summaryrefslogtreecommitdiff
path: root/mpfr/exp_2.c
diff options
context:
space:
mode:
Diffstat (limited to 'mpfr/exp_2.c')
-rw-r--r--mpfr/exp_2.c368
1 files changed, 368 insertions, 0 deletions
diff --git a/mpfr/exp_2.c b/mpfr/exp_2.c
new file mode 100644
index 000000000..402919092
--- /dev/null
+++ b/mpfr/exp_2.c
@@ -0,0 +1,368 @@
+/* mpfr_exp_2 -- exponential of a floating-point number
+ using Brent's algorithms in O(n^(1/2)*M(n)) and O(n^(1/3)*M(n))
+
+Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
+
+This file is part of the MPFR Library.
+
+The MPFR Library is free software; you can redistribute it and/or modify
+it under the terms of the GNU Lesser General Public License as published by
+the Free Software Foundation; either version 2.1 of the License, or (at your
+option) any later version.
+
+The MPFR Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
+License for more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with the MPFR Library; see the file COPYING.LIB. If not, write to
+the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
+MA 02111-1307, USA. */
+
+#include <stdio.h>
+#include "gmp.h"
+#include "gmp-impl.h"
+#include "mpfr.h"
+#include "mpfr-impl.h"
+
+static int mpfr_exp2_aux _PROTO ((mpz_t, mpfr_srcptr, int, int*));
+static int mpfr_exp2_aux2 _PROTO ((mpz_t, mpfr_srcptr, int, int*));
+static mp_exp_t mpz_normalize _PROTO ((mpz_t, mpz_t, int));
+static int mpz_normalize2 _PROTO ((mpz_t, mpz_t, int, int));
+int mpfr_exp_2 _PROTO ((mpfr_ptr, mpfr_srcptr, mp_rnd_t));
+
+/* returns floor(sqrt(n)) */
+unsigned long
+_mpfr_isqrt (unsigned long n)
+{
+ unsigned long s;
+
+ s = 1;
+ do {
+ s = (s + n / s) / 2;
+ } while (!(s*s <= n && n <= s*(s+2)));
+ return s;
+}
+
+/* returns floor(n^(1/3)) */
+unsigned long
+_mpfr_cuberoot (unsigned long n)
+{
+ double s, is;
+
+ s = 1.0;
+ do {
+ s = (2*s*s*s + (double) n) / (3*s*s);
+ is = (double) ((int) s);
+ } while (!(is*is*is <= (double) n && (double) n < (is+1)*(is+1)*(is+1)));
+ return (unsigned long) is;
+}
+
+#define SWITCH 100 /* number of bits to switch from O(n^(1/2)*M(n)) method
+ to O(n^(1/3)*M(n)) method */
+
+#define MY_INIT_MPZ(x, s) { \
+ (x)->_mp_alloc = (s); \
+ PTR(x) = (mp_ptr) TMP_ALLOC((s)*BYTES_PER_MP_LIMB); \
+ (x)->_mp_size = 0; }
+
+/* #define DEBUG */
+
+/* if k = the number of bits of z > q, divides z by 2^(k-q) and returns k-q.
+ Otherwise do nothing and return 0.
+ */
+static mp_exp_t
+mpz_normalize (mpz_t rop, mpz_t z, int q)
+{
+ int k;
+
+ k = mpz_sizeinbase(z, 2);
+ if (k > q) {
+ mpz_div_2exp(rop, z, k-q);
+ return k-q;
+ }
+ else {
+ if (rop != z) mpz_set(rop, z);
+ return 0;
+ }
+}
+
+/* if expz > target, shift z by (expz-target) bits to the left.
+ if expz < target, shift z by (target-expz) bits to the right.
+ Returns target.
+*/
+static int
+mpz_normalize2 (mpz_t rop, mpz_t z, int expz, int target)
+{
+ if (target > expz) mpz_div_2exp(rop, z, target-expz);
+ else mpz_mul_2exp(rop, z, expz-target);
+ return target;
+}
+
+/* use Brent's formula exp(x) = (1+r+r^2/2!+r^3/3!+...)^(2^K)*2^n
+ where x = n*log(2)+(2^K)*r
+ together with Brent-Kung O(t^(1/2)) algorithm for the evaluation of
+ power series. The resulting complexity is O(n^(1/3)*M(n)).
+*/
+int
+mpfr_exp_2 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
+{
+ int n, expx, K, precy, q, k, l, err, exps, inexact;
+ mpfr_t r, s, t; mpz_t ss;
+ TMP_DECL(marker);
+
+ expx = MPFR_EXP(x);
+ precy = MPFR_PREC(y);
+#ifdef DEBUG
+ printf("MPFR_EXP(x)=%d\n",expx);
+#endif
+
+ n = (int) (mpfr_get_d(x) / LOG2);
+
+ /* for the O(n^(1/2)*M(n)) method, the Taylor series computation of
+ n/K terms costs about n/(2K) multiplications when computed in fixed
+ point */
+ K = (precy<SWITCH) ? _mpfr_isqrt((precy + 1) / 2) : _mpfr_cuberoot (4*precy);
+ l = (precy-1)/K + 1;
+ err = K + (int) _mpfr_ceil_log2 (2.0 * (double) l + 18.0);
+ /* add K extra bits, i.e. failure probability <= 1/2^K = O(1/precy) */
+ q = precy + err + K + 3;
+ mpfr_init2 (r, q);
+ mpfr_init2 (s, q);
+ mpfr_init2 (t, q);
+ /* the algorithm consists in computing an upper bound of exp(x) using
+ a precision of q bits, and see if we can round to MPFR_PREC(y) taking
+ into account the maximal error. Otherwise we increase q. */
+ do {
+#ifdef DEBUG
+ printf("n=%d K=%d l=%d q=%d\n",n,K,l,q);
+#endif
+
+ /* if n<0, we have to get an upper bound of log(2)
+ in order to get an upper bound of r = x-n*log(2) */
+ mpfr_const_log2 (s, (n>=0) ? GMP_RNDZ : GMP_RNDU);
+#ifdef DEBUG
+ printf("n=%d log(2)=",n); mpfr_print_raw(s); putchar('\n');
+#endif
+ mpfr_mul_ui (r, s, (n<0) ? -n : n, (n>=0) ? GMP_RNDZ : GMP_RNDU);
+ if (n<0) mpfr_neg(r, r, GMP_RNDD);
+ /* r = floor(n*log(2)) */
+
+#ifdef DEBUG
+ printf("x=%1.20e\n",mpfr_get_d(x));
+ printf(" ="); mpfr_print_raw(x); putchar('\n');
+ printf("r=%1.20e\n",mpfr_get_d(r));
+ printf(" ="); mpfr_print_raw(r); putchar('\n');
+#endif
+ mpfr_sub(r, x, r, GMP_RNDU);
+ if (MPFR_SIGN(r)<0) { /* initial approximation n was too large */
+ n--;
+ mpfr_mul_ui(r, s, (n<0) ? -n : n, GMP_RNDZ);
+ if (n<0) mpfr_neg(r, r, GMP_RNDD);
+ mpfr_sub(r, x, r, GMP_RNDU);
+ }
+#ifdef DEBUG
+ printf("x-r=%1.20e\n",mpfr_get_d(r));
+ printf(" ="); mpfr_print_raw(r); putchar('\n');
+ if (MPFR_SIGN(r)<0) { fprintf(stderr,"Error in mpfr_exp: r<0\n"); exit(1); }
+#endif
+ mpfr_div_2exp(r, r, K, GMP_RNDU); /* r = (x-n*log(2))/2^K */
+
+ TMP_MARK(marker);
+ MY_INIT_MPZ(ss, 3 + 2*((q-1)/BITS_PER_MP_LIMB));
+ exps = mpz_set_fr(ss, s);
+ /* s <- 1 + r/1! + r^2/2! + ... + r^l/l! */
+ l = (precy<SWITCH) ? mpfr_exp2_aux(ss, r, q, &exps) /* naive method */
+ : mpfr_exp2_aux2(ss, r, q, &exps); /* Brent/Kung method */
+
+#ifdef DEBUG
+ printf("l=%d q=%d (K+l)*q^2=%1.3e\n", l, q, (K+l)*(double)q*q);
+#endif
+
+ for (k=0;k<K;k++) {
+ mpz_mul(ss, ss, ss); exps <<= 1;
+ exps += mpz_normalize(ss, ss, q);
+ }
+ mpfr_set_z(s, ss, GMP_RNDN); MPFR_EXP(s) += exps;
+ TMP_FREE(marker); /* don't need ss anymore */
+
+ if (n>0) mpfr_mul_2exp(s, s, n, GMP_RNDU);
+ else mpfr_div_2exp(s, s, -n, GMP_RNDU);
+
+ /* error is at most 2^K*(3l*(l+1)) ulp for mpfr_exp2_aux */
+ if (precy<SWITCH) l = 3*l*(l+1);
+ else l = l*(l+4);
+ k=0; while (l) { k++; l >>= 1; }
+ /* now k = ceil(log(error in ulps)/log(2)) */
+ K += k;
+#ifdef DEBUG
+ printf("after mult. by 2^n:\n");
+ if (MPFR_EXP(s)>-1024) printf("s=%1.20e\n",mpfr_get_d(s));
+ printf(" ="); mpfr_print_raw(s); putchar('\n');
+ printf("err=%d bits\n", K);
+#endif
+
+ l = mpfr_can_round(s, q-K, GMP_RNDN, rnd_mode, precy);
+ if (l==0) {
+#ifdef DEBUG
+ printf("not enough precision, use %d\n", q+BITS_PER_MP_LIMB);
+ printf("q=%d q-K=%d precy=%d\n",q,q-K,precy);
+#endif
+ q += BITS_PER_MP_LIMB;
+ mpfr_set_prec(r, q); mpfr_set_prec(s, q); mpfr_set_prec(t, q);
+ }
+ } while (l==0);
+
+ inexact = mpfr_set (y, s, rnd_mode);
+
+ mpfr_clear(r); mpfr_clear(s); mpfr_clear(t);
+ return inexact;
+}
+
+/* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q
+ using naive method with O(l) multiplications.
+ Return the number of iterations l.
+ The absolute error on s is less than 3*l*(l+1)*2^(-q).
+ Version using fixed-point arithmetic with mpz instead
+ of mpfr for internal computations.
+ s must have at least qn+1 limbs (qn should be enough, but currently fails
+ since mpz_mul_2exp(s, s, q-1) reallocates qn+1 limbs)
+*/
+static int
+mpfr_exp2_aux (mpz_t s, mpfr_srcptr r, int q, int *exps)
+{
+ int l, dif, qn;
+ mpz_t t, rr; mp_exp_t expt, expr;
+ TMP_DECL(marker);
+
+ TMP_MARK(marker);
+ qn = 1 + (q-1)/BITS_PER_MP_LIMB;
+ MY_INIT_MPZ(t, 2*qn+1); /* 2*qn+1 is neeeded since mpz_div_2exp may
+ need an extra limb */
+ MY_INIT_MPZ(rr, qn+1);
+ mpz_set_ui(t, 1); expt=0;
+ mpz_set_ui(s, 1); mpz_mul_2exp(s, s, q-1); *exps = 1-q; /* s = 2^(q-1) */
+ expr = mpz_set_fr(rr, r); /* no error here */
+
+ l = 0;
+ do {
+ l++;
+ mpz_mul(t, t, rr); expt=expt+expr;
+ dif = *exps + mpz_sizeinbase(s, 2) - expt - mpz_sizeinbase(t, 2);
+ /* truncates the bits of t which are < ulp(s) = 2^(1-q) */
+ expt += mpz_normalize(t, t, q-dif); /* error at most 2^(1-q) */
+ mpz_div_ui(t, t, l); /* error at most 2^(1-q) */
+ /* the error wrt t^l/l! is here at most 3*l*ulp(s) */
+#ifdef DEBUG
+ if (expt != *exps) {
+ fprintf(stderr, "Error: expt != exps %d %d\n", expt, *exps); exit(1);
+ }
+#endif
+ mpz_add(s, s, t); /* no error here: exact */
+ /* ensures rr has the same size as t: after several shifts, the error
+ on rr is still at most ulp(t)=ulp(s) */
+ expr += mpz_normalize(rr, rr, mpz_sizeinbase(t, 2));
+ } while (mpz_cmp_ui(t, 0));
+
+ TMP_FREE(marker);
+ return l;
+}
+
+/* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q
+ using Brent/Kung method with O(sqrt(l)) multiplications.
+ Return l.
+ Uses m multiplications of full size and 2l/m of decreasing size,
+ i.e. a total equivalent to about m+l/m full multiplications,
+ i.e. 2*sqrt(l) for m=sqrt(l).
+ Version using mpz. ss must have at least (sizer+1) limbs.
+ The error is bounded by (l^2+4*l) ulps where l is the return value.
+*/
+static int
+mpfr_exp2_aux2 (mpz_t s, mpfr_srcptr r, int q, int *exps)
+{
+ int expr, l, m, i, sizer, *expR, expt, ql;
+ unsigned long int c;
+ mpz_t t, *R, rr, tmp;
+ TMP_DECL(marker);
+
+ /* estimate value of l */
+ l = q / (-MPFR_EXP(r));
+ m = (int) _mpfr_isqrt (l);
+ /* we access R[2], thus we need m >= 2 */
+ if (m < 2) m = 2;
+ TMP_MARK(marker);
+ R = (mpz_t*) TMP_ALLOC((m+1)*sizeof(mpz_t)); /* R[i] stands for r^i */
+ expR = (int*) TMP_ALLOC((m+1)*sizeof(int)); /* exponent for R[i] */
+ sizer = 1 + (MPFR_PREC(r)-1)/BITS_PER_MP_LIMB;
+ mpz_init(tmp);
+ MY_INIT_MPZ(rr, sizer+2);
+ MY_INIT_MPZ(t, 2*sizer); /* double size for products */
+ mpz_set_ui(s, 0); *exps = 1-q; /* initialize s to zero, 1 ulp = 2^(1-q) */
+ for (i=0;i<=m;i++) MY_INIT_MPZ(R[i], sizer+2);
+ expR[1] = mpz_set_fr(R[1], r); /* exact operation: no error */
+ expR[1] = mpz_normalize2(R[1], R[1], expR[1], 1-q); /* error <= 1 ulp */
+ mpz_mul(t, R[1], R[1]); /* err(t) <= 2 ulps */
+ mpz_div_2exp(R[2], t, q-1); /* err(R[2]) <= 3 ulps */
+ expR[2] = 1-q;
+ for (i=3;i<=m;i++) {
+ mpz_mul(t, R[i-1], R[1]); /* err(t) <= 2*i-2 */
+ mpz_div_2exp(R[i], t, q-1); /* err(R[i]) <= 2*i-1 ulps */
+ expR[i] = 1-q;
+ }
+ mpz_set_ui(R[0], 1); mpz_mul_2exp(R[0], R[0], q-1); expR[0]=1-q; /* R[0]=1 */
+ mpz_set_ui(rr, 1); expr=0; /* rr contains r^l/l! */
+ /* by induction: err(rr) <= 2*l ulps */
+
+ l = 0;
+ ql = q; /* precision used for current giant step */
+ do {
+ /* all R[i] must have exponent 1-ql */
+ if (l) for (i=0;i<m;i++) {
+ expR[i] = mpz_normalize2(R[i], R[i], expR[i], 1-ql);
+ }
+ /* the absolute error on R[i]*rr is still 2*i-1 ulps */
+ expt = mpz_normalize2(t, R[m-1], expR[m-1], 1-ql);
+ /* err(t) <= 2*m-1 ulps */
+ /* computes t = 1 + r/(l+1) + ... + r^(m-1)*l!/(l+m-1)!
+ using Horner's scheme */
+ for (i=m-2;i>=0;i--) {
+ mpz_div_ui(t, t, l+i+1); /* err(t) += 1 ulp */
+ mpz_add(t, t, R[i]);
+ }
+ /* now err(t) <= (3m-2) ulps */
+
+ /* now multiplies t by r^l/l! and adds to s */
+ mpz_mul(t, t, rr); expt += expr;
+ expt = mpz_normalize2(t, t, expt, *exps);
+ /* err(t) <= (3m-1) + err_rr(l) <= (3m-2) + 2*l */
+#ifdef DEBUG
+ if (expt != *exps) {
+ fprintf(stderr, "Error: expt != exps %d %d\n", expt, *exps); exit(1);
+ }
+#endif
+ mpz_add(s, s, t); /* no error here */
+
+ /* updates rr, the multiplication of the factors l+i could be done
+ using binary splitting too, but it is not sure it would save much */
+ mpz_mul(t, rr, R[m]); /* err(t) <= err(rr) + 2m-1 */
+ expr += expR[m];
+ mpz_set_ui (tmp, 1);
+ for (i=1, c=1; i<=m; i++) {
+ if (l+i > ~((unsigned long int) 0)/c) {
+ mpz_mul_ui(tmp, tmp, c);
+ c = l+i;
+ }
+ else c *= (unsigned long int) l+i;
+ }
+ if (c != 1) mpz_mul_ui (tmp, tmp, c); /* tmp is exact */
+ mpz_fdiv_q(t, t, tmp); /* err(t) <= err(rr) + 2m */
+ expr += mpz_normalize(rr, t, ql); /* err_rr(l+1) <= err_rr(l) + 2m+1 */
+ ql = q - *exps - mpz_sizeinbase(s, 2) + expr + mpz_sizeinbase(rr, 2);
+ l+=m;
+ } while (expr+mpz_sizeinbase(rr, 2) > -q);
+
+ TMP_FREE(marker);
+ mpz_clear(tmp);
+ return l;
+}