summaryrefslogtreecommitdiff
path: root/math/mathcalls.h
blob: 13c33e8ebebc43d4db91fbe97bc3b2f2a72c34c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/* Prototype declarations for math functions; helper file for <math.h>.
   Copyright (C) 1996 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Library General Public License as
   published by the Free Software Foundation; either version 2 of the
   License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Library General Public License for more details.

   You should have received a copy of the GNU Library General Public
   License along with the GNU C Library; see the file COPYING.LIB.  If not,
   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

/* NOTE: Because of the special way this file is used by <math.h>, this
   file must NOT be protected from multiple inclusion as header files
   usually are.

   This file provides prototype declarations for the math functions.
   Most functions are declared using the macro:

   __MATHCALL (NAME,[_r], (ARGS...));

   This means there is a function `NAME' returning `double' and a function
   `NAMEf' returning `float'.  Each place `_Mdouble_' appears in the
   prototype, that is actually `double' in the prototype for `NAME' and
   `float' in the prototype for `NAMEf'.  Reentrant variant functions are
   called `NAME_r' and `NAMEf_r'.

   Functions returning other types like `int' are declared using the macro:

   __MATHDECL (TYPE, NAME,[_r], (ARGS...));

   This is just like __MATHCALL but for a function returning `TYPE'
   instead of `_Mdouble_'.  In all of these cases, there is still
   both a `NAME' and a `NAMEf' that takes `float' arguments.  */

#ifndef _MATH_H
 #error "Never include mathcalls.h directly; include <math.h> instead."
#endif


/* Trigonometric functions.  */

/* Arc cosine of X.  */
__MATHCALL (acos,, (_Mdouble_ __x));
/* Arc sine of X.  */
__MATHCALL (asin,, (_Mdouble_ __x));
/* Arc tangent of X.  */
__MATHCALL (atan,, (_Mdouble_ __x));
/* Arc tangent of Y/X.  */
__MATHCALL (atan2,, (_Mdouble_ __y, _Mdouble_ __x));

/* Cosine of X.  */
__MATHCALL (cos,, (_Mdouble_ __x));
/* Sine of X.  */
__MATHCALL (sin,, (_Mdouble_ __x));
/* Tangent of X.  */
__MATHCALL (tan,, (_Mdouble_ __x));


/* Hyperbolic functions.  */

/* Hyperbolic cosine of X.  */
__MATHCALL (cosh,, (_Mdouble_ __x));
/* Hyperbolic sine of X.  */
__MATHCALL (sinh,, (_Mdouble_ __x));
/* Hyperbolic tangent of X.  */
__MATHCALL (tanh,, (_Mdouble_ __x));

#if defined(__USE_MISC) || defined(__USE_XOPEN_EXTENDED)
/* Hyperbolic arc cosine of X.  */
__MATHCALL (acosh,, (_Mdouble_ __x));
/* Hyperbolic arc sine of X.  */
__MATHCALL (asinh,, (_Mdouble_ __x));
/* Hyperbolic arc tangent of X.  */
__MATHCALL (atanh,, (_Mdouble_ __x));
#endif

/* Exponential and logarithmic functions.  */

/* Exponentional function of X.  */
__MATHCALL (exp,, (_Mdouble_ __x));

/* Break VALUE into a normalized fraction and an integral power of 2.  */
__MATHCALL (frexp,, (_Mdouble_ __value, int *__exp));

/* X times (two to the EXP power).  */
__MATHCALL (ldexp,, (_Mdouble_ __x, int __exp));

/* Natural logarithm of X.  */
__MATHCALL (log,, (_Mdouble_ __x));

/* Base-ten logarithm of X.  */
__MATHCALL (log10,, (_Mdouble_ __x));

#if defined(__USE_MISC) || defined(__USE_XOPEN_EXTENDED)
/* Return exp(X) - 1.  */
__MATHCALL (expm1,, (_Mdouble_ __x));

/* Return log(1 + X).  */
__MATHCALL (log1p,, (_Mdouble_ __x));

/* Return the base 2 signed integral exponent of X.  */
__MATHCALL (logb,, (_Mdouble_ __x));
#endif

/* Break VALUE into integral and fractional parts.  */
__MATHCALL (modf,, (_Mdouble_ __value, _Mdouble_ *__iptr));


/* Power functions.  */

/* Return X to the Y power.  */
__MATHCALL (pow,, (_Mdouble_ __x, _Mdouble_ __y));

/* Return the square root of X.  */
__MATHCALL (sqrt,, (_Mdouble_ __x));

#if defined(__USE_MISC) || defined(__USE_XOPEN_EXTENDED)
/* Return the cube root of X.  */
__MATHCALL (cbrt,, (_Mdouble_ __x));
#endif


/* Nearest integer, absolute value, and remainder functions.  */

/* Smallest integral value not less than X.  */
__MATHCALL (ceil,, (_Mdouble_ __x));

/* Absolute value of X.  */
__MATHCALL (fabs,, (_Mdouble_ __x));

/* Largest integer not greater than X.  */
__MATHCALL (floor,, (_Mdouble_ __x));

/* Floating-point modulo remainder of X/Y.  */
__MATHCALL (fmod,, (_Mdouble_ __x, _Mdouble_ __y));


#ifdef __USE_MISC

/* Return 0 if VALUE is finite or NaN, +1 if it
   is +Infinity, -1 if it is -Infinity.  */
__MATHDECL (int, isinf,, (_Mdouble_ __value));

/* Return nonzero if VALUE is finite and not NaN.  */
__MATHDECL (int, finite,, (_Mdouble_ __value));

/* Deal with an infinite or NaN result.
   If ERROR is ERANGE, result is +Inf;
   if ERROR is - ERANGE, result is -Inf;
   otherwise result is NaN.
   This will set `errno' to either ERANGE or EDOM,
   and may return an infinity or NaN, or may do something else.  */
__MATHCALL (infnan,, (int __error));

/* Return X with its signed changed to Y's.  */
__MATHCALL (copysign,, (_Mdouble_ __x, _Mdouble_ __y));

/* Return X times (2 to the Nth power).  */
__MATHCALL (scalbn,, (_Mdouble_ __x, int __n));

/* Return the remainder of X/Y.  */
__MATHCALL (drem,, (_Mdouble_ __x, _Mdouble_ __y));

struct __MATH_PRECNAME(__cabs_complex,)
{
  _Mdouble_ x, y;
};

/* Return `sqrt(X*X + Y*Y)'.  */
__MATHCALL (cabs,, (struct __MATH_PRECNAME(__cabs_complex,)));


/* Return the fractional part of X after dividing out `ilogb (X)'.  */
__MATHCALL (significand,, (_Mdouble_ __x));
#endif /* Use misc.  */


#if defined(__USE_MISC) || defined(__USE_XOPEN)

/* Return nonzero if VALUE is not a number.  */
__MATHDECL (int, isnan,, (_Mdouble_ __value));

/* Return the binary exponent of X, which must be nonzero.  */
__MATHDECL (int, ilogb,, (_Mdouble_ __x));

/* Return `sqrt(X*X + Y*Y)'.  */
__MATHCALL (hypot,, (_Mdouble_ __x, _Mdouble_ __y));


/* Error, gamma, and Bessel functions.  */
__MATHCALL (erf,, (_Mdouble_));
__MATHCALL (erfc,, (_Mdouble_));
__MATHCALL (gamma,, (_Mdouble_));
__MATHCALL (j0,, (_Mdouble_));
__MATHCALL (j1,, (_Mdouble_));
__MATHCALL (jn,, (int, _Mdouble_));
__MATHCALL (lgamma,, (_Mdouble_));
__MATHCALL (y0,, (_Mdouble_));
__MATHCALL (y1,, (_Mdouble_));
__MATHCALL (yn,, (int, _Mdouble_));

/* This variable is used by `gamma' and `lgamma'.  */
extern int signgam;

#ifdef __USE_REENTRANT

/* Reentrant versions of gamma and lgamma.  Those functions use the global
   variable `signgam'.  The reentrant versions instead take a pointer and
   store the value through it.  */
__MATHCALL (gamma,_r, (_Mdouble_, int *));
__MATHCALL (lgamma,_r, (_Mdouble_, int *));
#endif


#if defined(__USE_MISC) || defined(__USE_XOPEN_EXTENDED)

/* Return the integer nearest X in the direction of the
   prevailing rounding mode.  */
__MATHCALL (rint,, (_Mdouble_ __x));

/* Return X times (2 to the Nth power).  */
__MATHCALL (scalb,, (_Mdouble_ __x, _Mdouble_ __n));

/* Return X + epsilon if X < Y, X - epsilon if X > Y.  */
__MATHCALL (nextafter,, (_Mdouble_ __x, _Mdouble_ __y));

/* Return the remainder of integer divison X / Y with infinite precision.  */
__MATHCALL (remainder,, (_Mdouble_ __x, _Mdouble_ __y));
#endif

#endif /* Use misc.  */