summaryrefslogtreecommitdiff
path: root/linuxthreads/spinlock.c
blob: 47107bf9ee11f14efacbe18063200072af241153 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
/* Linuxthreads - a simple clone()-based implementation of Posix        */
/* threads for Linux.                                                   */
/* Copyright (C) 1998 Xavier Leroy (Xavier.Leroy@inria.fr)              */
/*                                                                      */
/* This program is free software; you can redistribute it and/or        */
/* modify it under the terms of the GNU Library General Public License  */
/* as published by the Free Software Foundation; either version 2       */
/* of the License, or (at your option) any later version.               */
/*                                                                      */
/* This program is distributed in the hope that it will be useful,      */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of       */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the        */
/* GNU Library General Public License for more details.                 */

/* Internal locks */

#include <errno.h>
#include <sched.h>
#include <time.h>
#include <stdlib.h>
#include <limits.h>
#include "pthread.h"
#include "internals.h"
#include "spinlock.h"
#include "restart.h"

static void __pthread_acquire(int * spinlock);

static inline void __pthread_release(int * spinlock)
{
  WRITE_MEMORY_BARRIER();
  *spinlock = __LT_SPINLOCK_INIT;
  __asm __volatile ("" : "=m" (*spinlock) : "0" (*spinlock));
}


/* The status field of a spinlock is a pointer whose least significant
   bit is a locked flag.

   Thus the field values have the following meanings:

   status == 0:       spinlock is free
   status == 1:       spinlock is taken; no thread is waiting on it

   (status & 1) == 1: spinlock is taken and (status & ~1L) is a
                      pointer to the first waiting thread; other
		      waiting threads are linked via the p_nextlock
		      field.
   (status & 1) == 0: same as above, but spinlock is not taken.

   The waiting list is not sorted by priority order.
   Actually, we always insert at top of list (sole insertion mode
   that can be performed without locking).
   For __pthread_unlock, we perform a linear search in the list
   to find the highest-priority, oldest waiting thread.
   This is safe because there are no concurrent __pthread_unlock
   operations -- only the thread that locked the mutex can unlock it. */


void internal_function __pthread_lock(struct _pthread_fastlock * lock,
				      pthread_descr self)
{
#if defined HAS_COMPARE_AND_SWAP
  long oldstatus, newstatus;
  int successful_seizure, spurious_wakeup_count;
  int spin_count;
#endif

#if defined TEST_FOR_COMPARE_AND_SWAP
  if (!__pthread_has_cas)
#endif
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
  {
    __pthread_acquire(&lock->__spinlock);
    return;
  }
#endif

#if defined HAS_COMPARE_AND_SWAP
  /* First try it without preparation.  Maybe it's a completely
     uncontested lock.  */
  if (lock->__status == 0 && __compare_and_swap (&lock->__status, 0, 1))
    return;

  spurious_wakeup_count = 0;
  spin_count = 0;

  /* On SMP, try spinning to get the lock. */

  if (__pthread_smp_kernel) {
    int max_count = lock->__spinlock * 2 + 10;

    if (max_count > MAX_ADAPTIVE_SPIN_COUNT)
      max_count = MAX_ADAPTIVE_SPIN_COUNT;

    for (spin_count = 0; spin_count < max_count; spin_count++) {
      if (((oldstatus = lock->__status) & 1) == 0) {
	if(__compare_and_swap(&lock->__status, oldstatus, oldstatus | 1))
	{
	  if (spin_count)
	    lock->__spinlock += (spin_count - lock->__spinlock) / 8;
	  READ_MEMORY_BARRIER();
	  return;
	}
      }
#ifdef BUSY_WAIT_NOP
      BUSY_WAIT_NOP;
#endif
      __asm __volatile ("" : "=m" (lock->__status) : "0" (lock->__status));
    }

    lock->__spinlock += (spin_count - lock->__spinlock) / 8;
  }

again:

  /* No luck, try once more or suspend. */

  do {
    oldstatus = lock->__status;
    successful_seizure = 0;

    if ((oldstatus & 1) == 0) {
      newstatus = oldstatus | 1;
      successful_seizure = 1;
    } else {
      if (self == NULL)
	self = thread_self();
      newstatus = (long) self | 1;
    }

    if (self != NULL) {
      THREAD_SETMEM(self, p_nextlock, (pthread_descr) (oldstatus));
      /* Make sure the store in p_nextlock completes before performing
         the compare-and-swap */
      MEMORY_BARRIER();
    }
  } while(! __compare_and_swap(&lock->__status, oldstatus, newstatus));

  /* Suspend with guard against spurious wakeup.
     This can happen in pthread_cond_timedwait_relative, when the thread
     wakes up due to timeout and is still on the condvar queue, and then
     locks the queue to remove itself. At that point it may still be on the
     queue, and may be resumed by a condition signal. */

  if (!successful_seizure) {
    for (;;) {
      suspend(self);
      if (self->p_nextlock != NULL) {
	/* Count resumes that don't belong to us. */
	spurious_wakeup_count++;
	continue;
      }
      break;
    }
    goto again;
  }

  /* Put back any resumes we caught that don't belong to us. */
  while (spurious_wakeup_count--)
    restart(self);

  READ_MEMORY_BARRIER();
#endif
}

int __pthread_unlock(struct _pthread_fastlock * lock)
{
#if defined HAS_COMPARE_AND_SWAP
  long oldstatus;
  pthread_descr thr, * ptr, * maxptr;
  int maxprio;
#endif

#if defined TEST_FOR_COMPARE_AND_SWAP
  if (!__pthread_has_cas)
#endif
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
  {
    __pthread_release(&lock->__spinlock);
    return 0;
  }
#endif

#if defined HAS_COMPARE_AND_SWAP
  WRITE_MEMORY_BARRIER();

again:
  while ((oldstatus = lock->__status) == 1) {
    if (__compare_and_swap_with_release_semantics(&lock->__status,
	oldstatus, 0))
      return 0;
  }

  /* Find thread in waiting queue with maximal priority */
  ptr = (pthread_descr *) &lock->__status;
  thr = (pthread_descr) (oldstatus & ~1L);
  maxprio = 0;
  maxptr = ptr;

  /* Before we iterate over the wait queue, we need to execute
     a read barrier, otherwise we may read stale contents of nodes that may
     just have been inserted by other processors. One read barrier is enough to
     ensure we have a stable list; we don't need one for each pointer chase
     through the list, because we are the owner of the lock; other threads
     can only add nodes at the front; if a front node is consistent,
     the ones behind it must also be. */

  READ_MEMORY_BARRIER();

  while (thr != 0) {
    if (thr->p_priority >= maxprio) {
      maxptr = ptr;
      maxprio = thr->p_priority;
    }
    ptr = &(thr->p_nextlock);
    thr = (pthread_descr)((long)(thr->p_nextlock) & ~1L);
  }

  /* Remove max prio thread from waiting list. */
  if (maxptr == (pthread_descr *) &lock->__status) {
    /* If max prio thread is at head, remove it with compare-and-swap
       to guard against concurrent lock operation. This removal
       also has the side effect of marking the lock as released
       because the new status comes from thr->p_nextlock whose
       least significant bit is clear. */
    thr = (pthread_descr) (oldstatus & ~1L);
    if (! __compare_and_swap_with_release_semantics
	    (&lock->__status, oldstatus, (long)(thr->p_nextlock) & ~1L))
      goto again;
  } else {
    /* No risk of concurrent access, remove max prio thread normally.
       But in this case we must also flip the least significant bit
       of the status to mark the lock as released. */
    thr = (pthread_descr)((long)*maxptr & ~1L);
    *maxptr = thr->p_nextlock;

    /* Ensure deletion from linked list completes before we
       release the lock. */
    WRITE_MEMORY_BARRIER();

    do {
      oldstatus = lock->__status;
    } while (!__compare_and_swap_with_release_semantics(&lock->__status,
	     oldstatus, oldstatus & ~1L));
  }

  /* Wake up the selected waiting thread. Woken thread can check
     its own p_nextlock field for NULL to detect that it has been removed. No
     barrier is needed here, since restart() and suspend() take
     care of memory synchronization. */

  thr->p_nextlock = NULL;
  restart(thr);

  return 0;
#endif
}

/*
 * Alternate fastlocks do not queue threads directly. Instead, they queue
 * these wait queue node structures. When a timed wait wakes up due to
 * a timeout, it can leave its wait node in the queue (because there
 * is no safe way to remove from the quue). Some other thread will
 * deallocate the abandoned node.
 */


struct wait_node {
  struct wait_node *next;	/* Next node in null terminated linked list */
  pthread_descr thr;		/* The thread waiting with this node */
  int abandoned;		/* Atomic flag */
};

static long wait_node_free_list;
static int wait_node_free_list_spinlock;

/* Allocate a new node from the head of the free list using an atomic
   operation, or else using malloc if that list is empty.  A fundamental
   assumption here is that we can safely access wait_node_free_list->next.
   That's because we never free nodes once we allocate them, so a pointer to a
   node remains valid indefinitely. */

static struct wait_node *wait_node_alloc(void)
{
    struct wait_node *new_node = 0;

    __pthread_acquire(&wait_node_free_list_spinlock);
    if (wait_node_free_list != 0) {
      new_node = (struct wait_node *) wait_node_free_list;
      wait_node_free_list = (long) new_node->next;
    }
    WRITE_MEMORY_BARRIER();
    __pthread_release(&wait_node_free_list_spinlock);

    if (new_node == 0)
      return malloc(sizeof *wait_node_alloc());

    return new_node;
}

/* Return a node to the head of the free list using an atomic
   operation. */

static void wait_node_free(struct wait_node *wn)
{
    __pthread_acquire(&wait_node_free_list_spinlock);
    wn->next = (struct wait_node *) wait_node_free_list;
    wait_node_free_list = (long) wn;
    WRITE_MEMORY_BARRIER();
    __pthread_release(&wait_node_free_list_spinlock);
    return;
}

#if defined HAS_COMPARE_AND_SWAP

/* Remove a wait node from the specified queue.  It is assumed
   that the removal takes place concurrently with only atomic insertions at the
   head of the queue. */

static void wait_node_dequeue(struct wait_node **pp_head,
			      struct wait_node **pp_node,
			      struct wait_node *p_node)
{
  /* If the node is being deleted from the head of the
     list, it must be deleted using atomic compare-and-swap.
     Otherwise it can be deleted in the straightforward way. */

  if (pp_node == pp_head) {
    /* We don't need a read barrier between these next two loads,
       because it is assumed that the caller has already ensured
       the stability of *p_node with respect to p_node. */

    long oldvalue = (long) p_node;
    long newvalue = (long) p_node->next;

    if (__compare_and_swap((long *) pp_node, oldvalue, newvalue))
      return;

    /* Oops! Compare and swap failed, which means the node is
       no longer first. We delete it using the ordinary method.  But we don't
       know the identity of the node which now holds the pointer to the node
       being deleted, so we must search from the beginning. */

    for (pp_node = pp_head; p_node != *pp_node; ) {
      pp_node = &(*pp_node)->next;
      READ_MEMORY_BARRIER(); /* Stabilize *pp_node for next iteration. */
    }
  }

  *pp_node = p_node->next;
  return;
}

#endif

void __pthread_alt_lock(struct _pthread_fastlock * lock,
		        pthread_descr self)
{
#if defined HAS_COMPARE_AND_SWAP
  long oldstatus, newstatus;
#endif
  struct wait_node wait_node;

#if defined TEST_FOR_COMPARE_AND_SWAP
  if (!__pthread_has_cas)
#endif
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
  {
    int suspend_needed = 0;
    __pthread_acquire(&lock->__spinlock);

    if (lock->__status == 0)
      lock->__status = 1;
    else {
      if (self == NULL)
	self = thread_self();

      wait_node.abandoned = 0;
      wait_node.next = (struct wait_node *) lock->__status;
      wait_node.thr = self;
      lock->__status = (long) &wait_node;
      suspend_needed = 1;
    }

    __pthread_release(&lock->__spinlock);

    if (suspend_needed)
      suspend (self);
    return;
  }
#endif

#if defined HAS_COMPARE_AND_SWAP
  do {
    oldstatus = lock->__status;
    if (oldstatus == 0) {
      newstatus = 1;
    } else {
      if (self == NULL)
	self = thread_self();
      wait_node.thr = self;
      newstatus = (long) &wait_node;
    }
    wait_node.abandoned = 0;
    wait_node.next = (struct wait_node *) oldstatus;
    /* Make sure the store in wait_node.next completes before performing
       the compare-and-swap */
    MEMORY_BARRIER();
  } while(! __compare_and_swap(&lock->__status, oldstatus, newstatus));

  /* Suspend. Note that unlike in __pthread_lock, we don't worry
     here about spurious wakeup. That's because this lock is not
     used in situations where that can happen; the restart can
     only come from the previous lock owner. */

  if (oldstatus != 0)
    suspend(self);

  READ_MEMORY_BARRIER();
#endif
}

/* Timed-out lock operation; returns 0 to indicate timeout. */

int __pthread_alt_timedlock(struct _pthread_fastlock * lock,
			    pthread_descr self, const struct timespec *abstime)
{
  long oldstatus = 0;
#if defined HAS_COMPARE_AND_SWAP
  long newstatus;
#endif
  struct wait_node *p_wait_node = wait_node_alloc();

  /* Out of memory, just give up and do ordinary lock. */
  if (p_wait_node == 0) {
    __pthread_alt_lock(lock, self);
    return 1;
  }

#if defined TEST_FOR_COMPARE_AND_SWAP
  if (!__pthread_has_cas)
#endif
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
  {
    __pthread_acquire(&lock->__spinlock);

    if (lock->__status == 0)
      lock->__status = 1;
    else {
      if (self == NULL)
	self = thread_self();

      p_wait_node->abandoned = 0;
      p_wait_node->next = (struct wait_node *) lock->__status;
      p_wait_node->thr = self;
      lock->__status = (long) p_wait_node;
      oldstatus = 1; /* force suspend */
    }

    __pthread_release(&lock->__spinlock);
    goto suspend;
  }
#endif

#if defined HAS_COMPARE_AND_SWAP
  do {
    oldstatus = lock->__status;
    if (oldstatus == 0) {
      newstatus = 1;
    } else {
      if (self == NULL)
	self = thread_self();
      p_wait_node->thr = self;
      newstatus = (long) p_wait_node;
    }
    p_wait_node->abandoned = 0;
    p_wait_node->next = (struct wait_node *) oldstatus;
    /* Make sure the store in wait_node.next completes before performing
       the compare-and-swap */
    MEMORY_BARRIER();
  } while(! __compare_and_swap(&lock->__status, oldstatus, newstatus));
#endif

#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
  suspend:
#endif

  /* If we did not get the lock, do a timed suspend. If we wake up due
     to a timeout, then there is a race; the old lock owner may try
     to remove us from the queue. This race is resolved by us and the owner
     doing an atomic testandset() to change the state of the wait node from 0
     to 1. If we succeed, then it's a timeout and we abandon the node in the
     queue. If we fail, it means the owner gave us the lock. */

  if (oldstatus != 0) {
    if (timedsuspend(self, abstime) == 0) {
      if (!testandset(&p_wait_node->abandoned))
	return 0; /* Timeout! */

      /* Eat oustanding resume from owner, otherwise wait_node_free() below
	 will race with owner's wait_node_dequeue(). */
      suspend(self);
    }
  }

  wait_node_free(p_wait_node);

  READ_MEMORY_BARRIER();

  return 1; /* Got the lock! */
}

void __pthread_alt_unlock(struct _pthread_fastlock *lock)
{
  struct wait_node *p_node, **pp_node, *p_max_prio, **pp_max_prio;
  struct wait_node ** const pp_head = (struct wait_node **) &lock->__status;
  int maxprio;

  WRITE_MEMORY_BARRIER();

#if defined TEST_FOR_COMPARE_AND_SWAP
  if (!__pthread_has_cas)
#endif
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
  {
    __pthread_acquire(&lock->__spinlock);
  }
#endif

  while (1) {

  /* If no threads are waiting for this lock, try to just
     atomically release it. */
#if defined TEST_FOR_COMPARE_AND_SWAP
    if (!__pthread_has_cas)
#endif
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
    {
      if (lock->__status == 0 || lock->__status == 1) {
	lock->__status = 0;
	break;
      }
    }
#endif

#if defined TEST_FOR_COMPARE_AND_SWAP
    else
#endif

#if defined HAS_COMPARE_AND_SWAP
    {
      long oldstatus = lock->__status;
      if (oldstatus == 0 || oldstatus == 1) {
	if (__compare_and_swap_with_release_semantics (&lock->__status, oldstatus, 0))
	  break;
	else
	  continue;
      }
    }
#endif

    /* Process the entire queue of wait nodes. Remove all abandoned
       wait nodes and put them into the global free queue, and
       remember the one unabandoned node which refers to the thread
       having the highest priority. */

    pp_max_prio = pp_node = pp_head;
    p_max_prio = p_node = *pp_head;
    maxprio = INT_MIN;

    READ_MEMORY_BARRIER(); /* Prevent access to stale data through p_node */

    while (p_node != (struct wait_node *) 1) {
      int prio;

      if (p_node->abandoned) {
	/* Remove abandoned node. */
#if defined TEST_FOR_COMPARE_AND_SWAP
	if (!__pthread_has_cas)
#endif
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
	  *pp_node = p_node->next;
#endif
#if defined TEST_FOR_COMPARE_AND_SWAP
	else
#endif
#if defined HAS_COMPARE_AND_SWAP
	  wait_node_dequeue(pp_head, pp_node, p_node);
#endif
	wait_node_free(p_node);
	/* Note that the next assignment may take us to the beginning
	   of the queue, to newly inserted nodes, if pp_node == pp_head.
	   In that case we need a memory barrier to stabilize the first of
	   these new nodes. */
	p_node = *pp_node;
	if (pp_node == pp_head)
	  READ_MEMORY_BARRIER(); /* No stale reads through p_node */
	continue;
      } else if ((prio = p_node->thr->p_priority) >= maxprio) {
	/* Otherwise remember it if its thread has a higher or equal priority
	   compared to that of any node seen thus far. */
	maxprio = prio;
	pp_max_prio = pp_node;
	p_max_prio = p_node;
      }

      /* This canno6 jump backward in the list, so no further read
         barrier is needed. */
      pp_node = &p_node->next;
      p_node = *pp_node;
    }

    /* If all threads abandoned, go back to top */
    if (maxprio == INT_MIN)
      continue;

    ASSERT (p_max_prio != (struct wait_node *) 1);

    /* Now we want to to remove the max priority thread's wait node from
       the list. Before we can do this, we must atomically try to change the
       node's abandon state from zero to nonzero. If we succeed, that means we
       have the node that we will wake up. If we failed, then it means the
       thread timed out and abandoned the node in which case we repeat the
       whole unlock operation. */

    if (!testandset(&p_max_prio->abandoned)) {
#if defined TEST_FOR_COMPARE_AND_SWAP
      if (!__pthread_has_cas)
#endif
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
	*pp_max_prio = p_max_prio->next;
#endif
#if defined TEST_FOR_COMPARE_AND_SWAP
      else
#endif
#if defined HAS_COMPARE_AND_SWAP
	wait_node_dequeue(pp_head, pp_max_prio, p_max_prio);
#endif
      restart(p_max_prio->thr);
      break;
    }
  }

#if defined TEST_FOR_COMPARE_AND_SWAP
  if (!__pthread_has_cas)
#endif
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
  {
    __pthread_release(&lock->__spinlock);
  }
#endif
}


/* Compare-and-swap emulation with a spinlock */

#ifdef TEST_FOR_COMPARE_AND_SWAP
int __pthread_has_cas = 0;
#endif

#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP

int __pthread_compare_and_swap(long * ptr, long oldval, long newval,
                               int * spinlock)
{
  int res;

  __pthread_acquire(spinlock);

  if (*ptr == oldval) {
    *ptr = newval; res = 1;
  } else {
    res = 0;
  }

  __pthread_release(spinlock);

  return res;
}

#endif

/* The retry strategy is as follows:
   - We test and set the spinlock MAX_SPIN_COUNT times, calling
     sched_yield() each time.  This gives ample opportunity for other
     threads with priority >= our priority to make progress and
     release the spinlock.
   - If a thread with priority < our priority owns the spinlock,
     calling sched_yield() repeatedly is useless, since we're preventing
     the owning thread from making progress and releasing the spinlock.
     So, after MAX_SPIN_LOCK attemps, we suspend the calling thread
     using nanosleep().  This again should give time to the owning thread
     for releasing the spinlock.
     Notice that the nanosleep() interval must not be too small,
     since the kernel does busy-waiting for short intervals in a realtime
     process (!).  The smallest duration that guarantees thread
     suspension is currently 2ms.
   - When nanosleep() returns, we try again, doing MAX_SPIN_COUNT
     sched_yield(), then sleeping again if needed. */

static void __pthread_acquire(int * spinlock)
{
  int cnt = 0;
  struct timespec tm;

  READ_MEMORY_BARRIER();

  while (testandset(spinlock)) {
    if (cnt < MAX_SPIN_COUNT) {
      sched_yield();
      cnt++;
    } else {
      tm.tv_sec = 0;
      tm.tv_nsec = SPIN_SLEEP_DURATION;
      nanosleep(&tm, NULL);
      cnt = 0;
    }
  }
}