products in Data Processing (SAP)](https://wiki.scn.sap.com/wiki/display/Basis/Recommended+mount+options+for+read-write+directories) and NetApp's
[knowledge base](https://kb.netapp.com/Advice_and_Troubleshooting/Data_Storage_Software/ONTAP_OS/What_are_the_differences_between_hard_mount_and_soft_mount),
they highlight that if the NFS client driver caches data, `soft` means there is no certainty if
writes by GitLab are actually on disk.

Mount points set with the option `hard` may not perform as well, and if the
NFS server goes down, `hard` causes processes to hang when interacting with
the mount point. Use `SIGKILL` (`kill -9`) to deal with hung processes.
The `intr` option
[stopped working in the 2.6 kernel](https://access.redhat.com/solutions/157873).

#### `nocto` mount option

Do not use `nocto`. Instead, use `cto`, which is the default.

When using `nocto`, the dentry cache is always used, up to `acdirmax` seconds (attribute cache time) from the time it's created.

This results in stale dentry cache issues with multiple clients, where each client can see a different (cached)
version of a directory.

From the [Linux man page](https://linux.die.net/man/5/nfs), the important parts:

> If the nocto option is specified, the client uses a non-standard heuristic to determine when files on the server have changed.
>
> Using the nocto option may improve performance for read-only mounts, but should be used only if the data on the server changes only occasionally.

We have noticed this behavior in an issue about [refs not found after a push](https://gitlab.com/gitlab-org/gitlab/-/issues/326066),
where newly added loose refs can be seen as missing on a different client with a local dentry cache, as
[described in this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/326066#note_539436931).

### A single NFS mount

It's recommended to nest all GitLab data directories within a mount, that allows automatic
restore of backups without manually moving existing data.

```plaintext
mountpoint
└── gitlab-data
    ├── builds
    ├── git-data
    ├── shared
    └── uploads
```

To do so, configure Omnibus with the paths to each directory nested
in the mount point as follows:

Mount `/gitlab-nfs` then use the following Omnibus
configuration to move each data location to a subdirectory:

```ruby
git_data_dirs({"default" => { "path" => "/gitlab-nfs/gitlab-data/git-data"} })
gitlab_rails['uploads_directory'] = '/gitlab-nfs/gitlab-data/uploads'
gitlab_rails['shared_path'] = '/gitlab-nfs/gitlab-data/shared'
gitlab_ci['builds_directory'] = '/gitlab-nfs/gitlab-data/builds'
```

Run `sudo gitlab-ctl reconfigure` to start using the central location. Be aware
that if you had existing data, you need to manually copy or rsync it to
these new locations, and then restart GitLab.

### Bind mounts

Alternatively to changing the configuration in Omnibus, bind mounts can be used
to store the data on an NFS mount.

Bind mounts provide a way to specify just one NFS mount and then
bind the default GitLab data locations to the NFS mount. Start by defining your
single NFS mount point as you normally would in `/etc/fstab`. Let's assume your
NFS mount point is `/gitlab-nfs`. Then, add the following bind mounts in
`/etc/fstab`:

```shell
/gitlab-nfs/gitlab-data/git-data /var/opt/gitlab/git-data none bind 0 0
/gitlab-nfs/gitlab-data/.ssh /var/opt/gitlab/.ssh none bind 0 0
/gitlab-nfs/gitlab-data/uploads /var/opt/gitlab/gitlab-rails/uploads none bind 0 0
/gitlab-nfs/gitlab-data/shared /var/opt/gitlab/gitlab-rails/shared none bind 0 0
/gitlab-nfs/gitlab-data/builds /var/opt/gitlab/gitlab-ci/builds none bind 0 0
```

Using bind mounts requires you to manually make sure the data directories
are empty before attempting a restore. Read more about the
[restore prerequisites](../raketasks/backup_restore.md).

### Multiple NFS mounts

When using default Omnibus configuration you need to share 4 data locations
between all GitLab cluster nodes. No other locations should be shared. The
following are the 4 locations need to be shared:

| Location | Description | Default configuration |
| -------- | ----------- | --------------------- |
| `/var/opt/gitlab/git-data` | Git repository data. This accounts for a large portion of your data | `git_data_dirs({"default" => { "path" => "/var/opt/gitlab/git-data"} })`
| `/var/opt/gitlab/gitlab-rails/uploads` | User uploaded attachments | `gitlab_rails['uploads_directory'] = '/var/opt/gitlab/gitlab-rails/uploads'`
| `/var/opt/gitlab/gitlab-rails/shared` | Build artifacts, GitLab Pages, LFS objects, temp files, and so on. If you're using LFS this may also account for a large portion of your data | `gitlab_rails['shared_path'] = '/var/opt/gitlab/gitlab-rails/shared'`
| `/var/opt/gitlab/gitlab-ci/builds` | GitLab CI/CD build traces | `gitlab_ci['builds_directory'] = '/var/opt/gitlab/gitlab-ci/builds'`

Other GitLab directories should not be shared between nodes. They contain
node-specific files and GitLab code that does not need to be shared. To ship
logs to a central location consider using remote syslog. Omnibus GitLab packages
provide configuration for [UDP log shipping](https://docs.gitlab.com/omnibus/settings/logs.html#udp-log-shipping-gitlab-enterprise-edition-only).

Having multiple NFS mounts requires you to manually make sure the data directories
are empty before attempting a restore. Read more about the
[restore prerequisites](../raketasks/backup_restore.md).

## Testing NFS

Once you've set up the NFS server and client, you can verify NFS is configured correctly
by testing the following commands:

```shell
sudo mkdir /gitlab-nfs/test-dir
sudo chown git /gitlab-nfs/test-dir
sudo chgrp root /gitlab-nfs/test-dir
sudo chmod 0700 /gitlab-nfs/test-dir
sudo chgrp gitlab-www /gitlab-nfs/test-dir
sudo chmod 0751 /gitlab-nfs/test-dir
sudo chgrp git /gitlab-nfs/test-dir
sudo chmod 2770 /gitlab-nfs/test-dir
sudo chmod 2755 /gitlab-nfs/test-dir
sudo -u git mkdir /gitlab-nfs/test-dir/test2
sudo -u git chmod 2755 /gitlab-nfs/test-dir/test2
sudo ls -lah /gitlab-nfs/test-dir/test2
sudo -u git rm -r /gitlab-nfs/test-dir
```

Any `Operation not permitted` errors means you should investigate your NFS server export options.

## NFS in a Firewalled Environment

If the traffic between your NFS server and NFS client(s) is subject to port filtering
by a firewall, then you need to reconfigure that firewall to allow NFS communication.

[This guide from The Linux Documentation Project (TDLP)](https://tldp.org/HOWTO/NFS-HOWTO/security.html#FIREWALLS)
covers the basics of using NFS in a firewalled environment. Additionally, we encourage you to
search for and review the specific documentation for your operating system or distribution and your firewall software.

Example for Ubuntu:

Check that NFS traffic from the client is allowed by the firewall on the host by running
the command: `sudo ufw status`. If it's being blocked, then you can allow traffic from a specific
client with the command below.

```shell
sudo ufw allow from <client_ip_address> to any port nfs
```

## Known issues

### Upgrade to Gitaly Cluster or disable caching if experiencing data loss

WARNING:
Engineering support for NFS for Git repositories is deprecated. Read about
[moving beyond NFS](gitaly/index.md#moving-beyond-nfs).

Customers and users have reported data loss on high-traffic repositories when using NFS for Git repositories.
For example, we have seen:

- [Inconsistent updates after a push](https://gitlab.com/gitlab-org/gitaly/-/issues/2589).
- `git ls-remote` [returning the wrong (or no branches)](https://gitlab.com/gitlab-org/gitaly/-/issues/3083)
causing Jenkins to intermittently re-run all pipelines for a repository.

The problem may be partially mitigated by adjusting caching using the following NFS client mount options:

| Setting | Description |
| ------- | ----------- |
| `lookupcache=positive` | Tells the NFS client to honor `positive` cache results but invalidates any `negative` cache results. Negative cache results cause problems with Git. Specifically, a `git push` can fail to register uniformly across all NFS clients. The negative cache causes the clients to 'remember' that the files did not exist previously.
| `actimeo=0` | Sets the time to zero that the NFS client caches files and directories before requesting fresh information from a server. |
| `noac` | Tells the NFS client not to cache file attributes and forces application writes to become synchronous so that local changes to a file become visible on the server immediately. |

WARNING:
The `actimeo=0` and `noac` options both result in a significant reduction in performance, possibly leading to timeouts.
You may be able to avoid timeouts and data loss using `actimeo=0` and `lookupcache=positive` _without_ `noac`, however
we expect the performance reduction is still significant. Upgrade to
[Gitaly Cluster](gitaly/praefect.md) as soon as possible.

### Avoid using cloud-based file systems

GitLab strongly recommends against using cloud-based file systems such as:

- AWS Elastic File System (EFS).
- Google Cloud Filestore.
- Azure Files.

Our support team cannot assist with performance issues related to cloud-based file system access.

Customers and users have reported that these file systems don't perform well for
the file system access GitLab requires. Workloads where many small files are written in
a serialized manner, like `git`, are not well suited to cloud-based file systems.

If you do choose to use these, avoid storing GitLab log files (for example, those in `/var/log/gitlab`)
there because this also affects performance. We recommend that the log files be
stored on a local volume.

For more details on the experience of using a cloud-based file systems with GitLab,
see this [Commit Brooklyn 2019 video](https://youtu.be/K6OS8WodRBQ?t=313).

### Avoid using CephFS and GlusterFS

GitLab strongly recommends against using CephFS and GlusterFS.
These distributed file systems are not well-suited for the GitLab input/output access patterns because Git uses many small files and access times and file locking times to propagate makes Git activity very slow.

### Avoid using PostgreSQL with NFS

GitLab strongly recommends against running your PostgreSQL database
across NFS. The GitLab support team is not able to assist on performance issues related to
this configuration.

Additionally, this configuration is specifically warned against in the
[PostgreSQL Documentation](https://www.postgresql.org/docs/current/creating-cluster.html#CREATING-CLUSTER-NFS):

>PostgreSQL does nothing special for NFS file systems, meaning it assumes NFS behaves exactly like
>locally-connected drives. If the client or server NFS implementation does not provide standard file
>system semantics, this can cause reliability problems. Specifically, delayed (asynchronous) writes
>to the NFS server can cause data corruption problems.

For supported database architecture, see our documentation about
[configuring a database for replication and failover](postgresql/replication_and_failover.md).

## Troubleshooting

### Finding the requests that are being made to NFS

In case of NFS-related problems, it can be helpful to trace
the file system requests that are being made by using `perf`:

```shell
sudo perf trace -e 'nfs4:*' -p $(pgrep -fd ',' puma)
```

On Ubuntu 16.04, use:

```shell
sudo perf trace --no-syscalls --event 'nfs4:*' -p $(pgrep -fd ',' puma)
```