/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001-2020 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see . */ /****************************************************************/ /* MODULE_NAME: sincos32.c */ /* */ /* FUNCTIONS: ss32 */ /* cc32 */ /* c32 */ /* sin32 */ /* cos32 */ /* mpsin */ /* mpcos */ /* mpranred */ /* mpsin1 */ /* mpcos1 */ /* */ /* FILES NEEDED: endian.h mpa.h sincos32.h */ /* mpa.c */ /* */ /* Multi Precision sin() and cos() function with p=32 for sin()*/ /* cos() arcsin() and arccos() routines */ /* In addition mpranred() routine performs range reduction of */ /* a double number x into multi precision number y, */ /* such that y=x-n*pi/2, abs(y) #include #include #ifndef SECTION # define SECTION #endif /* Compute Multi-Precision sin() function for given p. Receive Multi Precision number x and result stored at y. */ static void SECTION ss32 (mp_no *x, mp_no *y, int p) { int i; double a; mp_no mpt1, x2, gor, sum, mpk = {1, {1.0}}; for (i = 1; i <= p; i++) mpk.d[i] = 0; __sqr (x, &x2, p); __cpy (&oofac27, &gor, p); __cpy (&gor, &sum, p); for (a = 27.0; a > 1.0; a -= 2.0) { mpk.d[1] = a * (a - 1.0); __mul (&gor, &mpk, &mpt1, p); __cpy (&mpt1, &gor, p); __mul (&x2, &sum, &mpt1, p); __sub (&gor, &mpt1, &sum, p); } __mul (x, &sum, y, p); } /* Compute Multi-Precision cos() function for given p. Receive Multi Precision number x and result stored at y. */ static void SECTION cc32 (mp_no *x, mp_no *y, int p) { int i; double a; mp_no mpt1, x2, gor, sum, mpk = {1, {1.0}}; for (i = 1; i <= p; i++) mpk.d[i] = 0; __sqr (x, &x2, p); mpk.d[1] = 27.0; __mul (&oofac27, &mpk, &gor, p); __cpy (&gor, &sum, p); for (a = 26.0; a > 2.0; a -= 2.0) { mpk.d[1] = a * (a - 1.0); __mul (&gor, &mpk, &mpt1, p); __cpy (&mpt1, &gor, p); __mul (&x2, &sum, &mpt1, p); __sub (&gor, &mpt1, &sum, p); } __mul (&x2, &sum, y, p); } /* Compute both sin(x), cos(x) as Multi precision numbers. */ void SECTION __c32 (mp_no *x, mp_no *y, mp_no *z, int p) { mp_no u, t, t1, t2, c, s; int i; __cpy (x, &u, p); u.e = u.e - 1; cc32 (&u, &c, p); ss32 (&u, &s, p); for (i = 0; i < 24; i++) { __mul (&c, &s, &t, p); __sub (&s, &t, &t1, p); __add (&t1, &t1, &s, p); __sub (&__mptwo, &c, &t1, p); __mul (&t1, &c, &t2, p); __add (&t2, &t2, &c, p); } __sub (&__mpone, &c, y, p); __cpy (&s, z, p); } /* Compute sin() of double-length number (X + DX) as Multi Precision number and return result as double. If REDUCE_RANGE is true, X is assumed to be the original input and DX is ignored. */ double SECTION __mpsin (double x, double dx, bool reduce_range) { double y; mp_no a, b, c, s; int n; int p = 32; if (reduce_range) { n = __mpranred (x, &a, p); /* n is 0, 1, 2 or 3. */ __c32 (&a, &c, &s, p); } else { n = -1; __dbl_mp (x, &b, p); __dbl_mp (dx, &c, p); __add (&b, &c, &a, p); if (x > 0.8) { __sub (&hp, &a, &b, p); __c32 (&b, &s, &c, p); } else __c32 (&a, &c, &s, p); /* b = sin(x+dx) */ } /* Convert result based on which quarter of unit circle y is in. */ switch (n) { case 1: __mp_dbl (&c, &y, p); break; case 3: __mp_dbl (&c, &y, p); y = -y; break; case 2: __mp_dbl (&s, &y, p); y = -y; break; /* Quadrant not set, so the result must be sin (X + DX), which is also in S. */ case 0: default: __mp_dbl (&s, &y, p); } LIBC_PROBE (slowsin, 3, &x, &dx, &y); return y; } /* Compute cos() of double-length number (X + DX) as Multi Precision number and return result as double. If REDUCE_RANGE is true, X is assumed to be the original input and DX is ignored. */ double SECTION __mpcos (double x, double dx, bool reduce_range) { double y; mp_no a, b, c, s; int n; int p = 32; if (reduce_range) { n = __mpranred (x, &a, p); /* n is 0, 1, 2 or 3. */ __c32 (&a, &c, &s, p); } else { n = -1; __dbl_mp (x, &b, p); __dbl_mp (dx, &c, p); __add (&b, &c, &a, p); if (x > 0.8) { __sub (&hp, &a, &b, p); __c32 (&b, &s, &c, p); } else __c32 (&a, &c, &s, p); /* a = cos(x+dx) */ } /* Convert result based on which quarter of unit circle y is in. */ switch (n) { case 1: __mp_dbl (&s, &y, p); y = -y; break; case 3: __mp_dbl (&s, &y, p); break; case 2: __mp_dbl (&c, &y, p); y = -y; break; /* Quadrant not set, so the result must be cos (X + DX), which is also stored in C. */ case 0: default: __mp_dbl (&c, &y, p); } LIBC_PROBE (slowcos, 3, &x, &dx, &y); return y; } /* Perform range reduction of a double number x into multi precision number y, such that y = x - n * pi / 2, abs (y) < pi / 4, n = 0, +-1, +-2, ... Return int which indicates in which quarter of circle x is. */ int SECTION __mpranred (double x, mp_no *y, int p) { number v; double t, xn; int i, k, n; mp_no a, b, c; if (fabs (x) < 2.8e14) { t = (x * hpinv.d + toint.d); xn = t - toint.d; v.d = t; n = v.i[LOW_HALF] & 3; __dbl_mp (xn, &a, p); __mul (&a, &hp, &b, p); __dbl_mp (x, &c, p); __sub (&c, &b, y, p); return n; } else { /* If x is very big more precision required. */ __dbl_mp (x, &a, p); a.d[0] = 1.0; k = a.e - 5; if (k < 0) k = 0; b.e = -k; b.d[0] = 1.0; for (i = 0; i < p; i++) b.d[i + 1] = toverp[i + k]; __mul (&a, &b, &c, p); t = c.d[c.e]; for (i = 1; i <= p - c.e; i++) c.d[i] = c.d[i + c.e]; for (i = p + 1 - c.e; i <= p; i++) c.d[i] = 0; c.e = 0; if (c.d[1] >= HALFRAD) { t += 1.0; __sub (&c, &__mpone, &b, p); __mul (&b, &hp, y, p); } else __mul (&c, &hp, y, p); n = (int) t; if (x < 0) { y->d[0] = -y->d[0]; n = -n; } return (n & 3); } }