/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001-2018 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see <http://www.gnu.org/licenses/>. */ /****************************************************************************/ /* MODULE_NAME:mpsqrt.c */ /* */ /* FUNCTION:mpsqrt */ /* fastiroot */ /* */ /* FILES NEEDED:endian.h mpa.h mpsqrt.h */ /* mpa.c */ /* Multi-Precision square root function subroutine for precision p >= 4. */ /* The relative error is bounded by 3.501*r**(1-p), where r=2**24. */ /* */ /****************************************************************************/ #include "endian.h" #include "mpa.h" #ifndef SECTION # define SECTION #endif #include "mpsqrt.h" /****************************************************************************/ /* Multi-Precision square root function subroutine for precision p >= 4. */ /* The relative error is bounded by 3.501*r**(1-p), where r=2**24. */ /* Routine receives two pointers to Multi Precision numbers: */ /* x (left argument) and y (next argument). Routine also receives precision */ /* p as integer. Routine computes sqrt(*x) and stores result in *y */ /****************************************************************************/ static double fastiroot (double); void SECTION __mpsqrt (mp_no *x, mp_no *y, int p) { int i, m, ey; double dx, dy; static const mp_no mphalf = {0, {1.0, HALFRAD}}; static const mp_no mp3halfs = {1, {1.0, 1.0, HALFRAD}}; mp_no mpxn, mpz, mpu, mpt1, mpt2; ey = EX / 2; __cpy (x, &mpxn, p); mpxn.e -= (ey + ey); __mp_dbl (&mpxn, &dx, p); dy = fastiroot (dx); __dbl_mp (dy, &mpu, p); __mul (&mpxn, &mphalf, &mpz, p); m = __mpsqrt_mp[p]; for (i = 0; i < m; i++) { __sqr (&mpu, &mpt1, p); __mul (&mpt1, &mpz, &mpt2, p); __sub (&mp3halfs, &mpt2, &mpt1, p); __mul (&mpu, &mpt1, &mpt2, p); __cpy (&mpt2, &mpu, p); } __mul (&mpxn, &mpu, y, p); EY += ey; } /***********************************************************/ /* Compute a double precision approximation for 1/sqrt(x) */ /* with the relative error bounded by 2**-51. */ /***********************************************************/ static double SECTION fastiroot (double x) { union { int i[2]; double d; } p, q; double y, z, t; int n; static const double c0 = 0.99674, c1 = -0.53380; static const double c2 = 0.45472, c3 = -0.21553; p.d = x; p.i[HIGH_HALF] = (p.i[HIGH_HALF] & 0x3FFFFFFF) | 0x3FE00000; q.d = x; y = p.d; z = y - 1.0; n = (q.i[HIGH_HALF] - p.i[HIGH_HALF]) >> 1; z = ((c3 * z + c2) * z + c1) * z + c0; /* 2**-7 */ z = z * (1.5 - 0.5 * y * z * z); /* 2**-14 */ p.d = z * (1.5 - 0.5 * y * z * z); /* 2**-28 */ p.i[HIGH_HALF] -= n; t = x * p.d; return p.d * (1.5 - 0.5 * p.d * t); }