From 30aa57851a93d6efd6493c5a29cf82f58083bdf4 Mon Sep 17 00:00:00 2001 From: Ulrich Drepper Date: Tue, 12 Sep 2006 11:44:01 +0000 Subject: [BZ #2526, BZ #3138, BZ #3143] 2006-09-12 Jakub Jelinek [BZ #2526] * README.libm: Fix a thinko in sqrt algorithm description. [BZ #3143] * manual/string.texi (argz_delete): Fix prototype. Patch by . 2006-08-26 Joseph Myers [BZ #3138] * io/test-lfs.c (do_prepare): Give name_len type size_t. * io/tst-fcntl.c (do_prepare): Likewise. * posix/tst-exec.c (do_prepare): Likewise. * posix/tst-preadwrite.c (do_prepare): Likewise. * posix/tst-spawn.c (do_prepare): Likewise. * posix/tst-truncate.c (do_prepare): Likewise. * rt/tst-aio.c (do_prepare): Likewise. * rt/tst-aio64.c (do_prepare): Likewise. * stdlib/test-canon2.c (do_prepare): Give test_dir_len type size_t. --- README.libm | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'README.libm') diff --git a/README.libm b/README.libm index 33ace8c065..f058cf846c 100644 --- a/README.libm +++ b/README.libm @@ -486,7 +486,7 @@ sqrt * Bit by bit method using integer arithmetic. (Slow, but portable) * 1. Normalization * Scale x to y in [1,4) with even powers of 2: - * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then + * find an integer k such that 1 <= (y=x*2^(-2k)) < 4, then * sqrt(x) = 2^k * sqrt(y) * 2. Bit by bit computation * Let q = sqrt(y) truncated to i bit after binary point (q = 1), -- cgit v1.2.1