summaryrefslogtreecommitdiff
path: root/sysdeps/powerpc/dl-machine.c
blob: ca0a0dcd160b03bcba6d82878321ff0b73882884 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/* Machine-dependent ELF dynamic relocation functions.  PowerPC version.
   Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000 
   Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Library General Public License as
   published by the Free Software Foundation; either version 2 of the
   License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Library General Public License for more details.

   You should have received a copy of the GNU Library General Public
   License along with the GNU C Library; see the file COPYING.LIB.  If not,
   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include <unistd.h>
#include <string.h>
#include <sys/param.h>
#include <link.h>
#include <ldsodefs.h>
#include <elf/dynamic-link.h>
#include <dl-machine.h>
#include <stdio-common/_itoa.h>

/* Because ld.so is now versioned, these functions can be in their own file;
   no relocations need to be done to call them.
   Of course, if ld.so is not versioned...  */
#if !(DO_VERSIONING - 0)
#error This will not work with versioning turned off, sorry.
#endif


/* Stuff for the PLT.  */
#define PLT_INITIAL_ENTRY_WORDS 18
#define PLT_LONGBRANCH_ENTRY_WORDS 0
#define PLT_TRAMPOLINE_ENTRY_WORDS 6
#define PLT_DOUBLE_SIZE (1<<13)
#define PLT_ENTRY_START_WORDS(entry_number) \
  (PLT_INITIAL_ENTRY_WORDS + (entry_number)*2				\
   + ((entry_number) > PLT_DOUBLE_SIZE					\
      ? ((entry_number) - PLT_DOUBLE_SIZE)*2				\
      : 0))
#define PLT_DATA_START_WORDS(num_entries) PLT_ENTRY_START_WORDS(num_entries)

/* Macros to build PowerPC opcode words.  */
#define OPCODE_ADDI(rd,ra,simm) \
  (0x38000000 | (rd) << 21 | (ra) << 16 | ((simm) & 0xffff))
#define OPCODE_ADDIS(rd,ra,simm) \
  (0x3c000000 | (rd) << 21 | (ra) << 16 | ((simm) & 0xffff))
#define OPCODE_ADD(rd,ra,rb) \
  (0x7c000214 | (rd) << 21 | (ra) << 16 | (rb) << 11)
#define OPCODE_B(target) (0x48000000 | ((target) & 0x03fffffc))
#define OPCODE_BA(target) (0x48000002 | ((target) & 0x03fffffc))
#define OPCODE_BCTR() 0x4e800420
#define OPCODE_LWZ(rd,d,ra) \
  (0x80000000 | (rd) << 21 | (ra) << 16 | ((d) & 0xffff))
#define OPCODE_LWZU(rd,d,ra) \
  (0x84000000 | (rd) << 21 | (ra) << 16 | ((d) & 0xffff))
#define OPCODE_MTCTR(rd) (0x7C0903A6 | (rd) << 21)
#define OPCODE_RLWINM(ra,rs,sh,mb,me) \
  (0x54000000 | (rs) << 21 | (ra) << 16 | (sh) << 11 | (mb) << 6 | (me) << 1)

#define OPCODE_LI(rd,simm)    OPCODE_ADDI(rd,0,simm)
#define OPCODE_ADDIS_HI(rd,ra,value) \
  OPCODE_ADDIS(rd,ra,((value) + 0x8000) >> 16)
#define OPCODE_LIS_HI(rd,value) OPCODE_ADDIS_HI(rd,0,value)
#define OPCODE_SLWI(ra,rs,sh) OPCODE_RLWINM(ra,rs,sh,0,31-sh)


#define PPC_DCBST(where) asm volatile ("dcbst 0,%0" : : "r"(where) : "memory")
#define PPC_SYNC asm volatile ("sync" : : : "memory")
#define PPC_ISYNC asm volatile ("sync; isync" : : : "memory")
#define PPC_ICBI(where) asm volatile ("icbi 0,%0" : : "r"(where) : "memory")
#define PPC_DIE asm volatile ("tweq 0,0")

/* Use this when you've modified some code, but it won't be in the
   instruction fetch queue (or when it doesn't matter if it is). */
#define MODIFIED_CODE_NOQUEUE(where) \
     do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); } while (0)
/* Use this when it might be in the instruction queue. */
#define MODIFIED_CODE(where) \
     do { PPC_DCBST(where); PPC_SYNC; PPC_ICBI(where); PPC_ISYNC; } while (0)


/* The idea here is that to conform to the ABI, we are supposed to try
   to load dynamic objects between 0x10000 (we actually use 0x40000 as
   the lower bound, to increase the chance of a memory reference from
   a null pointer giving a segfault) and the program's load address;
   this may allow us to use a branch instruction in the PLT rather
   than a computed jump.  The address is only used as a preference for
   mmap, so if we get it wrong the worst that happens is that it gets
   mapped somewhere else.  */

ElfW(Addr)
__elf_preferred_address(struct link_map *loader, size_t maplength,
			ElfW(Addr) mapstartpref)
{
  ElfW(Addr) low, high;
  struct link_map *l;

  /* If the object has a preference, load it there!  */
  if (mapstartpref != 0)
    return mapstartpref;

  /* Otherwise, quickly look for a suitable gap between 0x3FFFF and
     0x70000000.  0x3FFFF is so that references off NULL pointers will
     cause a segfault, 0x70000000 is just paranoia (it should always
     be superceded by the program's load address).  */
  low =  0x0003FFFF;
  high = 0x70000000;
  for (l = _dl_loaded; l; l = l->l_next)
    {
      ElfW(Addr) mapstart, mapend;
      mapstart = l->l_map_start & ~(_dl_pagesize - 1);
      mapend = l->l_map_end | (_dl_pagesize - 1);
      assert (mapend > mapstart);

      if (mapend >= high && high >= mapstart)
	high = mapstart;
      else if (mapend >= low && low >= mapstart)
	low = mapend;
      else if (high >= mapend && mapstart >= low)
	{
	  if (high - mapend >= mapstart - low)
	    low = mapend;
	  else
	    high = mapstart;
	}
    }

  high -= 0x10000; /* Allow some room between objects.  */
  maplength = (maplength | (_dl_pagesize-1)) + 1;
  if (high <= low || high - low < maplength )
    return 0;
  return high - maplength;  /* Both high and maplength are page-aligned.  */
}

/* Set up the loaded object described by L so its unrelocated PLT
   entries will jump to the on-demand fixup code in dl-runtime.c.
   Also install a small trampoline to be used by entries that have
   been relocated to an address too far away for a single branch.  */

/* There are many kinds of PLT entries:

   (1)	A direct jump to the actual routine, either a relative or
	absolute branch.  These are set up in __elf_machine_fixup_plt.

   (2)	Short lazy entries.  These cover the first 8192 slots in
        the PLT, and look like (where 'index' goes from 0 to 8191):

	li %r11, index*4
	b  &plt[PLT_TRAMPOLINE_ENTRY_WORDS+1]

   (3)	Short indirect jumps.  These replace (2) when a direct jump
	wouldn't reach.  They look the same except that the branch
	is 'b &plt[PLT_LONGBRANCH_ENTRY_WORDS]'.

   (4)  Long lazy entries.  These cover the slots when a short entry
	won't fit ('index*4' overflows its field), and look like:

	lis %r11, %hi(index*4 + &plt[PLT_DATA_START_WORDS])
	lwzu %r12, %r11, %lo(index*4 + &plt[PLT_DATA_START_WORDS])
	b  &plt[PLT_TRAMPOLINE_ENTRY_WORDS]
	bctr

   (5)	Long indirect jumps.  These replace (4) when a direct jump
	wouldn't reach.  They look like:

	lis %r11, %hi(index*4 + &plt[PLT_DATA_START_WORDS])
	lwz %r12, %r11, %lo(index*4 + &plt[PLT_DATA_START_WORDS])
	mtctr %r12
	bctr

   (6) Long direct jumps.  These are used when thread-safety is not
       required.  They look like:

       lis %r12, %hi(finaladdr)
       addi %r12, %r12, %lo(finaladdr)
       mtctr %r12
       bctr


   The lazy entries, (2) and (4), are set up here in
   __elf_machine_runtime_setup.  (1), (3), and (5) are set up in
   __elf_machine_fixup_plt.  (1), (3), and (6) can also be constructed
   in __process_machine_rela.

   The reason for the somewhat strange construction of the long
   entries, (4) and (5), is that we need to ensure thread-safety.  For
   (1) and (3), this is obvious because only one instruction is
   changed and the PPC architecture guarantees that aligned stores are
   atomic.  For (5), this is more tricky.  When changing (4) to (5),
   the `b' instruction is first changed to to `mtctr'; this is safe
   and is why the `lwzu' instruction is not just a simple `addi'.
   Once this is done, and is visible to all processors, the `lwzu' can
   safely be changed to a `lwz'.  */
int
__elf_machine_runtime_setup (struct link_map *map, int lazy, int profile)
{
  if (map->l_info[DT_JMPREL])
    {
      Elf32_Word i;
      Elf32_Word *plt = (Elf32_Word *) D_PTR (map, l_info[DT_PLTGOT]);
      Elf32_Word num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
				    / sizeof (Elf32_Rela));
      Elf32_Word rel_offset_words = PLT_DATA_START_WORDS (num_plt_entries);
      Elf32_Word data_words = (Elf32_Word) (plt + rel_offset_words);
      Elf32_Word size_modified;

      extern void _dl_runtime_resolve (void);
      extern void _dl_prof_resolve (void);

      /* Convert the index in r11 into an actual address, and get the
	 word at that address.  */
      plt[PLT_LONGBRANCH_ENTRY_WORDS] = OPCODE_ADDIS_HI (11, 11, data_words);
      plt[PLT_LONGBRANCH_ENTRY_WORDS + 1] = OPCODE_LWZ (11, data_words, 11);

      /* Call the procedure at that address.  */
      plt[PLT_LONGBRANCH_ENTRY_WORDS + 2] = OPCODE_MTCTR (11);
      plt[PLT_LONGBRANCH_ENTRY_WORDS + 3] = OPCODE_BCTR ();

      if (lazy)
	{
	  Elf32_Word *tramp = plt + PLT_TRAMPOLINE_ENTRY_WORDS;
	  Elf32_Word dlrr = (Elf32_Word)(profile
					 ? _dl_prof_resolve
					 : _dl_runtime_resolve);
	  Elf32_Word offset;

	  if (profile && _dl_name_match_p (_dl_profile, map))
	    /* This is the object we are looking for.  Say that we really
	       want profiling and the timers are started.  */
	    _dl_profile_map = map;
	  
	  /* For the long entries, subtract off data_words.  */
	  tramp[0] = OPCODE_ADDIS_HI (11, 11, -data_words);
	  tramp[1] = OPCODE_ADDI (11, 11, -data_words);
	  
	  /* Multiply index of entry by 3 (in r11).  */
	  tramp[2] = OPCODE_SLWI (12, 11, 1);
	  tramp[3] = OPCODE_ADD (11, 12, 11);
	  if (dlrr <= 0x01fffffc || dlrr >= 0xfe000000)
	    {
	      /* Load address of link map in r12.  */
	      tramp[4] = OPCODE_LI (12, (Elf32_Word) map);
	      tramp[5] = OPCODE_ADDIS_HI (12, 12, (Elf32_Word) map);
	      
	      /* Call _dl_runtime_resolve.  */
	      tramp[6] = OPCODE_BA (dlrr);
	    }
	  else
	    {
	      /* Get address of _dl_runtime_resolve in CTR.  */
	      tramp[4] = OPCODE_LI (12, dlrr);
	      tramp[5] = OPCODE_ADDIS_HI (12, 12, dlrr);
	      tramp[6] = OPCODE_MTCTR (12);
	      
	      /* Load address of link map in r12.  */
	      tramp[7] = OPCODE_LI (12, (Elf32_Word) map);
	      tramp[8] = OPCODE_ADDIS_HI (12, 12, (Elf32_Word) map);
	      
	      /* Call _dl_runtime_resolve.  */
	      tramp[9] = OPCODE_BCTR ();
	    }
	  
	  /* Set up the lazy PLT entries.  */
	  offset = PLT_INITIAL_ENTRY_WORDS;
	  i = 0;
	  while (i < num_plt_entries && i < PLT_DOUBLE_SIZE)
	    {
	      plt[offset  ] = OPCODE_LI (11, i * 4);
	      plt[offset+1] = OPCODE_B ((PLT_TRAMPOLINE_ENTRY_WORDS + 2
					 - (offset+1))
					* 4);
	      i++;
	      offset += 2;
	    }
	  while (i < num_plt_entries)
	    {
	      plt[offset  ] = OPCODE_LIS_HI (11, i * 4 + data_words);
	      plt[offset+1] = OPCODE_LWZU (12, i * 4 + data_words, 11);
	      plt[offset+2] = OPCODE_B ((PLT_TRAMPOLINE_ENTRY_WORDS
					 - (offset+2))
					* 4);
	      plt[offset+3] = OPCODE_BCTR ();
	      i++;
	      offset += 4;
	    }
	}

      /* Now, we've modified code.  We need to write the changes from
	 the data cache to a second-level unified cache, then make
	 sure that stale data in the instruction cache is removed.
	 (In a multiprocessor system, the effect is more complex.)
	 Most of the PLT shouldn't be in the instruction cache, but
	 there may be a little overlap at the start and the end.

	 Assumes that dcbst and icbi apply to lines of 16 bytes or
	 more.  Current known line sizes are 16, 32, and 128 bytes.  */

      size_modified = lazy ? rel_offset_words : 6;
      for (i = 0; i < size_modified; i += 4)
	PPC_DCBST (plt + i);
      PPC_DCBST (plt + size_modified - 1);
      PPC_SYNC;
      PPC_ICBI (plt);
      PPC_ICBI (plt + size_modified - 1);
      PPC_ISYNC;
    }

  return lazy;
}

Elf32_Addr
__elf_machine_fixup_plt(struct link_map *map, const Elf32_Rela *reloc,
			Elf32_Addr *reloc_addr, Elf32_Addr finaladdr)
{
  Elf32_Sword delta = finaladdr - (Elf32_Word) reloc_addr;
  if (delta << 6 >> 6 == delta)
    *reloc_addr = OPCODE_B (delta);
  else if (finaladdr <= 0x01fffffc || finaladdr >= 0xfe000000)
    *reloc_addr = OPCODE_BA (finaladdr);
  else
    {
      Elf32_Word *plt, *data_words;
      Elf32_Word index, offset, num_plt_entries;
      
      num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
			 / sizeof(Elf32_Rela));
      plt = (Elf32_Word *) D_PTR (map, l_info[DT_PLTGOT]);
      offset = reloc_addr - plt;
      index = (offset - PLT_INITIAL_ENTRY_WORDS)/2;
      data_words = plt + PLT_DATA_START_WORDS (num_plt_entries);

      reloc_addr += 1;

      if (index < PLT_DOUBLE_SIZE)
	{
	  data_words[index] = finaladdr;
	  PPC_SYNC;
	  *reloc_addr = OPCODE_B ((PLT_LONGBRANCH_ENTRY_WORDS - (offset+1)) 
				  * 4);
	}
      else
	{
	  index -= (index - PLT_DOUBLE_SIZE)/2;

	  data_words[index] = finaladdr;
	  PPC_SYNC;

	  reloc_addr[1] = OPCODE_MTCTR (12);
	  MODIFIED_CODE_NOQUEUE (reloc_addr + 1);
	  PPC_SYNC;

	  reloc_addr[0] = OPCODE_LWZ (12,
				      (Elf32_Word) (data_words + index), 11);
	}
    }
  MODIFIED_CODE (reloc_addr);
  return finaladdr;
}

static void
dl_reloc_overflow (struct link_map *map,
		   const char *name,
		   Elf32_Addr *const reloc_addr)
{
  char buffer[128];
  char *t;
  t = stpcpy (buffer, name);
  t = stpcpy (t, " relocation at 0x00000000");
  _itoa_word ((unsigned) reloc_addr, t, 16, 0);
  t = stpcpy (t, " out of range");
  _dl_signal_error (0, map->l_name, buffer);
}

void
__process_machine_rela (struct link_map *map,
			const Elf32_Rela *reloc,
			const Elf32_Sym *sym,
			const Elf32_Sym *refsym,
			Elf32_Addr *const reloc_addr,
			Elf32_Addr const finaladdr,
			int rinfo)
{
  switch (rinfo)
    {
    case R_PPC_NONE:
      return;

    case R_PPC_ADDR32:
    case R_PPC_UADDR32:
    case R_PPC_GLOB_DAT:
    case R_PPC_RELATIVE:
      *reloc_addr = finaladdr;
      return;

    case R_PPC_ADDR24:
      if (finaladdr > 0x01fffffc && finaladdr < 0xfe000000)
	dl_reloc_overflow (map,  "R_PPC_ADDR24", reloc_addr);
      *reloc_addr = (*reloc_addr & 0xfc000003) | (finaladdr & 0x3fffffc);
      break;

    case R_PPC_ADDR16:
    case R_PPC_UADDR16:
      if (finaladdr > 0x7fff && finaladdr < 0x8000)
	dl_reloc_overflow (map,  "R_PPC_ADDR16", reloc_addr);
      *(Elf32_Half*) reloc_addr = finaladdr;
      break;

    case R_PPC_ADDR16_LO:
      *(Elf32_Half*) reloc_addr = finaladdr;
      break;

    case R_PPC_ADDR16_HI:
      *(Elf32_Half*) reloc_addr = finaladdr >> 16;
      break;

    case R_PPC_ADDR16_HA:
      *(Elf32_Half*) reloc_addr = (finaladdr + 0x8000) >> 16;
      break;

    case R_PPC_ADDR14:
    case R_PPC_ADDR14_BRTAKEN:
    case R_PPC_ADDR14_BRNTAKEN:
      if (finaladdr > 0x7fff && finaladdr < 0x8000)
	dl_reloc_overflow (map,  "R_PPC_ADDR14", reloc_addr);
      *reloc_addr = (*reloc_addr & 0xffff0003) | (finaladdr & 0xfffc);
      if (rinfo != R_PPC_ADDR14)
	*reloc_addr = ((*reloc_addr & 0xffdfffff)
		       | ((rinfo == R_PPC_ADDR14_BRTAKEN)
			  ^ (finaladdr >> 31)) << 21);
      break;

    case R_PPC_REL24:
      {
	Elf32_Sword delta = finaladdr - (Elf32_Word) reloc_addr;
	if (delta << 6 >> 6 != delta)
	  dl_reloc_overflow (map,  "R_PPC_REL14", reloc_addr);
	*reloc_addr = (*reloc_addr & 0xfc000003) | (delta & 0x3fffffc);
      }
      break;

    case R_PPC_COPY:
      if (sym == NULL)
	/* This can happen in trace mode when an object could not be
	   found.  */
	return;
      if (sym->st_size > refsym->st_size
	  || (_dl_verbose && sym->st_size < refsym->st_size))
	{
	  const char *strtab;

	  strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
	  _dl_sysdep_error (_dl_argv[0] ?: "<program name unknown>",
			    ": Symbol `", strtab + refsym->st_name,
			    "' has different size in shared object, "
			    "consider re-linking\n", NULL);
	}
      memcpy (reloc_addr, (char *) finaladdr, MIN (sym->st_size,
						   refsym->st_size));
      return;

    case R_PPC_REL32:
      *reloc_addr = finaladdr - (Elf32_Word) reloc_addr;
      return;

    case R_PPC_JMP_SLOT:
      /* It used to be that elf_machine_fixup_plt was used here,
	 but that doesn't work when ld.so relocates itself
	 for the second time.  On the bright side, there's
         no need to worry about thread-safety here.  */
      {
	Elf32_Sword delta = finaladdr - (Elf32_Word) reloc_addr;
	if (delta << 6 >> 6 == delta)
	  *reloc_addr = OPCODE_B (delta);
	else if (finaladdr <= 0x01fffffc || finaladdr >= 0xfe000000)
	  *reloc_addr = OPCODE_BA (finaladdr);
	else
	  {
	    Elf32_Word *plt, *data_words;
	    Elf32_Word index, offset, num_plt_entries;
	    
	    plt = (Elf32_Word *) D_PTR (map, l_info[DT_PLTGOT]);
	    offset = reloc_addr - plt;

	    if (offset < PLT_DOUBLE_SIZE*2 + PLT_INITIAL_ENTRY_WORDS)
	      {
		index = (offset - PLT_INITIAL_ENTRY_WORDS)/2;
		num_plt_entries = (map->l_info[DT_PLTRELSZ]->d_un.d_val
				   / sizeof(Elf32_Rela));
		data_words = plt + PLT_DATA_START_WORDS (num_plt_entries);
		data_words[index] = finaladdr;
		reloc_addr[0] = OPCODE_LI (11, index * 4);
		reloc_addr[1] = OPCODE_B ((PLT_LONGBRANCH_ENTRY_WORDS 
					   - (offset+1)) 
					  * 4);
		MODIFIED_CODE_NOQUEUE (reloc_addr + 1);
	      }
	    else
	      {
		reloc_addr[0] = OPCODE_LIS_HI (12, finaladdr);
		reloc_addr[1] = OPCODE_ADDI (12, 12, finaladdr);
		reloc_addr[2] = OPCODE_MTCTR (12);
		reloc_addr[3] = OPCODE_BCTR ();
		MODIFIED_CODE_NOQUEUE (reloc_addr + 3);
	      }
	  }
      }
      break;

    default:
      _dl_reloc_bad_type (map, rinfo, 0);
      return;
    }

  MODIFIED_CODE_NOQUEUE (reloc_addr);
}