summaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/dla.h
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/dla.h')
-rw-r--r--sysdeps/ieee754/dbl-64/dla.h173
1 files changed, 173 insertions, 0 deletions
diff --git a/sysdeps/ieee754/dbl-64/dla.h b/sysdeps/ieee754/dbl-64/dla.h
new file mode 100644
index 0000000000..693d1a1f79
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/dla.h
@@ -0,0 +1,173 @@
+
+/*
+ * IBM Accurate Mathematical Library
+ * Copyright (c) International Business Machines Corp., 2001
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+/***********************************************************************/
+/*MODULE_NAME: dla.h */
+/* */
+/* This file holds C language macros for 'Double Length Floating Point */
+/* Arithmetic'. The macros are based on the paper: */
+/* T.J.Dekker, "A floating-point Technique for extending the */
+/* Available Precision", Number. Math. 18, 224-242 (1971). */
+/* A Double-Length number is defined by a pair (r,s), of IEEE double */
+/* precision floating point numbers that satisfy, */
+/* */
+/* abs(s) <= abs(r+s)*2**(-53)/(1+2**(-53)). */
+/* */
+/* The computer arithmetic assumed is IEEE double precision in */
+/* round to nearest mode. All variables in the macros must be of type */
+/* IEEE double. */
+/***********************************************************************/
+
+/* CN = 1+2**27 = '41a0000002000000' IEEE double format */
+#define CN 134217729.0
+
+
+/* Exact addition of two single-length floating point numbers, Dekker. */
+/* The macro produces a double-length number (z,zz) that satisfies */
+/* z+zz = x+y exactly. */
+
+#define EADD(x,y,z,zz) \
+ z=(x)+(y); zz=(ABS(x)>ABS(y)) ? (((x)-(z))+(y)) : (((y)-(z))+(x));
+
+
+/* Exact subtraction of two single-length floating point numbers, Dekker. */
+/* The macro produces a double-length number (z,zz) that satisfies */
+/* z+zz = x-y exactly. */
+
+#define ESUB(x,y,z,zz) \
+ z=(x)-(y); zz=(ABS(x)>ABS(y)) ? (((x)-(z))-(y)) : ((x)-((y)+(z)));
+
+
+/* Exact multiplication of two single-length floating point numbers, */
+/* Veltkamp. The macro produces a double-length number (z,zz) that */
+/* satisfies z+zz = x*y exactly. p,hx,tx,hy,ty are temporary */
+/* storage variables of type double. */
+
+#define EMULV(x,y,z,zz,p,hx,tx,hy,ty) \
+ p=CN*(x); hx=((x)-p)+p; tx=(x)-hx; \
+ p=CN*(y); hy=((y)-p)+p; ty=(y)-hy; \
+ z=(x)*(y); zz=(((hx*hy-z)+hx*ty)+tx*hy)+tx*ty;
+
+
+/* Exact multiplication of two single-length floating point numbers, Dekker. */
+/* The macro produces a nearly double-length number (z,zz) (see Dekker) */
+/* that satisfies z+zz = x*y exactly. p,hx,tx,hy,ty,q are temporary */
+/* storage variables of type double. */
+
+#define MUL12(x,y,z,zz,p,hx,tx,hy,ty,q) \
+ p=CN*(x); hx=((x)-p)+p; tx=(x)-hx; \
+ p=CN*(y); hy=((y)-p)+p; ty=(y)-hy; \
+ p=hx*hy; q=hx*ty+tx*hy; z=p+q; zz=((p-z)+q)+tx*ty;
+
+
+/* Double-length addition, Dekker. The macro produces a double-length */
+/* number (z,zz) which satisfies approximately z+zz = x+xx + y+yy. */
+/* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
+/* are assumed to be double-length numbers. r,s are temporary */
+/* storage variables of type double. */
+
+#define ADD2(x,xx,y,yy,z,zz,r,s) \
+ r=(x)+(y); s=(ABS(x)>ABS(y)) ? \
+ (((((x)-r)+(y))+(yy))+(xx)) : \
+ (((((y)-r)+(x))+(xx))+(yy)); \
+ z=r+s; zz=(r-z)+s;
+
+
+/* Double-length subtraction, Dekker. The macro produces a double-length */
+/* number (z,zz) which satisfies approximately z+zz = x+xx - (y+yy). */
+/* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
+/* are assumed to be double-length numbers. r,s are temporary */
+/* storage variables of type double. */
+
+#define SUB2(x,xx,y,yy,z,zz,r,s) \
+ r=(x)-(y); s=(ABS(x)>ABS(y)) ? \
+ (((((x)-r)-(y))-(yy))+(xx)) : \
+ ((((x)-((y)+r))+(xx))-(yy)); \
+ z=r+s; zz=(r-z)+s;
+
+
+/* Double-length multiplication, Dekker. The macro produces a double-length */
+/* number (z,zz) which satisfies approximately z+zz = (x+xx)*(y+yy). */
+/* An error bound: abs((x+xx)*(y+yy))*1.24e-31. (x,xx), (y,yy) */
+/* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc are */
+/* temporary storage variables of type double. */
+
+#define MUL2(x,xx,y,yy,z,zz,p,hx,tx,hy,ty,q,c,cc) \
+ MUL12(x,y,c,cc,p,hx,tx,hy,ty,q) \
+ cc=((x)*(yy)+(xx)*(y))+cc; z=c+cc; zz=(c-z)+cc;
+
+
+/* Double-length division, Dekker. The macro produces a double-length */
+/* number (z,zz) which satisfies approximately z+zz = (x+xx)/(y+yy). */
+/* An error bound: abs((x+xx)/(y+yy))*1.50e-31. (x,xx), (y,yy) */
+/* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc,u,uu */
+/* are temporary storage variables of type double. */
+
+#define DIV2(x,xx,y,yy,z,zz,p,hx,tx,hy,ty,q,c,cc,u,uu) \
+ c=(x)/(y); MUL12(c,y,u,uu,p,hx,tx,hy,ty,q) \
+ cc=(((((x)-u)-uu)+(xx))-c*(yy))/(y); z=c+cc; zz=(c-z)+cc;
+
+
+/* Double-length addition, slower but more accurate than ADD2. */
+/* The macro produces a double-length */
+/* number (z,zz) which satisfies approximately z+zz = (x+xx)+(y+yy). */
+/* An error bound: abs(x+xx + y+yy)*1.50e-31. (x,xx), (y,yy) */
+/* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */
+/* are temporary storage variables of type double. */
+
+#define ADD2A(x,xx,y,yy,z,zz,r,rr,s,ss,u,uu,w) \
+ r=(x)+(y); \
+ if (ABS(x)>ABS(y)) { rr=((x)-r)+(y); s=(rr+(yy))+(xx); } \
+ else { rr=((y)-r)+(x); s=(rr+(xx))+(yy); } \
+ if (rr!=0.0) { \
+ z=r+s; zz=(r-z)+s; } \
+ else { \
+ ss=(ABS(xx)>ABS(yy)) ? (((xx)-s)+(yy)) : (((yy)-s)+(xx)); \
+ u=r+s; \
+ uu=(ABS(r)>ABS(s)) ? ((r-u)+s) : ((s-u)+r) ; \
+ w=uu+ss; z=u+w; \
+ zz=(ABS(u)>ABS(w)) ? ((u-z)+w) : ((w-z)+u) ; }
+
+
+/* Double-length subtraction, slower but more accurate than SUB2. */
+/* The macro produces a double-length */
+/* number (z,zz) which satisfies approximately z+zz = (x+xx)-(y+yy). */
+/* An error bound: abs(x+xx - (y+yy))*1.50e-31. (x,xx), (y,yy) */
+/* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */
+/* are temporary storage variables of type double. */
+
+#define SUB2A(x,xx,y,yy,z,zz,r,rr,s,ss,u,uu,w) \
+ r=(x)-(y); \
+ if (ABS(x)>ABS(y)) { rr=((x)-r)-(y); s=(rr-(yy))+(xx); } \
+ else { rr=(x)-((y)+r); s=(rr+(xx))-(yy); } \
+ if (rr!=0.0) { \
+ z=r+s; zz=(r-z)+s; } \
+ else { \
+ ss=(ABS(xx)>ABS(yy)) ? (((xx)-s)-(yy)) : ((xx)-((yy)+s)); \
+ u=r+s; \
+ uu=(ABS(r)>ABS(s)) ? ((r-u)+s) : ((s-u)+r) ; \
+ w=uu+ss; z=u+w; \
+ zz=(ABS(u)>ABS(w)) ? ((u-z)+w) : ((w-z)+u) ; }
+
+
+
+
+
+
+