1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
---
stage: Enablement
group: Global Search
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
---
# Elasticsearch knowledge **(STARTER ONLY)**
This area is to maintain a compendium of useful information when working with Elasticsearch.
Information on how to enable Elasticsearch and perform the initial indexing is in
the [Elasticsearch integration documentation](../integration/elasticsearch.md#enabling-elasticsearch).
## Deep Dive
In June 2019, Mario de la Ossa hosted a Deep Dive (GitLab team members only: `https://gitlab.com/gitlab-org/create-stage/issues/1`) on GitLab's [Elasticsearch integration](../integration/elasticsearch.md) to share his domain specific knowledge with anyone who may work in this part of the code base in the future. You can find the [recording on YouTube](https://www.youtube.com/watch?v=vrvl-tN2EaA), and the slides on [Google Slides](https://docs.google.com/presentation/d/1H-pCzI_LNrgrL5pJAIQgvLX8Ji0-jIKOg1QeJQzChug/edit) and in [PDF](https://gitlab.com/gitlab-org/create-stage/uploads/c5aa32b6b07476fa8b597004899ec538/Elasticsearch_Deep_Dive.pdf). Everything covered in this deep dive was accurate as of GitLab 12.0, and while specific details may have changed since then, it should still serve as a good introduction.
## Supported Versions
See [Version Requirements](../integration/elasticsearch.md#version-requirements).
Developers making significant changes to Elasticsearch queries should test their features against all our supported versions.
## Setting up development environment
See the [Elasticsearch GDK setup instructions](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/elasticsearch.md)
## Helpful Rake tasks
- `gitlab:elastic:test:index_size`: Tells you how much space the current index is using, as well as how many documents are in the index.
- `gitlab:elastic:test:index_size_change`: Outputs index size, reindexes, and outputs index size again. Useful when testing improvements to indexing size.
Additionally, if you need large repositories or multiple forks for testing, please consider [following these instructions](rake_tasks.md#extra-project-seed-options)
## How does it work?
The Elasticsearch integration depends on an external indexer. We ship an [indexer written in Go](https://gitlab.com/gitlab-org/gitlab-elasticsearch-indexer). The user must trigger the initial indexing via a Rake task but, after this is done, GitLab itself will trigger reindexing when required via `after_` callbacks on create, update, and destroy that are inherited from [`/ee/app/models/concerns/elastic/application_versioned_search.rb`](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/app/models/concerns/elastic/application_versioned_search.rb).
After initial indexing is complete, create, update, and delete operations for all models except projects (see [#207494](https://gitlab.com/gitlab-org/gitlab/-/issues/207494)) are tracked in a Redis [`ZSET`](https://redis.io/topics/data-types#sorted-sets). A regular `sidekiq-cron` `ElasticIndexBulkCronWorker` processes this queue, updating many Elasticsearch documents at a time with the [Bulk Request API](https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html).
Search queries are generated by the concerns found in [`ee/app/models/concerns/elastic`](https://gitlab.com/gitlab-org/gitlab/tree/master/ee/app/models/concerns/elastic). These concerns are also in charge of access control, and have been a historic source of security bugs so please pay close attention to them!
## Existing Analyzers/Tokenizers/Filters
These are all defined in [`ee/lib/elastic/latest/config.rb`](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/elastic/latest/config.rb)
### Analyzers
#### `path_analyzer`
Used when indexing blobs' paths. Uses the `path_tokenizer` and the `lowercase` and `asciifolding` filters.
Please see the `path_tokenizer` explanation below for an example.
#### `sha_analyzer`
Used in blobs and commits. Uses the `sha_tokenizer` and the `lowercase` and `asciifolding` filters.
Please see the `sha_tokenizer` explanation later below for an example.
#### `code_analyzer`
Used when indexing a blob's filename and content. Uses the `whitespace` tokenizer and the filters: [`code`](#code), `lowercase`, and `asciifolding`
The `whitespace` tokenizer was selected in order to have more control over how tokens are split. For example the string `Foo::bar(4)` needs to generate tokens like `Foo` and `bar(4)` in order to be properly searched.
Please see the `code` filter for an explanation on how tokens are split.
NOTE: **Note:**
Currently the [Elasticsearch code_analyzer doesn't account for all code cases](../integration/elasticsearch.md#known-issues).
#### `code_search_analyzer`
Not directly used for indexing, but rather used to transform a search input. Uses the `whitespace` tokenizer and the `lowercase` and `asciifolding` filters.
### Tokenizers
#### `sha_tokenizer`
This is a custom tokenizer that uses the [`edgeNGram` tokenizer](https://www.elastic.co/guide/en/elasticsearch/reference/5.5/analysis-edgengram-tokenizer.html) to allow SHAs to be searchable by any sub-set of it (minimum of 5 chars).
Example:
`240c29dc7e` becomes:
- `240c2`
- `240c29`
- `240c29d`
- `240c29dc`
- `240c29dc7`
- `240c29dc7e`
#### `path_tokenizer`
This is a custom tokenizer that uses the [`path_hierarchy` tokenizer](https://www.elastic.co/guide/en/elasticsearch/reference/5.5/analysis-pathhierarchy-tokenizer.html) with `reverse: true` in order to allow searches to find paths no matter how much or how little of the path is given as input.
Example:
`'/some/path/application.js'` becomes:
- `'/some/path/application.js'`
- `'some/path/application.js'`
- `'path/application.js'`
- `'application.js'`
### Filters
#### `code`
Uses a [Pattern Capture token filter](https://www.elastic.co/guide/en/elasticsearch/reference/5.5/analysis-pattern-capture-tokenfilter.html) to split tokens into more easily searched versions of themselves.
Patterns:
- `"(\\p{Ll}+|\\p{Lu}\\p{Ll}+|\\p{Lu}+)"`: captures CamelCased and lowedCameCased strings as separate tokens
- `"(\\d+)"`: extracts digits
- `"(?=([\\p{Lu}]+[\\p{L}]+))"`: captures CamelCased strings recursively. Ex: `ThisIsATest` => `[ThisIsATest, IsATest, ATest, Test]`
- `'"((?:\\"|[^"]|\\")*)"'`: captures terms inside quotes, removing the quotes
- `"'((?:\\'|[^']|\\')*)'"`: same as above, for single-quotes
- `'\.([^.]+)(?=\.|\s|\Z)'`: separate terms with periods in-between
- `'([\p{L}_.-]+)'`: some common chars in file names to keep the whole filename intact (eg. `my_file-ñame.txt`)
- `'([\p{L}\d_]+)'`: letters, numbers and underscores are the most common tokens in programming. Always capture them greedily regardless of context.
## Gotchas
- Searches can have their own analyzers. Remember to check when editing analyzers
- `Character` filters (as opposed to token filters) always replace the original character, so they're not a good choice as they can hinder exact searches
## Zero downtime reindexing with multiple indices
NOTE: **Note:**
This is not applicable yet as multiple indices functionality is not fully implemented.
Currently GitLab can only handle a single version of setting. Any setting/schema changes would require reindexing everything from scratch. Since reindexing can take a long time, this can cause search functionality downtime.
To avoid downtime, GitLab is working to support multiple indices that
can function at the same time. Whenever the schema changes, the admin
will be able to create a new index and reindex to it, while searches
continue to go to the older, stable index. Any data updates will be
forwarded to both indices. Once the new index is ready, an admin can
mark it active, which will direct all searches to it, and remove the old
index.
This is also helpful for migrating to new servers, e.g. moving to/from AWS.
Currently we are on the process of migrating to this new design. Everything is hardwired to work with one single version for now.
### Architecture
The traditional setup, provided by `elasticsearch-rails`, is to communicate through its internal proxy classes. Developers would write model-specific logic in a module for the model to include in (e.g. `SnippetsSearch`). The `__elasticsearch__` methods would return a proxy object, e.g.:
- `Issue.__elasticsearch__` returns an instance of `Elasticsearch::Model::Proxy::ClassMethodsProxy`
- `Issue.first.__elasticsearch__` returns an instance of `Elasticsearch::Model::Proxy::InstanceMethodsProxy`.
These proxy objects would talk to Elasticsearch server directly (see top half of the diagram).
![Elasticsearch Architecture](img/elasticsearch_architecture.svg)
In the planned new design, each model would have a pair of corresponding sub-classed proxy objects, in which model-specific logic is located. For example, `Snippet` would have `SnippetClassProxy` and `SnippetInstanceProxy` (being subclass of `Elasticsearch::Model::Proxy::ClassMethodsProxy` and `Elasticsearch::Model::Proxy::InstanceMethodsProxy`, respectively).
`__elasticsearch__` would represent another layer of proxy object, keeping track of multiple actual proxy objects. It would forward method calls to the appropriate index. For example:
- `model.__elasticsearch__.search` would be forwarded to the one stable index, since it is a read operation.
- `model.__elasticsearch__.update_document` would be forwarded to all indices, to keep all indices up-to-date.
The global configurations per version are now in the `Elastic::(Version)::Config` class. You can change mappings there.
### Creating new version of schema
NOTE: **Note:**
This is not applicable yet as multiple indices functionality is not fully implemented.
Folders like `ee/lib/elastic/v12p1` contain snapshots of search logic from different versions. To keep a continuous Git history, the latest version lives under `ee/lib/elastic/latest`, but its classes are aliased under an actual version (e.g. `ee/lib/elastic/v12p3`). When referencing these classes, never use the `Latest` namespace directly, but use the actual version (e.g. `V12p3`).
The version name basically follows GitLab's release version. If setting is changed in 12.3, we will create a new namespace called `V12p3` (p stands for "point"). Raise an issue if there is a need to name a version differently.
If the current version is `v12p1`, and we need to create a new version for `v12p3`, the steps are as follows:
1. Copy the entire folder of `v12p1` as `v12p3`
1. Change the namespace for files under `v12p3` folder from `V12p1` to `V12p3` (which are still aliased to `Latest`)
1. Delete `v12p1` folder
1. Copy the entire folder of `latest` as `v12p1`
1. Change the namespace for files under `v12p1` folder from `Latest` to `V12p1`
1. Make changes to files under the `latest` folder as needed
## Performance Monitoring
### Prometheus
GitLab exports [Prometheus
metrics](../administration/monitoring/prometheus/gitlab_metrics.md) relating to
the number of requests and timing for all web/API requests and Sidekiq jobs,
which can help diagnose performance trends and compare how Elasticsearch timing
is impacting overall performance relative to the time spent doing other things.
#### Indexing queues
GitLab also exports [Prometheus
metrics](../administration/monitoring/prometheus/gitlab_metrics.md) for
indexing queues, which can help diagnose performance bottlenecks and determine
whether or not your GitLab instance or Elasticsearch server can keep up with
the volume of updates.
### Logs
All of the indexing happens in Sidekiq, so much of the relevant logs for the
Elasticsearch integration can be found in
[`sidekiq.log`](../administration/logs.md#sidekiqlog). In particular, all
Sidekiq workers that make requests to Elasticsearch in any way will log the
number of requests and time taken querying/writing to Elasticsearch. This can
be useful to understand whether or not your cluster is keeping up with
indexing.
Searching Elasticsearch is done via ordinary web workers handling requests. Any
requests to load a page or make an API request, which then make requests to
Elasticsearch, will log the number of requests and the time taken to
[`production_json.log`](../administration/logs.md#production_jsonlog). These
logs will also include the time spent on Database and Gitaly requests, which
may help to diagnose which part of the search is performing poorly.
There are additional logs specific to Elasticsearch that are sent to
[`elasticsearch.log`](../administration/logs.md#elasticsearchlog-starter-only)
that may contain information to help diagnose performance issues.
### Performance Bar
Elasticsearch requests will be displayed in the [`Performance
Bar`](../administration/monitoring/performance/performance_bar.md), which can
be used both locally in development and on any deployed GitLab instance to
diagnose poor search performance. This will show the exact queries being made,
which is useful to diagnose why a search might be slow.
### Correlation ID and X-Opaque-Id
Our [correlation
ID](./distributed_tracing.md#developer-guidelines-for-working-with-correlation-ids)
is forwarded by all requests from Rails to Elasticsearch as the
[`X-Opaque-Id`](https://www.elastic.co/guide/en/elasticsearch/reference/current/tasks.html#_identifying_running_tasks)
header which allows us to track any
[tasks](https://www.elastic.co/guide/en/elasticsearch/reference/current/tasks.html)
in the cluster back the request in GitLab.
## Troubleshooting
### Getting `flood stage disk watermark [95%] exceeded`
You might get an error such as
```plaintext
[2018-10-31T15:54:19,762][WARN ][o.e.c.r.a.DiskThresholdMonitor] [pval5Ct]
flood stage disk watermark [95%] exceeded on
[pval5Ct7SieH90t5MykM5w][pval5Ct][/usr/local/var/lib/elasticsearch/nodes/0] free: 56.2gb[3%],
all indices on this node will be marked read-only
```
This is because you've exceeded the disk space threshold - it thinks you don't have enough disk space left, based on the default 95% threshold.
In addition, the `read_only_allow_delete` setting will be set to `true`. It will block indexing, `forcemerge`, etc
```shell
curl "http://localhost:9200/gitlab-development/_settings?pretty"
```
Add this to your `elasticsearch.yml` file:
```yaml
# turn off the disk allocator
cluster.routing.allocation.disk.threshold_enabled: false
```
_or_
```yaml
# set your own limits
cluster.routing.allocation.disk.threshold_enabled: true
cluster.routing.allocation.disk.watermark.flood_stage: 5gb # ES 6.x only
cluster.routing.allocation.disk.watermark.low: 15gb
cluster.routing.allocation.disk.watermark.high: 10gb
```
Restart Elasticsearch, and the `read_only_allow_delete` will clear on it's own.
_from "Disk-based Shard Allocation | Elasticsearch Reference" [5.6](https://www.elastic.co/guide/en/elasticsearch/reference/5.6/disk-allocator.html#disk-allocator) and [6.x](https://www.elastic.co/guide/en/elasticsearch/reference/6.7/disk-allocator.html)_
|