summaryrefslogtreecommitdiff
path: root/sysdeps/ia64/fpu/e_expf.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/e_expf.S')
-rw-r--r--sysdeps/ia64/fpu/e_expf.S957
1 files changed, 446 insertions, 511 deletions
diff --git a/sysdeps/ia64/fpu/e_expf.S b/sysdeps/ia64/fpu/e_expf.S
index 2aad021335..6fe0a833e2 100644
--- a/sysdeps/ia64/fpu/e_expf.S
+++ b/sysdeps/ia64/fpu/e_expf.S
@@ -1,10 +1,10 @@
.file "expf.s"
-// Copyright (C) 2000, 2001, Intel Corporation
+
+// Copyright (c) 2000 - 2005, Intel Corporation
// All rights reserved.
//
-// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
-// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
+// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-//
+
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,589 +35,503 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://developer.intel.com/opensource.
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
// History
-//==============================================================
-// 4/04/00 Unwind update
-// 4/04/00 Unwind support added
-// 8/15/00 Bundle added after call to __libm_error_support to properly
+//*********************************************************************
+// 02/02/00 Original version
+// 04/04/00 Unwind support added
+// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
-// 8/21/00 Improvements to save 2 cycles on main path, and shorten x=0 case
+// 08/21/00 Improvements to save 2 cycles on main path, and shorten x=0 case
// 12/07/00 Widen main path, shorten x=inf, nan paths
+// 03/15/01 Fix monotonicity problem around x=0 for round to +inf
+// 02/05/02 Corrected uninitialize predicate in POSSIBLE_UNDERFLOW path
+// 05/20/02 Cleaned up namespace and sf0 syntax
+// 07/26/02 Algorithm changed, accuracy improved
+// 09/26/02 support of higher precision inputs added, underflow threshold
+// corrected
+// 11/15/02 Improved performance on Itanium 2, added possible over/under paths
+// 05/30/03 Set inexact flag on unmasked overflow/underflow
+// 03/31/05 Reformatted delimiters between data tables
+//
+//
+// API
+//*********************************************************************
+// float expf(float)
+//
+// Overview of operation
+//*********************************************************************
+// Take the input x. w is "how many log2/128 in x?"
+// w = x * 64/log2
+// NJ = int(w)
+// x = NJ*log2/64 + R
+
+// NJ = 64*n + j
+// x = n*log2 + (log2/64)*j + R
+//
+// So, exp(x) = 2^n * 2^(j/64)* exp(R)
+//
+// T = 2^n * 2^(j/64)
+// Construct 2^n
+// Get 2^(j/64) table
+// actually all the entries of 2^(j/64) table are stored in DP and
+// with exponent bits set to 0 -> multiplication on 2^n can be
+// performed by doing logical "or" operation with bits presenting 2^n
+
+// exp(R) = 1 + (exp(R) - 1)
+// P = exp(R) - 1 approximated by Taylor series of 3rd degree
+// P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
//
-#include "libm_support.h"
-
-// Assembly macros
-//==============================================================
-// integer registers used
-
- exp_GR_0x0f = r33
- exp_GR_0xf0 = r34
+// The final result is reconstructed as follows
+// exp(x) = T + T*P
- EXP_AD_P_1 = r36
- EXP_AD_P_2 = r37
- EXP_AD_T1 = r38
- EXP_AD_T2 = r39
- exp_GR_Mint = r40
+// Special values
+//*********************************************************************
+// expf(+0) = 1.0
+// expf(-0) = 1.0
- exp_GR_Mint_p_128 = r41
- exp_GR_Ind1 = r42
- EXP_AD_M1 = r43
- exp_GR_Ind2 = r44
- EXP_AD_M2 = r45
+// expf(+qnan) = +qnan
+// expf(-qnan) = -qnan
+// expf(+snan) = +qnan
+// expf(-snan) = -qnan
- exp_GR_min_oflow = r46
- exp_GR_max_zero = r47
- exp_GR_max_norm = r48
- exp_GR_max_uflow = r49
- exp_GR_min_norm = r50
+// expf(-inf) = +0
+// expf(+inf) = +inf
- exp_GR_17ones = r51
- exp_GR_gt_ln = r52
- exp_GR_T2_size = r53
+// Overflow and Underflow
+//*********************************************************************
+// expf(x) = largest single normal when
+// x = 88.72283 = 0x42b17217
- exp_GR_17ones_m1 = r56
- exp_GR_one = r57
+// expf(x) = smallest single normal when
+// x = -87.33654 = 0xc2aeac4f
+// expf(x) = largest round-to-nearest single zero when
+// x = -103.97208 = 0xc2cff1b5
-GR_SAVE_B0 = r53
-GR_SAVE_PFS = r55
-GR_SAVE_GP = r54
+// Registers used
+//*********************************************************************
+// Floating Point registers used:
+// f8, input
+// f6,f7, f9 -> f15, f32 -> f40
-GR_Parameter_X = r59
-GR_Parameter_Y = r60
-GR_Parameter_RESULT = r61
-GR_Parameter_TAG = r62
+// General registers used:
+// r3, r23 -> r38
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
+// Predicate registers used:
+// p10 -> p15
+// Assembly macros
+//*********************************************************************
+// integer registers used
+// scratch
+rNJ = r3
+
+rTmp = r23
+rJ = r23
+rN = r24
+rTblAddr = r25
+rA3 = r26
+rExpHalf = r27
+rLn2Div64 = r28
+r17ones_m1 = r29
+rGt_ln = r29
+rRightShifter = r30
+r64DivLn2 = r31
+// stacked
+GR_SAVE_PFS = r32
+GR_SAVE_B0 = r33
+GR_SAVE_GP = r34
+GR_Parameter_X = r35
+GR_Parameter_Y = r36
+GR_Parameter_RESULT = r37
+GR_Parameter_TAG = r38
// floating point registers used
-
- EXP_MIN_SGL_OFLOW_ARG = f11
- EXP_MAX_SGL_ZERO_ARG = f12
- EXP_MAX_SGL_NORM_ARG = f13
- EXP_MAX_SGL_UFLOW_ARG = f14
- EXP_MIN_SGL_NORM_ARG = f15
-
- exp_coeff_P5 = f32
- exp_coeff_P6 = f33
- exp_coeff_P3 = f34
- exp_coeff_P4 = f35
-
- exp_coeff_P1 = f36
- exp_coeff_P2 = f37
- exp_Mx = f38
- exp_Mfloat = f39
- exp_R = f40
-
- exp_P1 = f41
- exp_P2 = f42
- exp_P3 = f43
- exp_Rsq = f44
- exp_R4 = f45
-
- exp_P4 = f46
- exp_P5 = f47
- exp_P6 = f48
- exp_P7 = f49
- exp_T1 = f50
-
- exp_T2 = f51
- exp_T = f52
- exp_A = f53
- exp_norm_f8 = f54
- exp_wre_urm_f8 = f55
-
- exp_ftz_urm_f8 = f56
- exp_gt_pln = f57
-
-
-#ifdef _LIBC
-.rodata
-#else
-.data
-#endif
-
+FR_X = f10
+FR_Y = f1
+FR_RESULT = f8
+// scratch
+fRightShifter = f6
+f64DivLn2 = f7
+fNormX = f9
+fNint = f10
+fN = f11
+fR = f12
+fLn2Div64 = f13
+fA2 = f14
+fA3 = f15
+// stacked
+fP = f32
+fT = f33
+fMIN_SGL_OFLOW_ARG = f34
+fMAX_SGL_ZERO_ARG = f35
+fMAX_SGL_NORM_ARG = f36
+fMIN_SGL_NORM_ARG = f37
+fRSqr = f38
+fTmp = f39
+fGt_pln = f39
+fWre_urm_f8 = f40
+fFtz_urm_f8 = f40
+
+
+RODATA
.align 16
-exp_coeff_1_table:
-ASM_TYPE_DIRECTIVE(exp_coeff_1_table,@object)
-data8 0x3F56F35FDE4F8563 // p5
-data8 0x3F2A378BEFECCFDD // p6
-data8 0x3FE00000258C581D // p1
-data8 0x3FC555557AE7B3D4 // p2
-ASM_SIZE_DIRECTIVE(exp_coeff_1_table)
-
-
-exp_coeff_2_table:
-ASM_TYPE_DIRECTIVE(exp_coeff_2_table,@object)
-data8 0x3FA5551BB6592FAE // p3
-data8 0x3F8110E8EBFFD485 // p4
-ASM_SIZE_DIRECTIVE(exp_coeff_2_table)
-
-
-exp_T2_table:
-ASM_TYPE_DIRECTIVE(exp_T2_table,@object)
-data8 0xa175cf9cd7d85844 , 0x00003f46 // exp(-128)
-data8 0xdb7279415a1f9eed , 0x00003f47 // exp(-127)
-data8 0x95213b242bd8ca5f , 0x00003f49 // exp(-126)
-data8 0xcab03c968c989f83 , 0x00003f4a // exp(-125)
-data8 0x89bdb674702961ad , 0x00003f4c // exp(-124)
-data8 0xbb35a2eec278be35 , 0x00003f4d // exp(-123)
-data8 0xfe71b17f373e7e7a , 0x00003f4e // exp(-122)
-data8 0xace9a6ec52a39b63 , 0x00003f50 // exp(-121)
-data8 0xeb03423fe393cf1c , 0x00003f51 // exp(-120)
-data8 0x9fb52c5bcaef1693 , 0x00003f53 // exp(-119)
-data8 0xd910b6377ed60bf1 , 0x00003f54 // exp(-118)
-data8 0x9382dad8a9fdbfe4 , 0x00003f56 // exp(-117)
-data8 0xc87d0a84dea869a3 , 0x00003f57 // exp(-116)
-data8 0x883efb4c6d1087b0 , 0x00003f59 // exp(-115)
-data8 0xb92d7373dce9a502 , 0x00003f5a // exp(-114)
-data8 0xfbaeb020577fb0cb , 0x00003f5b // exp(-113)
-ASM_SIZE_DIRECTIVE(exp_T2_table)
-
-
-exp_T1_table:
-ASM_TYPE_DIRECTIVE(exp_T1_table,@object)
-data8 0x8000000000000000 , 0x00003fff // exp(16 * 0)
-data8 0x87975e8540010249 , 0x00004016 // exp(16 * 1)
-data8 0x8fa1fe625b3163ec , 0x0000402d // exp(16 * 2)
-data8 0x9826b576512a59d7 , 0x00004044 // exp(16 * 3)
-data8 0xa12cc167acbe6902 , 0x0000405b // exp(16 * 4)
-data8 0xaabbcdcc279f59e4 , 0x00004072 // exp(16 * 5)
-data8 0xb4dbfaadc045d16f , 0x00004089 // exp(16 * 6)
-data8 0xbf95e372ccdbf146 , 0x000040a0 // exp(16 * 7)
-data8 0xcaf2a62eea10bbfb , 0x000040b7 // exp(16 * 8)
-data8 0xd6fbeb62fddbd340 , 0x000040ce // exp(16 * 9)
-data8 0xe3bbee32e4a440ea , 0x000040e5 // exp(16 * 10)
-data8 0xf13d8517c34199a8 , 0x000040fc // exp(16 * 11)
-data8 0xff8c2b166241eedd , 0x00004113 // exp(16 * 12)
-data8 0x875a04c0b38d6129 , 0x0000412b // exp(16 * 13)
-data8 0x8f610127db6774d7 , 0x00004142 // exp(16 * 14)
-data8 0x97e1dd87e5c20bb6 , 0x00004159 // exp(16 * 15)
-ASM_SIZE_DIRECTIVE(exp_T1_table)
-
-// Argument Reduction
-// exp_Mx = (int)f8 ==> The value of f8 rounded to int is placed into the
-// significand of exp_Mx as a two's
-// complement number.
-
-// Later we want to have exp_Mx in a general register. Do this with a getf.sig
-// and call the general register exp_GR_Mint
-
-// exp_Mfloat = (float)(int)f8 ==> the two's complement number in
-// significand of exp_Mx is turned
-// into a floating point number.
-// R = 1 - exp_Mfloat ==> reduced argument
-
-// Core Approximation
-// Calculate a series in R
-// R * p6 + p5
-// R * p4 + p3
-// R * p2 + p1
-// R^2
-// R^4
-// R^2(R * p6 + p5) + (R * p4 + p3)
-// R^2(R * p2 + p1)
-// R^4(R^2(R * p6 + p5) + (R * p4 + p3)) + (R^2(R * p2 + p1))
-// R + 1
-// exp(R) = (1 + R) + R^4(R^2(R * p6 + p5) + (R * p4 + p3)) + (R^2(R * p2 + p1))
-// exp(R) = 1 + R + R^2 * p1 + R^3 * p2 + R^4 * p3 + R^5 * p4 + R^6 * p5 + R^7 * p6
-
-// Reconstruction
-// signficand of exp_Mx is two's complement,
-// -103 < x < 89
-// The smallest single denormal is 2^-149 = ssdn
-// For e^x = ssdn
-// x = log(ssdn) = -103.279
-// But with rounding result goes to ssdn until -103.972079
-// The largest single normal is 1.<23 1's> 2^126 ~ 2^127 = lsn
-// For e^x = lsn
-// x = log(lsn) = 88.7228
+LOCAL_OBJECT_START(_expf_table)
+data4 0x42b17218 // Smallest sgl arg to overflow sgl result, +88.7228
+data4 0xc2cff1b5 // Largest sgl for rnd-to-nearest 0 result, -103.9720
+data4 0x42b17217 // Largest sgl arg to give normal sgl result, +88.7228
+data4 0xc2aeac4f // Smallest sgl arg to give normal sgl result, -87.3365
//
-// expf overflows when x > 42b17218 = 88.7228
-// expf returns largest single denormal when x = c2aeac50
-// expf goes to zero when x < c2cff1b5
-
-// Consider range of 8-bit two's complement, -128 ---> 127
-// Add 128; range becomes 0 ---> 255
-
-// The number (=i) in 0 ---> 255 is used as offset into two tables.
+// 2^(j/64) table, j goes from 0 to 63
+data8 0x0000000000000000 // 2^(0/64)
+data8 0x00002C9A3E778061 // 2^(1/64)
+data8 0x000059B0D3158574 // 2^(2/64)
+data8 0x0000874518759BC8 // 2^(3/64)
+data8 0x0000B5586CF9890F // 2^(4/64)
+data8 0x0000E3EC32D3D1A2 // 2^(5/64)
+data8 0x00011301D0125B51 // 2^(6/64)
+data8 0x0001429AAEA92DE0 // 2^(7/64)
+data8 0x000172B83C7D517B // 2^(8/64)
+data8 0x0001A35BEB6FCB75 // 2^(9/64)
+data8 0x0001D4873168B9AA // 2^(10/64)
+data8 0x0002063B88628CD6 // 2^(11/64)
+data8 0x0002387A6E756238 // 2^(12/64)
+data8 0x00026B4565E27CDD // 2^(13/64)
+data8 0x00029E9DF51FDEE1 // 2^(14/64)
+data8 0x0002D285A6E4030B // 2^(15/64)
+data8 0x000306FE0A31B715 // 2^(16/64)
+data8 0x00033C08B26416FF // 2^(17/64)
+data8 0x000371A7373AA9CB // 2^(18/64)
+data8 0x0003A7DB34E59FF7 // 2^(19/64)
+data8 0x0003DEA64C123422 // 2^(20/64)
+data8 0x0004160A21F72E2A // 2^(21/64)
+data8 0x00044E086061892D // 2^(22/64)
+data8 0x000486A2B5C13CD0 // 2^(23/64)
+data8 0x0004BFDAD5362A27 // 2^(24/64)
+data8 0x0004F9B2769D2CA7 // 2^(25/64)
+data8 0x0005342B569D4F82 // 2^(26/64)
+data8 0x00056F4736B527DA // 2^(27/64)
+data8 0x0005AB07DD485429 // 2^(28/64)
+data8 0x0005E76F15AD2148 // 2^(29/64)
+data8 0x0006247EB03A5585 // 2^(30/64)
+data8 0x0006623882552225 // 2^(31/64)
+data8 0x0006A09E667F3BCD // 2^(32/64)
+data8 0x0006DFB23C651A2F // 2^(33/64)
+data8 0x00071F75E8EC5F74 // 2^(34/64)
+data8 0x00075FEB564267C9 // 2^(35/64)
+data8 0x0007A11473EB0187 // 2^(36/64)
+data8 0x0007E2F336CF4E62 // 2^(37/64)
+data8 0x00082589994CCE13 // 2^(38/64)
+data8 0x000868D99B4492ED // 2^(39/64)
+data8 0x0008ACE5422AA0DB // 2^(40/64)
+data8 0x0008F1AE99157736 // 2^(41/64)
+data8 0x00093737B0CDC5E5 // 2^(42/64)
+data8 0x00097D829FDE4E50 // 2^(43/64)
+data8 0x0009C49182A3F090 // 2^(44/64)
+data8 0x000A0C667B5DE565 // 2^(45/64)
+data8 0x000A5503B23E255D // 2^(46/64)
+data8 0x000A9E6B5579FDBF // 2^(47/64)
+data8 0x000AE89F995AD3AD // 2^(48/64)
+data8 0x000B33A2B84F15FB // 2^(49/64)
+data8 0x000B7F76F2FB5E47 // 2^(50/64)
+data8 0x000BCC1E904BC1D2 // 2^(51/64)
+data8 0x000C199BDD85529C // 2^(52/64)
+data8 0x000C67F12E57D14B // 2^(53/64)
+data8 0x000CB720DCEF9069 // 2^(54/64)
+data8 0x000D072D4A07897C // 2^(55/64)
+data8 0x000D5818DCFBA487 // 2^(56/64)
+data8 0x000DA9E603DB3285 // 2^(57/64)
+data8 0x000DFC97337B9B5F // 2^(58/64)
+data8 0x000E502EE78B3FF6 // 2^(59/64)
+data8 0x000EA4AFA2A490DA // 2^(60/64)
+data8 0x000EFA1BEE615A27 // 2^(61/64)
+data8 0x000F50765B6E4540 // 2^(62/64)
+data8 0x000FA7C1819E90D8 // 2^(63/64)
+LOCAL_OBJECT_END(_expf_table)
-// i = abcd efgh = abcd * 16 + efgh = i1 * 16 + i2
-
-// i1 = (exp_GR_Mint + 128) & 0xf0 (show 0xf0 as -0x10 to avoid assembler error)
-// (The immediate in the AND is an 8-bit two's complement)
-// i1 = i1 + start of T1 table (EXP_AD_T1)
-// Note that the entries in T1 are double-extended numbers on 16-byte boundaries
-// and that i1 is already shifted left by 16 after the AND.
-
-// i2 must be shifted left by 4 before adding to the start of the table.
-// i2 = ((exp_GR_Mint + 128) & 0x0f) << 4
-// i2 = i2 + start of T2 table (EXP_AD_T2)
-
-// T = T1 * T2
-// A = T * (1 + R)
-// answer = T * (R^2 * p1 + R^3 * p2 + R^4 * p3 + R^5 * p4 + R^6 * p5 + R^7 * p6) +
-// T * (1 + R)
-// = T * exp(R)
-
-
-.global expf#
.section .text
-.proc expf#
-.align 32
-expf:
-#ifdef _LIBC
-.global __ieee754_expf#
-__ieee754_expf:
-#endif
-
-{ .mfi
- alloc r32 = ar.pfs,1,26,4,0
- fcvt.fx.s1 exp_Mx = f8
- mov exp_GR_17ones = 0x1FFFF
+GLOBAL_IEEE754_ENTRY(expf)
+
+{ .mlx
+ addl rTblAddr = @ltoff(_expf_table),gp
+ movl r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
}
{ .mlx
- addl EXP_AD_P_1 = @ltoff(exp_coeff_1_table),gp
- movl exp_GR_min_oflow = 0x42b17218
+ addl rA3 = 0x3E2AA, r0 // high bits of 1.0/6.0 rounded to SP
+ movl rRightShifter = 0x43E8000000000000 // DP Right Shifter
}
;;
-// Fnorm done to take any enabled faults
{ .mfi
- ld8 EXP_AD_P_1 = [EXP_AD_P_1]
- fclass.m p6,p0 = f8, 0x07 //@zero
- nop.i 999
+ // point to the beginning of the table
+ ld8 rTblAddr = [rTblAddr]
+ fclass.m p14, p0 = f8, 0x22 // test for -INF
+ shl rA3 = rA3, 12 // 0x3E2AA000, approx to 1.0/6.0 in SP
}
{ .mfi
- add exp_GR_max_norm = -1, exp_GR_min_oflow // 0x42b17217
- fnorm exp_norm_f8 = f8
- nop.i 999
+ nop.m 0
+ fnorm.s1 fNormX = f8 // normalized x
+ addl rExpHalf = 0xFFFE, r0 // exponent of 1/2
}
;;
{ .mfi
- setf.s EXP_MIN_SGL_OFLOW_ARG = exp_GR_min_oflow // 0x42b17218
- fclass.m p7,p0 = f8, 0x22 // Test for x=-inf
- mov exp_GR_0xf0 = 0x0f0
+ setf.d f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
+ fclass.m p15, p0 = f8, 0x1e1 // test for NaT,NaN,+Inf
+ nop.i 0
}
{ .mlx
- setf.s EXP_MAX_SGL_NORM_ARG = exp_GR_max_norm
- movl exp_GR_max_zero = 0xc2cff1b5
+ // load Right Shifter to FP reg
+ setf.d fRightShifter = rRightShifter
+ movl rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
}
;;
-
-{ .mlx
- mov exp_GR_0x0f = 0x00f
- movl exp_GR_max_uflow = 0xc2aeac50
+{ .mfi
+ nop.m 0
+ fcmp.eq.s1 p13, p0 = f0, f8 // test for x = 0.0
+ nop.i 0
}
{ .mfb
- nop.m 999
-(p6) fma.s f8 = f1,f1,f0
-(p6) br.ret.spnt b0 // quick exit for x=0
+ setf.s fA3 = rA3 // load A3 to FP reg
+(p14) fma.s.s0 f8 = f0, f1, f0 // result if x = -inf
+(p14) br.ret.spnt b0 // exit here if x = -inf
}
;;
{ .mfi
- setf.s EXP_MAX_SGL_ZERO_ARG = exp_GR_max_zero
- fclass.m p8,p0 = f8, 0x21 // Test for x=+inf
- adds exp_GR_min_norm = 1, exp_GR_max_uflow // 0xc2aeac51
+ setf.exp fA2 = rExpHalf // load A2 to FP reg
+ fcmp.eq.s0 p6, p0 = f8, f0 // Dummy to flag denorm
+ nop.i 0
}
{ .mfb
- ldfpd exp_coeff_P5,exp_coeff_P6 = [EXP_AD_P_1],16
-(p7) fma.s f8 = f0,f0,f0
-(p7) br.ret.spnt b0 // quick exit for x=-inf
-}
-;;
-
-{ .mmf
- ldfpd exp_coeff_P1,exp_coeff_P2 = [EXP_AD_P_1],16
- setf.s EXP_MAX_SGL_UFLOW_ARG = exp_GR_max_uflow
- fclass.m p9,p0 = f8, 0xc3 // Test for x=nan
+ setf.d fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
+(p15) fma.s.s0 f8 = f8, f1, f0 // result if x = NaT,NaN,+Inf
+(p15) br.ret.spnt b0 // exit here if x = NaT,NaN,+Inf
}
;;
-{ .mmb
- ldfpd exp_coeff_P3,exp_coeff_P4 = [EXP_AD_P_1],16
- setf.s EXP_MIN_SGL_NORM_ARG = exp_GR_min_norm
-(p8) br.ret.spnt b0 // quick exit for x=+inf
+{ .mfb
+ // overflow and underflow_zero threshold
+ ldfps fMIN_SGL_OFLOW_ARG, fMAX_SGL_ZERO_ARG = [rTblAddr], 8
+(p13) fma.s.s0 f8 = f1, f1, f0 // result if x = 0.0
+(p13) br.ret.spnt b0 // exit here if x =0.0
}
;;
-// EXP_AD_P_1 now points to exp_T2_table
+ // max normal and underflow_denorm threshold
{ .mfi
- mov exp_GR_T2_size = 0x100
- fcvt.xf exp_Mfloat = exp_Mx
- nop.i 999
+ ldfps fMAX_SGL_NORM_ARG, fMIN_SGL_NORM_ARG = [rTblAddr], 8
+ nop.f 0
+ nop.i 0
}
;;
-{ .mfb
- getf.sig exp_GR_Mint = exp_Mx
-(p9) fmerge.s f8 = exp_norm_f8, exp_norm_f8
-(p9) br.ret.spnt b0 // quick exit for x=nan
+{ .mfi
+ nop.m 0
+ // x*(64/ln(2)) + Right Shifter
+ fma.s1 fNint = fNormX, f64DivLn2, fRightShifter
+ nop.i 0
}
;;
-{ .mmi
- nop.m 999
- mov EXP_AD_T2 = EXP_AD_P_1
- add EXP_AD_T1 = exp_GR_T2_size,EXP_AD_P_1 ;;
-}
-
-
-{ .mmi
- adds exp_GR_Mint_p_128 = 0x80,exp_GR_Mint ;;
- and exp_GR_Ind1 = exp_GR_Mint_p_128, exp_GR_0xf0
- and exp_GR_Ind2 = exp_GR_Mint_p_128, exp_GR_0x0f ;;
-}
-
// Divide arguments into the following categories:
-// Certain Underflow/zero p11 - -inf < x <= MAX_SGL_ZERO_ARG
-// Certain Underflow p12 - MAX_SGL_ZERO_ARG < x <= MAX_SGL_UFLOW_ARG
-// Possible Underflow p13 - MAX_SGL_UFLOW_ARG < x < MIN_SGL_NORM_ARG
+// Certain Underflow p11 - -inf < x <= MAX_SGL_ZERO_ARG
+// Possible Underflow p13 - MAX_SGL_ZERO_ARG < x < MIN_SGL_NORM_ARG
// Certain Safe - MIN_SGL_NORM_ARG <= x <= MAX_SGL_NORM_ARG
// Possible Overflow p14 - MAX_SGL_NORM_ARG < x < MIN_SGL_OFLOW_ARG
// Certain Overflow p15 - MIN_SGL_OFLOW_ARG <= x < +inf
//
-// If the input is really a single arg, then there will never be "Possible
-// Underflow" or "Possible Overflow" arguments.
+// If the input is really a single arg, then there will never be
+// "Possible Overflow" arguments.
//
{ .mfi
- add EXP_AD_M1 = exp_GR_Ind1,EXP_AD_T1
- fcmp.ge.s1 p15,p14 = exp_norm_f8,EXP_MIN_SGL_OFLOW_ARG
- nop.i 999
-}
-{ .mfi
- shladd EXP_AD_M2 = exp_GR_Ind2,4,EXP_AD_T2
- fms.s1 exp_R = f1,f8,exp_Mfloat
- nop.i 999 ;;
+ nop.m 0
+ // check for overflow
+ fcmp.ge.s1 p15, p0 = fNormX, fMIN_SGL_OFLOW_ARG
+ nop.i 0
}
+;;
{ .mfi
- ldfe exp_T1 = [EXP_AD_M1]
- fcmp.le.s1 p11,p12 = exp_norm_f8,EXP_MAX_SGL_ZERO_ARG
- nop.i 999 ;;
+ nop.m 0
+ // check for underflow and tiny (+0) result
+ fcmp.le.s1 p11, p0 = fNormX, fMAX_SGL_ZERO_ARG
+ nop.i 0
}
-
{ .mfb
- ldfe exp_T2 = [EXP_AD_M2]
-(p14) fcmp.gt.s1 p14,p0 = exp_norm_f8,EXP_MAX_SGL_NORM_ARG
-(p15) br.cond.spnt L(EXP_CERTAIN_OVERFLOW) ;;
-}
-
-{ .mfb
- nop.m 999
-(p12) fcmp.le.s1 p12,p0 = exp_norm_f8,EXP_MAX_SGL_UFLOW_ARG
-(p11) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW_ZERO)
+ nop.m 0
+ fms.s1 fN = fNint, f1, fRightShifter // n in FP register
+ // branch out if overflow
+(p15) br.cond.spnt EXP_CERTAIN_OVERFLOW
}
;;
-{ .mfi
- nop.m 999
-(p13) fcmp.lt.s1 p13,p0 = exp_norm_f8,EXP_MIN_SGL_NORM_ARG
- nop.i 999
+{ .mfb
+ getf.sig rNJ = fNint // bits of n, j
+ // check for underflow and deno result
+ fcmp.lt.s1 p13, p0 = fNormX, fMIN_SGL_NORM_ARG
+ // branch out if underflow and tiny (+0) result
+(p11) br.cond.spnt EXP_CERTAIN_UNDERFLOW
}
;;
-
{ .mfi
- nop.m 999
- fma.s1 exp_Rsq = exp_R,exp_R,f0
- nop.i 999
+ nop.m 0
+ // check for possible overflow
+ fcmp.gt.s1 p14, p0 = fNormX, fMAX_SGL_NORM_ARG
+ extr.u rJ = rNJ, 0, 6 // bits of j
}
{ .mfi
- nop.m 999
- fma.s1 exp_P3 = exp_R,exp_coeff_P2,exp_coeff_P1
- nop.i 999
+ addl rN = 0xFFFF - 63, rNJ // biased and shifted n
+ fnma.s1 fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
+ nop.i 0
}
;;
{ .mfi
- nop.m 999
- fma.s1 exp_P1 = exp_R,exp_coeff_P6,exp_coeff_P5
- nop.i 999
-}
-{ .mfi
- nop.m 999
- fma.s1 exp_P2 = exp_R,exp_coeff_P4,exp_coeff_P3
- nop.i 999
+ shladd rJ = rJ, 3, rTblAddr // address in the 2^(j/64) table
+ nop.f 0
+ shr rN = rN, 6 // biased n
}
;;
-
{ .mfi
- nop.m 999
- fma.s1 exp_P7 = f1,exp_R,f1
- nop.i 999
+ ld8 rJ = [rJ]
+ nop.f 0
+ shl rN = rN, 52 // 2^n bits in DP format
}
;;
-
{ .mfi
- nop.m 999
- fma.s1 exp_P5 = exp_Rsq,exp_P3,f0
- nop.i 999
-}
-{ .mfi
- nop.m 999
- fma.s1 exp_R4 = exp_Rsq,exp_Rsq,f0
- nop.i 999
+ or rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format
+ nop.f 0
+ nop.i 0
}
;;
{ .mfi
- nop.m 999
- fma.s1 exp_T = exp_T1,exp_T2,f0
- nop.i 999
+ setf.d fT = rN // 2^n * 2^(j/64)
+ fma.s1 fP = fA3, fR, fA2 // A3*R + A2
+ nop.i 0
}
{ .mfi
- nop.m 999
- fma.s1 exp_P4 = exp_Rsq,exp_P1,exp_P2
- nop.i 999
+ nop.m 0
+ fma.s1 fRSqr = fR, fR, f0 // R^2
+ nop.i 0
}
;;
{ .mfi
- nop.m 999
- fma.s1 exp_A = exp_T,exp_P7,f0
- nop.i 999
-}
-{ .mfi
- nop.m 999
- fma.s1 exp_P6 = exp_R4,exp_P4,exp_P5
- nop.i 999
+ nop.m 0
+ fma.s1 fP = fP, fRSqr, fR // P = (A3*R + A2)*R^2 + R
+ nop.i 0
}
;;
-{ .bbb
-(p12) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW)
-(p13) br.cond.spnt L(EXP_POSSIBLE_UNDERFLOW)
-(p14) br.cond.spnt L(EXP_POSSIBLE_OVERFLOW)
+{ .mbb
+ nop.m 0
+ // branch out if possible underflow
+(p13) br.cond.spnt EXP_POSSIBLE_UNDERFLOW
+ // branch out if possible overflow result
+(p14) br.cond.spnt EXP_POSSIBLE_OVERFLOW
}
;;
{ .mfb
- nop.m 999
- fma.s f8 = exp_T,exp_P6,exp_A
- br.ret.sptk b0
+ nop.m 0
+ // final result in the absence of over- and underflow
+ fma.s.s0 f8 = fP, fT, fT
+ // exit here in the absence of over- and underflow
+ br.ret.sptk b0
}
;;
-L(EXP_POSSIBLE_OVERFLOW):
-
-// We got an answer. EXP_MAX_SGL_NORM_ARG < x < EXP_MIN_SGL_OFLOW_ARG
-// overflow is a possibility, not a certainty
-// Set wre in s2 and perform the last operation with s2
-
-// We define an overflow when the answer with
-// WRE set
-// user-defined rounding mode
-// is lsn +1
-
-// Is the exponent 1 more than the largest single?
-// If so, go to ERROR RETURN, else (no overflow) get the answer and
-// leave.
-
-// Largest single is FE (biased single)
-// FE - 7F + FFFF = 1007E
-
-// Create + largest_single_plus_ulp
-// Create - largest_single_plus_ulp
+EXP_POSSIBLE_OVERFLOW:
-// Calculate answer with WRE set.
+// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
+// This cannot happen if input is a single, only if input higher precision.
+// Overflow is a possibility, not a certainty.
-// Cases when answer is lsn+1 are as follows:
-
-// midpoint
-// |
-// lsn | lsn+1
-// --+----------|----------+------------
-// |
-// +inf +inf -inf
-// RN RN
-// RZ
-// exp_gt_pln contains the floating point number lsn+1.
-// The setf.exp puts 0x1007f in the exponent and 0x800... in the significand.
-
-// If the answer is >= lsn+1, we have overflowed.
-// Then p6 is TRUE. Set the overflow tag, save input in FR_X,
-// do the final calculation for IEEE result, and branch to error return.
+// Recompute result using status field 2 with user's rounding mode,
+// and wre set. If result is larger than largest single, then we have
+// overflow
{ .mfi
- mov exp_GR_gt_ln = 0x1007F
- fsetc.s2 0x7F,0x42
- nop.i 999
+ mov rGt_ln = 0x1007f // Exponent for largest single + 1 ulp
+ fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
+ nop.i 0
}
;;
{ .mfi
- setf.exp exp_gt_pln = exp_GR_gt_ln
- fma.s.s2 exp_wre_urm_f8 = exp_T, exp_P6, exp_A
- nop.i 999
+ setf.exp fGt_pln = rGt_ln // Create largest single + 1 ulp
+ fma.s.s2 fWre_urm_f8 = fP, fT, fT // Result with wre set
+ nop.i 0
}
;;
{ .mfi
- nop.m 999
- fsetc.s2 0x7F,0x40
- nop.i 999
+ nop.m 0
+ fsetc.s2 0x7F,0x40 // Turn off wre in sf2
+ nop.i 0
}
;;
{ .mfi
- nop.m 999
- fcmp.ge.unc.s1 p6, p0 = exp_wre_urm_f8, exp_gt_pln
- nop.i 999
+ nop.m 0
+ fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
+ nop.i 0
}
;;
{ .mfb
- nop.m 999
- nop.f 999
-(p6) br.cond.spnt L(EXP_CERTAIN_OVERFLOW) // Branch if really overflow
+ nop.m 0
+ nop.f 0
+(p6) br.cond.spnt EXP_CERTAIN_OVERFLOW // Branch if overflow
}
;;
{ .mfb
- nop.m 999
- fma.s f8 = exp_T, exp_P6, exp_A
- br.ret.sptk b0 // Exit if really no overflow
+ nop.m 0
+ fma.s.s0 f8 = fP, fT, fT
+ br.ret.sptk b0 // Exit if really no overflow
}
;;
-L(EXP_CERTAIN_OVERFLOW):
+// here if overflow
+EXP_CERTAIN_OVERFLOW:
{ .mmi
- sub exp_GR_17ones_m1 = exp_GR_17ones, r0, 1 ;;
- setf.exp f9 = exp_GR_17ones_m1
- nop.i 999 ;;
+ addl r17ones_m1 = 0x1FFFE, r0
+;;
+ setf.exp fTmp = r17ones_m1
+ nop.i 0
}
+;;
{ .mfi
- nop.m 999
- fmerge.s FR_X = f8,f8
- nop.i 999
+ alloc r32=ar.pfs,0,3,4,0
+ fmerge.s FR_X = f8,f8
+ nop.i 0
}
{ .mfb
- mov GR_Parameter_TAG = 16
- fma.s FR_RESULT = f9, f9, f0 // Set I,O and +INF result
- br.cond.sptk __libm_error_region ;;
+ mov GR_Parameter_TAG = 16
+ fma.s.s0 FR_RESULT = fTmp, fTmp, fTmp // Set I,O and +INF result
+ br.cond.sptk __libm_error_region
}
+;;
-L(EXP_POSSIBLE_UNDERFLOW):
+EXP_POSSIBLE_UNDERFLOW:
-// We got an answer. EXP_MAX_SGL_UFLOW_ARG < x < EXP_MIN_SGL_NORM_ARG
-// underflow is a possibility, not a certainty
+// Here if fMAX_SGL_ZERO_ARG < x < fMIN_SGL_NORM_ARG
+// Underflow is a possibility, not a certainty
// We define an underflow when the answer with
// ftz set
@@ -637,144 +551,165 @@ L(EXP_POSSIBLE_UNDERFLOW):
// E
// -----+--------------------+--------------------+-----
// | | |
-// 1.1...10 2^-7f 1.1...11 2^-7f 1.0...00 2^-7e
-// 0.1...11 2^-7e (biased, 1)
+// 1.1...10 2^-3fff 1.1...11 2^-3fff 1.0...00 2^-3ffe
+// 0.1...11 2^-3ffe (biased, 1)
// largest dn smallest normal
-// If the answer is = 0, we have underflowed.
-// Then p6 is TRUE. Set the underflow tag, save input in FR_X,
-// do the final calculation for IEEE result, and branch to error return.
-
{ .mfi
- nop.m 999
- fsetc.s2 0x7F,0x41
- nop.i 999
+ nop.m 0
+ fsetc.s2 0x7F,0x41 // Get user's round mode, set ftz
+ nop.i 0
}
;;
{ .mfi
- nop.m 999
- fma.s.s2 exp_ftz_urm_f8 = exp_T, exp_P6, exp_A
- nop.i 999
+ nop.m 0
+ fma.s.s2 fFtz_urm_f8 = fP, fT, fT // Result with ftz set
+ nop.i 0
}
;;
-
{ .mfi
- nop.m 999
- fsetc.s2 0x7F,0x40
- nop.i 999
+ nop.m 0
+ fsetc.s2 0x7F,0x40 // Turn off ftz in sf2
+ nop.i 0
}
;;
{ .mfi
- nop.m 999
- fcmp.eq.unc.s1 p6, p0 = exp_ftz_urm_f8, f0
- nop.i 999
+ nop.m 0
+ fcmp.eq.s1 p6, p7 = fFtz_urm_f8, f0 // Test for underflow
+ nop.i 0
+}
+{ .mfi
+ nop.m 0
+ fma.s.s0 f8 = fP, fT, fT // Compute result, set I, maybe U
+ nop.i 0
}
;;
-{ .mfb
- nop.m 999
- nop.f 999
-(p6) br.cond.spnt L(EXP_CERTAIN_UNDERFLOW) // Branch if really underflow
+{ .mbb
+ nop.m 0
+(p6) br.cond.spnt EXP_UNDERFLOW_COMMON // Branch if really underflow
+(p7) br.ret.sptk b0 // Exit if really no underflow
}
;;
-{ .mfb
- nop.m 999
- fma.s f8 = exp_T, exp_P6, exp_A
- br.ret.sptk b0 // Exit if really no underflow
+EXP_CERTAIN_UNDERFLOW:
+// Here if x < fMAX_SGL_ZERO_ARG
+// Result will be zero (or smallest denorm if round to +inf) with I, U set
+{ .mmi
+ mov rTmp = 1
+;;
+ setf.exp fTmp = rTmp // Form small normal
+ nop.i 0
}
;;
-L(EXP_CERTAIN_UNDERFLOW):
{ .mfi
- nop.m 999
- fmerge.s FR_X = f8,f8
- nop.i 999
+ nop.m 0
+ fmerge.se fTmp = fTmp, f64DivLn2 // Small with non-trial signif
+ nop.i 0
}
+;;
+
{ .mfb
- mov GR_Parameter_TAG = 17
- fma.s FR_RESULT = exp_T, exp_P6, exp_A // Set I,U and tiny result
- br.cond.sptk __libm_error_region ;;
+ nop.m 0
+ fma.s.s0 f8 = fTmp, fTmp, f0 // Set I,U, tiny (+0.0) result
+ br.cond.sptk EXP_UNDERFLOW_COMMON
}
+;;
-L(EXP_CERTAIN_UNDERFLOW_ZERO):
-{ .mmi
- mov exp_GR_one = 1 ;;
- setf.exp f9 = exp_GR_one
- nop.i 999 ;;
+EXP_UNDERFLOW_COMMON:
+// Determine if underflow result is zero or nonzero
+{ .mfi
+ alloc r32=ar.pfs,0,3,4,0
+ fcmp.eq.s1 p6, p0 = f8, f0
+ nop.i 0
}
+;;
-{ .mfi
- nop.m 999
- fmerge.s FR_X = f8,f8
- nop.i 999
+{ .mfb
+ nop.m 0
+ fmerge.s FR_X = fNormX,fNormX
+(p6) br.cond.spnt EXP_UNDERFLOW_ZERO
}
+;;
+
+EXP_UNDERFLOW_NONZERO:
+// Here if x < fMIN_SGL_NORM_ARG and result nonzero;
+// I, U are set
{ .mfb
- mov GR_Parameter_TAG = 17
- fma.s FR_RESULT = f9, f9, f0 // Set I,U and tiny (+0.0) result
- br.cond.sptk __libm_error_region ;;
+ mov GR_Parameter_TAG = 17
+ nop.f 0 // FR_RESULT already set
+ br.cond.sptk __libm_error_region
}
+;;
-.endp expf
-ASM_SIZE_DIRECTIVE(expf)
+EXP_UNDERFLOW_ZERO:
+// Here if x < fMIN_SGL_NORM_ARG and result zero;
+// I, U are set
+{ .mfb
+ mov GR_Parameter_TAG = 17
+ nop.f 0 // FR_RESULT already set
+ br.cond.sptk __libm_error_region
+}
+;;
+GLOBAL_IEEE754_END(expf)
-.proc __libm_error_region
-__libm_error_region:
+
+LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 999
+ add GR_Parameter_Y=-32,sp // Parameter 2 value
+ nop.f 0
.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
- stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
+ stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
+ add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
+ mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mfi
- stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
- nop.f 0
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
+ stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
+ nop.f 0
+ add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
}
{ .mib
- stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
+ stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
+ add GR_Parameter_Y = -16,GR_Parameter_Y
+ br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
- nop.m 0
- nop.m 0
- add GR_Parameter_RESULT = 48,sp
+ add GR_Parameter_RESULT = 48,sp
+ nop.m 0
+ nop.i 0
};;
{ .mmi
- ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
+ ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
+ add sp = 64,sp // Restore stack pointer
+ mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ br.ret.sptk b0 // Return
+};;
-.endp __libm_error_region
-ASM_SIZE_DIRECTIVE(__libm_error_region)
+LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function