/* * IBM Accurate Mathematical Library * Written by International Business Machines Corp. * Copyright (C) 2001-2013 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see . */ /************************************************************************/ /* MODULE_NAME: mpa.h */ /* */ /* FUNCTIONS: */ /* mcr */ /* acr */ /* cpy */ /* mp_dbl */ /* dbl_mp */ /* add */ /* sub */ /* mul */ /* dvd */ /* */ /* Arithmetic functions for multiple precision numbers. */ /* Common types and definition */ /************************************************************************/ #include /* The mp_no structure holds the details of a multi-precision floating point number. - The radix of the number (R) is 2 ^ 24. - E: The exponent of the number. - D[0]: The sign (-1, 1) or 0 if the value is 0. In the latter case, the values of the remaining members of the structure are ignored. - D[1] - D[p]: The mantissa of the number where: 0 <= D[i] < R and P is the precision of the number and 1 <= p <= 32 D[p+1] ... D[39] have no significance. - The value of the number is: D[1] * R ^ (E - 1) + D[2] * R ^ (E - 2) ... D[p] * R ^ (E - p) */ typedef struct { int e; mantissa_t d[40]; } mp_no; typedef union { int i[2]; double d; } number; extern const mp_no mpone; extern const mp_no mptwo; #define X x->d #define Y y->d #define Z z->d #define EX x->e #define EY y->e #define EZ z->e #define ABS(x) ((x) < 0 ? -(x) : (x)) #ifndef RADIXI # define RADIXI 0x1.0p-24 /* 2^-24 */ #endif #ifndef TWO52 # define TWO52 0x1.0p52 /* 2^52 */ #endif #define TWO 2.0 /* 2 */ #define TWO5 TWOPOW (5) /* 2^5 */ #define TWO8 TWOPOW (8) /* 2^52 */ #define TWO10 TWOPOW (10) /* 2^10 */ #define TWO18 TWOPOW (18) /* 2^18 */ #define TWO19 TWOPOW (19) /* 2^19 */ #define TWO23 TWOPOW (23) /* 2^23 */ #define HALFRAD TWO23 #define TWO57 0x1.0p57 /* 2^57 */ #define TWO71 0x1.0p71 /* 2^71 */ #define TWOM1032 0x1.0p-1032 /* 2^-1032 */ #define TWOM1022 0x1.0p-1022 /* 2^-1022 */ #define HALF 0x1.0p-1 /* 1/2 */ #define MHALF -0x1.0p-1 /* -1/2 */ int __acr (const mp_no *, const mp_no *, int); void __cpy (const mp_no *, mp_no *, int); void __mp_dbl (const mp_no *, double *, int); void __dbl_mp (double, mp_no *, int); void __add (const mp_no *, const mp_no *, mp_no *, int); void __sub (const mp_no *, const mp_no *, mp_no *, int); void __mul (const mp_no *, const mp_no *, mp_no *, int); void __sqr (const mp_no *, mp_no *, int); void __dvd (const mp_no *, const mp_no *, mp_no *, int); extern void __mpatan (mp_no *, mp_no *, int); extern void __mpatan2 (mp_no *, mp_no *, mp_no *, int); extern void __mpsqrt (mp_no *, mp_no *, int); extern void __mpexp (mp_no *, mp_no *, int); extern void __c32 (mp_no *, mp_no *, mp_no *, int); extern int __mpranred (double, mp_no *, int); /* Given a power POW, build a multiprecision number 2^POW. */ static inline void __pow_mp (int pow, mp_no *y, int p) { int i, rem; /* The exponent is E such that E is a factor of 2^24. The remainder (of the form 2^x) goes entirely into the first digit of the mantissa as it is always less than 2^24. */ EY = pow / 24; rem = pow - EY * 24; EY++; /* If the remainder is negative, it means that POW was negative since |EY * 24| <= |pow|. Adjust so that REM is positive and still less than 24 because of which, the mantissa digit is less than 2^24. */ if (rem < 0) { EY--; rem += 24; } /* The sign of any 2^x is always positive. */ Y[0] = 1; Y[1] = 1 << rem; /* Everything else is 0. */ for (i = 2; i <= p; i++) Y[i] = 0; }