1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
/* Copyright (C) 2002, 2003 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@redhat.com>, 2002.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#include <sched.h>
#include <setjmp.h>
#include <signal.h>
#include <stdlib.h>
#include <atomic.h>
#include <ldsodefs.h>
#include <tls.h>
#include "kernel-features.h"
#define CLONE_SIGNAL (CLONE_SIGHAND | CLONE_THREAD)
/* Unless otherwise specified, the thread "register" is going to be
initialized with a pointer to the TCB. */
#ifndef TLS_VALUE
# define TLS_VALUE pd
#endif
#ifndef ARCH_CLONE
# define ARCH_CLONE __clone
#endif
#ifndef TLS_MULTIPLE_THREADS_IN_TCB
/* Variable set to a nonzero value if more than one thread runs or ran. */
int __pthread_multiple_threads attribute_hidden;
/* Pointer to the corresponding variable in libc. */
int *__libc_multiple_threads_ptr attribute_hidden;
#endif
static int
do_clone (struct pthread *pd, const struct pthread_attr *attr,
int clone_flags, int (*fct) (void *), STACK_VARIABLES_PARMS)
{
#ifdef PREPARE_CREATE
PREPARE_CREATE;
#endif
/* Lame old kernels do not have CLONE_STOPPED support. For those do
not pass the flag, not instead use the futex method. */
#ifndef __ASSUME_CLONE_STOPPED
# define final_clone_flags clone_flags & ~CLONE_STOPPED
if (clone_flags & CLONE_STOPPED)
/* We Make sure the thread does not run far by forcing it to get a
lock. We lock it here too so that the new thread cannot continue
until we tell it to. */
lll_lock (pd->lock);
#else
# define final_clone_flags clone_flags
#endif
if (ARCH_CLONE (fct, STACK_VARIABLES_ARGS, final_clone_flags,
pd, &pd->tid, TLS_VALUE, &pd->tid) == -1)
/* Failed. */
return errno;
/* Now we have the possibility to set scheduling parameters etc. */
if (__builtin_expect ((clone_flags & CLONE_STOPPED) != 0, 0))
{
INTERNAL_SYSCALL_DECL (err);
int res = 0;
/* Set the affinity mask if necessary. */
if (attr->cpuset != NULL)
{
res = INTERNAL_SYSCALL (sched_setaffinity, err, 3, pd->tid,
sizeof (cpu_set_t), attr->cpuset);
if (__builtin_expect (INTERNAL_SYSCALL_ERROR_P (res, err), 0))
goto err_out;
}
/* Set the scheduling parameters. */
if ((attr->flags & ATTR_FLAG_NOTINHERITSCHED) != 0)
{
res = INTERNAL_SYSCALL (sched_setscheduler, err, 3, pd->tid,
pd->schedpolicy, &pd->schedparam);
if (__builtin_expect (INTERNAL_SYSCALL_ERROR_P (res, err), 0))
goto err_out;
}
#ifdef __ASSUME_CLONE_STOPPED
/* Now start the thread for real. */
res = INTERNAL_SYSCALL (tkill, err, 2, pd->tid, SIGCONT);
#endif
/* If something went wrong, kill the thread. */
if (__builtin_expect (INTERNAL_SYSCALL_ERROR_P (res, err), 0))
{
/* The operation failed. We have to kill the thread. First
send it the cancellation signal. */
INTERNAL_SYSCALL_DECL (err2);
err_out:
(void) INTERNAL_SYSCALL (tkill, err2, 2, pd->tid, SIGCANCEL);
#ifdef __ASSUME_CLONE_STOPPED
/* Then wake it up so that the signal can be processed. */
(void) INTERNAL_SYSCALL (tkill, err2, 2, pd->tid, SIGCONT);
#endif
return INTERNAL_SYSCALL_ERRNO (res, err);
}
}
/* We now have for sure more than one thread. The main thread might
not yet have the flag set. No need to set the global variable
again if this is what we use. */
THREAD_SETMEM (THREAD_SELF, header.multiple_threads, 1);
return 0;
}
static int
create_thread (struct pthread *pd, const struct pthread_attr *attr,
STACK_VARIABLES_PARMS)
{
#ifdef TLS_TCB_AT_TP
assert (pd->header.tcb != NULL);
#endif
/* We rely heavily on various flags the CLONE function understands:
CLONE_VM, CLONE_FS, CLONE_FILES
These flags select semantics with shared address space and
file descriptors according to what POSIX requires.
CLONE_SIGNAL
This flag selects the POSIX signal semantics.
CLONE_SETTLS
The sixth parameter to CLONE determines the TLS area for the
new thread.
CLONE_PARENT_SETTID
The kernels writes the thread ID of the newly created thread
into the location pointed to by the fifth parameters to CLONE.
Note that it would be semantically equivalent to use
CLONE_CHILD_SETTID but it is be more expensive in the kernel.
CLONE_CHILD_CLEARTID
The kernels clears the thread ID of a thread that has called
sys_exit() in the location pointed to by the seventh parameter
to CLONE.
CLONE_DETACHED
No signal is generated if the thread exists and it is
automatically reaped.
The termination signal is chosen to be zero which means no signal
is sent. */
int clone_flags = (CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGNAL
| CLONE_SETTLS | CLONE_PARENT_SETTID
| CLONE_CHILD_CLEARTID | CLONE_DETACHED | CLONE_SYSVSEM
| 0);
/* If the newly created threads has to be started stopped since we
have to set the scheduling parameters or set the affinity we set
the CLONE_STOPPED flag. */
if (attr != NULL && (attr->cpuset != NULL
|| (attr->flags & ATTR_FLAG_NOTINHERITSCHED) != 0))
clone_flags |= CLONE_STOPPED;
if (__builtin_expect (THREAD_GETMEM (THREAD_SELF, report_events), 0))
{
/* The parent thread is supposed to report events. Check whether
the TD_CREATE event is needed, too. */
const int _idx = __td_eventword (TD_CREATE);
const uint32_t _mask = __td_eventmask (TD_CREATE);
if ((_mask & (__nptl_threads_events.event_bits[_idx]
| pd->eventbuf.eventmask.event_bits[_idx])) != 0)
{
/* Create the thread. We always create the thread stopped
so that it does not get far before we tell the debugger. */
int res = do_clone (pd, attr, clone_flags | CLONE_STOPPED,
start_thread, STACK_VARIABLES_ARGS);
if (res == 0)
{
/* Now fill in the information about the new thread in
the newly created thread's data structure. We cannot let
the new thread do this since we don't know whether it was
already scheduled when we send the event. */
pd->eventbuf.eventnum = TD_CREATE;
pd->eventbuf.eventdata = pd;
/* Enqueue the descriptor. */
do
pd->nextevent = __nptl_last_event;
while (atomic_compare_and_exchange_bool_acq (&__nptl_last_event,
pd, pd->nextevent)
!= 0);
/* Now call the function which signals the event. */
__nptl_create_event ();
/* And finally restart the new thread. */
lll_unlock (pd->lock);
}
return res;
}
}
#ifdef NEED_DL_SYSINFO
assert (THREAD_GETMEM (THREAD_SELF, header.sysinfo) == pd->header.sysinfo);
#endif
/* Actually create the thread. */
int res = do_clone (pd, attr, clone_flags, start_thread,
STACK_VARIABLES_ARGS);
#ifndef __ASSUME_CLONE_STOPPED
if (res == 0 && (clone_flags & CLONE_STOPPED))
{
/* And finally restart the new thread. */
lll_unlock (pd->lock);
}
#endif
return res;
}
|