/* Pythagorean addition using doubles Copyright (C) 2011-2016 Free Software Foundation, Inc. This file is part of the GNU C Library Contributed by Adhemerval Zanella , 2011 The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, see . */ #include #include #include static const double two60 = 1.152921504606847e+18; static const double two500 = 3.2733906078961419e+150; static const double two600 = 4.149515568880993e+180; static const double two1022 = 4.49423283715579e+307; static const double twoM500 = 3.054936363499605e-151; static const double twoM600 = 2.4099198651028841e-181; static const double two60factor = 1.5592502418239997e+290; static const double pdnum = 2.225073858507201e-308; /* __ieee754_hypot(x,y) * * This a FP only version without any FP->INT conversion. * It is similar to default C version, making appropriates * overflow and underflows checks as well scaling when it * is needed. */ #ifdef _ARCH_PWR7 /* POWER7 isinf and isnan optimization are fast. */ # define TEST_INF_NAN(x, y) \ if ((isinf(x) || isinf(y)) \ && !issignaling (x) && !issignaling (y)) \ return INFINITY; \ if (isnan(x) || isnan(y)) \ return x + y; # else /* For POWER6 and below isinf/isnan triggers LHS and PLT calls are * costly (especially for POWER6). */ # define GET_TW0_HIGH_WORD(d1,d2,i1,i2) \ do { \ ieee_double_shape_type gh_u1; \ ieee_double_shape_type gh_u2; \ gh_u1.value = (d1); \ gh_u2.value = (d2); \ (i1) = gh_u1.parts.msw & 0x7fffffff; \ (i2) = gh_u2.parts.msw & 0x7fffffff; \ } while (0) # define TEST_INF_NAN(x, y) \ do { \ uint32_t hx, hy; \ GET_TW0_HIGH_WORD(x, y, hx, hy); \ if (hy > hx) { \ uint32_t ht = hx; hx = hy; hy = ht; \ } \ if (hx >= 0x7ff00000) { \ if ((hx == 0x7ff00000 || hy == 0x7ff00000) \ && !issignaling (x) && !issignaling (y)) \ return INFINITY; \ return x + y; \ } \ } while (0) #endif double __ieee754_hypot (double x, double y) { x = fabs (x); y = fabs (y); TEST_INF_NAN (x, y); if (y > x) { double t = x; x = y; y = t; } if (y == 0.0) return x; /* if y is higher enough, y * 2^60 might overflow. The tests if y >= 1.7976931348623157e+308/2^60 (two60factor) and uses the appropriate check to avoid the overflow exception generation. */ if (y > two60factor) { if ((x / y) > two60) return x + y; } else { if (x > (y * two60)) return x + y; } if (x > two500) { x *= twoM600; y *= twoM600; return __ieee754_sqrt (x * x + y * y) / twoM600; } if (y < twoM500) { if (y <= pdnum) { x *= two1022; y *= two1022; double ret = __ieee754_sqrt (x * x + y * y) / two1022; math_check_force_underflow_nonneg (ret); return ret; } else { x *= two600; y *= two600; return __ieee754_sqrt (x * x + y * y) / two600; } } return __ieee754_sqrt (x * x + y * y); } strong_alias (__ieee754_hypot, __hypot_finite)