summaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/e_remainder.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_remainder.c')
-rw-r--r--sysdeps/ieee754/dbl-64/e_remainder.c175
1 files changed, 103 insertions, 72 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_remainder.c b/sysdeps/ieee754/dbl-64/e_remainder.c
index 6418081182..631c2fcf01 100644
--- a/sysdeps/ieee754/dbl-64/e_remainder.c
+++ b/sysdeps/ieee754/dbl-64/e_remainder.c
@@ -1,80 +1,111 @@
-/* @(#)e_remainder.c 5.1 93/09/24 */
/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ * IBM Accurate Mathematical Library
+ * Copyright (c) International Business Machines Corp., 2001
*
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#if defined(LIBM_SCCS) && !defined(lint)
-static char rcsid[] = "$NetBSD: e_remainder.c,v 1.8 1995/05/10 20:46:05 jtc Exp $";
-#endif
-
-/* __ieee754_remainder(x,p)
- * Return :
- * returns x REM p = x - [x/p]*p as if in infinite
- * precise arithmetic, where [x/p] is the (infinite bit)
- * integer nearest x/p (in half way case choose the even one).
- * Method :
- * Based on fmod() return x-[x/p]chopped*p exactlp.
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
+/**************************************************************************/
+/* MODULE_NAME urem.c */
+/* */
+/* FUNCTION: uremainder */
+/* */
+/* An ultimate remainder routine. Given two IEEE double machine numbers x */
+/* ,y it computes the correctly rounded (to nearest) value of remainder */
+/* of dividing x by y. */
+/* Assumption: Machine arithmetic operations are performed in */
+/* round to nearest mode of IEEE 754 standard. */
+/* */
+/* ************************************************************************/
-#include "math.h"
-#include "math_private.h"
+#include "endian.h"
+#include "mydefs.h"
+#include "urem.h"
+#include "MathLib.h"
-#ifdef __STDC__
-static const double zero = 0.0;
-#else
-static double zero = 0.0;
-#endif
-
-
-#ifdef __STDC__
- double __ieee754_remainder(double x, double p)
-#else
- double __ieee754_remainder(x,p)
- double x,p;
-#endif
+/**************************************************************************/
+/* An ultimate remainder routine. Given two IEEE double machine numbers x */
+/* ,y it computes the correctly rounded (to nearest) value of remainder */
+/**************************************************************************/
+double __ieee754_remainder(double x, double y)
{
- int32_t hx,hp;
- u_int32_t sx,lx,lp;
- double p_half;
-
- EXTRACT_WORDS(hx,lx,x);
- EXTRACT_WORDS(hp,lp,p);
- sx = hx&0x80000000;
- hp &= 0x7fffffff;
- hx &= 0x7fffffff;
-
- /* purge off exception values */
- if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */
- if((hx>=0x7ff00000)|| /* x not finite */
- ((hp>=0x7ff00000)&& /* p is NaN */
- (((hp-0x7ff00000)|lp)!=0)))
- return (x*p)/(x*p);
-
+ double z,d,xx,yy;
+ int4 kx,ky,m,n,nn,n1,m1,l;
+ mynumber u,t,w={0,0},v={0,0},ww={0,0},r;
+ u.x=x;
+ t.x=y;
+ kx=u.i[HIGH_HALF]&0x7fffffff; /* no sign for x*/
+ t.i[HIGH_HALF]&=0x7fffffff; /*no sign for y */
+ ky=t.i[HIGH_HALF];
+ /*------ |x| < 2^1024 and 2^-970 < |y| < 2^1024 ------------------*/
+ if (kx<0x7ff00000 && ky<0x7ff00000 && ky>=0x03500000) {
+ if (kx+0x00100000<ky) return x;
+ if ((kx-0x01500000)<ky) {
+ z=x/t.x;
+ v.i[HIGH_HALF]=t.i[HIGH_HALF];
+ d=(z+big.x)-big.x;
+ xx=(x-d*v.x)-d*(t.x-v.x);
+ if (d-z!=0.5&&d-z!=-0.5) return (xx!=0)?xx:((x>0)?ZERO.x:nZERO.x);
+ else {
+ if (ABS(xx)>0.5*t.x) return (z>d)?xx-t.x:xx+t.x;
+ else return xx;
+ }
+ } /* (kx<(ky+0x01500000)) */
+ else {
+ r.x=1.0/t.x;
+ n=t.i[HIGH_HALF];
+ nn=(n&0x7ff00000)+0x01400000;
+ w.i[HIGH_HALF]=n;
+ ww.x=t.x-w.x;
+ l=(kx-nn)&0xfff00000;
+ n1=ww.i[HIGH_HALF];
+ m1=r.i[HIGH_HALF];
+ while (l>0) {
+ r.i[HIGH_HALF]=m1-l;
+ z=u.x*r.x;
+ w.i[HIGH_HALF]=n+l;
+ ww.i[HIGH_HALF]=(n1)?n1+l:n1;
+ d=(z+big.x)-big.x;
+ u.x=(u.x-d*w.x)-d*ww.x;
+ l=(u.i[HIGH_HALF]&0x7ff00000)-nn;
+ }
+ r.i[HIGH_HALF]=m1;
+ w.i[HIGH_HALF]=n;
+ ww.i[HIGH_HALF]=n1;
+ z=u.x*r.x;
+ d=(z+big.x)-big.x;
+ u.x=(u.x-d*w.x)-d*ww.x;
+ if (ABS(u.x)<0.5*t.x) return (u.x!=0)?u.x:((x>0)?ZERO.x:nZERO.x);
+ else
+ if (ABS(u.x)>0.5*t.x) return (d>z)?u.x+t.x:u.x-t.x;
+ else
+ {z=u.x/t.x; d=(z+big.x)-big.x; return ((u.x-d*w.x)-d*ww.x);}
+ }
- if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p); /* now x < 2p */
- if (((hx-hp)|(lx-lp))==0) return zero*x;
- x = fabs(x);
- p = fabs(p);
- if (hp<0x00200000) {
- if(x+x>p) {
- x-=p;
- if(x+x>=p) x -= p;
- }
- } else {
- p_half = 0.5*p;
- if(x>p_half) {
- x-=p;
- if(x>=p_half) x -= p;
- }
- }
- GET_HIGH_WORD(hx,x);
- SET_HIGH_WORD(x,hx^sx);
- return x;
+ } /* (kx<0x7ff00000&&ky<0x7ff00000&&ky>=0x03500000) */
+ else {
+ if (kx<0x7ff00000&&ky<0x7ff00000&&(ky>0||t.i[LOW_HALF]!=0)) {
+ y=ABS(y)*t128.x;
+ z=uremainder(x,y)*t128.x;
+ z=uremainder(z,y)*tm128.x;
+ return z;
+ }
+ else { /* if x is too big */
+ if (kx>=0x7ff00000||(ky==0&&t.i[LOW_HALF]==0)||ky>0x7ff00000||
+ (ky==0x7ff00000&&t.i[LOW_HALF]!=0))
+ return (u.i[HIGH_HALF]&0x80000000)?nNAN.x:NAN.x;
+ else return x;
+ }
+ }
}