/* Complex sine hyperbole function for double. Copyright (C) 1997-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see <http://www.gnu.org/licenses/>. */ #include <complex.h> #include <fenv.h> #include <math.h> #include <math_private.h> #include <float.h> __complex__ double __csinh (__complex__ double x) { __complex__ double retval; int negate = signbit (__real__ x); int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); __real__ x = fabs (__real__ x); if (__glibc_likely (rcls >= FP_ZERO)) { /* Real part is finite. */ if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2); double sinix, cosix; if (__glibc_likely (fabs (__imag__ x) > DBL_MIN)) { __sincos (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0; } if (negate) cosix = -cosix; if (fabs (__real__ x) > t) { double exp_t = __ieee754_exp (t); double rx = fabs (__real__ x); if (signbit (__real__ x)) cosix = -cosix; rx -= t; sinix *= exp_t / 2.0; cosix *= exp_t / 2.0; if (rx > t) { rx -= t; sinix *= exp_t; cosix *= exp_t; } if (rx > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = DBL_MAX * cosix; __imag__ retval = DBL_MAX * sinix; } else { double exp_val = __ieee754_exp (rx); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } } else { __real__ retval = __ieee754_sinh (__real__ x) * cosix; __imag__ retval = __ieee754_cosh (__real__ x) * sinix; } math_check_force_underflow_complex (retval); } else { if (rcls == FP_ZERO) { /* Real part is 0.0. */ __real__ retval = __copysign (0.0, negate ? -1.0 : 1.0); __imag__ retval = __nan ("") + __nan (""); if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } else { __real__ retval = __nan (""); __imag__ retval = __nan (""); feraiseexcept (FE_INVALID); } } } else if (rcls == FP_INFINITE) { /* Real part is infinite. */ if (__glibc_likely (icls > FP_ZERO)) { /* Imaginary part is finite. */ double sinix, cosix; if (__glibc_likely (fabs (__imag__ x) > DBL_MIN)) { __sincos (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1.0; } __real__ retval = __copysign (HUGE_VAL, cosix); __imag__ retval = __copysign (HUGE_VAL, sinix); if (negate) __real__ retval = -__real__ retval; } else if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = negate ? -HUGE_VAL : HUGE_VAL; __imag__ retval = __imag__ x; } else { /* The addition raises the invalid exception. */ __real__ retval = HUGE_VAL; __imag__ retval = __nan ("") + __nan (""); if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } } else { __real__ retval = __nan (""); __imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nan (""); } return retval; } weak_alias (__csinh, csinh) #ifdef NO_LONG_DOUBLE strong_alias (__csinh, __csinhl) weak_alias (__csinh, csinhl) #endif