summaryrefslogtreecommitdiff
path: root/sysdeps/libm-ieee754/k_sin.c
blob: 49c59228e05b9fbabf8401799dffd8c59bb6deb1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
/* @(#)k_sin.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
   for performance improvement on pipelined processors.
*/

#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: k_sin.c,v 1.8 1995/05/10 20:46:31 jtc Exp $";
#endif

/* __kernel_sin( x, y, iy)
 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
 *
 * Algorithm
 *	1. Since sin(-x) = -sin(x), we need only to consider positive x.
 *	2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
 *	3. sin(x) is approximated by a polynomial of degree 13 on
 *	   [0,pi/4]
 *		  	         3            13
 *	   	sin(x) ~ x + S1*x + ... + S6*x
 *	   where
 *
 * 	|sin(x)         2     4     6     8     10     12  |     -58
 * 	|----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
 * 	|  x 					           |
 *
 *	4. sin(x+y) = sin(x) + sin'(x')*y
 *		    ~ sin(x) + (1-x*x/2)*y
 *	   For better accuracy, let
 *		     3      2      2      2      2
 *		r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
 *	   then                   3    2
 *		sin(x) = x + (S1*x + (x *(r-y/2)+y))
 */

#include "math.h"
#include "math_private.h"

#ifdef __STDC__
static const double
#else
static double
#endif
S[] = {
  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
 -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
  8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
 -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
  2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
 -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
  1.58969099521155010221e-10}; /* 0x3DE5D93A, 0x5ACFD57C */

#ifdef __STDC__
	double __kernel_sin(double x, double y, int iy)
#else
	double __kernel_sin(x, y, iy)
	double x,y; int iy;		/* iy=0 if y is zero */
#endif
{
	double z,r,v,z1,r1,r2;
	int32_t ix;
	GET_HIGH_WORD(ix,x);
	ix &= 0x7fffffff;			/* high word of x */
	if(ix<0x3e400000)			/* |x| < 2**-27 */
	   {if((int)x==0) return x;}		/* generate inexact */
	z	=  x*x;
	v	=  z*x;
#ifdef DO_NOT_USE_THIS
	r	=  S2+z*(S3+z*(S4+z*(S5+z*S6)));
	if(iy==0) return x+v*(S1+z*r);
	else      return x-((z*(half*y-v*r)-y)-v*S1);
#else
 	r1	=  S[5]+z*S[6]; z1 = z*z*z;
	r2	=  S[3]+z*S[4];
	r	=  S[2] + z*r2 + z1*r1;
	if(iy==0) return x+v*(S[1]+z*r);
 	else      return x-((z*(S[0]*y-v*r)-y)-v*S[1]);
#endif
}